151
|
Phatnani H, Maniatis T. Astrocytes in neurodegenerative disease. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a020628. [PMID: 25877220 DOI: 10.1101/cshperspect.a020628] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Astrocytes contribute to the maintenance of the health and function of the central nervous system (CNS). Thus, it is not surprising that these multifunctional cells have been implicated in the onset and progression of several neurodegenerative diseases. The involvement of astrocytes in the neuropathology of these diseases is likely a consequence of both the loss of normal homeostatic functions and gain of toxic functions. Intracellular aggregates in astrocytes are a common feature of various neurodegenerative diseases, and these aggregates perturb normal astrocytic functions in ways that can be harmful to neuronal viability. Here, we review the role of astrocytes in neurodegenerative diseases, focusing on their dysfunction in Huntington's disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Hemali Phatnani
- Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, New York, New York 10032
| | - Tom Maniatis
- Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, New York, New York 10032
| |
Collapse
|
152
|
Marttinen M, Kurkinen KM, Soininen H, Haapasalo A, Hiltunen M. Synaptic dysfunction and septin protein family members in neurodegenerative diseases. Mol Neurodegener 2015; 10:16. [PMID: 25888325 PMCID: PMC4391194 DOI: 10.1186/s13024-015-0013-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/23/2015] [Indexed: 11/10/2022] Open
Abstract
Cognitive decline and disease progression in different neurodegenerative diseases typically involves synaptic dysfunction preceding the neuronal loss. The synaptic dysfunction is suggested to be caused by imbalanced synaptic plasticity i.e. enhanced induction of long-term depression and concomitantly decreased long-term potentiation accompanied with excess stimulation of extrasynaptic N-Methyl-D-aspartate (NMDA) receptors due to various disturbances in pre- and postsynaptic sites. Recent research has identified neurodegenerative disease-related changes in protein accumulation and aggregation, gene expression, and protein functions, which may contribute to imbalanced synaptic function. Nevertheless, a comprehensive understanding of the mechanisms regulating synaptic plasticity in health and disease is still lacking and therefore characterization of new candidates involved in these mechanisms is needed. Septins, a highly conserved group of guanosine-5'-triphosphate (GTP)-binding proteins, show high neuronal expression and are implicated in the regulation of synaptic vesicle trafficking and neurotransmitter release. In this review, we first summarize the evidence how synaptic dysfunction is related to the pathogenesis of Alzheimer's, Parkinson's and Huntington's disease and frontotemporal lobar degeneration. Then, we discuss different aspects of the potential involvement of the septin family members in the regulation of synaptic function in relation to the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland. .,Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland. .,Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| | - Kaisa Ma Kurkinen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland. .,Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland. .,Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland. .,Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| | - Annakaisa Haapasalo
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland. .,Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland. .,Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland. .,Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
153
|
Wei H, Liu L, Chen Q. Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2784-90. [PMID: 25840011 DOI: 10.1016/j.bbamcr.2015.03.013] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/17/2015] [Accepted: 03/25/2015] [Indexed: 11/29/2022]
Abstract
The efficient and selective elimination of damaged or excessive mitochondria in response to bioenergetic and environmental cues is critical for maintaining a healthy and appropriate population of mitochondria. Mitophagy is considered to be the central mechanism of mitochondrial quality and quantity control. Atg32, a mitophagy receptor in yeast, recruits mitochondria targeted for degradation into the isolation membrane via both direct and indirect interactions with Atg8. In mammals, different mitophagy effectors, including the mitophagy receptors NIX, BNIP3 and FUDNC1 and the PINK1/Parkin pathway, have been identified to participate in the selective clearance of mitochondria. One common feature of mitophagy receptors is that they harbor an LC3-interacting region (LIR) that interacts with LC3, thus promoting the sequestration of mitochondria into the isolation membrane. Additionally, both receptor- and Parkin/PINK1-mediated mitophagy have been found to be regulated by reversible phosphorylation. Here, we review the recent progress in the understanding of the molecular mechanisms involved in selective mitophagy at multiple levels. We also discuss different mitophagy receptors from an evolutionary perspective and highlight the specific functions of and possible cooperation between distinct mechanisms of mitophagy.
Collapse
Affiliation(s)
- Huifang Wei
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Quan Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
154
|
Recent advances in methamphetamine neurotoxicity mechanisms and its molecular pathophysiology. Behav Neurol 2015; 2015:103969. [PMID: 25861156 PMCID: PMC4377385 DOI: 10.1155/2015/103969] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 12/19/2022] Open
Abstract
Methamphetamine (METH) is a sympathomimetic amine that belongs to phenethylamine and amphetamine class of psychoactive drugs, which are widely abused for their stimulant, euphoric, empathogenic, and hallucinogenic properties. Many of these effects result from acute increases in dopamine and serotonin neurotransmission. Subsequent to these acute effects, METH produces persistent damage to dopamine and serotonin release in nerve terminals, gliosis, and apoptosis. This review summarized the numerous interdependent mechanisms including excessive dopamine, ubiquitin-proteasome system dysfunction, protein nitration, endoplasmic reticulum stress, p53 expression, inflammatory molecular, D3 receptor, microtubule deacetylation, and HIV-1 Tat protein that have been demonstrated to contribute to this damage. In addition, the feasible therapeutic strategies according to recent studies were also summarized ranging from drug and protein to gene level.
Collapse
|
155
|
Abstract
Several proteins encoded by PD genes are implicated in synaptic vesicle traffic. Endophilin, a key factor in the endocytosis of synaptic vesicles, was shown to bind to, and be ubiquitinated by, the PD-linked E3 ubiquitin ligase Parkin. Here we report that Parkin's level is specifically upregulated in brain and fibroblasts of endophilin mutant mice due to increased transcriptional regulation. Studies of transfected HEK293T cells show that Parkin ubiquitinates not only endophilin, but also its major binding partners, dynamin and synaptojanin 1. These results converge with the recently reported functional relationship of endophilin to the PD gene LRRK2 and with the identification of a PD-linked synaptojanin 1 mutation, in providing evidence for a link between PD and endocytosis genes.
Collapse
|
156
|
Charan RA, LaVoie MJ. Pathologic and therapeutic implications for the cell biology of parkin. Mol Cell Neurosci 2015; 66:62-71. [PMID: 25697646 DOI: 10.1016/j.mcn.2015.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/07/2015] [Accepted: 02/15/2015] [Indexed: 01/07/2023] Open
Abstract
Mutations in the E3 ligase parkin are the most common cause of autosomal recessive Parkinson's disease (PD), but it is believed that parkin dysfunction may also contribute to idiopathic PD. Since its discovery, parkin has been implicated in supporting multiple neuroprotective pathways, many revolving around the maintenance of mitochondrial health quality control and governance of cell survival. Recent advances across the structure, biochemistry, and cell biology of parkin have provided great insights into the etiology of parkin-linked and idiopathic PD and may ultimately generate novel therapeutic strategies to slow or halt disease progression. This review describes the various pathways in which parkin acts and the mechanisms by which parkin may be targeted for therapeutic intervention. This article is part of a Special Issue entitled 'Neuronal Protein'.
Collapse
Affiliation(s)
- Rakshita A Charan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, USA; Harvard Medical School, Boston, USA
| | - Matthew J LaVoie
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, USA; Harvard Medical School, Boston, USA
| |
Collapse
|
157
|
Johnson CR, Weems AD, Brewer JM, Thorner J, McMurray MA. Cytosolic chaperones mediate quality control of higher-order septin assembly in budding yeast. Mol Biol Cell 2015; 26:1323-44. [PMID: 25673805 PMCID: PMC4454179 DOI: 10.1091/mbc.e14-11-1531] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Septin hetero-oligomers polymerize into cytoskeletal filaments with essential functions in many eukaryotic cell types. Mutations within the oligomerization interface that encompasses the GTP-binding pocket of a septin (its "G interface") cause thermoinstability of yeast septin hetero-oligomer assembly, and human disease. When coexpressed with its wild-type counterpart, a G interface mutant is excluded from septin filaments, even at moderate temperatures. We show that this quality control mechanism is specific to G interface mutants, operates during de novo septin hetero-oligomer assembly, and requires specific cytosolic chaperones. Chaperone overexpression lowers the temperature permissive for proliferation of cells expressing a G interface mutant as the sole source of a given septin. Mutations that perturb the septin G interface retard release from these chaperones, imposing a kinetic delay on the availability of nascent septin molecules for higher-order assembly. Un-expectedly, the disaggregase Hsp104 contributes to this delay in a manner that does not require its "unfoldase" activity, indicating a latent "holdase" activity toward mutant septins. These findings provide new roles for chaperone-mediated kinetic partitioning of non-native proteins and may help explain the etiology of septin-linked human diseases.
Collapse
Affiliation(s)
- Courtney R Johnson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Andrew D Weems
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Jennifer M Brewer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Jeremy Thorner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
158
|
Aguileta MA, Korac J, Durcan TM, Trempe JF, Haber M, Gehring K, Elsasser S, Waidmann O, Fon EA, Husnjak K. The E3 ubiquitin ligase parkin is recruited to the 26 S proteasome via the proteasomal ubiquitin receptor Rpn13. J Biol Chem 2015; 290:7492-505. [PMID: 25666615 DOI: 10.1074/jbc.m114.614925] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mutations in the Park2 gene, encoding the RING-HECT hybrid E3 ubiquitin ligase parkin, are responsible for a common familial form of Parkinson disease. By mono- and polyubiquitinating target proteins, parkin regulates various cellular processes, including degradation of proteins within the 26 S proteasome, a large multimeric degradation machine. In our attempt to further elucidate the function of parkin, we have identified the proteasomal ubiquitin receptor Rpn13/ADRM1 as a parkin-interacting protein. We show that the N-terminal ubiquitin-like (Ubl) domain of parkin binds directly to the pleckstrin-like receptor for ubiquitin (Pru) domain within Rpn13. Using mutational analysis and NMR, we find that Pru binding involves the hydrophobic patch surrounding Ile-44 in the parkin Ubl, a region that is highly conserved between ubiquitin and Ubl domains. However, compared with ubiquitin, the parkin Ubl exhibits greater than 10-fold higher affinity for the Pru domain. Moreover, knockdown of Rpn13 in cells increases parkin levels and abrogates parkin recruitment to the 26 S proteasome, establishing Rpn13 as the major proteasomal receptor for parkin. In contrast, silencing Rpn13 did not impair parkin recruitment to mitochondria or parkin-mediated mitophagy upon carbonyl cyanide m-chlorophenyl hydrazone-induced mitochondrial depolarization. However, it did delay the clearance of mitochondrial proteins (TIM23, TIM44, and TOM20) and enhance parkin autoubiquitination. Taken together, these findings implicate Rpn13 in linking parkin to the 26 S proteasome and regulating the clearance of mitochondrial proteins during mitophagy.
Collapse
Affiliation(s)
- Miguel A Aguileta
- From the McGill Parkinson Program and Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jelena Korac
- the School of Medicine, University of Split, 21000 Split, Croatia
| | - Thomas M Durcan
- From the McGill Parkinson Program and Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jean-François Trempe
- the Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Michael Haber
- From the McGill Parkinson Program and Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Kalle Gehring
- the Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Suzanne Elsasser
- the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Oliver Waidmann
- Goethe University Medical School, D-60590 Frankfurt am Main, Germany
| | - Edward A Fon
- From the McGill Parkinson Program and Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Koraljka Husnjak
- Goethe University Medical School, D-60590 Frankfurt am Main, Germany
| |
Collapse
|
159
|
Zhao Y, Li Q, Jin A, Cui M, Liu X. E3 ubiquitin ligase Siah-1 downregulates synaptophysin expression under high glucose and hypoxia. Am J Transl Res 2015; 7:15-27. [PMID: 25755825 PMCID: PMC4346520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Diabetes is proved to be one of the independent risk factors for cognitive dysfunction. The pathophysiologic changes caused by diabetes including hyperglycemia and tissue hypoxia may contribute greatly to cognitive decline. In the present study, we demonstrate E3 Ubiquitin Ligase Siah-1 downregulates the key synaptic protein Synaptophysin expression under high glucose and hypoxia condition which may be the underlying factor leading to cognitive dysfunction in diabetic patients. METHODS In this study, hypoxia (2% oxygen) and high glucose (50 mM) were used to treat primary neuronal culture. By using quantitative PCR and western blotting we determined the influence of hypoxia and high glucose on the expression of synaptophysin and Siah-1 and the phosphorylated forms of extracellular signal-regulated kinase (ERK). Knockdown of Siah-1, inhibitors for proteasome, lysosome and ERK kinase was employed to evaluate the role of Siah-1 and ERK activity on the expression of synaptophysin. By immunoprecipitation we also examined the role of Siah-1 in the ubiquitination of synaptophysin under hypoxic and hyperglycemic condition. RESULTS We demonstrated that hypoxia and high glucose together but not hypoxia or high glucose along mediated posttranscriptional reduction of synaptophysin with increased ERK phosphorylation and Siah-1 expression. The downregulation of synaptophysin was reversed by inhibition of ERK and Siah-1 knockdown. Overexpression of Siah-1 accelerated the degradation of synaptophysin under hypoxia and high glucose conditions and promoted the ubiquitination of synaptophysin. CONCLUSIONS The present results demonstrate that Siah-1 is the key factor that contributes to hypoxia and high glucose mediated synaptophysin degradation.
Collapse
Affiliation(s)
- Yanxin Zhao
- Department of Neurology, The 10th People’s Hospital, Tongji University301# Middle Yanchang Road, Shanghai 200072, China
| | - Qiang Li
- Department of Neurology, The 10th People’s Hospital, Tongji University301# Middle Yanchang Road, Shanghai 200072, China
| | - Aiping Jin
- Department of Neurology, The 10th People’s Hospital, Tongji University301# Middle Yanchang Road, Shanghai 200072, China
| | - Mei Cui
- Department of Neurology, Huashan hospital, State Key Laboratory of Medical Neurobiology, Fudan University12# Middle Wulumuqi Road, Shanghai, 200040 China
| | - Xueyuan Liu
- Department of Neurology, The 10th People’s Hospital, Tongji University301# Middle Yanchang Road, Shanghai 200072, China
| |
Collapse
|
160
|
STEP61 is a substrate of the E3 ligase parkin and is upregulated in Parkinson's disease. Proc Natl Acad Sci U S A 2015; 112:1202-7. [PMID: 25583483 DOI: 10.1073/pnas.1417423112] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). The loss of SNc dopaminergic neurons affects the plasticity of striatal neurons and leads to significant motor and cognitive disabilities during the progression of the disease. PARK2 encodes for the E3 ubiquitin ligase parkin and is implicated in genetic and sporadic PD. Mutations in PARK2 are a major contributing factor in the early onset of autosomal-recessive juvenile parkinsonism (AR-JP), although the mechanisms by which a disruption in parkin function contributes to the pathophysiology of PD remain unclear. Here we demonstrate that parkin is an E3 ligase for STEP61 (striatal-enriched protein tyrosine phosphatase), a protein tyrosine phosphatase implicated in several neuropsychiatric disorders. In cellular models, parkin ubiquitinates STEP61 and thereby regulates its level through the proteasome system, whereas clinically relevant parkin mutants fail to do so. STEP61 protein levels are elevated on acute down-regulation of parkin or in PARK2 KO rat striatum. Relevant to PD, STEP61 accumulates in the striatum of human sporadic PD and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mice. The increase in STEP61 is associated with a decrease in the phosphorylation of its substrate ERK1/2 and the downstream target of ERK1/2, pCREB [phospho-CREB (cAMP response element-binding protein)]. These results indicate that STEP61 is a novel substrate of parkin, although further studies are necessary to determine whether elevated STEP61 levels directly contribute to the pathophysiology of PD.
Collapse
|
161
|
Bak DW, Weerapana E. Cysteine-mediated redox signalling in the mitochondria. MOLECULAR BIOSYSTEMS 2015; 11:678-97. [DOI: 10.1039/c4mb00571f] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review represents a novel look at the many sources, cysteine targets, and signaling processes of ROS in the mitochondria.
Collapse
Affiliation(s)
- D. W. Bak
- Department of Chemistry
- Merkert Chemistry Center
- Boston College
- Massachusetts 02467
- USA
| | - E. Weerapana
- Department of Chemistry
- Merkert Chemistry Center
- Boston College
- Massachusetts 02467
- USA
| |
Collapse
|
162
|
Johnson ME, Bobrovskaya L. An update on the rotenone models of Parkinson's disease: their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicology 2014; 46:101-16. [PMID: 25514659 DOI: 10.1016/j.neuro.2014.12.002] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 11/19/2014] [Accepted: 12/03/2014] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder that is characterized by two major neuropathological hallmarks: the degeneration of dopaminergic neurons in the substantia nigra (SN) and the presence of Lewy bodies in the surviving SN neurons, as well as other regions of the central and peripheral nervous system. Animal models have been invaluable tools for investigating the underlying mechanisms of the pathogenesis of PD and testing new potential symptomatic, neuroprotective and neurorestorative therapies. However, the usefulness of these models is dependent on how precisely they replicate the features of clinical PD with some studies now employing combined gene-environment models to replicate more of the affected pathways. The rotenone model of PD has become of great interest following the seminal paper by the Greenamyre group in 2000 (Betarbet et al., 2000). This paper reported for the first time that systemic rotenone was able to reproduce the two pathological hallmarks of PD as well as certain parkinsonian motor deficits. Since 2000, many research groups have actively used the rotenone model worldwide. This paper will review rotenone models, focusing upon their ability to reproduce the two pathological hallmarks of PD, motor deficits, extranigral pathology and non-motor symptoms. We will also summarize the recent advances in neuroprotective therapies, focusing on those that investigated non-motor symptoms and review rotenone models used in combination with PD genetic models to investigate gene-environment interactions.
Collapse
Affiliation(s)
- Michaela E Johnson
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5000, Australia
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
163
|
Akhmetova K, Balasov M, Huijbregts RPH, Chesnokov I. Functional insight into the role of Orc6 in septin complex filament formation in Drosophila. Mol Biol Cell 2014; 26:15-28. [PMID: 25355953 PMCID: PMC4279225 DOI: 10.1091/mbc.e14-02-0734] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Septins belong to a family of polymerizing GTP-binding proteins that are important for cytokinesis and other processes that involve spatial organization of the cell cortex. We reconstituted a recombinant Drosophila septin complex and compared activities of the wild-type and several mutant septin complex variants both in vitro and in vivo. We show that Drosophila septin complex functions depend on the intact GTP-binding and/or hydrolysis domains of Pnut, Sep1, and Sep2. The presence of the functional C-terminal domain of septins is required for the integrity of the complex. Drosophila Orc6 protein, the smallest subunit of the origin recognition complex (ORC), directly binds to septin complex and facilitates septin filament formation. Orc6 forms dimers through the interactions of its N-terminal, TFIIB-like domains. This ability of the protein suggests a direct bridging role for Orc6 in stimulating septin polymerization in Drosophila. Studies reported here provide a functional dissection of a Drosophila septin complex and highlight the basic conserved and divergent features among metazoan septin complexes.
Collapse
Affiliation(s)
- Katarina Akhmetova
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294 Institute of Cytology and Genetics, Novosibirsk 630090, Russia
| | - Maxim Balasov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294
| | - Richard P H Huijbregts
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294
| | - Igor Chesnokov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294
| |
Collapse
|
164
|
Maraschi A, Ciammola A, Folci A, Sassone F, Ronzitti G, Cappelletti G, Silani V, Sato S, Hattori N, Mazzanti M, Chieregatti E, Mulle C, Passafaro M, Sassone J. Parkin regulates kainate receptors by interacting with the GluK2 subunit. Nat Commun 2014; 5:5182. [PMID: 25316086 PMCID: PMC4218952 DOI: 10.1038/ncomms6182] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/09/2014] [Indexed: 12/27/2022] Open
Abstract
Although loss-of-function mutations in the PARK2 gene, the gene that encodes the protein parkin, cause autosomal recessive juvenile parkinsonism, the responsible molecular mechanisms remain unclear. Evidence suggests that a loss of parkin dysregulates excitatory synapses. Here we show that parkin interacts with the kainate receptor (KAR) GluK2 subunit and regulates KAR function. Loss of parkin function in primary cultured neurons causes GluK2 protein to accumulate in the plasma membrane, potentiates KAR currents and increases KAR-dependent excitotoxicity. Expression in the mouse brain of a parkin mutant causing autosomal recessive juvenile parkinsonism results in GluK2 protein accumulation and excitotoxicity. These findings show that parkin regulates KAR function in vitro and in vivo, and suggest that KAR upregulation may have a pathogenetic role in parkin-related autosomal recessive juvenile parkinsonism.
Collapse
Affiliation(s)
- AnnaMaria Maraschi
- IRCCS Istituto Auxologico Italiano, Department of Neurology and Laboratory of Neuroscience, Cusano Milanino, 20095 Milan, Italy
| | - Andrea Ciammola
- IRCCS Istituto Auxologico Italiano, Department of Neurology and Laboratory of Neuroscience, Cusano Milanino, 20095 Milan, Italy
| | - Alessandra Folci
- CNR Institute of Neuroscience, Department of BIOMETRA, University of Milan, 20129 Milan, Italy
| | - Francesca Sassone
- IRCCS Istituto Auxologico Italiano, Department of Neurology and Laboratory of Neuroscience, Cusano Milanino, 20095 Milan, Italy
| | - Giuseppe Ronzitti
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | | | - Vincenzo Silani
- IRCCS Istituto Auxologico Italiano, Department of Neurology and Laboratory of Neuroscience, Cusano Milanino, 20095 Milan, Italy
- ‘Dino Ferrari’ Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Shigeto Sato
- Department of Neurology, Juntendo University School of Medicine, 113-8421 Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 113-8421 Tokyo, Japan
| | - Michele Mazzanti
- Department of Biosciences, Università degli Studi di Milano, 20122 Milan, Italy
| | - Evelina Chieregatti
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, 33000 Bordeaux, France
| | - Maria Passafaro
- CNR Institute of Neuroscience, Department of BIOMETRA, University of Milan, 20129 Milan, Italy
| | - Jenny Sassone
- IRCCS Istituto Auxologico Italiano, Department of Neurology and Laboratory of Neuroscience, Cusano Milanino, 20095 Milan, Italy
| |
Collapse
|
165
|
Dave KD, De Silva S, Sheth NP, Ramboz S, Beck MJ, Quang C, Switzer RC, Ahmad SO, Sunkin SM, Walker D, Cui X, Fisher DA, McCoy AM, Gamber K, Ding X, Goldberg MS, Benkovic SA, Haupt M, Baptista MA, Fiske BK, Sherer TB, Frasier MA. Phenotypic characterization of recessive gene knockout rat models of Parkinson's disease. Neurobiol Dis 2014; 70:190-203. [DOI: 10.1016/j.nbd.2014.06.009] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 05/30/2014] [Accepted: 06/13/2014] [Indexed: 11/25/2022] Open
|
166
|
Magalingam KB, Radhakrishnan A, Ramdas P, Haleagrahara N. Quercetin Glycosides Induced Neuroprotection by Changes in the Gene Expression in a Cellular Model of Parkinson’s Disease. J Mol Neurosci 2014; 55:609-17. [DOI: 10.1007/s12031-014-0400-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 08/06/2014] [Indexed: 11/29/2022]
|
167
|
Singh N, Haldar S, Tripathi AK, McElwee MK, Horback K, Beserra A. Iron in neurodegenerative disorders of protein misfolding: a case of prion disorders and Parkinson's disease. Antioxid Redox Signal 2014; 21:471-84. [PMID: 24512387 PMCID: PMC4076993 DOI: 10.1089/ars.2014.5874] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Intracellular and extracellular aggregation of a specific protein or protein fragments is the principal pathological event in several neurodegenerative conditions. We describe two such conditions: sporadic Creutzfeldt-Jakob disease (sCJD), a rare but potentially infectious and invariably fatal human prion disorder, and Parkinson's disease (PD), a common neurodegenerative condition second only to Alzheimer's disease in prevalence. In sCJD, a cell surface glycoprotein known as the prion protein (PrP(C)) undergoes a conformational change to PrP-scrapie, a pathogenic and infectious isoform that accumulates in the brain parenchyma as insoluble aggregates. In PD, α-synuclein, a cytosolic protein, forms insoluble aggregates that accumulate in neurons of the substantia nigra and cause neurotoxicity. RECENT ADVANCES Although distinct processes are involved in the pathogenesis of sCJD and PD, both share brain iron dyshomeostasis as a common associated feature that is reflected in the cerebrospinal fluid in a disease-specific manner. CRITICAL ISSUES Since PrP(C) and α-synuclein play a significant role in maintaining cellular iron homeostasis, it is important to understand whether the aggregation of these proteins and iron dyshomeostasis are causally related. Here, we discuss recent information on the normal function of PrP(C) and α-synuclein in cellular iron metabolism and the cellular and biochemical processes that contribute to iron imbalance in sCJD and PD. FUTURE DIRECTIONS Improved understanding of the relationship between brain iron imbalance and protein aggregation is likely to help in the development of therapeutic strategies that can restore brain iron homeostasis and mitigate neurotoxicity.
Collapse
Affiliation(s)
- Neena Singh
- 1 Department of Pathology, Case Western Reserve University , Cleveland, Ohio
| | | | | | | | | | | |
Collapse
|
168
|
Alternative splicing generates different parkin protein isoforms: evidences in human, rat, and mouse brain. BIOMED RESEARCH INTERNATIONAL 2014; 2014:690796. [PMID: 25136611 PMCID: PMC4124806 DOI: 10.1155/2014/690796] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/30/2014] [Indexed: 11/17/2022]
Abstract
Parkinson protein 2, E3 ubiquitin protein ligase (PARK2) gene mutations are the most frequent causes of autosomal recessive early onset Parkinson's disease and juvenile Parkinson disease. Parkin deficiency has also been linked to other human pathologies, for example, sporadic Parkinson disease, Alzheimer disease, autism, and cancer. PARK2 primary transcript undergoes an extensive alternative splicing, which enhances transcriptomic diversification. To date several PARK2 splice variants have been identified; however, the expression and distribution of parkin isoforms have not been deeply investigated yet. Here, the currently known PARK2 gene transcripts and relative predicted encoded proteins in human, rat, and mouse are reviewed. By analyzing the literature, we highlight the existing data showing the presence of multiple parkin isoforms in the brain. Their expression emerges from conflicting results regarding the electrophoretic mobility of the protein, but it is also assumed from discrepant observations on the cellular and tissue distribution of parkin. Although the characterization of each predicted isoforms is complex, since they often diverge only for few amino acids, analysis of their expression patterns in the brain might account for the different pathogenetic effects linked to PARK2 gene mutations.
Collapse
|
169
|
PINK1-mediated phosphorylation of Parkin boosts Parkin activity in Drosophila. PLoS Genet 2014; 10:e1004391. [PMID: 24901221 PMCID: PMC4046931 DOI: 10.1371/journal.pgen.1004391] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/31/2014] [Indexed: 11/19/2022] Open
Abstract
Two genes linked to early onset Parkinson's disease, PINK1 and Parkin, encode a protein kinase and a ubiquitin-ligase, respectively. Both enzymes have been suggested to support mitochondrial quality control. We have reported that Parkin is phosphorylated at Ser65 within the ubiquitin-like domain by PINK1 in mammalian cultured cells. However, it remains unclear whether Parkin phosphorylation is involved in mitochondrial maintenance and activity of dopaminergic neurons in vivo. Here, we examined the effects of Parkin phosphorylation in Drosophila, in which the phosphorylation residue is conserved at Ser94. Morphological changes of mitochondria caused by the ectopic expression of wild-type Parkin in muscle tissue and brain dopaminergic neurons disappeared in the absence of PINK1. In contrast, phosphomimetic Parkin accelerated mitochondrial fragmentation or aggregation and the degradation of mitochondrial proteins regardless of PINK1 activity, suggesting that the phosphorylation of Parkin boosts its ubiquitin-ligase activity. A non-phosphorylated form of Parkin fully rescued the muscular mitochondrial degeneration due to the loss of PINK1 activity, whereas the introduction of the non-phosphorylated Parkin mutant in Parkin-null flies led to the emergence of abnormally fused mitochondria in the muscle tissue. Manipulating the Parkin phosphorylation status affected spontaneous dopamine release in the nerve terminals of dopaminergic neurons, the survivability of dopaminergic neurons and flight activity. Our data reveal that Parkin phosphorylation regulates not only mitochondrial function but also the neuronal activity of dopaminergic neurons in vivo, suggesting that the appropriate regulation of Parkin phosphorylation is important for muscular and dopaminergic functions. Parkinson's disease is a neurodegenerative disorder caused by degeneration of the midbrain dopaminergic system in addition to other nervous systems. PINK1 and parkin, which encode protein kinase and ubiquitin-ligase, respectively, were identified as the genes responsible for the autosomal recessive form of juvenile Parkinson's disease. These two enzymes are involved in mitochondrial maintenance. Although we previously found that Parkin is phosphorylated by PINK1 in mammalian cultured cells, the physiological significance of this interaction in vivo remained unclear. Here, we describe that the phosphorylation of Parkin altered mitochondrial morphology and function in muscle tissue through the degradation of mitochondrial GTPase proteins (such as Mitofusin and Miro) and a mitochondrial respiratory complex I subunit by increasing its ubiquitin-ligase activity. We also found that the dopaminergic expression of both constitutively phosphorylated and non-phosphorylated forms of Parkin affects the flight activity and shortens the lifespan of flies, suggesting that the appropriate phosphorylation of Parkin is important for both dopaminergic activity and the survival of dopaminergic neurons.
Collapse
|
170
|
Hans F, Fiesel FC, Strong JC, Jäckel S, Rasse TM, Geisler S, Springer W, Schulz JB, Voigt A, Kahle PJ. UBE2E ubiquitin-conjugating enzymes and ubiquitin isopeptidase Y regulate TDP-43 protein ubiquitination. J Biol Chem 2014; 289:19164-79. [PMID: 24825905 DOI: 10.1074/jbc.m114.561704] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Trans-activation element DNA-binding protein of 43 kDa (TDP-43) characterizes insoluble protein aggregates in distinct subtypes of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. TDP-43 mediates many RNA processing steps within distinct protein complexes. Here we identify novel TDP-43 protein interactors found in a yeast two-hybrid screen using an adult human brain cDNA library. We confirmed the TDP-43 interaction of seven hits by co-immunoprecipitation and assessed their co-localization in HEK293E cells. As pathological TDP-43 is ubiquitinated, we focused on the ubiquitin-conjugating enzyme UBE2E3 and the ubiquitin isopeptidase Y (UBPY). When cells were treated with proteasome inhibitor, ubiquitinated and insoluble TDP-43 species accumulated. All three UBE2E family members could enhance the ubiquitination of TDP-43, whereas catalytically inactive UBE2E3(C145S) was much less efficient. Conversely, silencing of UBE2E3 reduced TDP-43 ubiquitination. We examined 15 of the 48 known disease-associated TDP-43 mutants and found that one was excessively ubiquitinated. This strong TDP-43(K263E) ubiquitination was further enhanced by proteasomal inhibition as well as UBE2E3 expression. Conversely, UBE2E3 silencing and expression of UBPY reduced TDP-43(K263E) ubiquitination. Moreover, wild-type but not active site mutant UBPY reduced ubiquitination of TDP-43 C-terminal fragments and of a nuclear import-impaired mutant. In Drosophila melanogaster, UBPY silencing enhanced neurodegenerative TDP-43 phenotypes and the accumulation of insoluble high molecular weight TDP-43 and ubiquitin species. Thus, UBE2E3 and UBPY participate in the regulation of TDP-43 ubiquitination, solubility, and neurodegeneration.
Collapse
Affiliation(s)
- Friederike Hans
- From the Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen 72076, Germany, Laboratory of Functional Neurogenetics, Department of Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Tübingen 72076, Germany, Laboratory of Functional Neurogenetics, Department of Neurodegeneration and
| | - Fabienne C Fiesel
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration and
| | - Jennifer C Strong
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration and
| | - Sandra Jäckel
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration and
| | - Tobias M Rasse
- Synaptic Plasticity Group, Hertie Institute for Clinical Brain Research, Tübingen 72076, Germany
| | - Sven Geisler
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration and
| | - Wolfdieter Springer
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Tübingen 72076, Germany, Laboratory of Functional Neurogenetics, Department of Neurodegeneration and
| | - Jörg B Schulz
- Department of Neurology, University Medical Center, Aachen 52074, Germany, and Jülich Aachen Research Alliance (JARA)-Translational Brain Medicine, Aachen 52074, Germany
| | - Aaron Voigt
- Department of Neurology, University Medical Center, Aachen 52074, Germany, and
| | - Philipp J Kahle
- From the Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen 72076, Germany, Laboratory of Functional Neurogenetics, Department of Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Tübingen 72076, Germany, Laboratory of Functional Neurogenetics, Department of Neurodegeneration and
| |
Collapse
|
171
|
Patil KS, Basak I, Lee S, Abdullah R, Larsen JP, Møller SG. PARK13 regulates PINK1 and subcellular relocation patterns under oxidative stress in neurons. J Neurosci Res 2014; 92:1167-77. [DOI: 10.1002/jnr.23396] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/06/2014] [Accepted: 03/26/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Ketan S. Patil
- Department of Biological Sciences; St. John's University; New York New York
| | - Indranil Basak
- Department of Biological Sciences; St. John's University; New York New York
| | - Sungsu Lee
- Department of Biological Sciences; St. John's University; New York New York
| | - Rashed Abdullah
- Department of Biological Sciences; St. John's University; New York New York
| | - Jan Petter Larsen
- Norwegian Center for Movement Disorders; Stavanger University Hospital; Stavanger Norway
| | - Simon Geir Møller
- Department of Biological Sciences; St. John's University; New York New York
- Norwegian Center for Movement Disorders; Stavanger University Hospital; Stavanger Norway
| |
Collapse
|
172
|
Abstract
The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology.
Collapse
|
173
|
Chi Z, Byrne ST, Dolinko A, Harraz MM, Kim MS, Umanah G, Zhong J, Chen R, Zhang J, Xu J, Chen L, Pandey A, Dawson TM, Dawson VL. Botch is a γ-glutamyl cyclotransferase that deglycinates and antagonizes Notch. Cell Rep 2014; 7:681-8. [PMID: 24767995 DOI: 10.1016/j.celrep.2014.03.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 02/12/2014] [Accepted: 03/19/2014] [Indexed: 11/27/2022] Open
Abstract
Botch promotes embryonic neurogenesis by inhibiting the initial S1 furin-like cleavage step of Notch maturation. The biochemical process by which Botch inhibits Notch maturation is not known. Here, we show that Botch has γ-glutamyl cyclotransferase (GGCT) activity that deglycinates Notch, which prevents the S1 furin-like cleavage. Moreover, Notch is monoglycinated on the γ-glutamyl carbon of glutamate 1,669. The deglycinase activity of Botch is required for inhibition of Notch signaling both in vitro and in vivo. When the γ-glutamyl-glycine at position 1,669 of Notch is degylcinated, it is replaced by 5-oxy-proline. These results reveal that Botch regulates Notch signaling through deglycination and identify a posttranslational modification of Notch that plays an important role in neurogenesis.
Collapse
Affiliation(s)
- Zhikai Chi
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Sean T Byrne
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Andrew Dolinko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA
| | - Maged M Harraz
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA
| | - Min-Sik Kim
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA
| | - George Umanah
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA
| | - Jun Zhong
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA
| | - Rong Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA
| | - Jianmin Zhang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Jinchong Xu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Li Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA; Department of Pathology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, 401 North Broadway, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
174
|
Feng CW, Wen ZH, Huang SY, Hung HC, Chen CH, Yang SN, Chen NF, Wang HM, Hsiao CD, Chen WF. Effects of 6-hydroxydopamine exposure on motor activity and biochemical expression in zebrafish (Danio rerio) larvae. Zebrafish 2014; 11:227-39. [PMID: 24720843 DOI: 10.1089/zeb.2013.0950] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that is characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. However, current treatments for PD are mainly palliative. Recently, researchers discovered that neurotoxins can induce Parkinsonian-like symptoms in zebrafish. No study to date has investigated the characteristics of PD, such as neuroinflammation factors, oxidative stress, or ubiquitin dysfunction, in this model. Therefore, the current study was aimed at utilizing commonly used clinical drugs, minocycline, vitamin E, and Sinemet, to test the usefulness of this model. Previous studies had indicated that DA cell loss was greater with 6-hydroxydopamine (6-OHDA) than with other neurotoxins. Thus, we first challenged zebrafish with 6-OHDA immersion and found a significant reduction in zebrafish locomotor activity; we then reversed the locomotor disruptions by treatment with vitamin E, Sinemet, or minocycline. The present study also analyzed the mRNA expression of parkin, pink1, and cd-11b, because the expression of these molecular targets has been shown to result in attenuation in mammalian models of PD. Vitamin E, Sinemet, and minocycline significantly reversed 6-OHDA-induced changes of parkin, pink1, and cd-11b mRNA expression in zebrafish. Moreover, we assessed tyrosine hydroxylase (TH) expression to confirm the therapeutic effects of vitamin E tested on this PD model and established that vitamin E reversed the 6-OHDA-induced damage on TH expression. Our results provide some support for the validity of this in vivo Parkinson's model, and we hope that this model will be more widely used in the future.
Collapse
Affiliation(s)
- Chien-Wei Feng
- 1 Department of Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica , Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Birsa N, Norkett R, Wauer T, Mevissen TET, Wu HC, Foltynie T, Bhatia K, Hirst WD, Komander D, Plun-Favreau H, Kittler JT. Lysine 27 ubiquitination of the mitochondrial transport protein Miro is dependent on serine 65 of the Parkin ubiquitin ligase. J Biol Chem 2014; 289:14569-82. [PMID: 24671417 PMCID: PMC4031514 DOI: 10.1074/jbc.m114.563031] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial transport plays an important role in matching mitochondrial distribution to localized energy production and calcium buffering requirements. Here, we demonstrate that Miro1, an outer mitochondrial membrane (OMM) protein crucial for the regulation of mitochondrial trafficking and distribution, is a substrate of the PINK1/Parkin mitochondrial quality control system in human dopaminergic neuroblastoma cells. Moreover, Miro1 turnover on damaged mitochondria is altered in Parkinson disease (PD) patient-derived fibroblasts containing a pathogenic mutation in the PARK2 gene (encoding Parkin). By analyzing the kinetics of Miro1 ubiquitination, we further demonstrate that mitochondrial damage triggers rapid (within minutes) and persistent Lys-27-type ubiquitination of Miro1 on the OMM, dependent on PINK1 and Parkin. Proteasomal degradation of Miro1 is then seen on a slower time scale, within 2-3 h of the onset of ubiquitination. We find Miro ubiquitination in dopaminergic neuroblastoma cells is independent of Miro1 phosphorylation at Ser-156 but is dependent on the recently identified Ser-65 residue within Parkin that is phosphorylated by PINK1. Interestingly, we find that Miro1 can stabilize phospho-mutant versions of Parkin on the OMM, suggesting that Miro is also part of a Parkin receptor complex. Moreover, we demonstrate that Ser-65 in Parkin is critical for regulating Miro levels upon mitochondrial damage in rodent cortical neurons. Our results provide new insights into the ubiquitination-dependent regulation of the Miro-mediated mitochondrial transport machinery by PINK1/Parkin and also suggest that disruption of this regulation may be implicated in Parkinson disease pathogenesis.
Collapse
Affiliation(s)
- Nicol Birsa
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Rosalind Norkett
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Tobias Wauer
- the Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Tycho E T Mevissen
- the Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Hsiu-Chuan Wu
- the University College London Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom, and
| | - Thomas Foltynie
- the University College London Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom, and
| | - Kailash Bhatia
- the University College London Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom, and
| | - Warren D Hirst
- the Neuroscience Research Unit, Pfizer, Cambridge, Massachusetts 02139
| | - David Komander
- the Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Helene Plun-Favreau
- the University College London Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom, and
| | - Josef T Kittler
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom,
| |
Collapse
|
176
|
Strikoudis A, Guillamot M, Aifantis I. Regulation of stem cell function by protein ubiquitylation. EMBO Rep 2014; 15:365-82. [PMID: 24652853 DOI: 10.1002/embr.201338373] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue homeostasis depends largely on the ability to replenish impaired or aged cells. Thus, tissue-resident stem cells need to provide functional progeny throughout the lifetime of an organism. Significant work in the past years has characterized how stem cells integrate signals from their environment to shape regulatory transcriptional networks and chromatin-regulating factors that control stem cell differentiation or maintenance. There is increasing interest in how post-translational modifications, and specifically ubiquitylation, control these crucial decisions. Ubiquitylation modulates the stability and function of important factors that regulate key processes in stem cell behavior. In this review, we analyze the role of ubiquitylation in embryonic stem cells and different adult multipotent stem cell systems and discuss the underlying mechanisms that control the balance between quiescence, self-renewal, and differentiation. We also discuss deregulated processes of ubiquitin-mediated protein degradation that lead to the development of tumor-initiating cells.
Collapse
Affiliation(s)
- Alexandros Strikoudis
- Howard Hughes Medical Institute New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
177
|
Kazlauskaite A, Kelly V, Johnson C, Baillie C, Hastie CJ, Peggie M, Macartney T, Woodroof HI, Alessi DR, Pedrioli PGA, Muqit MMK. Phosphorylation of Parkin at Serine65 is essential for activation: elaboration of a Miro1 substrate-based assay of Parkin E3 ligase activity. Open Biol 2014; 4:130213. [PMID: 24647965 PMCID: PMC3971407 DOI: 10.1098/rsob.130213] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mutations in PINK1 and Parkin are associated with early-onset Parkinson's disease. We recently discovered that PINK1 phosphorylates Parkin at serine65 (Ser65) within its Ubl domain, leading to its activation in a substrate-free activity assay. We now demonstrate the critical requirement of Ser65 phosphorylation for substrate ubiquitylation through elaboration of a novel in vitro E3 ligase activity assay using full-length untagged Parkin and its putative substrate, the mitochondrial GTPase Miro1. We observe that Parkin efficiently ubiquitylates Miro1 at highly conserved lysine residues, 153, 230, 235, 330 and 572, upon phosphorylation by PINK1. We have further established an E2-ubiquitin discharge assay to assess Parkin activity and observe robust discharge of ubiquitin-loaded UbcH7 E2 ligase upon phosphorylation of Parkin at Ser65 by wild-type, but not kinase-inactive PINK1 or a Parkin Ser65Ala mutant, suggesting a possible mechanism of how Ser65 phosphorylation may activate Parkin E3 ligase activity. For the first time, to the best of our knowledge, we report the effect of Parkin disease-associated mutations in substrate-based assays using full-length untagged recombinant Parkin. Our mutation analysis indicates an essential role for the catalytic cysteine Cys431 and reveals fundamental new knowledge on how mutations may confer pathogenicity via disruption of Miro1 ubiquitylation, free ubiquitin chain formation or by impacting Parkin's ability to discharge ubiquitin from a loaded E2. This study provides further evidence that phosphorylation of Parkin at Ser65 is critical for its activation. It also provides evidence that Miro1 is a direct Parkin substrate. The assays and reagents developed in this study will be important to uncover new insights into Parkin biology as well as aid in the development of screens to identify small molecule Parkin activators for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Agne Kazlauskaite
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Long-term overexpression of human wild-type and T240R mutant Parkin in rat substantia nigra induces progressive dopaminergic neurodegeneration. J Neuropathol Exp Neurol 2014; 73:159-74. [PMID: 24423640 DOI: 10.1097/nen.0000000000000039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mutations in the parkin gene are the most common cause of early-onset autosomal recessive Parkinson disease (PD). The pathogenic mechanisms of how parkin mutations lead to the development of PD are not fully understood. Studies of cell cultures and of Drosophila have suggested a dominant negative effect for the clinical parkin mutant T240R. Conversely, the neuroprotective capacity of parkin has been widely reported; this suggests that the parkin protein may have a potential therapeutic role in PD. Here, we aimed to develop a novel genetic rodent model of PD by overexpression of T240R-parkin and human wild-type parkin as a control in the dopaminergic neurons of adult rats using adeno-associated viral vectors (rAAV2/8). Surprisingly, we found that overexpression not only of T240R-parkin but also of human wild-type parkin induced progressive and dose-dependent dopaminergic cell death in rats, starting from 8 weeks after injection. This degeneration was specific for parkin because similar overexpressionof enhanced green fluorescent protein did not lead to nigral degeneration. Our results warrant caution to the development of therapeutic strategies for PD based on overexpression of parkin or enhancing parkin activity because this might be deleterious for dopaminergic neurons in the long-term.
Collapse
|
179
|
Cabello J, Sämann J, Gómez-Orte E, Erazo T, Coppa A, Pujol A, Büssing I, Schulze B, Lizcano JM, Ferrer I, Baumeister R, Dalfo E. PDR-1/hParkin negatively regulates the phagocytosis of apoptotic cell corpses in Caenorhabditis elegans. Cell Death Dis 2014; 5:e1120. [PMID: 24625979 PMCID: PMC3973248 DOI: 10.1038/cddis.2014.57] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/23/2013] [Accepted: 01/22/2014] [Indexed: 12/28/2022]
Abstract
Apoptotic cell death is an integral part of cell turnover in many tissues, and proper corpse clearance is vital to maintaining tissue homeostasis in all multicellular organisms. Even in tissues with high cellular turnover, apoptotic cells are rarely seen because of efficient clearance mechanisms in healthy individuals. In Caenorhabditis elegans, two parallel and partly redundant conserved pathways act in cell corpse engulfment. The pathway for cytoskeletal rearrangement requires the small GTPase CED-10 Rac1 acting for an efficient surround of the dead cell. The CED-10 Rac pathway is also required for the proper migration of the distal tip cells (DTCs) during the development of the C. elegans gonad. Parkin, the mammalian homolog of the C. elegans PDR-1, interacts with Rac1 in aged human brain and it is also implicated with actin dynamics and cytoskeletal rearrangements in Parkinsons's disease, suggesting that it might act on engulfment. Our genetic and biochemical studies indicate that PDR-1 inhibits apoptotic cell engulfment and DTC migration by ubiquitylating CED-10 for degradation.
Collapse
Affiliation(s)
- J Cabello
- CIBIR (Centre for Biomedical Research of La Rioja), C/Piqueras 98, Logroño 26006, Spain
| | - J Sämann
- Bioinformatics and Molecular Genetics (Faculty of Biology), Center for Biochemistry and Molecular Cell Research (Faculty of Medicine), Schänzlestrasse 1, Freiburg 79104, Germany
| | - E Gómez-Orte
- CIBIR (Centre for Biomedical Research of La Rioja), C/Piqueras 98, Logroño 26006, Spain
| | - T Erazo
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Barcelona 08193, Spain
| | - A Coppa
- Neurometabolic Diseases Laboratory, Institut D'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - A Pujol
- 1] Neurometabolic Diseases Laboratory, Institut D'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona 08907, Spain [2] ICREA (Institució Catalana de Recerca i Estudis avançats), Barcelona, Spain [3] Institute of Neuropathology, University Hospitall Bellvitge - University of Barcelona - IDIBELL, L'Hospitalet de Llobregat, Ciberned, Spain [4] CIBERER (Centro de Investigación Biomédica en Enfermedades Raras), C/ Álvaro de Bazán, 10 Bajo, Valencia 46010, Spain
| | - I Büssing
- Bioinformatics and Molecular Genetics (Faculty of Biology), Center for Biochemistry and Molecular Cell Research (Faculty of Medicine), Schänzlestrasse 1, Freiburg 79104, Germany
| | - B Schulze
- Bioinformatics and Molecular Genetics (Faculty of Biology), Center for Biochemistry and Molecular Cell Research (Faculty of Medicine), Schänzlestrasse 1, Freiburg 79104, Germany
| | - J M Lizcano
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Barcelona 08193, Spain
| | - I Ferrer
- Institute of Neuropathology, University Hospitall Bellvitge - University of Barcelona - IDIBELL, L'Hospitalet de Llobregat, Ciberned, Spain
| | - R Baumeister
- 1] Bioinformatics and Molecular Genetics (Faculty of Biology), Center for Biochemistry and Molecular Cell Research (Faculty of Medicine), Schänzlestrasse 1, Freiburg 79104, Germany [2] Centre for Biological Signaling Studies (bioss), University of Freiburg, Freiburg 79104, Germany [3] FRIAS Freiburg Institute for Advanced Studies, Section Life Sciences (LIFENET), University of Freiburg, Schaenzlestrasse 1, Freiburg 79104, Germany
| | - E Dalfo
- 1] Bioinformatics and Molecular Genetics (Faculty of Biology), Center for Biochemistry and Molecular Cell Research (Faculty of Medicine), Schänzlestrasse 1, Freiburg 79104, Germany [2] Neurometabolic Diseases Laboratory, Institut D'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona 08907, Spain [3] Institute of Neuropathology, University Hospitall Bellvitge - University of Barcelona - IDIBELL, L'Hospitalet de Llobregat, Ciberned, Spain [4] CIBERER (Centro de Investigación Biomédica en Enfermedades Raras), C/ Álvaro de Bazán, 10 Bajo, Valencia 46010, Spain
| |
Collapse
|
180
|
Singh N, Haldar S, Tripathi AK, Horback K, Wong J, Sharma D, Beserra A, Suda S, Anbalagan C, Dev S, Mukhopadhyay CK, Singh A. Brain iron homeostasis: from molecular mechanisms to clinical significance and therapeutic opportunities. Antioxid Redox Signal 2014; 20:1324-63. [PMID: 23815406 PMCID: PMC3935772 DOI: 10.1089/ars.2012.4931] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron has emerged as a significant cause of neurotoxicity in several neurodegenerative conditions, including Alzheimer's disease (AD), Parkinson's disease (PD), sporadic Creutzfeldt-Jakob disease (sCJD), and others. In some cases, the underlying cause of iron mis-metabolism is known, while in others, our understanding is, at best, incomplete. Recent evidence implicating key proteins involved in the pathogenesis of AD, PD, and sCJD in cellular iron metabolism suggests that imbalance of brain iron homeostasis associated with these disorders is a direct consequence of disease pathogenesis. A complete understanding of the molecular events leading to this phenotype is lacking partly because of the complex regulation of iron homeostasis within the brain. Since systemic organs and the brain share several iron regulatory mechanisms and iron-modulating proteins, dysfunction of a specific pathway or selective absence of iron-modulating protein(s) in systemic organs has provided important insights into the maintenance of iron homeostasis within the brain. Here, we review recent information on the regulation of iron uptake and utilization in systemic organs and within the complex environment of the brain, with particular emphasis on the underlying mechanisms leading to brain iron mis-metabolism in specific neurodegenerative conditions. Mouse models that have been instrumental in understanding systemic and brain disorders associated with iron mis-metabolism are also described, followed by current therapeutic strategies which are aimed at restoring brain iron homeostasis in different neurodegenerative conditions. We conclude by highlighting important gaps in our understanding of brain iron metabolism and mis-metabolism, particularly in the context of neurodegenerative disorders.
Collapse
Affiliation(s)
- Neena Singh
- 1 Department of Pathology, Case Western Reserve University , Cleveland, Ohio
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Oczkowska A, Kozubski W, Lianeri M, Dorszewska J. Mutations in PRKN and SNCA Genes Important for the Progress of Parkinson's Disease. Curr Genomics 2014; 14:502-17. [PMID: 24532983 PMCID: PMC3924246 DOI: 10.2174/1389202914666131210205839] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 11/12/2013] [Accepted: 11/25/2013] [Indexed: 11/30/2022] Open
Abstract
Although Parkinson’s disease (PD) was first described almost 200 years ago, it remains an incurable disease
with a cause that is not fully understood. Nowadays it is known that disturbances in the structure of pathological proteins
in PD can be caused by more than environmental and genetic factors. Despite numerous debates and controversies in the
literature about the role of mutations in the SNCA and PRKN genes in the pathogenesis of PD, it is evident that these
genes play a key role in maintaining dopamine (DA) neuronal homeostasis and that the dysfunction of this homeostasis is
relevant to both familial (FPD) and sporadic (SPD) PD with different onset. In recent years, the importance of alphasynuclein
(ASN) in the process of neurodegeneration and neuroprotective function of the Parkin is becoming better understood.
Moreover, there have been an increasing number of recent reports indicating the importance of the interaction between
these proteins and their encoding genes. Among others interactions, it is suggested that even heterozygous substitution
in the PRKN gene in the presence of the variants +2/+2 or +2/+3 of NACP-Rep1 in the SNCA promoter, may increase
the risk of PD manifestation, which is probably due to ineffective elimination of over-expressed ASN by the mutated
Parkin protein. Finally, it seems that genetic testing may be an important part of diagnostics in patients with PD and may
improve the prognostic process in the course of PD. However, only full knowledge of the mechanism of the interaction
between the genes associated with the pathogenesis of PD is likely to help explain the currently unknown pathways of selective
damage to dopaminergic neurons in the course of PD.
Collapse
Affiliation(s)
- Anna Oczkowska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Margarita Lianeri
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
182
|
Chai C, Lim KL. Genetic insights into sporadic Parkinson's disease pathogenesis. Curr Genomics 2014; 14:486-501. [PMID: 24532982 PMCID: PMC3924245 DOI: 10.2174/1389202914666131210195808] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 09/09/2013] [Accepted: 10/22/2013] [Indexed: 12/23/2022] Open
Abstract
Intensive research over the last 15 years has led to the identification of several autosomal recessive and dominant
genes that cause familial Parkinson’s disease (PD). Importantly, the functional characterization of these genes has
shed considerable insights into the molecular mechanisms underlying the etiology and pathogenesis of PD. Collectively;
these studies implicate aberrant protein and mitochondrial homeostasis as key contributors to the development of PD, with
oxidative stress likely acting as an important nexus between the two pathogenic events. Interestingly, recent genome-wide
association studies (GWAS) have revealed variations in at least two of the identified familial PD genes (i.e. α-synuclein
and LRRK2) as significant risk factors for the development of sporadic PD. At the same time, the studies also uncovered
variability in novel alleles that is associated with increased risk for the disease. Additionally, in-silico meta-analyses of
GWAS data have allowed major steps into the investigation of the roles of gene-gene and gene-environment interactions
in sporadic PD. The emergent picture from the progress made thus far is that the etiology of sporadic PD is multi-factorial
and presumably involves a complex interplay between a multitude of gene networks and the environment. Nonetheless,
the biochemical pathways underlying familial and sporadic forms of PD are likely to be shared.
Collapse
Affiliation(s)
- Chou Chai
- Duke-NUS Graduate Medical School, Singapore
| | - Kah-Leong Lim
- Duke-NUS Graduate Medical School, Singapore ; Department of Physiology, National University of Singapore, Singapore ; Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore
| |
Collapse
|
183
|
Smit JJ, Sixma TK. RBR E3-ligases at work. EMBO Rep 2014; 15:142-54. [PMID: 24469331 PMCID: PMC3989860 DOI: 10.1002/embr.201338166] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/04/2013] [Accepted: 12/10/2013] [Indexed: 11/07/2022] Open
Abstract
The RING-in-between-RING (RBR) E3s are a curious family of ubiquitin E3-ligases, whose mechanism of action is unusual in several ways. Their activities are auto-inhibited, causing a requirement for activation by protein-protein interactions or posttranslational modifications. They catalyse ubiquitin conjugation by a concerted RING/HECT-like mechanism in which the RING1 domain facilitates E2-discharge to directly form a thioester intermediate with a cysteine in RING2. This short-lived, HECT-like intermediate then modifies the target. Uniquely, the RBR ligase HOIP makes use of this mechanism to target the ubiquitin amino-terminus, by presenting the target ubiquitin for modification using its distinctive LDD region.
Collapse
Affiliation(s)
- Judith J Smit
- Division of Biochemistry and Cancer Genomics Centre, The Netherlands Cancer InstituteAmsterdam, The Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Centre, The Netherlands Cancer InstituteAmsterdam, The Netherlands
| |
Collapse
|
184
|
Bornhorst J, Chakraborty S, Meyer S, Lohren H, Brinkhaus SG, Knight AL, Caldwell KA, Caldwell GA, Karst U, Schwerdtle T, Bowman A, Aschner M. The effects of pdr1, djr1.1 and pink1 loss in manganese-induced toxicity and the role of α-synuclein in C. elegans. Metallomics 2014; 6:476-90. [PMID: 24452053 DOI: 10.1039/c3mt00325f] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative brain disorder characterized by selective dopaminergic (DAergic) cell loss that results in overt motor and cognitive deficits. Current treatment options exist to combat PD symptomatology, but are unable to directly target its pathogenesis due to a lack of knowledge concerning its etiology. Several genes have been linked to PD, including three genes associated with an early-onset familial form: parkin, pink1 and dj1. All three genes are implicated in regulating oxidative stress pathways. Another hallmark of PD pathophysiology is Lewy body deposition, associated with the gain-of-function genetic risk factor α-synuclein. The function of α-synuclein is poorly understood, as it shows both neurotoxic and neuroprotective activities in PD. Using the genetically tractable invertebrate Caenorhabditis elegans (C. elegans) model system, the neurotoxic or neuroprotective role of α-synuclein upon acute Mn exposure in the background of mutated pdr1, pink1 or djr1.1 was examined. The pdr1 and djr1.1 mutants showed enhanced Mn accumulation and oxidative stress that was reduced by α-synuclein. Moreover, DAergic neurodegeneration, while unchanged with Mn exposure, returned to wild-type (WT) levels for pdr1, but not djr1.1 mutants expressing α-synuclein. Taken together, this study uncovers a novel, neuroprotective role for WT human α-synuclein in attenuating Mn-induced toxicity in the background of PD-associated genes, and further supports the role of extracellular dopamine in exacerbating Mn neurotoxicity.
Collapse
Affiliation(s)
- Julia Bornhorst
- Institute of Food Chemistry, University of Münster, Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Lim KL. Ubiquitin–proteasome system dysfunction in Parkinson’s disease: current evidence and controversies. Expert Rev Proteomics 2014; 4:769-81. [DOI: 10.1586/14789450.4.6.769] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
186
|
Protein quality control and elimination of protein waste: The role of the ubiquitin–proteasome system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:182-96. [DOI: 10.1016/j.bbamcr.2013.06.031] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/28/2013] [Accepted: 06/29/2013] [Indexed: 01/26/2023]
|
187
|
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative disorder of unknown etiology, although a complex interaction between environmental and genetic factors has been implicated as a pathogenic mechanism of selected neuronal loss. A better understanding of the etiology, pathogenesis, and molecular mechanisms underlying the disease process may be gained from research on animal models. While cell and tissue models are helpful in unraveling involved molecular pathways, animal models are much better suited to study the pathogenesis and potential treatment strategies. The animal models most relevant to PD include those generated by neurotoxic chemicals that selectively disrupt the catecholaminergic system such as 6-hydroxydopamine; 1-methyl-1,2,3,6-tetrahydropiridine; agricultural pesticide toxins, such as rotenone and paraquat; the ubiquitin proteasome system inhibitors; inflammatory modulators; and several genetically manipulated models, such as α-synuclein, DJ-1, PINK1, Parkin, and leucine-rich repeat kinase 2 transgenic or knock-out animals. Genetic and nongenetic animal models have their own unique advantages and limitations, which must be considered when they are employed in the study of pathogenesis or treatment approaches. This review provides a summary and a critical review of our current knowledge about various in vivo models of PD used to test novel therapeutic strategies.
Collapse
Affiliation(s)
- Weidong Le
- />1st Affiliated Hospital, Dalian Medical University, Dalian, 116011 China
| | - Pavani Sayana
- />Department of Medicine, Gandhi Medical College, Padmarao Nagar, Secunderabad, AP 500020 India
| | - Joseph Jankovic
- />Parkinson’s Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
188
|
Butcher NJ, Kiehl TR, Hazrati LN, Chow EWC, Rogaeva E, Lang AE, Bassett AS. Association between early-onset Parkinson disease and 22q11.2 deletion syndrome: identification of a novel genetic form of Parkinson disease and its clinical implications. JAMA Neurol 2013; 70:1359-66. [PMID: 24018986 DOI: 10.1001/jamaneurol.2013.3646] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
IMPORTANCE Clinical case reports of parkinsonism co-occurring with hemizygous 22q11.2 deletions and the associated multisystem syndrome, 22q11.2 deletion syndrome (22q11.2DS), suggest that 22q11.2 deletions may lead to increased risk of early-onset Parkinson disease (PD). The frequency of PD and its neuropathological presentation remain unknown in this common genetic condition. OBJECTIVE To evaluate a possible association between 22q11.2 deletions and PD. DESIGN, SETTING, AND PARTICIPANTS An observational study of the occurrence of PD in the world's largest cohort of well-characterized adults with a molecularly confirmed diagnosis of 22q11.2DS (n = 159 [6 with postmortem tissue]; age range, 18.1-68.6 years) was conducted in Toronto, Ontario, Canada. Rare postmortem brain tissue from individuals with 22q11.2DS and a clinical history of PD was investigated for neurodegenerative changes and compared with that from individuals with no history of a movement disorder. MAIN OUTCOMES AND MEASURES A clinical diagnosis of PD made by a neurologist and neuropathological features of PD. RESULTS Adults with 22q11.2DS had a significantly elevated occurrence of PD compared with standard population estimates (standardized morbidity ratio = 69.7; 95% CI, 19.0-178.5). All cases showed early onset and typical PD symptom pattern, treatment response, and course. All were negative for family history of PD and known pathogenic PD-related mutations. The common use of antipsychotics in patients with 22q11.2DS to manage associated psychiatric symptoms delayed diagnosis of PD by up to 10 years. Postmortem brain tissue revealed classic loss of midbrain dopaminergic neurons in all 3 postmortem 22q11.2DS-PD cases. Typical α-synuclein-positive Lewy bodies were present in the expected distribution in 2 cases but absent in another. CONCLUSIONS AND RELEVANCE These findings suggest that 22q11.2 deletions represent a novel genetic risk factor for early-onset PD with variable neuropathological presentation reminiscent of LRRK2-associated PD neuropathology. Individuals with early-onset PD and classic features of 22q11.2DS should be considered for genetic testing, and those with a known 22q11.2 deletion should be monitored for the development of parkinsonian symptoms. Molecular studies of the implicated genes, including DGCR8, may help shed light on the underlying pathophysiology of PD in 22q11.2DS and idiopathic PD.
Collapse
Affiliation(s)
- Nancy J Butcher
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada2Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
189
|
Spratt DE, Martinez-Torres RJ, Noh YJ, Mercier P, Manczyk N, Barber KR, Aguirre JD, Burchell L, Purkiss A, Walden H, Shaw GS. A molecular explanation for the recessive nature of parkin-linked Parkinson's disease. Nat Commun 2013; 4:1983. [PMID: 23770917 PMCID: PMC3709501 DOI: 10.1038/ncomms2983] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/03/2013] [Indexed: 12/12/2022] Open
Abstract
Mutations in the park2 gene, encoding the RING-inBetweenRING-RING E3 ubiquitin ligase parkin, cause 50% of autosomal recessive juvenile Parkinsonism cases. More than 70 known pathogenic mutations occur throughout parkin, many of which cluster in the inhibitory amino-terminal ubiquitin-like domain, and the carboxy-terminal RING2 domain that is indispensable for ubiquitin transfer. A structural rationale showing how autosomal recessive juvenile Parkinsonism mutations alter parkin function is still lacking. Here we show that the structure of parkin RING2 is distinct from canonical RING E3 ligases and lacks key elements required for E2-conjugating enzyme recruitment. Several pathogenic mutations in RING2 alter the environment of a single surface-exposed catalytic cysteine to inhibit ubiquitination. Native parkin adopts a globular inhibited conformation in solution facilitated by the association of the ubiquitin-like domain with the RING-inBetweenRING-RING C-terminus. Autosomal recessive juvenile Parkinsonism mutations disrupt this conformation. Finally, parkin autoubiquitinates only in cis, providing a molecular explanation for the recessive nature of autosomal recessive juvenile Parkinsonism.
Collapse
Affiliation(s)
- Donald E Spratt
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Lonskaya I, Desforges NM, Hebron ML, Moussa CEH. Ubiquitination increases parkin activity to promote autophagic α-synuclein clearance. PLoS One 2013; 8:e83914. [PMID: 24386307 PMCID: PMC3873413 DOI: 10.1371/journal.pone.0083914] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/11/2013] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a movement disorder associated with genetic and age related causes. Although autosomal recessive early onset PD linked to parkin mutations does not exhibit α-Synuclein accumulation, while autosomal dominant and sporadic PD manifest with α-Synuclein inclusions, loss of dopaminergic substantia nigra neurons is a common denominator in PD. Here we show that decreased parkin ubiquitination and loss of parkin stability impair interaction with Beclin-1 and alter α-Synuclein degradation, leading to death of dopaminergic neurons. Tyrosine kinase inhibition increases parkin ubiquitination and interaction with Beclin-1, promoting autophagic α-Synuclein clearance and nigral neuron survival. However, loss of parkin via deletion increases α-Synuclein in the blood compared to the brain, suggesting that functional parkin prevents α-Synuclein release into the blood. These studies demonstrate that parkin ubiquitination affects its protein stability and E3 ligase activity, possibly leading to α-Synuclein sequestration and subsequent clearance.
Collapse
Affiliation(s)
- Irina Lonskaya
- Department of Neuroscience, Laboratory for Dementia and Parkinsonism, Georgetown University Medical Center, Washington, DC, United States of America
| | - Nicole M. Desforges
- Department of Neuroscience, Laboratory for Dementia and Parkinsonism, Georgetown University Medical Center, Washington, DC, United States of America
| | - Michaeline L. Hebron
- Department of Neuroscience, Laboratory for Dementia and Parkinsonism, Georgetown University Medical Center, Washington, DC, United States of America
| | - Charbel E-H. Moussa
- Department of Neuroscience, Laboratory for Dementia and Parkinsonism, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
191
|
Rankin CA, Galeva NA, Bae K, Ahmad MN, Witte TM, Richter ML. Isolated RING2 domain of parkin is sufficient for E2-dependent E3 ligase activity. Biochemistry 2013; 53:225-34. [PMID: 24328108 DOI: 10.1021/bi401378p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The E3 ubiquitin ligase activity of the parkin protein is implicated in playing a protective role against neurodegenerative disorders including Parkinson's, Huntington's, and Alzheimer's diseases. Parkin has four zinc-containing domains: RING0, RING1, IBR (in-between ring), and RING2. Mutational analysis of full-length parkin suggests that the C-terminal RING2 domain contains the catalytic core. Here, a catalytically competent recombinant RING2 containing an N-terminal GB1 solubility peptide is described. In cell-free in vitro ubiqitination reactions, the RING2 construct catalyzes the transfer of ubiquitin from the E2 enzyme UbcH7 to the attached GB1 tag. This intramolecular autoubiquitination reaction indicates that (a) ubiquitination by RING2 can occur in the absence of other parkin domains and (b) UbcH7 can interact directly with RING2 to transfer its bound ubiquitin. Mass spectrometry identified sites of mono- and diubiquitin attachment to two surface-exposed lysine residues (Lys24 and Lys39) on the GB1 peptide. The sites of diubiquitination involved Lys11 and Lys48 linkages, which have been identified as general signals for proteasome degradation. Cleaving the linker between the GB1 tag and RING2 resulted in loss of ubiquitination activity, indicating that the substrate must be tethered to RING2 for proper presentation to the active site. Atomic absorption spectrometry and selective mutation of zinc ligands indicated that only one of the two zinc binding sites on RING2, the N-terminal site, needs to be occupied by zinc for expression of ubiquitination activity. This is consistent with the hypothesis that the second, C-terminal, zinc binding site on RING2 has a regulatory rather than a catalytic function.
Collapse
Affiliation(s)
- Carolyn A Rankin
- Departments of Molecular Biosciences and ‡Chemistry, §Analytical Proteomics Laboratory, The University of Kansas , Lawrence, Kansas 66044, United States
| | | | | | | | | | | |
Collapse
|
192
|
Wang K, Liu S, Wang J, Wu Y, Cai F, Song W. Transcriptional regulation of human USP24 gene expression by NF-kappa B. J Neurochem 2013; 128:818-28. [PMID: 24286619 DOI: 10.1111/jnc.12626] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 01/10/2023]
Abstract
Impairment of the ubiquitin proteasome pathway is believed to play an important role in the pathogenesis of Parkinson's disease. This process is carried out under tight regulation by deubiquitinating enzymes. Genetic linkage studies indicated that the region of the human ubiquitin-specific protease 24 (USP24) gene is significantly correlated with Parkinson's disease. In this study, we cloned a 1648 bp 5' flanking region of the human USP24 gene coding sequence and a series of nested deletions into the pGL3-Basic vector. We analyzed promoter activities of these regions with a luciferase-based reporter assay system. A 64-bp region was identified to contain the transcription initiation site and a minimum promoter sequence for transcriptional activation of the USP24 gene expression. Expression of USP24 is controlled by a TATA-box-less promoter with several putative cis-acting elements. Transcriptional activation and gel-shift assay demonstrated that the USP24 gene promoter contains a functional NFκB-binding site. Over-expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) and tumor-necrosis factor alpha (TNFα) treatment significantly increased the USP24 promoter activity, mRNA expression and protein level in human HEK293 cells, mouse N2a cells and human neuroblastoma SH-SY5Y cells. Deletion and mutation of the binding site abolished the regulatory effect of NFκB on human USP24 gene transcription. These results suggested that USP24 expression is tightly regulated at its transcription level and NFκB plays an important role in this process.
Collapse
Affiliation(s)
- Ke Wang
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
193
|
Chakraborty S, Bornhorst J, Nguyen TT, Aschner M. Oxidative stress mechanisms underlying Parkinson's disease-associated neurodegeneration in C. elegans. Int J Mol Sci 2013; 14:23103-28. [PMID: 24284401 PMCID: PMC3856108 DOI: 10.3390/ijms141123103] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/08/2013] [Accepted: 10/16/2013] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is thought to play a significant role in the development and progression of neurodegenerative diseases. Although it is currently considered a hallmark of such processes, the interweaving of a multitude of signaling cascades hinders complete understanding of the direct role of oxidative stress in neurodegeneration. In addition to its extensive use as an aging model, some researchers have turned to the invertebrate model Caenorhabditis elegans (C. elegans) in order to further investigate molecular mediators that either exacerbate or protect against reactive oxygen species (ROS)-mediated neurodegeneration. Due to their fully characterized genome and short life cycle, rapid generation of C. elegans genetic models can be useful to study upstream markers of oxidative stress within interconnected signaling pathways. This report will focus on the roles of C. elegans homologs for the oxidative stress-associated transcription factor Nrf2, as well as the autosomal recessive, early-onset Parkinson’s disease (PD)-associated proteins Parkin, DJ-1, and PINK1, in neurodegenerative processes.
Collapse
Affiliation(s)
- Sudipta Chakraborty
- Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA; E-Mail:
- Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; E-Mail:
| | - Julia Bornhorst
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; E-Mail:
| | - Thuy T. Nguyen
- Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; E-Mail:
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael Aschner
- Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; E-Mail:
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; E-Mail:
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-718-430-2317
| |
Collapse
|
194
|
Lim GGY, Chew KCM, Ng XH, Henry-Basil A, Sim RWX, Tan JMM, Chai C, Lim KL. Proteasome inhibition promotes Parkin-Ubc13 interaction and lysine 63-linked ubiquitination. PLoS One 2013; 8:e73235. [PMID: 24023840 PMCID: PMC3759450 DOI: 10.1371/journal.pone.0073235] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 07/18/2013] [Indexed: 11/18/2022] Open
Abstract
Disruption of the ubiquitin-proteasome system, which normally identifies and degrades unwanted intracellular proteins, is thought to underlie neurodegeneration. Supporting this, mutations of Parkin, a ubiquitin ligase, are associated with autosomal recessive parkinsonism. Remarkably, Parkin can protect neurons against a wide spectrum of stress, including those that promote proteasome dysfunction. Although the mechanism underlying the preservation of proteasome function by Parkin is hitherto unclear, we have previously proposed that Parkin-mediated K63-linked ubiquitination (which is usually uncoupled from the proteasome) may serve to mitigate proteasomal stress by diverting the substrate load away from the machinery. By means of linkage-specific antibodies, we demonstrated here that proteasome inhibition indeed promotes K63-linked ubiquitination of proteins especially in Parkin-expressing cells. Importantly, we further demonstrated that the recruitment of Ubc13 (an E2 that mediates K63-linked polyubiquitin chain formation exclusively) by Parkin is selectively enhanced under conditions of proteasomal stress, thus identifying a mechanism by which Parkin could promote K63-linked ubiquitin modification in cells undergoing proteolytic stress. This mode of ubiquitination appears to facilitate the subsequent clearance of Parkin substrates via autophagy. Consistent with the proposed protective role of K63-linked ubiquitination in times of proteolytic stress, we found that Ubc13-deficient cells are significantly more susceptible to cell death induced by proteasome inhibitors compared to their wild type counterparts. Taken together, our study suggests a role for Parkin-mediated K63 ubiquitination in maintaining cellular protein homeostasis, especially during periods when the proteasome is burdened or impaired.
Collapse
Affiliation(s)
- Grace G. Y. Lim
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore, Singapore
| | - Katherine C. M. Chew
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Xiao-Hui Ng
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore, Singapore
| | - Adeline Henry-Basil
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore, Singapore
| | - Roy W. X. Sim
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore, Singapore
| | - Jeanne M. M. Tan
- Duke-NUS Graduate Medical School, Singapore, Singapore
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore, Singapore
| | - Chou Chai
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Kah-Leong Lim
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore, Singapore
- * E-mail:
| |
Collapse
|
195
|
Ekholm-Reed S, Goldberg MS, Schlossmacher MG, Reed SI. Parkin-dependent degradation of the F-box protein Fbw7β promotes neuronal survival in response to oxidative stress by stabilizing Mcl-1. Mol Cell Biol 2013; 33:3627-43. [PMID: 23858059 PMCID: PMC3753862 DOI: 10.1128/mcb.00535-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/28/2013] [Indexed: 11/20/2022] Open
Abstract
Parkinson's disease (PD) is characterized by progressive loss of midbrain dopaminergic neurons resulting in motor dysfunction. While most PD is sporadic in nature, a significant subset can be linked to either dominant or recessive germ line mutations. PARK2, encoding the ubiquitin ligase parkin, is the most frequently mutated gene in hereditary Parkinson's disease. Here, we present evidence for a neuronal ubiquitin ligase cascade involving parkin and the multisubunit ubiquitin ligase SCF(Fbw7β). Specifically, parkin targets the SCF substrate adapter Fbw7β for proteasomal degradation. Furthermore, we show that the physiological role of parkin-mediated regulation of Fbw7β levels is the stabilization of the mitochondrial prosurvival factor Mcl-1, an SCF(Fbw7β) target in neurons. We show that neurons depleted of parkin become acutely sensitive to oxidative stress due to an inability to maintain adequate levels of Mcl-1. Therefore, loss of parkin function through biallelic mutation of PARK2 may lead to death of dopaminergic neurons through unregulated SCF(Fbw7β)-mediated ubiquitylation-dependent proteolysis of Mcl-1.
Collapse
Affiliation(s)
- Susanna Ekholm-Reed
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Matthew S. Goldberg
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Michael G. Schlossmacher
- Division of Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Steven I. Reed
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
196
|
Sunico CR, Nakamura T, Rockenstein E, Mante M, Adame A, Chan SF, Newmeyer TF, Masliah E, Nakanishi N, Lipton SA. S-Nitrosylation of parkin as a novel regulator of p53-mediated neuronal cell death in sporadic Parkinson's disease. Mol Neurodegener 2013; 8:29. [PMID: 23985028 PMCID: PMC3765907 DOI: 10.1186/1750-1326-8-29] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 08/16/2013] [Indexed: 12/21/2022] Open
Abstract
Background Mutations in the gene encoding parkin, a neuroprotective protein with dual functions as an E3 ubiquitin ligase and transcriptional repressor of p53, are linked to familial forms of Parkinson’s disease (PD). We hypothesized that oxidative posttranslational modification of parkin by environmental toxins may contribute to sporadic PD. Results We first demonstrated that S-nitrosylation of parkin decreased its activity as a repressor of p53 gene expression, leading to upregulation of p53. Chromatin immunoprecipitation as well as gel-shift assays showed that parkin bound to the p53 promoter, and this binding was inhibited by S-nitrosylation of parkin. Additionally, nitrosative stress induced apoptosis in cells expressing parkin, and this death was, at least in part, dependent upon p53. In primary mesencephalic cultures, pesticide-induced apoptosis was prevented by inhibition of nitric oxide synthase (NOS). In a mouse model of pesticide-induced PD, both S-nitrosylated (SNO-)parkin and p53 protein levels were increased, while administration of a NOS inhibitor mitigated neuronal death in these mice. Moreover, the levels of SNO-parkin and p53 were simultaneously elevated in postmortem human PD brain compared to controls. Conclusions Taken together, our data indicate that S-nitrosylation of parkin, leading to p53-mediated neuronal cell death, contributes to the pathophysiology of sporadic PD.
Collapse
Affiliation(s)
- Carmen R Sunico
- Sanford-Burnham Medical Research Institute, Del E, Webb Center for Neuroscience, Aging, and Stem Cell Research, 10901, North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Ageta-Ishihara N, Yamakado H, Morita T, Hattori S, Takao K, Miyakawa T, Takahashi R, Kinoshita M. Chronic overload of SEPT4, a parkin substrate that aggregates in Parkinson's disease, causes behavioral alterations but not neurodegeneration in mice. Mol Brain 2013; 6:35. [PMID: 23938054 PMCID: PMC3751304 DOI: 10.1186/1756-6606-6-35] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/09/2013] [Indexed: 12/13/2022] Open
Abstract
Background In autosomal recessive early-onset Parkinsonism (PARK2), the pathogenetic process from the loss of function of a ubiquitin ligase parkin to the death of dopamine neurons remains unclear. A dominant hypothesis attributes the neurotoxicity to accumulated substrates that are exempt from parkin-mediated degradation. Parkin substrates include two septins; SEPT4/CDCrel-2 which coaggregates with α-synuclein as Lewy bodies in Parkinson’s disease, and its closest homolog SEPT5/CDCrel-1/PNUTL1 whose overload with viral vector can rapidly eliminate dopamine neurons in rats. However, chronic effects of pan-neural overload of septins have never been examined in mammals. To address this, we established a line of transgenic mice that express the largest gene product SEPT454kDa via the prion promoter in the entire brain. Results Histological examination and biochemical quantification of SEPT4-associated proteins including α-synuclein and the dopamine transporter in the nigrostriatal dopamine neurons found no significant difference between Sept4Tg/+ and wild-type littermates. Thus, the hypothetical pathogenicity by the chronic overload of SEPT4 alone, if any, is insufficient to trigger neurodegenerative process in the mouse brain. Intriguingly, however, a systematic battery of behavioral tests revealed unexpected abnormalities in Sept4Tg/+ mice that include consistent attenuation of voluntary activities in distinct behavioral paradigms and altered social behaviors. Conclusions Together, these data indicate that septin dysregulations commonly found in postmortem human brains with Parkinson’s disease, schizophrenia and bipolar disorders may be responsible for a subset of behavioral abnormalities in the patients.
Collapse
Affiliation(s)
- Natsumi Ageta-Ishihara
- Department of Molecular Biology, Division of Biological Sciences, Nagoya University Graduate School of Science, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Snoek BC, Wilt LHAMD, Jansen G, Peters GJ. Role of E3 ubiquitin ligases in lung cancer. World J Clin Oncol 2013; 4:58-69. [PMID: 23936758 PMCID: PMC3708064 DOI: 10.5306/wjco.v4.i3.58] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/10/2013] [Accepted: 06/06/2013] [Indexed: 02/06/2023] Open
Abstract
E3 ubiquitin ligases are a large family of proteins that catalyze the ubiquitination of many protein substrates for targeted degradation by the 26S proteasome. Therefore, E3 ubiquitin ligases play an essential role in a variety of biological processes including cell cycle regulation, proliferation and apoptosis. E3 ubiquitin ligases are often found overexpressed in human cancers, including lung cancer, and their deregulation has been shown to contribute to cancer development. However, the lack of specific inhibitors in clinical trials is a major issue in targeting E3 ubiquitin ligases with currently only one E3 ubiquitin ligase inhibitor being tested in the clinical setting. In this review, we focus on E3 ubiquitin ligases that have been found deregulated in lung cancer. Furthermore, we discuss the processes in which they are involved and evaluate them as potential anti-cancer targets. By better understanding the mechanisms by which E3 ubiquitin ligases regulate biological processes and their exact role in carcinogenesis, we can improve the development of specific E3 ubiquitin ligase inhibitors and pave the way for novel treatment strategies for cancer patients.
Collapse
|
199
|
Kubo SI, Hatano T, Takanashi M, Hattori N. Can parkin be a target for future treatment of Parkinson's disease? Expert Opin Ther Targets 2013; 17:1133-44. [PMID: 23930597 DOI: 10.1517/14728222.2013.827173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) is one of the most common neurodegenerative diseases affecting an increasing number of people worldwide with the ageing society. Although the etiology of PD remains largely unknown, it is now clear that genetic factors contribute to the pathogenesis of the disease. Recently, several causative genes have been identified in mendelian forms of PD. Growing evidence indicates that their gene products play important roles in oxidative stress response, mitochondrial function, and the ubiquitin-proteasome system, which are also implicated in idiopathic PD, suggesting that these gene products share a common pathway to nigral degeneration in both familial and idiopathic PD. However, treatment options are currently limited. AREAS COVERED Recently, a possible role of parkin, a gene product of PARK2-liked PD, in neuroprotection has been suggested. To this regard, several investigations have focused on the possible contribution of parkin in neurotoxic insults. In this article, the role of parkin in the pathogenesis of PD and the potential of parkin as a therapeutic target in PD will be discussed. EXPERT OPINION There is an urgent need to develop novel therapeutic options to better manage patients with PD. The data discussed in this article provide rationale for parkin as a therapeutic target.
Collapse
Affiliation(s)
- Shin-Ichiro Kubo
- Juntendo University School of Medicine, Department of Neurology , 2-1-1 Hongo, Bunkyo, Tokyo 113-8421 , Japan +81 3 5684 0476 ; +81 3 3813 7440 ;
| | | | | | | |
Collapse
|
200
|
Abstract
Parkinson's disease (PD), like a number of neurodegenerative diseases associated with aging, is characterized by the abnormal accumulation of protein in a specific subset of neurons. Although researchers have recently elucidated the genetic causes of PD, much remains unknown about what causes increased protein deposition in the disease. Given that increased protein aggregation may result not only from an increase in production, but also from decreased protein clearance, it is imperative to investigate both possibilities as potential PD culprits. This article provides a review of the systems that regulate protein clearance, including the ubiquitin proteasome system (UPS) and the autophagy-lysosomal pathway. Literature implicating failure of these mechanisms-such as UPS dysfunction resulting from environmental toxins and mutations in α-synuclein and parkin, as well as macroautophagic pathway failure because of oxidative stress and aging-in the pathogenesis of PD is also discussed.
Collapse
|