151
|
Lefebvre P, Martin PJ, Flajollet S, Dedieu S, Billaut X, Lefebvre B. Transcriptional activities of retinoic acid receptors. VITAMINS AND HORMONES 2005; 70:199-264. [PMID: 15727806 DOI: 10.1016/s0083-6729(05)70007-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vitamin A derivatives plays a crucial role in embryonic development, as demonstrated by the teratogenic effect of either an excess or a deficiency in vitamin A. Retinoid effects extend however beyond embryonic development, and tissue homeostasis, lipid metabolism, cellular differentiation and proliferation are in part controlled through the retinoid signaling pathway. Retinoids are also therapeutically effective in the treatment of skin diseases (acne, psoriasis and photoaging) and of some cancers. Most of these effects are the consequences of retinoic acid receptors activation, which triggers transcriptional events leading either to transcriptional activation or repression of retinoid-controlled genes. Synthetic molecules are able to mimic part of the biological effects of the natural retinoic acid receptors, all-trans retinoic acid. Therefore, retinoic acid receptors are considered as highly valuable therapeutic targets and limiting unwanted secondary effects due to retinoid treatment requires a molecular knowledge of retinoic acid receptors biology. In this review, we will examine experimental evidence which provide a molecular basis for the pleiotropic effects of retinoids, and emphasize the crucial roles of coregulators of retinoic acid receptors, providing a conceptual framework to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Philippe Lefebvre
- INSERM U459 and Ligue Nationale Contre le Cancer, Faculté de Médecine de Lille, 59045 Lille cedex, France
| | | | | | | | | | | |
Collapse
|
152
|
Reisman DN, Sciarrotta J, Bouldin TW, Weissman BE, Funkhouser WK. The expression of the SWI/SNF ATPase subunits BRG1 and BRM in normal human tissues. Appl Immunohistochem Mol Morphol 2005; 13:66-74. [PMID: 15722796 DOI: 10.1097/00129039-200503000-00011] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
SWI/SNF is a chromatin-remodeling complex important in gene regulation, cytokine responses, tumorigenesis, differentiation, and development. As a multitude of signaling pathways require SWI/SNF, loss of SWI/SNF function is expected to have an impact on cellular phenotypes. The SWI/SNF ATPase subunits, BRG1 and BRM, have been shown to be lost in a subset of human cancer cell lines and human primary cancers and may represent tumor suppressor proteins. To better understand the biology of these proteins, the authors examined the expression pattern of BRG1 and BRM in a variety of normal tissues. BRG1 expression was predominantly seen in cell types that constantly undergo proliferation or self-renewal; in contrast, BRM was preferentially expressed in brain, liver, fibromuscular stroma, and endothelial cell types, cell types not constantly engaged in proliferation or self-renewal. This differential expression suggests that these proteins serve distinct functions in human tissues.
Collapse
Affiliation(s)
- David N Reisman
- Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
153
|
Walfridsson J, Bjerling P, Thalen M, Yoo EJ, Park SD, Ekwall K. The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres. Nucleic Acids Res 2005; 33:2868-79. [PMID: 15908586 PMCID: PMC1133792 DOI: 10.1093/nar/gki579] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Centromeres of fission yeast are arranged with a central core DNA sequence flanked by repeated sequences. The centromere-associated histone H3 variant Cnp1 (SpCENP-A) binds exclusively to central core DNA, while the heterochromatin proteins and cohesins bind the surrounding outer repeats. CHD (chromo-helicase/ATPase DNA binding) chromatin remodeling factors were recently shown to affect chromatin assembly in vitro. Here, we report that the CHD protein Hrp1 plays a key role at fission yeast centromeres. The hrp1Δ mutant disrupts silencing of the outer repeats and central core regions of the centromere and displays chromosome segregation defects characteristic for dysfunction of both regions. Importantly, Hrp1 is required to maintain high levels of Cnp1 and low levels of histone H3 and H4 acetylation at the central core region. Hrp1 interacts directly with the centromere in early S-phase when centromeres are replicated, suggesting that Hrp1 plays a direct role in chromatin assembly during DNA replication.
Collapse
Affiliation(s)
| | | | | | - Eung-Jae Yoo
- School of Biological Sciences, Seoul National UniversitySeoul 151-742, Korea
| | - Sang Dai Park
- School of Biological Sciences, Seoul National UniversitySeoul 151-742, Korea
| | - Karl Ekwall
- To whom correspondence should be addressed. Tel: +46 8 6084713; Fax: +46 8 6084510;
| |
Collapse
|
154
|
Abstract
Post-translational modification is a major mechanism by which protein function is regulated in eukaryotes. Instead of single-site action, many proteins such as histones, p53, RNA polymerase II, tubulin, Cdc25C and tyrosine kinases are modified at multiple sites by modifications like phosphorylation, acetylation, methylation, ubiquitination, sumoylation and citrullination. Multisite modification on a protein constitutes a complex regulatory program that resembles a dynamic 'molecular barcode' and transduces molecular information to and from signaling pathways. This program imparts effects through 'loss-of-function' and 'gain-of-function' mechanisms. Among the latter, covalent modifications specifically recruit a diverse array of modules, including the SH2 domain, 14-3-3, WW domain, Polo box, BRCT repeat, bromodomain, chromodomain, Tudor domain and motifs binding to ubiquitin and other protein modifiers. Such recruitments are often modulated by modifications occurred at neighboring and distant sites. Multisite modification thus coordinates intermolecular and intramolecular signaling for the qualitative and quantitative control of protein function in vivo.
Collapse
Affiliation(s)
- Xiang-Jiao Yang
- Molecular Oncology Group, Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada H3A 1A1.
| |
Collapse
|
155
|
Sekine I, Sato M, Sunaga N, Toyooka S, Peyton M, Parsons R, Wang W, Gazdar AF, Minna JD. The 3p21 candidate tumor suppressor gene BAF180 is normally expressed in human lung cancer. Oncogene 2005; 24:2735-8. [PMID: 15735765 DOI: 10.1038/sj.onc.1207694] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BAF180 encoding a subunit of the human SWI/SNF chromatin remodeling complex maps to 3p21, in a region where frequent allele loss has been detected in lung cancer. BAF180 can be mutated and has tumor suppressing properties in breast cancer. In addition, another member of this complex, hSNF5/INI1, is a known tumor suppressor gene (TSG) for malignant rhabdoid and childhood central nervous system tumors. Thus, BAF180 is a strong candidate TSG for lung cancer. The objective of this study was to determine whether BAF180 mRNA or protein expression was inactivated or abnormal in lung cancers to prompt detailed DNA promoter methylation or mutational analyses. In 30 non-small-cell and 26 small-cell lung cancer cell lines, most of which had 3p21 allele loss, BAF180 mRNA and protein expression were evaluated by RT-PCR using three sets of primers and Western blotting using two anti-BAF180 antibodies. In all cases, BAF180 was expressed and no abnormal size BAF180 protein was detected. Finally, we found no amino-acid sequence coding mutations in five non-small-cell and five small-cell lung cancer cell lines, while we did find a new splicing isoform of BAF180 (AY281068). We conclude that abnormalities of BAF180 are not frequently involved in the pathogenesis of lung cancer.
Collapse
Affiliation(s)
- Ikuo Sekine
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, TX 75390-8593, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Fukuoka J, Fujii T, Shih JH, Dracheva T, Meerzaman D, Player A, Hong K, Settnek S, Gupta A, Buetow K, Hewitt S, Travis WD, Jen J. Chromatin remodeling factors and BRM/BRG1 expression as prognostic indicators in non-small cell lung cancer. Clin Cancer Res 2005; 10:4314-24. [PMID: 15240517 DOI: 10.1158/1078-0432.ccr-03-0489] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We immunohistochemically examined 12 core proteins involved in the chromatin remodeling machinery using a tissue microarray composed of 150 lung adenocarcinoma (AD) and 150 squamous cell carcinoma (SCC) cases. Most of the proteins showed nuclear staining, whereas some also showed cytoplasmic or membranous staining. When the expression patterns of all tested antigens were considered, proteins with nuclear staining clustered into two major groups. Nuclear signals of BRM, Ini-1, retinoblastoma, mSin3A, HDAC1, and HAT1 clustered together, whereas nuclear signals of BRG1, BAF155, HDAC2, BAF170, and RbAP48 formed a second cluster. Additionally, two thirds of the cases on the lung tissue array had follow-up information, and survival analysis was performed for each of the tested proteins. Positive nuclear BRM (N-BRM) staining correlated with a favorable prognosis in SCC and AD patients with a 5 year-survival of 53.5% compared with 32.3% for those whose tumors were negative for N-BRM (P = 0.015). Furthermore, patients whose tumors stained positive for both N-BRM and nuclear BRG1 had a 5 year-survival of 72% compared with 33.6% (P = 0.013) for those whose tumors were positive for either or negative for both markers. In contrast, membranous BRM (M-BRM) staining correlated with a poorer prognosis in AD patients with a 5 year-survival of 16.7% compared with those without M-BRM staining (38.1%; P = 0.016). These results support the notion that BRM and BRG1 participate in two distinct chromosome remodeling complexes that are functionally complementary and that the nuclear presence of BRM, its coexpression with nuclear BRG1, and the altered cellular localization of BRM (M-BRM) are useful markers for non-small cell lung cancer prognosis.
Collapse
Affiliation(s)
- Junya Fukuoka
- Laboratory of Population Genetics, Biometric Research Branch, Center for Bioinformatics, Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Aoyagi S, Trotter KW, Archer TK. ATP-dependent chromatin remodeling complexes and their role in nuclear receptor-dependent transcription in vivo. VITAMINS AND HORMONES 2005; 70:281-307. [PMID: 15727808 DOI: 10.1016/s0083-6729(05)70009-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nuclear receptors (NRs) are ligand-dependent transcription factors that mediate transcription of target genes in chromatin. Modulation of chromatin structure plays an important part in the NR-mediated transcription process. ATP-dependent chromatin remodeling complexes have been shown to be intimately involved in NR-mediated transcription. In this review, we examine the role of chromatin remodeling complexes in facilitating the recruitment of coregulators and basal transcription factors. In addition, the role of subunit specificity within the chromatin remodeling complexes, the complexes' influence on remodeling activity, and complexes' recruitment to the NR-responsive promoters are discussed.
Collapse
Affiliation(s)
- Sayura Aoyagi
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
158
|
Wang Z, Zhai W, Richardson JA, Olson EN, Meneses JJ, Firpo MT, Kang C, Skarnes WC, Tjian R. Polybromo protein BAF180 functions in mammalian cardiac chamber maturation. Genes Dev 2004; 18:3106-16. [PMID: 15601824 PMCID: PMC535920 DOI: 10.1101/gad.1238104] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 10/12/2004] [Indexed: 11/24/2022]
Abstract
BAF and PBAF are two related mammalian chromatin remodeling complexes essential for gene expression and development. PBAF, but not BAF, is able to potentiate transcriptional activation in vitro mediated by nuclear receptors, such as RXRalpha, VDR, and PPARgamma. Here we show that the ablation of PBAF-specific subunit BAF180 in mouse embryos results in severe hypoplastic ventricle development and trophoblast placental defects, similar to those found in mice lacking RXRalpha and PPARgamma. Embryonic aggregation analyses reveal that in contrast to PPARgamma-deficient mice, the heart defects are likely a direct result of BAF180 ablation, rather than an indirect consequence of trophoblast placental defects. We identified potential target genes for BAF180 in heart development, such as S100A13 as well as retinoic acid (RA)-induced targets RARbeta2 and CRABPII. Importantly, BAF180 is recruited to the promoter of these target genes and BAF180 deficiency affects the RA response for CRABPII and RARbeta2. These studies reveal unique functions of PBAF in cardiac chamber maturation.
Collapse
Affiliation(s)
- Zhong Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Mohrmann L, Verrijzer CP. Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes. ACTA ACUST UNITED AC 2004; 1681:59-73. [PMID: 15627498 DOI: 10.1016/j.bbaexp.2004.10.005] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 10/21/2004] [Accepted: 10/22/2004] [Indexed: 01/31/2023]
Abstract
By regulating the structure of chromatin, ATP-dependent chromatin remodeling complexes (remodelers) perform critical functions in the maintenance, transmission and expression of the eukaryotic genome. Although all known chromatin-remodeling complexes contain an ATPase as a central motor subunit, a number of distinct classes have been recognized. Recent studies have emphasized a more extensive functional diversification among closely related chromatin remodeling complexes than previously anticipated. Here, we discuss recent insights in the functional differences between two evolutionary conserved subclasses of SWI/SNF-related chromatin remodeling factors. One subfamily comprises yeast SWI/SNF, fly BAP and mammalian BAF, whereas the other subfamily includes yeast RSC, fly PBAP and mammalian PBAF. We review the subunit composition, conserved protein modules and biological functions of each of these subclasses of SWI/SNF remodelers. In particular, we will focus on the roles of specific subunits in developmental gene control and human diseases. Recent findings suggest that functional diversification among SWI/SNF complexes allows the eukaryotic cell to fine-tune and integrate the execution of diverse biological programs involving the expression, maintenance and duplication of its genome.
Collapse
Affiliation(s)
- Lisette Mohrmann
- Gene Regulation Laboratory, Centre for Biomedical Genetics and Department of Molecular and Cell Biology, Leiden University Medical Centre, PO Box 9503, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
160
|
Abstract
Lysine acetylation has been shown to occur in many protein targets, including core histones, about 40 transcription factors and over 30 other proteins. This modification is reversible in vivo, with its specificity and level being largely controlled by signal-dependent association of substrates with acetyltransferases and deacetylases. Like other covalent modifications, lysine acetylation exerts its effects through "loss-of-function" and "gain-of-function" mechanisms. Among the latter, lysine acetylation generates specific docking sites for bromodomain proteins. For example, bromodomains of Gcn5, PCAF, TAF1 and CBP are able to recognize acetyllysine residues in histones, HIV Tat, p53, c-Myb or MyoD. In addition to the acetyllysine moiety, the flanking sequences also contribute to efficient recognition. The relationship between acetyllysine and bromodomains is reminiscent of the specific recognition of phosphorylated residues by phospho-specific binding modules such as SH2 domains and 14-3-3 proteins. Therefore, lysine acetylation forges a novel signaling partnership with bromodomains to govern the temporal and spatial regulation of protein functions in vivo.
Collapse
Affiliation(s)
- Xiang-Jiao Yang
- Molecular Oncology Group, Royal Victoria Hospital, Room H5.41, Department of Medicine, McGill University Health Center, 687 Pine Avenue West, Montreal, Quebec H3A 1A1, Canada.
| |
Collapse
|
161
|
Yin J, Haney L, Walk S, Zhou S, Ravichandran KS, Wang W. Nuclear localization of the DOCK180/ELMO complex. Arch Biochem Biophys 2004; 429:23-9. [PMID: 15288806 DOI: 10.1016/j.abb.2004.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 05/18/2004] [Indexed: 10/26/2022]
Abstract
DOCK180 protein plays a key role during development, cell motility, and phagocytosis. It forms a complex with another protein ELMO, and this complex acts as a guanine nucleotide exchange factor (GEF) for Rac. However, DOCK180-containing complexes have not been purified by unbiased biochemical approaches, and the nature and subcellular localization of these complexes remain unclear. Here, we show that a large fraction of endogenous DOCK180 is present as a 700kDa nuclear complex with ELMO proteins. In addition, this nuclear DOCK180/ELMO complex has functional Rac-GEF activity. Furthermore, endogenous DOCK180 could be found in complexes with different ELMO isoforms (ELMO1, 2 or 3) in different cell lines, depending on the ELMO isoforms expressed. These studies suggest that DOCK180 may associate with different ELMO proteins to form cell-type specific complexes and may have functions in both the nucleus and the cytoplasm.
Collapse
Affiliation(s)
- Jinhu Yin
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MA 21224, USA
| | | | | | | | | | | |
Collapse
|
162
|
Chuong SDX, Good AG, Taylor GJ, Freeman MC, Moorhead GBG, Muench DG. Large-scale identification of tubulin-binding proteins provides insight on subcellular trafficking, metabolic channeling, and signaling in plant cells. Mol Cell Proteomics 2004; 3:970-83. [PMID: 15249590 DOI: 10.1074/mcp.m400053-mcp200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microtubules play an essential role in the growth and development of plants and are known to be involved in regulating many cellular processes ranging from translation to signaling. In this article, we describe the proteomic characterization of Arabidopsis tubulin-binding proteins that were purified using tubulin affinity chromatography. Microtubule co-sedimentation assays indicated that most, if not all, of the proteins in the tubulin-binding protein fraction possessed microtubule-binding activity. Two-dimensional gel electrophoresis of the tubulin-binding protein fraction was performed, and 86 protein spots were excised and analyzed for protein identification. A total of 122 proteins were identified with high confidence using LC-MS/MS. These proteins were grouped into six categories based on their predicted functions: microtubule-associated proteins, translation factors, RNA-binding proteins, signaling proteins, metabolic enzymes, and proteins with other functions. Almost one-half of the proteins identified in this fraction were related to proteins that have previously been reported to interact with microtubules. This study represents the first large-scale proteomic identification of eukaryotic cytoskeleton-binding proteins, and provides insight on subcellular trafficking, metabolic channeling, and signaling in plant cells.
Collapse
Affiliation(s)
- Simon D X Chuong
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | | | | | | | |
Collapse
|
163
|
Affiliation(s)
- Blaine T Bettinger
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | | | | |
Collapse
|
164
|
Abstract
We developed a model system to study glucocorticoid receptor (GR)-mediated chromatin remodeling by the BRG1 complex. Introduction of the BRG1 ATPase into the SW-13 cell line initiates the formation of a functional remodeling complex. This complex is able to induce transcriptional activation from a transiently transfected promoter with wild-type and chromatin-remodeling-deficient BRG1 mutants, suggesting that the complex possesses a coactivator function independent from remodeling. Transactivation from a chromatin template requires the BRG1 remodeling function, which induces regions of hypersensitivity and transcription factor loading onto the integrated MMTV promoter. We report that BRG1 remodeling activity is required for GR-mediated transactivation and that this activity cannot be replaced by other ATP-dependent remodeling proteins. Further characterization of the BRG1-associated factors (BAFs) present in these cells (for example, the expression of BAF250 but not BAF180) reveals that the BAF complex rather than the polybromo-associated BAF complex is the necessary and sufficient chromatin-remodeling component with which the receptor functions in vivo. These results in conjunction with previous findings demonstrate that the GR functions with multiple forms of the SWI/SNF complex in vivo.
Collapse
Affiliation(s)
- Kevin W Trotter
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
165
|
Mohrmann L, Langenberg K, Krijgsveld J, Kal AJ, Heck AJR, Verrijzer CP. Differential targeting of two distinct SWI/SNF-related Drosophila chromatin-remodeling complexes. Mol Cell Biol 2004; 24:3077-88. [PMID: 15060132 PMCID: PMC381637 DOI: 10.1128/mcb.24.8.3077-3088.2004] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SWI/SNF family of ATP-dependent chromatin-remodeling factors plays a central role in eukaryotic transcriptional regulation. In yeast and human cells, two subclasses have been recognized: one comprises yeast SWI/SNF and human BAF, and the other includes yeast RSC and human PBAF. Therefore, it was puzzling that Drosophila appeared to contain only a single SWI/SNF-type remodeler, the Brahma (BRM) complex. Here, we report the identification of two novel BRM complex-associated proteins: Drosophila Polybromo and BAP170, a conserved protein not described previously. Biochemical analysis established that Drosophila contains two distinct BRM complexes: (i) the BAP complex, defined by the presence of OSA and the absence of Polybromo and BAP170, and (ii) the PBAP complex, containing Polybromo and BAP170 but lacking OSA. Determination of the genome-wide distributions of OSA and Polybromo on larval salivary gland polytene chromosomes revealed that BAP and PBAP display overlapping but distinct distribution patterns. Both complexes associate predominantly with regions of open, hyperacetylated chromatin but are largely excluded from Polycomb-bound repressive chromatin. We conclude that, like yeast and human cells, Drosophila cells express two distinct subclasses of the SWI/SNF family. Our results support a close reciprocity of chromatin regulation by ATP-dependent remodelers and histone-modifying enzymes.
Collapse
Affiliation(s)
- Lisette Mohrmann
- Gene Regulation Laboratory, Centre for Biomedical Genetics, Department of Molecular and Cell Biology, Leiden University Medical Centre, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
166
|
Kinyamu HK, Archer TK. Modifying chromatin to permit steroid hormone receptor-dependent transcription. ACTA ACUST UNITED AC 2004; 1677:30-45. [PMID: 15020043 DOI: 10.1016/j.bbaexp.2003.09.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 09/24/2003] [Accepted: 09/24/2003] [Indexed: 02/07/2023]
Abstract
Lipophilic hormones, including steroids, exert their physiological effects through binding to high-affinity superfamily of steroid hormone receptor (SR) proteins that function as ligand-dependent DNA binding transcription factors. To date, SR proteins are among a few transcription factors shown to directly interact with higher order chromatin structures to regulate gene expression. To perturb chromatin, SRs employ enzymatic multicomplexes that can either remodel or modify chromatin. Here we examine the current state of knowledge concerning multicomplex chromatin remodeling/modification machines and SR-dependent transcription. We will focus on the role of these protein-protein and chromatin-protein interactions in vivo with the MMTV promoter as a primary model. In addition, we discuss emerging evidence implicating chaperone proteins and proteasome degradation machinery in SR-mediated gene regulation within chromatin.
Collapse
Affiliation(s)
- H Karimi Kinyamu
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, PO Box 12233 (MD E4-06), Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
167
|
Lee YH, Campbell HD, Stallcup MR. Developmentally essential protein flightless I is a nuclear receptor coactivator with actin binding activity. Mol Cell Biol 2004; 24:2103-17. [PMID: 14966289 PMCID: PMC350567 DOI: 10.1128/mcb.24.5.2103-2117.2004] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hormone-activated nuclear receptors (NR) activate transcription by recruiting multiple coactivator complexes to the promoters of target genes. One important coactivator complex includes a p160 coactivator (e.g., GRIP1, SRC-1, or ACTR) that binds directly to activated NR, the histone acetyltransferase p300 or CBP, and the arginine-specific histone methyltransferase CARM1. We previously demonstrated that the coactivator function of CARM1 depends both on the methyltransferase activity and on additional unknown proteins that bind to CARM1. In this study a yeast two-hybrid screen for proteins that bind CARM1 identified the protein Flightless I (Fli-I), which has essential roles in Drosophila and mouse development. Fli-I bound to CARM1, GRIP1, and NRs and cooperated synergistically with CARM1 and GRIP1 to enhance NR function. Fli-I bound poorly to and did not cooperate with PRMT1, a CARM1-related protein arginine methyltransferase that also functions as an NR coactivator. The synergy between GRIP1, CARM1, and Fli-I required the methyltransferase activity of CARM1. The C-terminal AD1 (binding site for p300/CBP) and AD2 (binding site for CARM1) activation domains of GRIP1 contributed to the synergy but were less stringently required than the N-terminal region of GRIP1, which is the binding site for Fli-I. Endogenous Fli-I was recruited to the estrogen-regulated pS2 gene promoter of MCF-7 cells in response to the hormone, and reduction of endogenous Fli-I levels by small interfering RNA reduced hormone-stimulated gene expression by the endogenous estrogen receptor. A fragment of Fli-I that is related to the actin binding protein gelsolin enhanced estrogen receptor activity, and mutations that reduced actin binding also reduced the coactivator function of this Fli-I fragment. These data suggest that Fli-I may facilitate interaction of the p160 coactivator complex with other coactivators or coactivator complexes containing actin or actin-like proteins.
Collapse
MESH Headings
- Actins/metabolism
- Adaptor Proteins, Signal Transducing
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Drosophila Proteins
- Estradiol/metabolism
- Gelsolin
- Genes, Reporter
- Humans
- Macromolecular Substances
- Membrane Proteins
- Mice
- Microfilament Proteins
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Protein-Arginine N-Methyltransferases/genetics
- Protein-Arginine N-Methyltransferases/metabolism
- RNA, Small Interfering/metabolism
- Receptors, AMPA/genetics
- Receptors, AMPA/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Trans-Activators
- Transcription, Genetic
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Young-Ho Lee
- Department of Pathology, University of Southern California, Los Angeles, California 90089-9092, USA
| | | | | |
Collapse
|
168
|
Taneda T, Kikuchi A. Genetic analysis of RSC58, which encodes a component of a yeast chromatin remodeling complex, and interacts with the transcription factor Swi6. Mol Genet Genomics 2004; 271:479-89. [PMID: 15034784 DOI: 10.1007/s00438-004-0999-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 02/20/2004] [Indexed: 11/26/2022]
Abstract
Before transcription can begin, the chromatin structure must be rearranged at the nucleosome level. In yeast the nucleosome remodeling complex RSC is involved in this process and it is essential for growth. Recent analysis of the RSC by mass spectrometry has suggested that the product of YLR033w, an essential gene of unknown function, is a novel component of the complex, and the gene has been renamed RSC58. Rsc58 is predicted to be 502 amino acids long. We have isolated five temperature-sensitive mutations in RSC58 and studied the cellular function of the gene. Our major findings are the following. (1) Two of the alleles have a frameshift mutation near the 3' end of the gene, in codons 482 and 485, respectively. The first mutation is associated with the more severe phenotype. This is compatible with the finding that removal of the C-terminal 25 residues of Rsc58 is lethal to cells. These results suggest that C-terminal region is essential for Rsc58 function. (2) RSC4, which codes for another member of the RSC, was found to be a multicopy suppressor of the phenotype of one of the temperature-sensitive mutants. (3) Two-hybrid analysis identified Swi6, a transcription factor, as a candidate interactor with Rsc58. An interaction between Rsc58 and Swi6 is also suggested by the fact that rsc58-ts Deltaswi6 double mutants show a more severe growth defect than either mutation alone. These results suggest the possibility that Rsc58 mediates between nucleosome remodeling and the initiation of transcription.
Collapse
Affiliation(s)
- T Taneda
- Division of Molecular Mycology and Medicine, Center for Neural Disease and Cancer, Graduate School of Medicine, Nagoya University, Tsurumai-cho 65, Showa-ku, 466-8550 Nagoya, Japan
| | | |
Collapse
|
169
|
Huang J, Hsu JM, Laurent BC. The RSC nucleosome-remodeling complex is required for Cohesin's association with chromosome arms. Mol Cell 2004; 13:739-50. [PMID: 15023343 DOI: 10.1016/s1097-2765(04)00103-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 01/12/2004] [Accepted: 01/13/2004] [Indexed: 11/17/2022]
Abstract
The fidelity of chromosome segregation requires that the cohesin protein complex bind together newly replicated sister chromatids both at centromeres and at discrete sites along chromosome arms. Segregation of the yeast 2 micro plasmid also requires cohesin, which is recruited to the plasmid partitioning locus. Here we report that the RSC chromatin-remodeling complex regulates the differential association of cohesin with centromeres and chromosome arms. RSC cycles on and off chromosomal arm and plasmid cohesin binding sites in a cell cycle-regulated manner 15 min preceding Mcd1p, the central cohesin subunit. We show that in rsc mutants Mcd1p fails to associate with chromosome arms but still binds to centromeres, and that consequently, the arm regions of mitotic sister chromosomes separate precociously while cohesion at centromeres is unaffected. Our data suggest a role for RSC in facilitating the loading of cohesin specifically onto chromosome arms, thereby ensuring sister chromatid cohesion and proper chromosome segregation.
Collapse
Affiliation(s)
- Jian Huang
- Program in Molecular and Cellular Biology, Department of Microbiology and Immunology, Morse Institute of Molecular Biology and Genetics, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | |
Collapse
|
170
|
Doan DN, Veal TM, Yan Z, Wang W, Jones SN, Imbalzano AN. Loss of the INI1 tumor suppressor does not impair the expression of multiple BRG1-dependent genes or the assembly of SWI/SNF enzymes. Oncogene 2004; 23:3462-73. [PMID: 14990991 DOI: 10.1038/sj.onc.1207472] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The INI1/hSNF5 tumor suppressor is an integral component of mammalian SWI/SNF chromatin remodeling enzymes that contain SNF2 family ATPases BRM (Brahma) or BRG1 (Brahma Related Gene 1) and that contribute to the regulation of many genes. Genetic studies of yeast SWI/SNF enzyme revealed similar phenotypes when single or multiple components of the enzyme were deleted, indicating a requirement for each subunit. To address the contribution of INI1 in the regulation of SWI/SNF-dependent genes in mammalian cells, we examined the expression of multiple BRG1-dependent, constitutively expressed genes in INI1-deficient cancer cell lines. At least one INI1-deficient line expressed each gene, and reintroduction of INI1 had negligible effects on expression levels. Lack of INI1 also did not prevent interferon gamma (IFNgamma)-mediated induction of CIITA, which is BRG1 dependent, and GBP-1, which is BRG1 enhanced, and reintroduction of INI1 had minimal effects. Chromatin immunoprecipitation experiments revealed that BRG1 inducibly binds to the CIITA promoter despite the absence of INI1. Unlike yeast deleted for the INI1 homologue, SWI/SNF enzymes in INI1-deficient cells were largely intact. Thus in human cells, SWI/SNF enzyme complex formation and the expression of many BRG1-dependent genes are independent of INI1.
Collapse
Affiliation(s)
- Diem N Doan
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | |
Collapse
|
171
|
Baetz KK, Krogan NJ, Emili A, Greenblatt J, Hieter P. The ctf13-30/CTF13 genomic haploinsufficiency modifier screen identifies the yeast chromatin remodeling complex RSC, which is required for the establishment of sister chromatid cohesion. Mol Cell Biol 2004; 24:1232-44. [PMID: 14729968 PMCID: PMC321452 DOI: 10.1128/mcb.24.3.1232-1244.2003] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The budding yeast centromere-kinetochore complex ensures high-fidelity chromosome segregation in mitosis and meiosis by mediating the attachment and movement of chromosomes along spindle microtubules. To identify new genes and pathways whose function impinges on chromosome transmission, we developed a genomic haploinsufficiency modifier screen and used ctf13-30, encoding a mutant core kinetochore protein, as the reference point. We demonstrate through a series of secondary screens that the genomic modifier screen is a successful method for identifying genes that encode nonessential proteins required for the fidelity of chromosome segregation. One gene isolated in our screen was RSC2, a nonessential subunit of the RSC chromatin remodeling complex. rsc2 mutants have defects in both chromosome segregation and cohesion, but the localization of kinetochore proteins to centromeres is not affected. We determined that, in the absence of RSC2, cohesin could still associate with chromosomes but fails to achieve proper cohesion between sister chromatids, indicating that RSC has a role in the establishment of cohesion. In addition, numerous subunits of RSC were affinity purified and a new component of RSC, Rtt102, was identified. Our work indicates that only a subset of the nonessential RSC subunits function in maintaining chromosome transmission fidelity.
Collapse
Affiliation(s)
- Kristin K Baetz
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | | | | | | | | |
Collapse
|
172
|
Chromosomal HMG-box proteins. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-7306(03)39005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
173
|
Müssig C, Altmann T. Changes in gene expression in response to altered SHL transcript levels. PLANT MOLECULAR BIOLOGY 2003; 53:805-820. [PMID: 15082927 DOI: 10.1023/b:plan.0000023661.65248.4b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The nuclear SHL protein is composed of a N-terminal BAH domain and a C-terminal PHD finger. Both domains are found in transcriptional regulators and chromatin-modifying proteins. Arabidopsis plants over-expressing SHL showed earlier flowering and senescence phenotype. To identify SHL regulated genes, expression profiles of 35S::SHL plants were established with Affymetrix ATH1 microarrays. About 130 genes showed reduced transcript levels, and about 45 genes showed increased transcript levels in 35S::SHL plants. The up-regulated genes included AGL20 and AGL9, which most likely cause the early flowering phenotype of 35S::SHL plants. Late-flowering SHL-antisense lines showed reduced AGL20 mRNA levels, suggesting that AGL20 gene expression depends on the SHL protein. The stronger expression of senescence- and defence-related genes (such as DIN2, DIN11 and PR-1 ) is in line with the early senescence phenotype of SHL- over-expressing plants. SHL-down-regulated genes included stress response genes and the PSR3.2 gene (encoding a beta-glucosidase). SHL over-expression did not alter the tissue specificity of PSR3.2 gene expression, but resulted in reduced transcript levels in both shoots and roots. Plants with glucocorticoid-inducible SHL over-expression were established and used for expression profiling as well. A subset of genes was identified, which showed consistent changes in the inducible system and in plants with constitutive SHL over-expression.
Collapse
Affiliation(s)
- Carsten Müssig
- Universität Potsdam-Genetik, c/o MPI für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany.
| | | |
Collapse
|
174
|
Xue Y, Gibbons R, Yan Z, Yang D, McDowell TL, Sechi S, Qin J, Zhou S, Higgs D, Wang W. The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies. Proc Natl Acad Sci U S A 2003; 100:10635-40. [PMID: 12953102 PMCID: PMC196856 DOI: 10.1073/pnas.1937626100] [Citation(s) in RCA: 295] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
ATRX syndrome is characterized by X-linked mental retardation associated with alpha-thalassemia. The gene mutated in this disease, ATRX, encodes a plant homeodomain-like finger and a SWI2/SNF2-like ATPase motif, both of which are often found in chromatin-remodeling enzymes, but ATRX has not been characterized biochemically. By immunoprecipitation from HeLa extract, we found that ATRX is in a complex with transcription cofactor Daxx. The following evidence supports that ATRX and Daxx are components of an ATP-dependent chromatin-remodeling complex: (i) Daxx and ATRX can be coimmunoisolated by antibodies specific for each protein; (ii) a proportion of Daxx cofractionates with ATRX as a complex of 1 MDa by gel-filtration analysis; (iii) in extract from cells of a patient with ATRX syndrome, the level of the Daxx-ATRX complex is correspondingly reduced; (iv) a proportion of ATRX and Daxx colocalize in promyelocytic leukemia nuclear bodies, with which Daxx had previously been located; and (v) the ATRX complex displays ATP-dependent activities that resemble those of other chromatin-remodeling complexes, including triple-helix DNA displacement and alteration of mononucleosome disruption patterns. But unlike the previously described SWI/SNF or NURD complexes, the ATRX complex does not randomize DNA phasing of the mononucleosomes, suggesting that it may remodel chromatin differently. Taken together, the results suggest that ATRX functions in conjunction with Daxx in a novel chromatin-remodeling complex. The defects in ATRX syndrome may result from inappropriate expression of genes controlled by this complex.
Collapse
Affiliation(s)
- Yutong Xue
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Szerlong H, Saha A, Cairns BR. The nuclear actin-related proteins Arp7 and Arp9: a dimeric module that cooperates with architectural proteins for chromatin remodeling. EMBO J 2003; 22:3175-87. [PMID: 12805231 PMCID: PMC162148 DOI: 10.1093/emboj/cdg296] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2002] [Revised: 04/28/2003] [Accepted: 04/28/2003] [Indexed: 11/12/2022] Open
Abstract
Nuclear actin-related proteins (ARPs) are essential components of chromatin remodeling and modifying complexes, but their functions and relationship to actin remain elusive. The yeast SWI/SNF and RSC complexes contain Arp7 and Arp9, and are shown to form a stable heterodimer with the properties of a functional module. Arp7 and Arp9 rely on their actin-related regions for heterodimerization, and their unique C-termini cooperate for assembly into RSC. We suggest that regulated ARP-ARP (and possibly ARP-beta-actin) heterodimerization might be a conserved feature of chromatin complexes. A RSC complex lacking Arp7/9 was isolated that displays robust nucleosome remodeling activity, suggesting a separate essential role for ARPs in the regulation of chromatin structure. A screen for suppressors of arp mutations yielded the DNA bending architectural transcription factor Nhp6, which interacts with RSC complex physically and functionally and shows facilitated binding to nucleosomes by RSC. We propose that Arp7/9 dimers function with DNA bending proteins to facilitate proper chromatin architecture and complex- complex interactions.
Collapse
Affiliation(s)
- Heather Szerlong
- Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
176
|
Abstract
In the past few years, there has been a nascent convergence of scientific understanding of inherited human diseases with epigenetics. Identified epigenetic processes involved in human disease include covalent DNA modifications, covalent histone modifications, and histone relocation. Each of these processes influences chromatin structure and thereby regulates gene expression and DNA methylation, replication, recombination, and repair. The importance of these processes for nearly all aspects of normal growth and development is illustrated by the array of multi-system disorders and neoplasias caused by their dysregulation.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room S434, Houston, Texas 77030, USA
| | | | | |
Collapse
|
177
|
Meetei AR, Sechi S, Wallisch M, Yang D, Young MK, Joenje H, Hoatlin ME, Wang W. A multiprotein nuclear complex connects Fanconi anemia and Bloom syndrome. Mol Cell Biol 2003; 23:3417-26. [PMID: 12724401 PMCID: PMC164758 DOI: 10.1128/mcb.23.10.3417-3426.2003] [Citation(s) in RCA: 269] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bloom syndrome (BS) is a genetic disorder associated with dwarfism, immunodeficiency, reduced fertility, and an elevated risk of cancer. To investigate the mechanism of this disease, we isolated from human HeLa extracts three complexes containing the helicase defective in BS, BLM. Interestingly, one of the complexes, termed BRAFT, also contains five of the Fanconi anemia (FA) complementation group proteins (FA proteins). FA resembles BS in genomic instability and cancer predisposition, but most of its gene products have no known biochemical activity, and the molecular pathogenesis of the disease is poorly understood. BRAFT displays a DNA-unwinding activity, which requires the presence of BLM because complexes isolated from BLM-deficient cells lack such an activity. The complex also contains topoisomerase IIIalpha and replication protein A, proteins that are known to interact with BLM and could facilitate unwinding of DNA. We show that BLM complexes isolated from an FA cell line have a lower molecular mass. Our study provides the first biochemical characterization of a multiprotein FA complex and suggests a connection between the BLM and FA pathways of genomic maintenance. The findings that FA proteins are part of a DNA-unwinding complex imply that FA proteins may participate in DNA repair.
Collapse
Affiliation(s)
- Amom Ruhikanta Meetei
- Laboratory of Genetics. Mass Spectrometry Unit, National Institute on Aging/NIH, TRIAD Center Room 3000, 333 Cassell Drive, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
178
|
DeLillo N, Romero C, Lin H, Vancura A. Genetic evidence for a role of phospholipase C at the budding yeast kinetochore. Mol Genet Genomics 2003; 269:261-70. [PMID: 12756538 DOI: 10.1007/s00438-003-0832-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2002] [Accepted: 02/12/2003] [Indexed: 10/25/2022]
Abstract
Chromosome segregation during mitosis requires kinetochores, specialized organelles that mediate chromosome attachment to spindle microtubules. We have shown previously that in budding yeast, Plc1p (phosphoinositide-specific phospholipase C) localizes to centromeric loci, associates with the kinetochore proteins Ndc10p and Cep3p, and affects the function of kinetochores. Deletion of PLC1 results in nocodazole sensitivity, mitotic delay, and a higher frequency of chromosome loss. We report here that despite the nocodazole sensitivity of plc1Delta cells, Plc1p is not required for the spindle checkpoint. However, plc1Delta cells require a functional BUB1/BUB3-dependent spindle checkpoint for viability. PLC1 displays strong genetic interactions with genes encoding components of the inner kinetochore, including NDC10, SKP1, MIF2, CEP1, CEP3, and CTF13. Furthermore, plc1Delta cells display alterations in chromatin structure in the core centromere. Chromatin immunoprecipitation experiments indicate that Plc1p localizes to centromeric loci independently of microtubules, and accumulates at the centromeres during G(2)/M stage of cell cycle. These results are consistent with the view that Plc1p affects kinetochore function, possibly by modulating the structure of centromeric chromatin.
Collapse
Affiliation(s)
- N DeLillo
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Jamaicam New York, NY 11439, USA
| | | | | | | |
Collapse
|
179
|
Hsu JM, Huang J, Meluh PB, Laurent BC. The yeast RSC chromatin-remodeling complex is required for kinetochore function in chromosome segregation. Mol Cell Biol 2003; 23:3202-15. [PMID: 12697820 PMCID: PMC153182 DOI: 10.1128/mcb.23.9.3202-3215.2003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The accurate segregation of chromosomes requires the kinetochore, a complex protein machine that assembles onto centromeric DNA to mediate attachment of replicated sister chromatids to the mitotic spindle apparatus. This study reveals an important role for the yeast RSC ATP-dependent chromatin-remodeling complex at the kinetochore in chromosome transmission. Mutations in genes encoding two core subunits of RSC, the ATPase Sth1p and the Snf5p homolog Sfh1p, interact genetically with mutations in genes encoding kinetochore proteins and with a mutation in centromeric DNA. RSC also interacts genetically and physically with the histone and histone variant components of centromeric chromatin. Importantly, RSC is localized to centromeric and centromere-proximal chromosomal regions, and its association with these loci is dependent on Sth1p. Both sth1 and sfh1 mutants exhibit altered centromeric and centromere-proximal chromatin structure and increased missegregation of authentic chromosomes. Finally, RSC is not required for centromeric deposition of the histone H3 variant Cse4p, suggesting that RSC plays a role in reconfiguring centromeric and flanking nucleosomes following Cse4p recruitment for proper chromosome transmission.
Collapse
Affiliation(s)
- Jing-Mei Hsu
- Department of Microbiology and Immunology, Morse Institute of Molecular Biology and Genetics, and Program in Molecular and Cellular Biology, State University of New York, Brooklyn, New York 11203, USA
| | | | | | | |
Collapse
|
180
|
Wang W. The SWI/SNF family of ATP-dependent chromatin remodelers: similar mechanisms for diverse functions. Curr Top Microbiol Immunol 2003; 274:143-69. [PMID: 12596907 DOI: 10.1007/978-3-642-55747-7_6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The SWI/SNF family of complexes utilizes the energy of ATP hydrolysis to remodel chromatin structures, thereby allowing transcription factors to gain access to DNA. Recent studies suggest that these remodelers also participate in other DNA metabolic reactions such as replication and viral integration, and even in control of cell growth and tumor suppression. The SWI/SNF remodelers can be classified into at least two distinct subfamilies: one includes human BAF (also known as hSWI/SNF-A) and yeast SWI/SNF; the other comprises human PBAF (hSWI/SNF-B) and yeast RSC. Although both types of complexes have similar subunit composition and chromatin remodeling activity in vitro, they cannot replace each other during transcription mediated by specific activators. Thus, each remodeler probably works with a specific set of activators during gene activation. The availability of distinct types of remodelers can allow cells to regulate expression of a specific group of genes by modulating the activity of corresponding remodelers.
Collapse
Affiliation(s)
- W Wang
- Laboratory of Genetics, National Institute on Aging, National Institute of Health, 333 Cassell Drive, TRIAD Center Room 4000, Baltimore, MD 21224, USA.
| |
Collapse
|
181
|
Katsani KR, Mahmoudi T, Verrijzer CP. Selective gene regulation by SWI/SNF-related chromatin remodeling factors. Curr Top Microbiol Immunol 2003; 274:113-41. [PMID: 12596906 DOI: 10.1007/978-3-642-55747-7_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chromatin is a highly dynamic structure that plays a key role in the orchestration of gene expression patterns during cellular differentiation and development. The packaging of DNA into chromatin generates a barrier to the transcription machinery. The two main strategies by which cells alleviate chromatin-mediated repression are through the action of ATP-dependent chromatin remodeling complexes and enzymes that covalently modify the histones. Various signaling pathways impinge upon the targeting and activity of these enzymes, thereby controlling gene expression in response to physiological and developmental cues. Chromatin structure also underlies many so-called epigenetic phenomena, leading to the mitotically stable propagation of differential expression of genetic information. Here, we will focus on the role of SWI/SNF-related ATP-dependent chromatin remodeling complexes in developmental gene regulation. First, we compare different models for how remodelers can act in a gene-selective manner, and either cooperate or antagonize other chromatin-modulating systems in the cell. Next, we discuss their functioning during the control of developmental gene expression programs.
Collapse
Affiliation(s)
- K R Katsani
- Department of Molecular and Cell Biology, Center for Biomedical Genetics, Leiden University Medical Center, P.O. Box 9503, 2300 RA Leiden, The Netherlands
| | | | | |
Collapse
|
182
|
Nie Z, Yan Z, Chen EH, Sechi S, Ling C, Zhou S, Xue Y, Yang D, Murray D, Kanakubo E, Cleary ML, Wang W. Novel SWI/SNF chromatin-remodeling complexes contain a mixed-lineage leukemia chromosomal translocation partner. Mol Cell Biol 2003; 23:2942-52. [PMID: 12665591 PMCID: PMC152562 DOI: 10.1128/mcb.23.8.2942-2952.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The SWI/SNF family of chromatin-remodeling complexes has been discovered in many species and has been shown to regulate gene expression by assisting transcriptional machinery to gain access to their sites in chromatin. Several complexes of this family have been reported for humans. In this study, two additional complexes are described that belong to the same SWI/SNF family. These new complexes contain as many as eight subunits identical to those found in other SWI/SNF complexes, and they possess a similar ATP-dependent nucleosome disruption activity. But unlike known SWI/SNFs, the new complexes are low in abundance and contain an extra subunit conserved between human and yeast SWI/SNF complexes. This subunit, ENL, is a homolog of the yeast SWI/SNF subunit, ANC1/TFG3. Moreover, ENL is a fusion partner for the gene product of MLL that is a common target for chromosomal translocations in human acute leukemia. The resultant MLL-ENL fusion protein associates and cooperates with SWI/SNF complexes to activate transcription of the promoter of HoxA7, a downstream target essential for oncogenic activity of MLL-ENL. Our data suggest that human SWI/SNF complexes show considerable heterogeneity, and one or more may be involved in the etiology of leukemia by cooperating with MLL fusion proteins.
Collapse
Affiliation(s)
- Zuqin Nie
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Abstract
Members of the Swi/Snf family of chromatin-remodeling complexes play critical roles in transcriptional control. Recent studies have made significant advances in our understanding of the fundamental aspects of Swi/Snf complexes, including the roles of specific subunits, the repression of transcription, and the mechanism of remodeling. In addition, new findings also indicate an important role for the Swi/Snf-related complex, RSC, in controlling gene expression.
Collapse
Affiliation(s)
- Joseph A Martens
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
184
|
Reincke BS, Rosson GB, Oswald BW, Wright CF. INI1 expression induces cell cycle arrest and markers of senescence in malignant rhabdoid tumor cells. J Cell Physiol 2003; 194:303-13. [PMID: 12548550 DOI: 10.1002/jcp.10201] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The INI1 gene, which encodes a functionally uncharacterized protein component of the hSWI/SNF chromatin remodeling complex, is often mutated or deleted in malignant rhabdoid tumor (MRT). Two isoforms of INI1, that differ by the variable inclusion of nine amino acids, potentially are produced by differential RNA splicing. To determine the effect of the two INI1 isoforms on cell growth, INI1-devoid (MRT) and INI1-expressing cell lines were transfected separately with mammalian expression vectors or transduced with adenoviruses. Transfection of the short form of INI1 into either INI1-deficient or expressing cell lines resulted in complete suppression of cell growth in colony formation assays. The longer splice variant induced moderate to severe growth suppression of MRT cells, but had a far milder effect on non-MRT cells. Transduction of MRT cells with adenoviruses expressing either isoform of INI1 led to a dramatic change in morphology, growth suppression, and cell cycle arrest. Furthermore, senescence-associated proteins were up-regulated after transduction, while levels of proteins implicated in cell cycle progression were down-regulated. Adenoviral delivery of INI1 into a non-MRT cell line, however, had no demonstrable effect on any of these parameters. These results support the genetic evidence that INI1 is a tumor suppressor gene gone awry in MRT cells, and also suggest that delivery of the INI1 gene to MRT cells by adenoviruses may lead to a more effective treatment of this highly aggressive malignancy.
Collapse
Affiliation(s)
- Britta S Reincke
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
185
|
Oma Y, Nishimori K, Harata M. The brain-specific actin-related protein ArpN alpha interacts with the transcriptional co-repressor CtBP. Biochem Biophys Res Commun 2003; 301:521-8. [PMID: 12565893 DOI: 10.1016/s0006-291x(02)03073-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Actin-related protein (Arp) is found in many chromatin remodeling and histone acetyltransferase complexes. We previously identified ArpN alpha as an isoform of ArpN beta/BAF53, which is included in mammalian SWI/SNF chromatin remodeling complex, and showed that ArpN alpha is a potential component of the complex. Although it has a structure highly similar to ArpN beta/BAF53, ArpN alpha is expressed exclusively in brain and in neural differentiated embryonal carcinoma cells. Since ArpN alpha possesses a region that shows low similarity to ArpN beta/BAF53, we hypothesized that proteins interacting with this region contribute to the ArpN alpha-specific function in brain. Here we showed that ArpN alpha, but not ArpN beta/BAF53, interacts with the transcriptional co-repressor CtBP (C-terminal binding protein). Transactivation by the SWI/SNF complex and glucocorticoid receptor was repressed by the CtBP in the presence of ArpN alpha. These findings suggest that SWI/SNF complex containing ArpN alpha might regulate certain genes involved in brain development and/or its function differently from SWI/SNF complex containing ArpN beta/BAF53.
Collapse
Affiliation(s)
- Yukako Oma
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoba-ku, Sendai 981-8555, Japan
| | | | | |
Collapse
|
186
|
Chi T, Yan Z, Xue Y, Wang W. Purification and functional analysis of the mammalian SWI/SNF-family of chromatin-remodeling complexes. Methods Enzymol 2003; 377:299-316. [PMID: 14979033 DOI: 10.1016/s0076-6879(03)77018-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tianhuai Chi
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
187
|
Abstract
Recent advances in the identification of molecular components of centromeres have demonstrated a crucial role for chromatin proteins in determining both centromere identity and the stability of kinetochore-microtubule attachments. Although we are far from a complete understanding of the establishment and propagation of centromeres, this review seeks to highlight the contribution of histones, histone deposition factors, histone modifying enzymes, and heterochromatin proteins to the assembly of this sophisticated, highly specialized chromatin structure. First, an overview of DNA sequence elements at centromeric regions will be presented. We will then discuss the contribution of chromatin to kinetochore function in budding yeast, and pericentric heterochromatin domains in other eukaryotic systems. We will conclude with discussion of specialized nucleosomes that direct kinetochore assembly and propagation of centromere-defining chromatin domains.
Collapse
Affiliation(s)
- J A Sharp
- University of California, Berkeley, Stanley Hall, Mail Code 3206, Berkeley, CA 94720, USA.
| | | |
Collapse
|
188
|
Ahmad K, Henikoff S. Histone H3 variants specify modes of chromatin assembly. Proc Natl Acad Sci U S A 2002; 99 Suppl 4:16477-84. [PMID: 12177448 PMCID: PMC139911 DOI: 10.1073/pnas.172403699] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Histone variants have been known for 30 years, but their functions and the mechanism of their deposition are still largely unknown. Drosophila has three versions of histone H3. H3 packages the bulk genome, H3.3 marks active chromatin and may be essential for gene regulation, and Cid is the characteristic structural component of centromeric chromatin. We have characterized the properties of these histones by using a Drosophila cell-line system that allows precise analysis of both DNA replication and histone deposition. The deposition of H3 is restricted to replicating DNA. In striking contrast, H3.3 and Cid deposit throughout the cell cycle. Deposition of H3.3 occurs without any corresponding DNA replication. To confirm that the deposition of Cid is also replication-independent (RI), we examined centromere replication in cultured cells and neuroblasts. We found that centromeres replicate out of phase with heterochromatin and display replication patterns that may limit H3 deposition. This confirms that both variants undergo RI deposition, but at different locations in the nucleus. How variant histones accomplish RI deposition is unknown, and raises basic questions about the stability of nucleosomes, the machinery that accomplishes nucleosome assembly, and the functional organization of the nucleus. The different in vivo properties of H3, H3.3, and Cid set the stage for identifying the mechanisms by which they are differentially targeted. Here we suggest that local effects of "open" chromatin and broader effects of nuclear organization help to guide the two different H3 variants to their target sites.
Collapse
Affiliation(s)
- Kami Ahmad
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A1-162, Seattle, WA 98109, USA
| | | |
Collapse
|
189
|
Kuroda Y, Oma Y, Nishimori K, Ohta T, Harata M. Brain-specific expression of the nuclear actin-related protein ArpNalpha and its involvement in mammalian SWI/SNF chromatin remodeling complex. Biochem Biophys Res Commun 2002; 299:328-34. [PMID: 12437990 DOI: 10.1016/s0006-291x(02)02637-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Actin-related proteins share significant homology with conventional actins and are classified into subfamilies based on the similarity of their sequences and functions. The Arp4 subfamily of Arps is localized in the nucleus, and a mammalian isoform, ArpNbeta (also known as BAF53), is a component of the chromatin remodeling and histone acetyltransferase complexes. Another isoform identified in humans, ArpNalpha has scarcely been characterized yet. We identified mouse ArpNalpha, and showed that ArpNalpha is more similar between humans and mice than ArpNbeta. No difference was observed between ArpNalpha and beta in subcellular localization and interaction with BRM, which is an ATPase subunit of mammalian SWI/SNF chromatin remodeling complex. However, ArpNalpha was expressed exclusively in the brain and its expression was induced during neural differentiation of P19 mouse embryonic carcinoma cells. ArpNalpha is the first brain-specific component of a chromatin remodeling complex to be identified, suggesting that ArpNalpha has conserved and important roles in the differentiation of neural cells through regulation of chromatin structure.
Collapse
Affiliation(s)
- Yukiko Kuroda
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoba-ku, 981-8555, Sendai, Japan
| | | | | | | | | |
Collapse
|
190
|
Vermaak D, Hayden HS, Henikoff S. Centromere targeting element within the histone fold domain of Cid. Mol Cell Biol 2002; 22:7553-61. [PMID: 12370302 PMCID: PMC135675 DOI: 10.1128/mcb.22.21.7553-7561.2002] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Centromeres require specialized nucleosomes; however, the mechanism of localization is unknown. Drosophila sp. centromeric nucleosomes contain the Cid H3-like protein. We have devised a strategy for identifying elements within Cid responsible for its localization to centromeres. By expressing Cid from divergent Drosophila species fused to green fluorescent protein in Drosophila melanogaster cells, we found that D. bipectinata Cid fails to localize to centromeres. Cid chimeras consisting of the D. bipectinata histone fold domain (HFD) replaced with segments from D. melanogaster identified loop I of the HFD as being critical for targeting to centromeres. Conversely, substitution of D. bipectinata loop I into D. melanogaster abolished centromeric targeting. In either case, loop I was the only segment capable of conferring targeting. Within loop I, we identified residues that are critical for targeting. Most mutations of conserved residues abolished targeting, and length reductions were deleterious. Taken together with the fact that H3 loop I makes numerous contacts with DNA and with the adaptive evolution of Cid, our results point to the importance of DNA specificity for targeting. We suggest that the process of deposition of (Cid.H4)2 tetramers allows for discriminating contacts to be made between loop I and DNA, providing the specificity needed for targeting.
Collapse
Affiliation(s)
- Danielle Vermaak
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
191
|
Nielsen AL, Sanchez C, Ichinose H, Cerviño M, Lerouge T, Chambon P, Losson R. Selective interaction between the chromatin-remodeling factor BRG1 and the heterochromatin-associated protein HP1alpha. EMBO J 2002; 21:5797-806. [PMID: 12411497 PMCID: PMC131057 DOI: 10.1093/emboj/cdf560] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian heterochromatin protein 1 (HP1) alpha, HP1beta and HP1gamma are closely related non-histone chromosomal proteins that function in gene silencing, presumably by organizing higher order chromatin structures. Here, we show by co-immunoprecipitation that HP1alpha, but neither HP1beta nor HP1gamma, forms a complex with the BRG1 chromatin-remodeling factor in HeLa cells. In vitro, BRG1 interacts directly and preferentially with HP1alpha. The region conferring this preferential binding has been mapped to residues 106-180 of the HP1alpha C-terminal chromoshadow domain. Using site-directed mutagenesis, we have identified three amino acid residues I113, A114 and C133 in HP1alpha (K, P and S in HP1beta and HP1gamma) that are essential for the selective interaction of HP1alpha with BRG1. Interestingly, these residues were also shown to be critical for the silencing activity of HP1alpha. Taken together, these results demonstrate that mammalian HP1 proteins are biochemically distinct and suggest an entirely novel function for BRG1 in modulating HP1alpha-containing heterochromatic structures.
Collapse
Affiliation(s)
- Anders Lade Nielsen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP/Collège de France, BP10142, 67404 Illkirch cedex, France
Present address: Department of Molecular and Structural Biology and Institute of Human Genetics, Aarhus University, C.F.Mollersalle 130, DK-8000 Aarhus C, Denmark Present address: Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-11, Japan Corresponding author e-mail:
| | | | - Hiroshi Ichinose
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP/Collège de France, BP10142, 67404 Illkirch cedex, France
Present address: Department of Molecular and Structural Biology and Institute of Human Genetics, Aarhus University, C.F.Mollersalle 130, DK-8000 Aarhus C, Denmark Present address: Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-11, Japan Corresponding author e-mail:
| | | | | | | | - Régine Losson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP/Collège de France, BP10142, 67404 Illkirch cedex, France
Present address: Department of Molecular and Structural Biology and Institute of Human Genetics, Aarhus University, C.F.Mollersalle 130, DK-8000 Aarhus C, Denmark Present address: Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-11, Japan Corresponding author e-mail:
| |
Collapse
|
192
|
Asturias FJ, Chung WH, Kornberg RD, Lorch Y. Structural analysis of the RSC chromatin-remodeling complex. Proc Natl Acad Sci U S A 2002; 99:13477-80. [PMID: 12368485 PMCID: PMC129698 DOI: 10.1073/pnas.162504299] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2002] [Indexed: 11/18/2022] Open
Abstract
Electron microscopy of the RSC chromatin-remodeling complex reveals a ring of protein densities around a central cavity. The size and shape of the cavity correspond closely to those of a nucleosome. Results of nuclease protection analysis are consistent with nucleosome binding in the cavity. Such binding could explain the ability of RSC to expose nucleosomal DNA in the presence of ATP without loss of associated histones.
Collapse
Affiliation(s)
- Francisco J Asturias
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
193
|
Olave I, Wang W, Xue Y, Kuo A, Crabtree GR. Identification of a polymorphic, neuron-specific chromatin remodeling complex. Genes Dev 2002; 16:2509-17. [PMID: 12368262 PMCID: PMC187451 DOI: 10.1101/gad.992102] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A variety of chromatin remodeling complexes are thought to assist sequence-specific transcription factors. The complexes described to date are expressed ubiquitously, suggesting that they have general transcriptional functions. We show that vertebrate neurons have a specialized chromatin remodeling complex, bBAF, specifically containing the actin-related protein, BAF53b, which is first expressed in postmitotic neurons at about murine embryonic day 12.5 (E12.5). BAF53b is combinatorially assembled into polymorphic complexes with ubiquitous subunits including the two ATPases BRG1 and BRM. We speculate that bBAF complexes create neuronal-specific patterns of chromatin accessibility, thereby imparting new regulatory characteristics to ubiquitous sequence-specific transcription factors in neurons.
Collapse
Affiliation(s)
- Ivan Olave
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
194
|
Levine SS, Weiss A, Erdjument-Bromage H, Shao Z, Tempst P, Kingston RE. The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol Cell Biol 2002; 22:6070-8. [PMID: 12167701 PMCID: PMC134016 DOI: 10.1128/mcb.22.17.6070-6078.2002] [Citation(s) in RCA: 311] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Polycomb group (PcG) genes are required to maintain homeotic genes in a silenced state during development in drosophila and mammals and are thought to form several distinct silencing complexes that maintain homeotic gene repression during development. Mutations in the PcG genes result in developmental defects and have been implicated in human cancer. Although some PcG protein domains are conserved between flies and humans, substantial regions of several PcG proteins are divergent and humans contain multiple versions of each PcG gene. To determine the effects of these changes on the composition and function of a PcG complex, we have purified a human Polycomb repressive complex from HeLa cells (hPRC-H) that contains homologues of PcG proteins found in drosophila embryonic PRC1 (dPRC1). hPRC-H was found to have fewer components than dPRC1, retaining the PcG core proteins of dPRC1 but lacking most non-PcG proteins. Preparations of hPRC-H contained either two or three different homologues of most of the core PcG proteins, including a new Ph homologue we have named HPH3. Despite differences in composition, dPRC1 and hPRC-H have similar functions: hPRC-H is able to efficiently block remodeling of nucleosomal arrays through a mechanism that does not block the ability of nucleases to access and cleave the arrays.
Collapse
Affiliation(s)
- Stuart S Levine
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
195
|
Abstract
Chromatin-remodeling complexes couple ATP hydrolysis to alterations in histone-DNA interactions and nucleosome mobility, allowing transcription factors access to chromatin. Here, we use triple-helix strand-displacement assays, DNA length-dependent ATPase assays, and DNA-minicircle ATPase assays to establish that RSC, as well as its isolated ATPase subunit Sth1, are DNA translocases. RSC/Sth1 ATPase activity is stimulated by single-stranded DNA, suggesting that Sth1 tracks along one strand of the DNA duplex. Each RSC complex appears to contain a single molecule of Sth1, and isolated Sth1 is capable of nucleosome remodeling. We propose that the remodeling enzyme remains in a fixed position on the octamer and translocates a segment of DNA (with accompanying DNA twist), which breaks histone-DNA contacts and propagates as a wave of DNA around the octamer. The demonstration of DNA translocation presented here provides a mechanistic basis for this DNA wave. To test the relative contribution of twist to remodeling, we use nucleosomes containing nicks in precise locations to uncouple twist and translocation. Nucleosomes bearing nicks are remodeled less efficiently than intact nucleosomes. These results suggest that RSC and Sth1 are DNA translocases that use both DNA translocation and twist to remodel nucleosomes efficiently.
Collapse
Affiliation(s)
- Anjanabha Saha
- Howard Hughes Medical Institute and the Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
196
|
Betz BL, Strobeck MW, Reisman DN, Knudsen ES, Weissman BE. Re-expression of hSNF5/INI1/BAF47 in pediatric tumor cells leads to G1 arrest associated with induction of p16ink4a and activation of RB. Oncogene 2002; 21:5193-203. [PMID: 12149641 DOI: 10.1038/sj.onc.1205706] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2002] [Revised: 05/21/2002] [Accepted: 05/24/2002] [Indexed: 12/26/2022]
Abstract
Truncating mutations and homozygous deletions in the hSNF5/INI1/BAF47 subunit of human SWI/SNF complexes occur in most malignant rhabdoid tumors and some other malignancies. How loss of hSNF5 contributes to tumorigenesis remains unknown. Because the SWI/SNF subunit BRG1 is required for RB-mediated cell cycle arrest, we hypothesized that hSNF5 deficiency disrupts RB signaling. Here we demonstrate that unlike BRG1, hSNF5 deficient cells retain functional RB since ectopic expression of either p16ink4a or a constitutively active form of RB (PSM-RB) led to cell cycle arrest. To determine how hSNF5 loss might contribute to tumorigenesis, we used a retrovirus to introduce hSNF5 into multiple deficient cell lines. In all cases, re-expression inhibited colony formation and induced cell cycle arrest characterized by a flattened morphology. Flow cytometry revealed that these cells accumulated in G0/G1. Importantly, arrested cells exhibited strong induction of p16ink4a, hypophosphorylated RB, and down-regulation of cyclin A, suggesting that hSNF5 signals upstream of RB to induce growth arrest. Co-expression of SV40 T/t abolished hSNF5-induced G1 arrest and activation of RB. Likewise, HPV-16 E7 was sufficient to partially overcome cell cycle arrest. These results suggest that hSNF5 loss is not equivalent to BRG1/BRM loss in human tumor cell lines. Furthermore, hSNF5-induced cell cycle arrest of deficient cells is mediated in part through activation of p16ink4a expression. These findings provide insight into mechanisms of hSNF5-mediated tumor suppression.
Collapse
Affiliation(s)
- Bryan L Betz
- Department of Pathology and Laboratory Medicine and The Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, NC 27599, USA
| | | | | | | | | |
Collapse
|
197
|
Belandia B, Orford RL, Hurst HC, Parker MG. Targeting of SWI/SNF chromatin remodelling complexes to estrogen-responsive genes. EMBO J 2002; 21:4094-103. [PMID: 12145209 PMCID: PMC126156 DOI: 10.1093/emboj/cdf412] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2002] [Revised: 06/13/2002] [Accepted: 06/13/2002] [Indexed: 11/13/2022] Open
Abstract
SWI/SNF complexes are ATP-dependent chromatin remodelling enzymes that have been implicated in the regulation of gene expression in yeast and higher eukaryotes. BRG1, a catalytic subunit in the mammalian SWI/SNF complex, is required for transcriptional activation by the estrogen receptor, but the mechanisms by which the complex is recruited to estrogen target genes are unknown. Here, we have identified an interaction between the estrogen receptor and BAF57, a subunit present only in mammalian SWI/SNF complexes, which is stimulated by estrogen and requires both a functional hormone-binding domain and the DNA-binding region of the receptor. We also found an additional interaction between the p160 family of coactivators and BAF57 and demonstrate that the ability of p160 coactivators to potentiate transcription by the estrogen receptor is dependent on BAF57 in transfected cells. Moreover, chromatin immunoprecipitation assays demonstrated that BAF57 is recruited to the estrogen-responsive promoter, pS2, in a ligand-dependent manner. These results suggest that one of the mechanisms for recruiting SWI/SNF complexes to estrogen target genes is by means of BAF57.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Binding Sites
- COS Cells
- Carcinoma/pathology
- Chlorocebus aethiops
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/physiology
- DNA Helicases
- Estradiol/analogs & derivatives
- Estradiol/pharmacology
- Estrogen Antagonists/pharmacology
- Estrogen Receptor alpha
- Fulvestrant
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- HeLa Cells
- Histone Acetyltransferases
- Humans
- Macromolecular Substances
- Mice
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Nuclear Receptor Coactivator 1
- Nuclear Receptor Coactivator 2
- Nuclear Receptor Coactivator 3
- Promoter Regions, Genetic
- Protein Binding
- Protein Interaction Mapping
- Protein Structure, Tertiary
- Receptors, Estrogen/chemistry
- Receptors, Estrogen/genetics
- Receptors, Estrogen/physiology
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/physiology
- Saccharomyces cerevisiae
- Transcription Factors/chemistry
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
- Transfection
- Tumor Cells, Cultured/drug effects
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
| | - Rob L. Orford
- Institute of Reproductive and Developmental Biology, Imperial College Faculty of Medicine, Du Cane Road and
Cancer Research UK Molecular Oncology Unit, Hammersmith Hospital, London W12 0NN, UK Corresponding author e-mail:
| | - Helen C. Hurst
- Institute of Reproductive and Developmental Biology, Imperial College Faculty of Medicine, Du Cane Road and
Cancer Research UK Molecular Oncology Unit, Hammersmith Hospital, London W12 0NN, UK Corresponding author e-mail:
| | - Malcolm G. Parker
- Institute of Reproductive and Developmental Biology, Imperial College Faculty of Medicine, Du Cane Road and
Cancer Research UK Molecular Oncology Unit, Hammersmith Hospital, London W12 0NN, UK Corresponding author e-mail:
| |
Collapse
|
198
|
Asp P, Wihlborg M, Karlén M, Farrants AKO. Expression of BRG1, a human SWI/SNF component, affects the organisation of actin filaments through the RhoA signalling pathway. J Cell Sci 2002; 115:2735-46. [PMID: 12077364 DOI: 10.1242/jcs.115.13.2735] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The human BRG1 (brahma-related gene 1) protein is a component of the SWI/SNF family of the ATP-dependent chromatin remodelling complexes. We show here that expression of the BRG1 protein, but not of an ATPase-deficient BRG1 protein, in BRG1-deficient SW13 cells alters the organisation of actin filaments. BRG1 expression induces the formation of thick actin filament bundles resembling stress-fibres, structures that are rarely seen in native SW13 cells. BRG1 expression does not influence the activity state of the RhoA-GTPase, which is involved in stress-fibre formation. We find that RhoA is equally activated by stimuli, such as serum, in BRG1-expressing cells,ATPase-deficient BRG1-expressing cells and native SW13 cells. However, the activation of RhoA by lysophosphatidic acid and serum does not trigger the formation of stress-fibre-like structures in SW13 cells. Activation of the RhoA-GTPase in BRG1-expressing cells induces stress-fibre-like structures,indicating that the BRG1 can couple RhoA activation to stress-fibre formation. At least two downstream effectors are involved in stress-fibre formation,Rho-kinase/ROCK and Dia. BRG1 expression, but not the expression of the ATP-deficient BRG1, increases the protein level of ROCK1, one form of the Rho-kinase/ROCK. That this is of importance is supported by the findings that an increased Rho-kinase/ROCK activity in SW13 cells, obtained by overexpressing wild-type ROCK1 and ROCK2, induces stress-fibre formation. No specificity between the two Rho-kinase/ROCK forms exists. Our results suggest that the BRG1 protein affects the RhoA pathway by increasing the protein level of ROCK1, which allows stress-fibre-like structures to form.
Collapse
Affiliation(s)
- Patrik Asp
- Department of Zoological Cell Biology, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
199
|
Chadwick BP, Willard HF. Cell cycle-dependent localization of macroH2A in chromatin of the inactive X chromosome. J Cell Biol 2002; 157:1113-23. [PMID: 12082075 PMCID: PMC2173542 DOI: 10.1083/jcb.200112074] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
One of several features acquired by chromatin of the inactive X chromosome (Xi) is enrichment for the core histone H2A variant macroH2A within a distinct nuclear structure referred to as a macrochromatin body (MCB). In addition to localizing to the MCB, macroH2A accumulates at a perinuclear structure centered at the centrosome. To better understand the association of macroH2A1 with the centrosome and the formation of an MCB, we investigated the distribution of macroH2A1 throughout the somatic cell cycle. Unlike Xi-specific RNA, which associates with the Xi throughout interphase, the appearance of an MCB is predominantly a feature of S phase. Although the MCB dissipates during late S phase and G2 before reforming in late G1, macroH2A1 remains associated during mitosis with specific regions of the Xi, including at the X inactivation center. This association yields a distinct macroH2A banding pattern that overlaps with the site of histone H3 lysine-4 methylation centered at the DXZ4 locus in Xq24. The centrosomal pool of macroH2A1 accumulates in the presence of an inhibitor of the 20S proteasome. Therefore, targeting of macroH2A1 to the centrosome is likely part of a degradation pathway, a mechanism common to a variety of other chromatin proteins.
Collapse
Affiliation(s)
- Brian P Chadwick
- Department of Genetics, Case Western Reserve University School of Medicine and Center for Human Genetics and Research Institute, University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | | |
Collapse
|
200
|
Abstract
The CENP-A histone H3-like variants are centromere-specific histones found in all eukaryotes examined to date, from budding yeast to man. New experiments using antibodies, green fluorescent protein fusions, and epitope tags show that CENP-A replaces the major histone H3 subunits in a specialized histone octamer and that it does so with histones H4, and probably H2A and H2B. One of the classic hallmarks of chromatin molecular biology is that nucleosomes are deposited on DNA during replication in S phase. However, dramatic new results in mammalian and Drosophila cells show that CENP-A deposition is uncoupled from the replication of centromere DNA. Furthermore, genetic and phenotypic knockout experiments over the past year have demonstrated that the deposition of CENP-A at newly duplicated sister centromeres is an early step in the biogenesis of new centromeres and is required for the recruitment of other proteins to the centromere and kinetochore. In organisms with complex regional or holocentric centromeres, centromere identity was thought to be defined by the epigenetic state of centromere chromatin. Now, new experiments solidify this model and show that the epigenetic state can be spread in cis experimentally, creating a neocentromere, in a mechanism reminiscent of chromatin transcriptional silencing. Finally, a new report provides a glimpse into the potential regulation of CENP-A through specific post-translational phosphorylation, suggesting a broad level of control through histone tail modifications.
Collapse
Affiliation(s)
- M Mitchell Smith
- Department of Microbiology and University of Virginia Cancer Center, Jordan Building, Room 7223, University of Virginia, 1300 Jefferson Park Avenue, Charlottesville, VA 22908, USA.
| |
Collapse
|