151
|
Kausar MA, Anwar S, El-Horany HES, Khan FH, Tyagi N, Najm MZ, Sadaf, Eisa AA, Dhara C, Gantayat S. Journey of CAR T‑cells: Emphasising the concepts and advancements in breast cancer (Review). Int J Oncol 2023; 63:130. [PMID: 37830150 PMCID: PMC10622179 DOI: 10.3892/ijo.2023.5578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Cancer is the primary and one of the most prominent causes of the rising global mortality rate, accounting for nearly 10 million deaths annually. Specific methods have been devised to cure cancerous tumours. Effective therapeutic approaches must be developed, both at the cellular and genetic level. Immunotherapy offers promising results by providing sustained remission to patients with refractory malignancies. Genetically modified T‑lymphocytic cells have emerged as a novel therapeutic approach for the treatment of solid tumours, haematological malignancies, and relapsed/refractory B‑lymphocyte malignancies as a result of recent clinical trial findings; the treatment is referred to as chimeric antigen receptor T‑cell therapy (CAR T‑cell therapy). Leukapheresis is used to remove T‑lymphocytes from the leukocytes, and CARs are created through genetic engineering. Without the aid of a major histocompatibility complex, these genetically modified receptors lyse malignant tissues by interacting directly with the carcinogen. Additionally, the outcomes of preclinical and clinical studies reveal that CAR T‑cell therapy has proven to be a potential therapeutic contender against metastatic breast cancer (BCa), triple‑negative, and HER 2+ve BCa. Nevertheless, unique toxicities, including (cytokine release syndrome, on/off‑target tumour recognition, neurotoxicities, anaphylaxis, antigen escape in BCa, and the immunosuppressive tumour microenvironment in solid tumours, negatively impact the mechanism of action of these receptors. In this review, the potential of CAR T‑cell immunotherapy and its method of destroying tumour cells is explored using data from preclinical and clinical trials, as well as providing an update on the approaches used to reduce toxicities, which may improve or broaden the effectiveness of the therapies used in BCa.
Collapse
Affiliation(s)
- Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Ha'il, Ha'il 81411, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
| | - Sadaf Anwar
- Department of Biochemistry, College of Medicine, University of Ha'il, Ha'il 81411, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
| | - Hemat El-Sayed El-Horany
- Department of Biochemistry, College of Medicine, University of Ha'il, Ha'il 81411, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Egypt
| | - Farida Habib Khan
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
- Department of Community and Family Medicine, College of Medicine, University of Ha'il, Ha'il 81411, Saudi Arabia
| | - Neetu Tyagi
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | | | - Sadaf
- Department of Biotechnology, Jamia Millia Islamia, Okhla, New Delhi 110025, India
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina 30002, Saudi Arabia
| | - Chandrajeet Dhara
- School of Biosciences, Apeejay Stya University, Sohna, Gurugram 122003, Haryana
| | - Saumyatika Gantayat
- School of Biosciences, Apeejay Stya University, Sohna, Gurugram 122003, Haryana
| |
Collapse
|
152
|
Sayadmanesh A, Yekehfallah V, Valizadeh A, Abedelahi A, Shafaei H, Shanehbandi D, Basiri M, Baradaran B. Strategies for modifying the chimeric antigen receptor (CAR) to improve safety and reduce toxicity in CAR T cell therapy for cancer. Int Immunopharmacol 2023; 125:111093. [PMID: 37897950 DOI: 10.1016/j.intimp.2023.111093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023]
Abstract
Immune cell therapy with chimeric antigen receptor (CAR) T cells, which has shown promising efficacy in patients with some hematologic malignancies, has introduced several successfully approved CAR T cell therapy products. Nevertheless, despite significant advances, treatment with these products has major challenges regarding potential toxicity and sometimes fatal adverse effects for patients. These toxicities can result from cytokine release or on-target off-tumor toxicity that targets healthy host tissue following CAR T cell therapy. The present study focuses on the unexpected side effects of targeting normal host tissues with off-target toxicity. Also, recent safety strategies such as replacing or adding different components to CARs and redesigning CAR structures to eliminate the toxic impact of CAR T cells, including T cell antigen coupler (TAC), switch molecules, suicide genes, and humanized monoclonal antibodies in the design of CARs, are discussed in this review.
Collapse
Affiliation(s)
- Ali Sayadmanesh
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vahid Yekehfallah
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Amir Valizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Shafaei
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
153
|
Liu L, Yoon CW, Yuan Z, Guo T, Qu Y, He P, Yu X, Zhu Z, Limsakul P, Wang Y. Cellular and molecular imaging of CAR-T cell-based immunotherapy. Adv Drug Deliv Rev 2023; 203:115135. [PMID: 37931847 PMCID: PMC11052581 DOI: 10.1016/j.addr.2023.115135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Chimeric Antigen Receptor T cell (CAR-T) therapy has emerged as a transformative therapeutic strategy for hematological malignancies. However, its efficacy in treating solid tumors remains limited. An in-depth and comprehensive understanding of CAR-T cell signaling pathways and the ability to track CAR-T cell biodistribution and activation in real-time within the tumor microenvironment will be instrumental in designing the next generation of CAR-T cells for solid tumor therapy. This review summarizes the signaling network and the cellular and molecular imaging tools and platforms that are utilized in CAR-T cell-based immune therapies, covering both in vitro and in vivo studies. Firstly, we provide an overview of the existing understanding of the activation and cytotoxic mechanisms of CAR-T cells, compared to the mechanism of T cell receptor (TCR) signaling pathways. We further describe the commonly employed tools for live cell imaging, coupled with recent research progress, with a focus on genetically encoded fluorescent proteins (FPs) and biosensors. We then discuss the utility of diverse in vivo imaging modalities, including fluorescence and bioluminescence imaging, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and photoacoustic (PA) imaging, for noninvasive monitoring of CAR-T cell dynamics within tumor tissues, thereby providing critical insights into therapy's strengths and weaknesses. Lastly, we discuss the current challenges and future directions of CAR-T cell therapy from the imaging perspective. We foresee that a comprehensive and integrative approach to CAR-T cell imaging will enable the development of more effective treatments for solid tumors in the future.
Collapse
Affiliation(s)
- Longwei Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Chi Woo Yoon
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhou Yuan
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Tianze Guo
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yunjia Qu
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Peixiang He
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xi Yu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ziyue Zhu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Praopim Limsakul
- Division of Physical Science, Faculty of Science and Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
154
|
Chen C, Jung A, Yang A, Monroy I, Zhang Z, Chaurasiya S, Deshpande S, Priceman S, Fong Y, Park AK, Woo Y. Chimeric Antigen Receptor-T Cell and Oncolytic Viral Therapies for Gastric Cancer and Peritoneal Carcinomatosis of Gastric Origin: Path to Improving Combination Strategies. Cancers (Basel) 2023; 15:5661. [PMID: 38067366 PMCID: PMC10705752 DOI: 10.3390/cancers15235661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 02/12/2024] Open
Abstract
Precision immune oncology capitalizes on identifying and targeting tumor-specific antigens to enhance anti-tumor immunity and improve the treatment outcomes of solid tumors. Gastric cancer (GC) is a molecularly heterogeneous disease where monoclonal antibodies against human epidermal growth factor receptor 2 (HER2), vascular endothelial growth factor (VEGF), and programmed cell death 1 (PD-1) combined with systemic chemotherapy have improved survival in patients with unresectable or metastatic GC. However, intratumoral molecular heterogeneity, variable molecular target expression, and loss of target expression have limited antibody use and the durability of response. Often immunogenically "cold" and diffusely spread throughout the peritoneum, GC peritoneal carcinomatosis (PC) is a particularly challenging, treatment-refractory entity for current systemic strategies. More adaptable immunotherapeutic approaches, such as oncolytic viruses (OVs) and chimeric antigen receptor (CAR) T cells, have emerged as promising GC and GCPC treatments that circumvent these challenges. In this study, we provide an up-to-date review of the pre-clinical and clinical efficacy of CAR T cell therapy for key primary antigen targets and provide a translational overview of the types, modifications, and mechanisms for OVs used against GC and GCPC. Finally, we present a novel, summary-based discussion on the potential synergistic interplay between OVs and CAR T cells to treat GCPC.
Collapse
Affiliation(s)
- Courtney Chen
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Audrey Jung
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Annie Yang
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Isabel Monroy
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA; (I.M.); (S.P.)
| | - Zhifang Zhang
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Shyambabu Chaurasiya
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Supriya Deshpande
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Saul Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA; (I.M.); (S.P.)
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yuman Fong
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Anthony K. Park
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA; (I.M.); (S.P.)
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yanghee Woo
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
155
|
Pérez-Amill L, Bataller À, Delgado J, Esteve J, Juan M, Klein-González N. Advancing CART therapy for acute myeloid leukemia: recent breakthroughs and strategies for future development. Front Immunol 2023; 14:1260470. [PMID: 38098489 PMCID: PMC10720337 DOI: 10.3389/fimmu.2023.1260470] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Chimeric antigen receptor (CAR) T therapies are being developed for acute myeloid leukemia (AML) on the basis of the results obtained for other haematological malignancies and the need of new treatments for relapsed and refractory AML. The biggest challenge of CART therapy for AML is to identify a specific target antigen, since antigens expressed in AML cells are usually shared with healthy haematopoietic stem cells (HSC). The concomitant expression of the target antigen on both tumour and HSC may lead to on-target/off-tumour toxicity. In this review, we guide researchers to design, develop, and translate to the clinic CART therapies for the treatment of AML. Specifically, we describe what issues have to be considered to design these therapies; what in vitro and in vivo assays can be used to prove their efficacy and safety; and what expertise and facilities are needed to treat and manage patients at the hospital.
Collapse
Affiliation(s)
- Lorena Pérez-Amill
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Gyala Therapeutics S.L, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Àlex Bataller
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Julio Delgado
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Jordi Esteve
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Manel Juan
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Hospital Sant Joan de Déu, Universidad de Barcelona, Barcelona, Spain
| | - Nela Klein-González
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Gyala Therapeutics S.L, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
156
|
Giardino Torchia ML, Moody G. DIALing-up the preclinical characterization of gene-modified adoptive cellular immunotherapies. Front Immunol 2023; 14:1264882. [PMID: 38090585 PMCID: PMC10713823 DOI: 10.3389/fimmu.2023.1264882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
The preclinical characterization of gene modified adoptive cellular immunotherapy candidates for clinical development often requires the use of mouse models. Gene-modified lymphocytes (GML) incorporating chimeric antigen receptors (CAR) and T-cell receptors (TCR) into immune effector cells require in vivo characterization of biological activity, mechanism of action, and preclinical safety. Typically, this characterization involves the assessment of dose-dependent, on-target, on-tumor activity in severely immunocompromised mice. While suitable for the purpose of evaluating T cell-expressed transgene function in a living host, this approach falls short in translating cellular therapy efficacy, safety, and persistence from preclinical models to humans. To comprehensively characterize cell therapy products in mice, we have developed a framework called "DIAL". This framework aims to enable an end-to-end understanding of genetically engineered cellular immunotherapies in vivo, from infusion to tumor clearance and long-term immunosurveillance. The acronym DIAL stands for Distribution, Infiltration, Accumulation, and Longevity, compartmentalizing the systemic attributes of gene-modified cellular therapy and providing a platform for optimization with the ultimate goal of improving therapeutic efficacy. This review will discuss both existent and emerging examples of DIAL characterization in mouse models, as well as opportunities for future development and optimization.
Collapse
Affiliation(s)
| | - Gordon Moody
- Cell Therapy Unit, Oncology Research, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
157
|
Miliotou AN, Georgiou-Siafis SK, Ntenti C, Pappas IS, Papadopoulou LC. Recruiting In Vitro Transcribed mRNA against Cancer Immunotherapy: A Contemporary Appraisal of the Current Landscape. Curr Issues Mol Biol 2023; 45:9181-9214. [PMID: 37998753 PMCID: PMC10670245 DOI: 10.3390/cimb45110576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Over 100 innovative in vitro transcribed (IVT)-mRNAs are presently undergoing clinical trials, with a projected substantial impact on the pharmaceutical market in the near future. Τhe idea behind this is that after the successful cellular internalization of IVT-mRNAs, they are subsequently translated into proteins with therapeutic or prophylactic relevance. Simultaneously, cancer immunotherapy employs diverse strategies to mobilize the immune system in the battle against cancer. Therefore, in this review, the fundamental principles of IVT-mRNA to its recruitment in cancer immunotherapy, are discussed and analyzed. More specifically, this review paper focuses on the development of mRNA vaccines, the exploitation of neoantigens, as well as Chimeric Antigen Receptor (CAR) T-Cells, showcasing their clinical applications and the ongoing trials for the development of next-generation immunotherapeutics. Furthermore, this study investigates the synergistic potential of combining the CAR immunotherapy and the IVT-mRNAs by introducing our research group novel, patented delivery method that utilizes the Protein Transduction Domain (PTD) technology to transduce the IVT-mRNAs encoding the CAR of interest into the Natural Killer (NK)-92 cells, highlighting the potential for enhancing the CAR NK cell potency, efficiency, and bioenergetics. While IVT-mRNA technology brings exciting progress to cancer immunotherapy, several challenges and limitations must be acknowledged, such as safety, toxicity, and delivery issues. This comprehensive exploration of IVT-mRNA technology, in line with its applications in cancer therapeutics, offers valuable insights into the opportunities and challenges in the evolving landscape of cancer immunotherapy, setting the stage for future advancements in the field.
Collapse
Affiliation(s)
- Androulla N. Miliotou
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece; (A.N.M.); (S.K.G.-S.); (C.N.)
- Department of Health Sciences, KES College, 1055 Nicosia, Cyprus
- Faculty of Pharmacy, Department of Health Sciences, University of Nicosia, 1700 Nicosia, Cyprus
| | - Sofia K. Georgiou-Siafis
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece; (A.N.M.); (S.K.G.-S.); (C.N.)
- Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Thessaly, Greece;
| | - Charikleia Ntenti
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece; (A.N.M.); (S.K.G.-S.); (C.N.)
- 1st Laboratory of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Ioannis S. Pappas
- Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Thessaly, Greece;
| | - Lefkothea C. Papadopoulou
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece; (A.N.M.); (S.K.G.-S.); (C.N.)
| |
Collapse
|
158
|
Zheng R, Chen Y, Zhang Y, Liang S, Zhao X, Wang Y, Wang P, Meng R, Yang A, Yan B. Humanized single-domain antibody targeting HER2 enhances function of chimeric antigen receptor T cells. Front Immunol 2023; 14:1258156. [PMID: 38022548 PMCID: PMC10661930 DOI: 10.3389/fimmu.2023.1258156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Chimeric antigen receptors (CARs) can redirect T cells against antigen-expressing tumors, and each component plays an important role in the function and anti-tumor efficacy. It has been reported that using human sequences or a low affinity of CAR single-chain variable fragments (scFvs) in the CAR binding domains is a potential way to enhance the function of CAR-T cells. However, it remains largely unknown how a lower affinity of CARs using humanized scFvs affects the function of CAR-T cells until recently. Methods We used different humanized anti-HER2 antibodies as the extracellular domain of CARs and further constructed a series of the CAR-T cells with different affinity. Results We have observed that moderately reducing the affinity of CARs (light chain variable domain (VL)-based CAR-T) could maintain the anti-tumor efficacy, and improved the safety of CAR therapy both in vitro and in vivo compared with high-affinity CAR-T cells. Moreover, T cells expressing the VL domain only antibody exhibited long-lasting tumor elimination capability after multiple challenges in vitro, longer persistence and lower cytokine levels in vivo. Discussion Our findings provide an alternative option for CAR-T optimization with the potential to widen the use of CAR T cells.
Collapse
Affiliation(s)
- Rui Zheng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuankun Chen
- College of Life Science, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Yiting Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Sixin Liang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaojuan Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yiyi Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Pengju Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ruotong Meng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
- College of Life Science, Yan’an University, Yan’an, Shaanxi, China
| | - Angang Yang
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bo Yan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
159
|
Wang C, Wang J, Che S, Zhao H. CAR-T cell therapy for hematological malignancies: History, status and promise. Heliyon 2023; 9:e21776. [PMID: 38027932 PMCID: PMC10658259 DOI: 10.1016/j.heliyon.2023.e21776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
For many years, the methods of cancer treatment are usually surgery, chemotherapy and radiation therapy. Although these methods help to improve the condition, most tumors still have a poor prognosis. In recent years, immunotherapy has great potential in tumor treatment. Chimeric antigen receptor T-cell immunotherapy (CAR-T) uses the patient's own T cells to express chimeric antigen receptors. Chimeric antigen receptor (CAR) recognizes tumor-associated antigens and kills tumor cells. CAR-T has achieved good results in the treatment of hematological tumors. In 2017, the FDA approved the first CAR-T for the treatment of B-cell acute lymphoblastic leukemia (ALL). In October of the same year, the FDA approved CAR-T to treat B-cell lymphoma. In order to improve and enhance the therapeutic effect, CAR-T has become a research focus in recent years. The structure of CAR, the targets of CAR-T treatment, adverse reactions and improvement measures during the treatment process are summarized. This review is an attempt to highlight recent and possibly forgotten findings of advances in chimeric antigen receptor T cell for treatment of hematological tumors.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Jianpeng Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Shusheng Che
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| |
Collapse
|
160
|
Giordano Attianese GMP, Ash S, Irving M. Coengineering specificity, safety, and function into T cells for cancer immunotherapy. Immunol Rev 2023; 320:166-198. [PMID: 37548063 DOI: 10.1111/imr.13252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Adoptive T-cell transfer (ACT) therapies, including of tumor infiltrating lymphocytes (TILs) and T cells gene-modified to express either a T cell receptor (TCR) or a chimeric antigen receptor (CAR), have demonstrated clinical efficacy for a proportion of patients and cancer-types. The field of ACT has been driven forward by the clinical success of CD19-CAR therapy against various advanced B-cell malignancies, including curative responses for some leukemia patients. However, relapse remains problematic, in particular for lymphoma. Moreover, for a variety of reasons, relative limited efficacy has been demonstrated for ACT of non-hematological solid tumors. Indeed, in addition to pre-infusion challenges including lymphocyte collection and manufacturing, ACT failure can be attributed to several biological processes post-transfer including, (i) inefficient tumor trafficking, infiltration, expansion and retention, (ii) chronic antigen exposure coupled with insufficient costimulation resulting in T-cell exhaustion, (iii) a range of barriers in the tumor microenvironment (TME) mediated by both tumor cells and suppressive immune infiltrate, (iv) tumor antigen heterogeneity and loss, or down-regulation of antigen presentation machinery, (v) gain of tumor intrinsic mechanisms of resistance such as to apoptosis, and (vi) various forms of toxicity and other adverse events in patients. Affinity-optimized TCRs can improve T-cell function and innovative CAR designs as well as gene-modification strategies can be used to coengineer specificity, safety, and function into T cells. Coengineering strategies can be designed not only to directly support the transferred T cells, but also to block suppressive barriers in the TME and harness endogenous innate and adaptive immunity. Here, we review a selection of the remarkable T-cell coengineering strategies, including of tools, receptors, and gene-cargo, that have been developed in recent years to augment tumor control by ACT, more and more of which are advancing to the clinic.
Collapse
Affiliation(s)
- Greta Maria Paola Giordano Attianese
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sarah Ash
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
161
|
Tang OY, Binder ZA, O'Rourke DM, Bagley SJ. Optimizing CAR-T Therapy for Glioblastoma. Mol Diagn Ther 2023; 27:643-660. [PMID: 37700186 DOI: 10.1007/s40291-023-00671-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
Chimeric antigen receptor T-cell therapies have transformed the management of hematologic malignancies but have not yet demonstrated consistent efficacy in solid tumors. Glioblastoma is the most common primary malignant brain tumor in adults and remains a major unmet medical need. Attempts at harnessing the potential of chimeric antigen receptor T-cell therapy for glioblastoma have resulted in glimpses of promise but have been met with substantial challenges. In this focused review, we discuss current and future strategies being developed to optimize chimeric antigen receptor T cells for efficacy in patients with glioblastoma, including the identification and characterization of new target antigens, reversal of T-cell dysfunction with novel chimeric antigen receptor constructs, regulatable platforms, and gene knockout strategies, and the use of combination therapies to overcome the immune-hostile microenvironment.
Collapse
Affiliation(s)
- Oliver Y Tang
- Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephen J Bagley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
162
|
Chen S, Zhou Z, Li Y, Du Y, Chen G. Application of single-cell sequencing to the research of tumor microenvironment. Front Immunol 2023; 14:1285540. [PMID: 37965341 PMCID: PMC10641410 DOI: 10.3389/fimmu.2023.1285540] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Single-cell sequencing is a technique for detecting and analyzing genomes, transcriptomes, and epigenomes at the single-cell level, which can detect cellular heterogeneity lost in conventional sequencing hybrid samples, and it has revolutionized our understanding of the genetic heterogeneity and complexity of tumor progression. Moreover, the tumor microenvironment (TME) plays a crucial role in the formation, development and response to treatment of tumors. The application of single-cell sequencing has ushered in a new age for the TME analysis, revealing not only the blueprint of the pan-cancer immune microenvironment, but also the heterogeneity and differentiation routes of immune cells, as well as predicting tumor prognosis. Thus, the combination of single-cell sequencing and the TME analysis provides a unique opportunity to unravel the molecular mechanisms underlying tumor development and progression. In this review, we summarize the recent advances in single-cell sequencing and the TME analysis, highlighting their potential applications in cancer research and clinical translation.
Collapse
Affiliation(s)
| | | | | | | | - Guoan Chen
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
163
|
Kvorjak M, Ruffo E, Tivon Y, So V, Parikh A, Deiters A, Lohmueller J. Conditional Control of Universal CAR T Cells by Cleavable OFF-Switch Adaptors. ACS Synth Biol 2023; 12:2996-3007. [PMID: 37791909 PMCID: PMC10594876 DOI: 10.1021/acssynbio.3c00320] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 10/05/2023]
Abstract
As living drugs, engineered T cell therapies are revolutionizing disease treatment with their unique functional capabilities. However, they suffer from limitations of potentially unpredictable behavior, toxicities, and nontraditional pharmacokinetics. Engineering conditional control mechanisms responsive to tractable stimuli such as small molecules or light is thus highly desirable. We and others previously developed "universal" chimeric antigen receptors (CARs) that interact with coadministered antibody adaptors to direct target cell killing and T cell activation. Universal CARs are of high therapeutic interest due to their ability to simultaneously target multiple antigens on the same disease or different diseases by combining with adaptors to different antigens. Here, we further enhance the programmability and potential safety of universal CAR T cells by engineering OFF-switch adaptors that can conditionally control CAR activity, including T cell activation, target cell lysis, and transgene expression, in response to a small molecule or light stimulus. Moreover, in adaptor combination assays, OFF-switch adaptors were capable of orthogonal conditional targeting of multiple antigens simultaneously, following Boolean logic. OFF-switch adaptors represent a robust new approach for the precision targeting of universal CAR T cells with potential for enhanced safety.
Collapse
Affiliation(s)
- Michael Kvorjak
- UPMC
Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
- Division
of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
- Department
of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Center
for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Elisa Ruffo
- UPMC
Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
- Division
of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
- Department
of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Center
for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Yaniv Tivon
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Victor So
- UPMC
Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
- Division
of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
- Department
of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Center
for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Avani Parikh
- UPMC
Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
- Division
of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
- Department
of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Center
for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Alexander Deiters
- Center
for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jason Lohmueller
- UPMC
Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
- Division
of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
- Department
of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Center
for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
164
|
Almaeen AH, Abouelkheir M. CAR T-Cells in Acute Lymphoblastic Leukemia: Current Status and Future Prospects. Biomedicines 2023; 11:2693. [PMID: 37893067 PMCID: PMC10604728 DOI: 10.3390/biomedicines11102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The currently available treatment for acute lymphoblastic leukemia (ALL) is mainly dependent on the combination of chemotherapy, steroids, and allogeneic stem cell transplantation. However, refractoriness and relapse (R/R) after initial complete remission may reach up to 20% in pediatrics. This percentage may even reach 60% in adults. To overcome R/R, a new therapeutic approach was developed using what is called chimeric antigen receptor-modified (CAR) T-cell therapy. The Food and Drug Administration (FDA) in the United States has so far approved four CAR T-cells for the treatment of ALL. Using this new therapeutic strategy has shown a remarkable success in treating R/R ALL. However, the use of CAR T-cells is expensive, has many imitations, and is associated with some adverse effects. Cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) are two common examples of these adverse effects. Moreover, R/R to CAR T-cell therapy can take place during treatment. Continuous development of this therapeutic strategy is ongoing to overcome these limitations and adverse effects. The present article overviews the use of CAR T-cell in the treatment of ALL, summarizing the results of relevant clinical trials and discussing future prospects intended to improve the efficacy of this therapeutic strategy and overcome its limitations.
Collapse
Affiliation(s)
- Abdulrahman H. Almaeen
- Department of Pathology, Pathology Division, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Mohamed Abouelkheir
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
165
|
Xie X, Li X, Liu G, Zhao H, Zhou Z, Xiong S. T cells expressing a HER2-specific chimeric antigen receptor as treatment for breast cancer. J Cancer Res Clin Oncol 2023; 149:11561-11570. [PMID: 37402965 DOI: 10.1007/s00432-023-04996-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023]
Abstract
PURPOSE Human endothelial growth factor receptor-2 (HER2) is a leucine kinase receptor that is closely related to cell growth and differentiation. It is very weakly expressed in a few epithelial cells in normal tissue. Abnormal expression of HER2 usually leads to sustained activation of downstream signaling pathways, enabling epithelial cell growth, proliferation, and differentiation; this disturbs normal physiological processes and causes tumor formation. Overexpression of HER2 is related to the occurrence and development of breast cancer. HER2 has become a well-established immunotherapy target for breast cancer. We chose to construct a second-generation CAR targeting HER 2 to test whether it kills breast cancer. METHODS We constructed a second-generation CAR molecule targeting HER2, and we generated cells expressing this second-generation CAR through lentivirus infection of T lymphocytes. LDH assay and flow cytometry were perform to detect the effect of cells and animal models. RESULTS The result indicated that the CARHER2 T cells could selectively kill cells with high Her2 expression. The PBMC-activated/CARHer2 cells had stronger in vivo tumor suppressive activity than PBMC-activated cells, and administration of PBMC-activated/CARHer2 cells significantly improved the survival of tumor-bearing mice, and induced the production of more Th1 cytokines in tumor-bearing NSG mice. CONCLUSIONS We prove that the generated T cells carrying the second-generation CARHer2 molecule could effectively guide immune effector cells to identify and kill HER2-positive tumor cells and inhibit tumors in model mice.
Collapse
Affiliation(s)
- Xinshan Xie
- College of Life Science and Technology, Jinan University, Guangzhou, 510630, China
| | - Xiaobin Li
- College of Life Science and Technology, Jinan University, Guangzhou, 510630, China
| | - Gang Liu
- College of Life Science and Technology, Jinan University, Guangzhou, 510630, China
| | - Hui Zhao
- College of Life Science and Technology, Jinan University, Guangzhou, 510630, China
| | - Zhenlong Zhou
- College of Life Science and Technology, Jinan University, Guangzhou, 510630, China
| | - Sheng Xiong
- College of Life Science and Technology, Jinan University, Guangzhou, 510630, China.
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, Guangzhou, 510630, China.
| |
Collapse
|
166
|
Gao J, Dahiya S, Patel SA. Challenges and solutions to superior chimeric antigen receptor-T design and deployment for B-cell lymphomas. Br J Haematol 2023; 203:161-168. [PMID: 37488074 PMCID: PMC10913150 DOI: 10.1111/bjh.19001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
Chimeric antigen receptor-T (CAR-T) therapies represent a major breakthrough in cancer medicine, given the ex vivo-based technology that harnesses the power of one's own immune system. These therapeutics have demonstrated remarkable success for relapsed/refractory B-cell lymphomas. Although more than a decade has passed since the initial introduction of CAR-T therapeutics for patients with leukaemia and lymphoma, there is still significant debate as to where CAR-T therapeutics fit into the management paradigm, as consensus guidelines are limited. Competing interventions deployed in subsequent lines of therapy for aggressive lymphoma include novel targeted agents, bispecific antibodies, and time-honoured stem cell transplant. In this focused review, we discuss the major obstacles to advancing the therapeutic reach for CAR-T products in early lines of therapy. Such barriers include antigen escape, "cold" tumour microenvironments, host inflammation and CAR-T cell exhaustion. We highlight solutions including point-of-care CAR-T manufacturing and early T lymphopheresis. We review the evidence basis for early CAR-T deployment for B-cell lymphomas in light of the recent Food and Drug Administration (FDA) approval of three first-in-class anti-CD3/CD20 bispecific antibodies-mosunetuzumab, epcoritamab and glofitamab. We propose practical recommendations for 2024.
Collapse
Affiliation(s)
- Jenny Gao
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Saurabh Dahiya
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, California, USA
| | - Shyam A. Patel
- Division of Hematology/Oncology, Department of Medicine, UMass Memorial Medical Center, Center for Clinical and Translational Science, UMass Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
167
|
Xia B, Lin K, Wang X, Chen F, Zhou M, Li Y, Lin Y, Qiao Y, Li R, Zhang W, He X, Zou F, Li L, Lu L, Chen C, Li W, Zhang H, Liu B. Nanobody-derived bispecific CAR-T cell therapy enhances the anti-tumor efficacy of T cell lymphoma treatment. Mol Ther Oncolytics 2023; 30:86-102. [PMID: 37593111 PMCID: PMC10427987 DOI: 10.1016/j.omto.2023.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023] Open
Abstract
T cell lymphoma (TCL) is a highly heterogeneous group of diseases with a poor prognosis and low 5-year overall survival rate. The current therapeutic regimens have relatively low efficacy rates. Clinical studies of single-target chimeric antigen receptor T cell (CAR-T cell) therapy in T lymphocytes require large and multiple infusions, increasing the risks and cost of treatment; therefore, optimizing targeted therapy is a way to improve overall prognosis. Despite significant advances in bispecific CAR-T cell therapy to avoid antigen escape in treatment of B cell lymphoma, applying this strategy to TCL requires further investigation. Here, we constructed an alpaca nanobody (Nb) phage library and generated high-affinity and -specificity Nbs targeting CD30 and CD5, respectively. Based on multiple rounds of screening, bispecific NbCD30-CD5-CAR T cells were constructed, and their superior anti-tumor effect against TCL was validated in vitro and in vivo. Our findings demonstrated that Nb-derived bispecific CAR-T cells significantly improved anti-tumor efficacy in TCL treatment compared with single-target CAR-T cells and bispecific single chain variable fragment (scFv)-derived CAR-T cells. Because Nbs are smaller and less immunogenic, the synergistic effect of Nb-based bispecific CAR-T cells may improve their safety and efficacy in future clinical applications.
Collapse
Affiliation(s)
- Baijin Xia
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou 510080, China
- Medical Research Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Southern Medical University, Guangzhou 510080, China
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Keming Lin
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xuemei Wang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - FeiLi Chen
- Lymphoma Department, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Mo Zhou
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yuzhuang Li
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yingtong Lin
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yidan Qiao
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Rong Li
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wanying Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xin He
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Fan Zou
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou 510080, China
- Medical Research Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Southern Medical University, Guangzhou 510080, China
- Qianyang Biomedical Research Institute, Guangzhou, Guangdong 510663, China
| | - Linghua Li
- Infectious Diseases Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Lijuan Lu
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Cancan Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - WenYu Li
- Lymphoma Department, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Bingfeng Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
168
|
Staudt S, Ziegler-Martin K, Visekruna A, Slingerland J, Shouval R, Hudecek M, van den Brink M, Luu M. Learning from the microbes: exploiting the microbiome to enforce T cell immunotherapy. Front Immunol 2023; 14:1269015. [PMID: 37799719 PMCID: PMC10548881 DOI: 10.3389/fimmu.2023.1269015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
The opportunities genetic engineering has created in the field of adoptive cellular therapy for cancer are accelerating the development of novel treatment strategies using chimeric antigen receptor (CAR) and T cell receptor (TCR) T cells. The great success in the context of hematologic malignancies has made especially CAR T cell therapy a promising approach capable of achieving long-lasting remission. However, the causalities involved in mediating resistance to treatment or relapse are still barely investigated. Research on T cell exhaustion and dysfunction has drawn attention to host-derived factors that define both the immune and tumor microenvironment (TME) crucially influencing efficacy and toxicity of cellular immunotherapy. The microbiome, as one of the most complex host factors, has become a central topic of investigations due to its ability to impact on health and disease. Recent findings support the hypothesis that commensal bacteria and particularly microbiota-derived metabolites educate and modulate host immunity and TME, thereby contributing to the response to cancer immunotherapy. Hence, the composition of microbial strains as well as their soluble messengers are considered to have predictive value regarding CAR T cell efficacy and toxicity. The diversity of mechanisms underlying both beneficial and detrimental effects of microbiota comprise various epigenetic, metabolic and signaling-related pathways that have the potential to be exploited for the improvement of CAR T cell function. In this review, we will discuss the recent findings in the field of microbiome-cancer interaction, especially with respect to new trajectories that commensal factors can offer to advance cellular immunotherapy.
Collapse
Affiliation(s)
- Sarah Staudt
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Kai Ziegler-Martin
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - John Slingerland
- Department of Immunology, Sloan Kettering Institute, New York, NY, United States
| | - Roni Shouval
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Michael Hudecek
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Marcel van den Brink
- Department of Immunology, Sloan Kettering Institute, New York, NY, United States
| | - Maik Luu
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| |
Collapse
|
169
|
Scherer LD, Rouce RH. Targeted cellular therapy for treatment of relapsed or refractory leukemia. Best Pract Res Clin Haematol 2023; 36:101481. [PMID: 37612000 DOI: 10.1016/j.beha.2023.101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 08/25/2023]
Abstract
While the mainstay of treatment for high-risk or relapsed, refractory leukemia has historically revolved around allogeneic hematopoietic stem cell transplant (allo-HSCT), targeted immunotherapies have emerged as a promising therapeutic option, especially given the poor prognosis of patients who relapse after allo-HSCT. Novel cellular immunotherapies that harness the cytotoxic abilities of the immune system in a targeted manner (often called "adoptive" cell therapy), have changed the way we treat r/r hematologic malignancies and continue to change the treatment landscape given the rapid evolution of these powerful, yet sophisticated precision therapies that often offer a less toxic alternative to conventional salvage therapies. Importantly, adoptive cell therapy can be allo-HSCT-enabling or a therapeutic option for patients in whom transplantation has failed or is contraindicated. A solid understanding of the core concepts of adoptive cell therapy is necessary for stem cell transplant physicians, nurses and ancillary staff given its proximity to the transplant field as well as its inherent complexities that require specific expertise in compliant manufacturing, clinical application, and risk mitigation. Here we will review use of targeted cellular therapy for the treatment of r/r leukemia, focusing on chimeric antigen receptor T-cells (CAR T-cells) given the remarkable sustained clinical responses leading to commercial approval for several hematologic indications including leukemia, with brief discussion of other promising investigational cellular immunotherapies and special considerations for sustainability and scalability.
Collapse
Affiliation(s)
- Lauren D Scherer
- Texas Children's Cancer Center, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, USA
| | - Rayne H Rouce
- Texas Children's Cancer Center, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, USA.
| |
Collapse
|
170
|
Guo G, He W, Zhou Z, Diao Y, Sui J, Li W. PreS1- targeting chimeric antigen receptor T cells diminish HBV infection in liver humanized FRG mice. Virology 2023; 586:23-34. [PMID: 37478771 DOI: 10.1016/j.virol.2023.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/15/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
Current therapies control but rarely achieve a cure for hepatitis B virus (HBV) infection. Restoration of the HBV-specific immunity by cell-based therapy represents a potential approach for a cure. In this study, we generated HBV specific CAR T cells based on an antibody 2H5-A14 targeting a preS1 region of the HBV large envelope protein. We show that the A14 CAR T cell is capable of killing hepatocytes infected by HBV with high specificity; adoptive transfer of A14 CAR T cells to HBV infected humanized FRG mice resulted in reductions of all serum and intrahepatic virological markers to levels below the detection limit. A14 CAR T cells treatment increased the levels of human IFN-γ, GM-CSF, and IL-8/CXCL-8 in the mice. These results show that A14 CAR T cells may be further developed for curative therapy against HBV infection by eliminating HBV-infected hepatocytes and inducing production of pro-inflammatory and antiviral cytokines.
Collapse
Affiliation(s)
- Guilan Guo
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Wenhui He
- National Institute of Biological Sciences, Beijing, China
| | - Zhongmin Zhou
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Yan Diao
- National Institute of Biological Sciences, Beijing, China; Zhongshan School of Medicine, Sun Yet-Sen University, Guangzhou, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| |
Collapse
|
171
|
Wang Y, Sun R, Ge W, Xue L, Xu Q, Xu H, Li S, Wu M, Guo T, Wang X. Longitudinal Serum Proteomics Characterization of CD19-CAR-T Cell Therapy for B-Cell Malignancies. J Proteome Res 2023; 22:2985-2994. [PMID: 37531193 DOI: 10.1021/acs.jproteome.3c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Chimeric antigen receptor (CAR)-modified T cells have demonstrated remarkable efficacy in treating B-cell leukemia. However, treated patients may potentially develop side effects, such as cytokine release syndrome (CRS), the mechanisms of which remain unclear. Here, we collected 43 serum samples from eight patients with B-cell acute lymphoblastic leukemia (B-ALL) before and five time points after CD19-specific CAR-T cell treatment. Using TMTpro 16-plex-based quantitative proteomics, we quantified 1151 proteins and profiled the longitudinal proteomes analysis of each patient. Seven days after therapy, we found the most dysregulated inflammatory proteins. Lipid metabolism proteins, including APOA1, decreased after therapy, reached their minimum after 7 days, and then gradually recovered. Hence, APOA1 has been selected as a potential biomarker of the CRS disease progression. Furthermore, we identified CD163 as a potential biomarker of CRS severity. These two biomarkers were successfully validated using targeted proteomics in an independent cohort. Our study provides new insights into CAR-T cell therapy-induced CRS. The biomarkers we identified may help develop targeted drugs and monitoring strategies.
Collapse
Affiliation(s)
- Youming Wang
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Rui Sun
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Weigang Ge
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou 310024, China
| | - Lei Xue
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Qianwen Xu
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Hui Xu
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Sujun Li
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Miaomiao Wu
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Tiannan Guo
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Xingbing Wang
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
172
|
Ray A, Kale SL, Ramonell RP. Bridging the Gap between Innate and Adaptive Immunity in the Lung: Summary of the Aspen Lung Conference 2022. Am J Respir Cell Mol Biol 2023; 69:266-280. [PMID: 37043828 PMCID: PMC10503303 DOI: 10.1165/rcmb.2023-0057ws] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/12/2023] [Indexed: 04/14/2023] Open
Abstract
Although significant strides have been made in the understanding of pulmonary immunology, much work remains to be done to comprehensively explain coordinated immune responses in the lung. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic only served to highlight the inadequacy of current models of host-pathogen interactions and reinforced the need for current and future generations of immunologists to unravel complex biological questions. As part of that effort, the 64th Annual Thomas L. Petty Aspen Lung Conference was themed "Bridging the Gap between Innate and Adaptive Immunity in the Lung" and featured exciting work from renowned immunologists. This report summarizes the proceedings of the 2022 Aspen Lung Conference, which was convened to discuss the roles played by innate and adaptive immunity in disease pathogenesis, evaluate the interface between the innate and adaptive immune responses, assess the role of adaptive immunity in the development of autoimmunity and autoimmune lung disease, discuss lessons learned from immunologic cancer treatments and approaches, and define new paradigms to harness the immune system to prevent and treat lung diseases.
Collapse
Affiliation(s)
- Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sagar L. Kale
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Richard P. Ramonell
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| |
Collapse
|
173
|
Khanam R, Faiman B, Batool S, Najmuddin MM, Usman R, Kuriakose K, Ahmed A, Rehman MEU, Roksana Z, Syed Z, Anwer F, Raza S. Management of Adverse Reactions for BCMA-Directed Therapy in Relapsed Multiple Myeloma: A Focused Review. J Clin Med 2023; 12:5539. [PMID: 37685606 PMCID: PMC10487885 DOI: 10.3390/jcm12175539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Anti-B-cell maturation antigen therapies consisting of bispecific antibodies, antibody-drug conjugates, and chimeric antigen receptor T cells have shown promising results in relapsed refractory multiple myeloma (RRMM). However, the severe side effects include cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, cytopenia(s), infections, hemophagocytic lymphohistiocytosis, and organ toxicity, which could sometimes be life-threatening. This review focuses on these most common complications post-BCMA therapy. We discussed the risk factors, pathogenesis, clinical features associated with these complications, and how to prevent and treat them. We included four original studies for this focused review. All four agents (idecabtagene vicleucel, ciltacabtagene autoleucel, teclistamab, belantamab mafodotin) have received FDA approval for adult RRMM patients. We went through the FDA access data packages of the approved agents to outline stepwise management of the complications for better patient outcomes.
Collapse
Affiliation(s)
- Razwana Khanam
- Department of Hospital Medicine, Baystate Medical Center, Springfield, MA 01199, USA
| | - Beth Faiman
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH 44106, USA; (B.F.); (F.A.); (S.R.)
| | - Saba Batool
- Department of Hospital Medicine, Carle Health Methodist Hospital, Peoria, IL 61636, USA;
| | | | - Rana Usman
- University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Kiran Kuriakose
- Department of Hospital Medicine, UPMC Mercy Hospital, Pittsburgh, PA 15219, USA;
| | - Arooj Ahmed
- Department of Translational Hematology and Oncology, Cleveland Clinic Taussig Cancer Center, Cleveland, OH 44195, USA;
| | | | - Zinath Roksana
- Sheikh Hasina National Institute of Burn and Plastic Surgery, Dhaka 1217, Bangladesh;
| | - Zain Syed
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Faiz Anwer
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH 44106, USA; (B.F.); (F.A.); (S.R.)
| | - Shahzad Raza
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH 44106, USA; (B.F.); (F.A.); (S.R.)
| |
Collapse
|
174
|
Dabas P, Danda A. Revolutionizing cancer treatment: a comprehensive review of CAR-T cell therapy. Med Oncol 2023; 40:275. [PMID: 37608202 DOI: 10.1007/s12032-023-02146-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a promising new treatment for cancer that involves genetically modifying a patient's T-cells to recognize and attack cancer cells. This review provides an overview of the latest discoveries and clinical trials related to CAR-T cell therapy, as well as the concept and applications of the therapy. The review also discusses the limitations and potential side effects of CAR-T cell therapy, including the high cost and the risk of cytokine release syndrome and neurotoxicity. While CAR-T cell therapy has shown promising results in the treatment of hematologic malignancies, ongoing research is needed to improve the efficacy and safety of the therapy and expand its use to solid tumors. With continued research and development, CAR-T cell therapy has the potential to revolutionize cancer treatment and improve outcomes for patients with cancer.
Collapse
Affiliation(s)
- Preeti Dabas
- St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Adithi Danda
- St Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
175
|
Tang L, Huang Z, Mei H, Hu Y. Immunotherapy in hematologic malignancies: achievements, challenges and future prospects. Signal Transduct Target Ther 2023; 8:306. [PMID: 37591844 PMCID: PMC10435569 DOI: 10.1038/s41392-023-01521-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 08/19/2023] Open
Abstract
The immune-cell origin of hematologic malignancies provides a unique avenue for the understanding of both the mechanisms of immune responsiveness and immune escape, which has accelerated the progress of immunotherapy. Several categories of immunotherapies have been developed and are being further evaluated in clinical trials for the treatment of blood cancers, including stem cell transplantation, immune checkpoint inhibitors, antigen-targeted antibodies, antibody-drug conjugates, tumor vaccines, and adoptive cell therapies. These immunotherapies have shown the potential to induce long-term remission in refractory or relapsed patients and have led to a paradigm shift in cancer treatment with great clinical success. Different immunotherapeutic approaches have their advantages but also shortcomings that need to be addressed. To provide clinicians with timely information on these revolutionary therapeutic approaches, the comprehensive review provides historical perspectives on the applications and clinical considerations of the immunotherapy. Here, we first outline the recent advances that have been made in the understanding of the various categories of immunotherapies in the treatment of hematologic malignancies. We further discuss the specific mechanisms of action, summarize the clinical trials and outcomes of immunotherapies in hematologic malignancies, as well as the adverse effects and toxicity management and then provide novel insights into challenges and future directions.
Collapse
Affiliation(s)
- Lu Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China
| | - Zhongpei Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
176
|
Sun MY, Li W, Chen W. Chimeric antigen receptor T cell and regulatory T cell therapy in non-oncology diseases: A narrative review of studies from 2017 to 2023. Hum Vaccin Immunother 2023; 19:2251839. [PMID: 37814513 PMCID: PMC10566417 DOI: 10.1080/21645515.2023.2251839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/10/2023] [Indexed: 10/11/2023] Open
Abstract
Recently, the remarkable success of chimeric antigen receptor T cell (CAR-T) therapy in treating certain tumors has led to numerous studies exploring its potential application to treat non-oncology diseases. This review discusses the progress and evolution of CAR-T cell therapies for treating non-oncology diseases over the past 5 years. Additionally, we summarize the advantages and disadvantages of CAR-T cell therapy in treating non-oncological diseases and identify any difficulties that should be overcome. After conducting an in-depth analysis of the most recent studies on CAR-T technology, we discuss the key elements of CAR-T therapy, such as developing an effective CAR design for non-oncological diseases, controlling the rate and duration of response, and implementing safety measures to reduce toxicity. These studies provide new insights into different delivery strategies, the discovery of new target molecules, and improvements in the safety of CAR-T therapy for non-oncological diseases.
Collapse
Affiliation(s)
- Ming-Yao Sun
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
- Department of Clinical Nutrition, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Wanyang Li
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| | - Wei Chen
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
177
|
Secondino S, Canino C, Alaimo D, Muzzana M, Galli G, Borgetto S, Basso S, Bagnarino J, Pulvirenti C, Comoli P, Pedrazzoli P. Clinical Trials of Cellular Therapies in Solid Tumors. Cancers (Basel) 2023; 15:3667. [PMID: 37509328 PMCID: PMC10377409 DOI: 10.3390/cancers15143667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
In the past years cancer treatments have drastically changed, mainly due to the development of immune checkpoint inhibitors capable of immune modulation in vivo, thus providing major clinical benefit in a number of malignancies. Simultaneously, considerable technical refinements have opened new prospects for the development of immune cell-based medicinal products and unprecedented success with chimeric antigen receptor (CAR)-T cells targeting B-cell hematologic malignancies has been obtained. However, T cell therapies introduced and performed in the field of solid tumors have produced so far only limited responses in selected patient populations. This standstill is attributable to the difficulty in identifying target antigens which are homogeneously expressed by all tumor cells while absent from normal tissues, and the limited T cell persistence and proliferation in a hostile tumor microenvironment that favors immune escape. Replicating the results observed in hematology is a major scientific challenge in solid tumors, and ongoing translational and clinical research is focused on obtaining insight into the mechanisms of tumor recognition and evasion, and how to improve the efficacy of cellular therapies, also combining them with immune checkpoint inhibitors or other agents targeting either the cancer cell or the tumor environment. This paper provides an overview of current adaptive T cell therapy approaches in solid tumors, the research performed to increase their efficacy and safety, and results from ongoing clinical trials.
Collapse
Affiliation(s)
- Simona Secondino
- Oncology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Costanza Canino
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
| | - Domiziana Alaimo
- Oncology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
| | - Marta Muzzana
- Oncology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
| | - Giulia Galli
- Oncology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Sabrina Borgetto
- Oncology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
| | - Sabrina Basso
- Cell Factory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Pediatric Oncoematology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Jessica Bagnarino
- Cell Factory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Chiara Pulvirenti
- Cell Factory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Pediatric Oncoematology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Patrizia Comoli
- Cell Factory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Pediatric Oncoematology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Pedrazzoli
- Oncology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
178
|
Rechberger JS, Toll SA, Vanbilloen WJF, Daniels DJ, Khatua S. Exploring the Molecular Complexity of Medulloblastoma: Implications for Diagnosis and Treatment. Diagnostics (Basel) 2023; 13:2398. [PMID: 37510143 PMCID: PMC10378552 DOI: 10.3390/diagnostics13142398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Over the last few decades, significant progress has been made in revealing the key molecular underpinnings of this disease, leading to the identification of distinct molecular subgroups with different clinical outcomes. In this review, we provide an update on the molecular landscape of medulloblastoma and treatment strategies. We discuss the four main molecular subgroups (WNT-activated, SHH-activated, and non-WNT/non-SHH groups 3 and 4), highlighting the key genetic alterations and signaling pathways associated with each entity. Furthermore, we explore the emerging role of epigenetic regulation in medulloblastoma and the mechanism of resistance to therapy. We also delve into the latest developments in targeted therapies and immunotherapies. Continuing collaborative efforts are needed to further unravel the complex molecular mechanisms and profile optimal treatment for this devastating disease.
Collapse
Affiliation(s)
- Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephanie A Toll
- Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI 48201, USA
| | - Wouter J F Vanbilloen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Elisabeth-Tweesteden Hospital, 5022 Tilburg, The Netherlands
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
179
|
Śledź M, Wojciechowska A, Zagożdżon R, Kaleta B. In Situ Programming of CAR-T Cells: A Pressing Need in Modern Immunotherapy. Arch Immunol Ther Exp (Warsz) 2023; 71:18. [PMID: 37419996 PMCID: PMC10329070 DOI: 10.1007/s00005-023-00683-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
Chimeric antigen receptor-T (CAR-T) cell-based therapy has become a successful option for treatment of numerous hematological malignancies, but also raises hope in a range of non-malignant diseases. However, in a traditional approach, generation of CAR-T cells is associated with the separation of patient's lymphocytes, their in vitro modification, and expansion and infusion back into patient's bloodstream. This classical protocol is complex, time-consuming, and expensive. Those problems could be solved by successful protocols to produce CAR-T cells, but also CAR-natural killer cells or CAR macrophages, in situ, using viral platforms or non-viral delivery systems. Moreover, it was demonstrated that in situ CAR-T induction may be associated with reduced risk of the most common toxicities associated with CAR-T therapy, such as cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and "on-target, off-tumor" toxicity. This review aims to summarize the current state-of-the-art and future perspectives for the in situ-produced CAR-T cells. Indeed, preclinical work in this area, including animal studies, raises hope for prospective translational development and validation in practical medicine of strategies for in situ generation of CAR-bearing immune effector cells.
Collapse
Affiliation(s)
- Marta Śledź
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | | | - Radosław Zagożdżon
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
180
|
Dagar G, Gupta A, Masoodi T, Nisar S, Merhi M, Hashem S, Chauhan R, Dagar M, Mirza S, Bagga P, Kumar R, Akil ASAS, Macha MA, Haris M, Uddin S, Singh M, Bhat AA. Harnessing the potential of CAR-T cell therapy: progress, challenges, and future directions in hematological and solid tumor treatments. J Transl Med 2023; 21:449. [PMID: 37420216 PMCID: PMC10327392 DOI: 10.1186/s12967-023-04292-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Traditional cancer treatments use nonspecific drugs and monoclonal antibodies to target tumor cells. Chimeric antigen receptor (CAR)-T cell therapy, however, leverages the immune system's T-cells to recognize and attack tumor cells. T-cells are isolated from patients and modified to target tumor-associated antigens. CAR-T therapy has achieved FDA approval for treating blood cancers like B-cell acute lymphoblastic leukemia, large B-cell lymphoma, and multiple myeloma by targeting CD-19 and B-cell maturation antigens. Bi-specific chimeric antigen receptors may contribute to mitigating tumor antigen escape, but their efficacy could be limited in cases where certain tumor cells do not express the targeted antigens. Despite success in blood cancers, CAR-T technology faces challenges in solid tumors, including lack of reliable tumor-associated antigens, hypoxic cores, immunosuppressive tumor environments, enhanced reactive oxygen species, and decreased T-cell infiltration. To overcome these challenges, current research aims to identify reliable tumor-associated antigens and develop cost-effective, tumor microenvironment-specific CAR-T cells. This review covers the evolution of CAR-T therapy against various tumors, including hematological and solid tumors, highlights challenges faced by CAR-T cell therapy, and suggests strategies to overcome these obstacles, such as utilizing single-cell RNA sequencing and artificial intelligence to optimize clinical-grade CAR-T cells.
Collapse
Affiliation(s)
- Gunjan Dagar
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Ashna Gupta
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Tariq Masoodi
- Laboratory of Cancer Immunology and Genetics, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, 3050, Doha, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Ravi Chauhan
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Manisha Dagar
- Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Sameer Mirza
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, Jammu and Kashmir, India
| | - Mohammad Haris
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| | - Mayank Singh
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
| |
Collapse
|
181
|
Barboy O, Katzenelenbogen Y, Shalita R, Amit I. In Synergy: Optimizing CAR T Development and Personalizing Patient Care Using Single-Cell Technologies. Cancer Discov 2023; 13:1546-1555. [PMID: 37219074 DOI: 10.1158/2159-8290.cd-23-0010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/02/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023]
Abstract
Chimeric antigen receptor (CAR) T therapies hold immense promise to revolutionize cancer treatment. Nevertheless, key challenges, primarily in solid tumor settings, continue to hinder the application of this technology. Understanding CAR T-cell mechanism of action, in vivo activity, and clinical implications is essential for harnessing its full therapeutic potential. Single-cell genomics and cell engineering tools are becoming increasingly effective for the comprehensive research of complex biological systems. The convergence of these two technologies can accelerate CAR T-cell development. Here, we examine the potential of applying single-cell multiomics for the development of next-generation CAR T-cell therapies. SIGNIFICANCE Although CAR T-cell therapies have demonstrated remarkable clinical results in treating cancer, their effectiveness in most patients and tumor types remains limited. Single-cell technologies, which are transforming our understanding of molecular biology, provide new opportunities to overcome the challenges of CAR T-cell therapies. Given the potential of CAR T-cell therapy to tip the balance in the fight against cancer, it is important to understand how single-cell multiomic approaches can be leveraged to develop the next generations of more effective and less toxic CAR T-cell products and to provide powerful decision-making tools for clinicians to optimize treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Oren Barboy
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Rotem Shalita
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
182
|
Zheng Z, Li S, Liu M, Chen C, Zhang L, Zhou D. Fine-Tuning through Generations: Advances in Structure and Production of CAR-T Therapy. Cancers (Basel) 2023; 15:3476. [PMID: 37444586 DOI: 10.3390/cancers15133476] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a promising form of immunotherapy that has seen significant advancements in the past few decades. It involves genetically modifying T cells to target cancer cells expressing specific antigens, providing a novel approach to treating various types of cancer. However, the initial success of first-generation CAR-T cells was limited due to inadequate proliferation and undesirable outcomes. Nonetheless, significant progress has been made in CAR-T cell engineering, leading to the development of the latest fifth-generation CAR-T cells that can target multiple antigens and overcome individual limitations. Despite these advancements, some shortcomings prevent the widespread use of CAR-T therapy, including life-threatening toxicities, T-cell exhaustion, and inadequate infiltration for solid tumors. Researchers have made considerable efforts to address these issues by developing new strategies for improving CAR-T cell function and reducing toxicities. This review provides an overview of the path of CAR-T cell development and highlights some of the prominent advances in its structure and manufacturing process, which include the strategies to improve antigen recognition, enhance T-cell activation and persistence, and overcome immune escape. Finally, the review briefly covers other immune cells for cancer therapy and ends with the discussion on the broad prospects of CAR-T in the treatment of various diseases, not just hematological tumors, and the challenges that need to be addressed for the widespread clinical application of CAR-T cell therapies.
Collapse
Affiliation(s)
- Zhibo Zheng
- Department of International Medical Services, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Siyuan Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Mohan Liu
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Chuyan Chen
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100730, China
| | - Lu Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Daobin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
183
|
Volkov DV, Stepanova VM, Rubtsov YP, Stepanov AV, Gabibov AG. Protein Tyrosine Phosphatase CD45 As an Immunity Regulator and a Potential Effector of CAR-T therapy. Acta Naturae 2023; 15:17-26. [PMID: 37908772 PMCID: PMC10615191 DOI: 10.32607/actanaturae.25438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 11/02/2023] Open
Abstract
The leukocyte common antigen CD45 is a receptor tyrosine phosphatase and one of the most prevalent antigens found on the surface of blood cells. CD45 plays a crucial role in the initial stages of signal transmission from receptors of various immune cell types. Immunodeficiency, autoimmune disorders, and oncological diseases are frequently caused by gene expression disorders and imbalances in CD45 isoforms. Despite extensive research into the structure and functions of CD45, the molecular mechanisms behind its role in transmitting signals from T-cell receptors and chimeric antigen receptors remain not fully understood. It is of utmost importance to comprehend the structural features of CD45 and its function in regulating immune system cell activation to study oncological diseases and the impact of CD45 on lymphocytes and T cells modified by chimeric antigen receptors.
Collapse
Affiliation(s)
- D. V. Volkov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - V. M. Stepanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - Y. P. Rubtsov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - A. V. Stepanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - A. G. Gabibov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| |
Collapse
|
184
|
Ma XC, Lv X, Li Y. Development of CD30 CAR-T cells in refractory or relapsed Hodgkin's lymphoma. Expert Rev Hematol 2023; 16:1017-1023. [PMID: 37888882 DOI: 10.1080/17474086.2023.2276210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023]
Abstract
INTRODUCTION After therapy, approximately 15% of individuals with Hodgkin's lymphoma (HL) develop relapsed or drug-resistant Hodgkin's lymphoma (r/rHL). r/rHL has a high fatality rate and poor therapeutic prognosis. CD30 CAR-T-cell therapy has emerged as a new way to treat r/rHL in recent years. However, CD30CAR-T cells are still being explored in clinical trials. To help more patients, this review focuses on current CD30CAR-T-cell advancements as well as clinical breakthroughs in treatment of r/rHL. AREAS COVERED This research examines the mechanism of action of CD30 CAR-T cells, their function in the real-world therapy of r/rHL, and the influence of different treatment regimens on treatment results. EXPERT OPINION There has been much research into CD30 CAR-T cells as a result of their successful use in treatment of r/rHL. This research has helped us to understand CD30 CAR-T-cell safety as well as the management options available before and after its administration to increase patient survival and reduce side effects.
Collapse
Affiliation(s)
- Xiao Chen Ma
- Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Xiao Lv
- Department of Haematology, Shan dong Provincial Hospital Affiliated to Shan dong First Medical University; Shan dong Provincial Hospital, Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Ying Li
- Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| |
Collapse
|
185
|
Shahvali S, Rahiman N, Jaafari MR, Arabi L. Targeting fibroblast activation protein (FAP): advances in CAR-T cell, antibody, and vaccine in cancer immunotherapy. Drug Deliv Transl Res 2023; 13:2041-2056. [PMID: 36840906 DOI: 10.1007/s13346-023-01308-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 02/26/2023]
Abstract
Fibroblast activation protein (FAP) is a serine protease with dual enzymatic activities overexpressed in cancer-associated fibroblasts (CAFs) in several tumor types, while its expression in healthy adult tissues is scarce. FAP overexpression on CAFs is associated with poor prognosis and plays an important role in tumor development, progression, and invasion. Therefore, FAP is considered a robust therapeutic target for cancer therapy. Here, we try to review and highlight the recent advances in immunotherapies for FAP targeting including the anti-FAP antibodies and immunoconjugates, FAP chimeric antigen receptor (CAR)-T cell, and various FAP vaccines in a preclinical and clinical setting. Subsequently, a discussion on the challenges and prospects associated with the development and translation of effective and safe therapies for targeting and depletion of FAP is provided. We proposed that new CAR-T cell engineering strategies and nanotechnology-based systems as well as advanced functional biomaterials can be used to improve the efficiency and safety of CAR-T cells and vaccines against FAP for more personalized immunotherapy. This review emphasizes the immune targeting of FAP as an emerging stromal candidate and one of the crucial elements in immunotherapy and shows the potential for improvement of current cancer therapy. A summary of different immunotherapy approaches to target fibroblast activation protein (FAP) for cancer therapy.
Collapse
Affiliation(s)
- Sedigheh Shahvali
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Rahiman
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
186
|
Lundberg IE, Galindo-Feria AS, Horuluoglu B. CD19-Targeting CAR T-Cell Therapy for Antisynthetase Syndrome. JAMA 2023; 329:2130-2131. [PMID: 37367988 DOI: 10.1001/jama.2023.7240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Affiliation(s)
- Ingrid E Lundberg
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
- Department of Gastro, Dermatology, and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Angeles S Galindo-Feria
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
- Department of Gastro, Dermatology, and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Begum Horuluoglu
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
- Department of Gastro, Dermatology, and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
187
|
Das S, Dash BS, Premji TP, Chen JP. Immunotherapeutic Approaches for the Treatment of Glioblastoma Multiforme: Mechanism and Clinical Applications. Int J Mol Sci 2023; 24:10546. [PMID: 37445721 PMCID: PMC10341481 DOI: 10.3390/ijms241310546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Glioma is one of the most aggressive types of primary brain tumor with a high-grade glioma known as glioblastoma multiforme (GBM). Patients diagnosed with GBM usually have an overall survival rate of less than 18 months after conventional therapy. This bleak prognosis underlines the need to consider new therapeutic interventions for GBM treatment to overcome current treatment limitations. By highlighting different immunotherapeutic approaches currently in preclinical and clinical trials, including immune checkpoint inhibitors, chimeric antigen receptors T cells, natural killer cells, vaccines, and combination therapy, this review aims to discuss the mechanisms, benefits, and limitations of immunotherapy in treating GBM patients.
Collapse
Affiliation(s)
- Suprava Das
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (S.D.); (B.S.D.); (T.P.P.)
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (S.D.); (B.S.D.); (T.P.P.)
| | - Thejas P. Premji
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (S.D.); (B.S.D.); (T.P.P.)
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (S.D.); (B.S.D.); (T.P.P.)
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
188
|
Leland P, Kumar D, Nimmagadda S, Bauer SR, Puri RK, Joshi BH. Characterization of chimeric antigen receptor modified T cells expressing scFv-IL-13Rα2 after radiolabeling with 89Zirconium oxine for PET imaging. J Transl Med 2023; 21:367. [PMID: 37286997 PMCID: PMC10246418 DOI: 10.1186/s12967-023-04142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/19/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cell therapy is an exciting cell-based cancer immunotherapy. Unfortunately, CAR-T cell therapy is associated with serious toxicities such as cytokine release syndrome (CRS) and neurotoxicity. The mechanism of these serious adverse events (SAEs) and how homing, distribution and retention of CAR-T cells contribute to toxicities is not fully understood. Enabling in vitro methods to allow meaningful, sensitive in vivo biodistribution studies is needed to better understand CAR-T cell disposition and its relationship to both effectiveness and safety of these products. METHODS To determine if radiolabelling of CAR-T cells could support positron emission tomography (PET)-based biodistribution studies, we labeled IL-13Rα2 targeting scFv-IL-13Rα2-CAR-T cells (CAR-T cells) with 89Zirconium-oxine (89Zr-oxine) and characterized and compared their product attributes with non-labeled CAR-T cells. The 89Zr-oxine labeling conditions were optimized for incubation time, temperature, and use of serum for labeling. In addition, T cell subtype characterization and product attributes of radiolabeled CAR-T cells were studied to assess their overall quality including cell viability, proliferation, phenotype markers of T-cell activation and exhaustion, cytolytic activity and release of interferon-γ upon co-culture with IL-13Rα2 expressing glioma cells. RESULTS We observed that radiolabeling of CAR-T cells with 89Zr-oxine is quick, efficient, and radioactivity is retained in the cells for at least 8 days with minimal loss. Also, viability of radiolabeled CAR-T cells and subtypes such as CD4 + , CD8 + and scFV-IL-13Rα2 transgene positive T cell population were characterized and found similar to that of unlabeled cells as determined by TUNEL assay, caspase 3/7 enzyme and granzyme B activity assay. Moreover, there were no significant changes in T cell activation (CD24, CD44, CD69 and IFN-γ) or T cell exhaustion (PD-1, LAG-3 and TIM3) markers expression between radiolabeled and unlabeled CAR-T cells. In chemotaxis assays, migratory capability of radiolabeled CAR-T cells to IL-13Rα2Fc was similar to that of non-labeled cells. CONCLUSIONS Importantly, radiolabeling has minimal impact on biological product attributes including potency of CAR-T cells towards IL-13Rα2 positive tumor cells but not IL-13Rα2 negative cells as measured by cytolytic activity and release of IFN-γ. Thus, IL-13Rα2 targeting CAR-T cells radiolabeled with 89Zr-oxine retain critical product attributes and suggest 89Zr-oxine radiolabeling of CAR-T cells may facilitate biodistribution and tissue trafficking studies in vivo using PET.
Collapse
Affiliation(s)
- Pamela Leland
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Office of Tissues and Advance Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Dhiraj Kumar
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sridhar Nimmagadda
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven R Bauer
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Office of Tissues and Advance Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
- Wake Forest Institute of Regenerative Medicine, Winston Salem, North Caroline, USA
| | - Raj K Puri
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Office of Tissues and Advance Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
- Iovance Biotherapeutics, San Carlos, CA, USA
| | - Bharat H Joshi
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Office of Tissues and Advance Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.
| |
Collapse
|
189
|
Kvorjak M, Ruffo E, Tivon Y, So V, Parikh AB, Deiters A, Lohmueller J. Conditional control of universal CAR T cells by cleavable OFF-switch adaptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541664. [PMID: 37292935 PMCID: PMC10245878 DOI: 10.1101/2023.05.22.541664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As living drugs, engineered T cell therapies are revolutionizing disease treatment with their unique functional capabilities. However, they suffer from limitations of potentially unpredictable behavior, toxicities, and non-traditional pharmacokinetics. Engineering conditional control mechanisms responsive to tractable stimuli such as small molecules or light is thus highly desirable. We and others previously developed "universal" chimeric antigen receptors (CARs) that interact with co-administered antibody adaptors to direct target cell killing and T cell activation. Universal CARs are of high therapeutic interest due to their ability to simultaneously target multiple antigens on the same disease or different diseases by combining with adaptors to different antigens. Here, we further enhance the programmability and potential safety of universal CAR T cells by engineering OFF-switch adaptors that can conditionally control CAR activity, including T cell activation, target cell lysis, and transgene expression, in response to a small molecule or light stimulus. Moreover, in adaptor combination assays, OFF-switch adaptors were capable of orthogonal conditional targeting of multiple antigens simultaneously following Boolean logic. OFF-switch adaptors represent a robust new approach for precision targeting of universal CAR T cells with potential for enhanced safety.
Collapse
Affiliation(s)
- Michael Kvorjak
- University of Pittsburgh School of Medicine, Department of Surgery, Pittsburgh, PA 15232, USA
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA 15232, USA
- University of Pittsburgh, Center for Systems Immunology, Pittsburgh, PA 15232, USA
| | - Elisa Ruffo
- University of Pittsburgh School of Medicine, Department of Surgery, Pittsburgh, PA 15232, USA
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA 15232, USA
- University of Pittsburgh, Center for Systems Immunology, Pittsburgh, PA 15232, USA
| | - Yaniv Tivon
- University of Pittsburgh, Department of Chemistry, Pittsburgh, PA 15260, USA
| | - Victor So
- University of Pittsburgh School of Medicine, Department of Surgery, Pittsburgh, PA 15232, USA
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA 15232, USA
- University of Pittsburgh, Center for Systems Immunology, Pittsburgh, PA 15232, USA
| | - Avani B. Parikh
- University of Pittsburgh School of Medicine, Department of Surgery, Pittsburgh, PA 15232, USA
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA 15232, USA
- University of Pittsburgh, Center for Systems Immunology, Pittsburgh, PA 15232, USA
| | - Alexander Deiters
- University of Pittsburgh, Center for Systems Immunology, Pittsburgh, PA 15232, USA
- University of Pittsburgh, Department of Chemistry, Pittsburgh, PA 15260, USA
| | - Jason Lohmueller
- University of Pittsburgh School of Medicine, Department of Surgery, Pittsburgh, PA 15232, USA
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA 15232, USA
- University of Pittsburgh, Center for Systems Immunology, Pittsburgh, PA 15232, USA
| |
Collapse
|
190
|
Domínguez-Prieto V, Qian S, Villarejo-Campos P, Meliga C, González-Soares S, Guijo Castellano I, Jiménez-Galanes S, García-Arranz M, Guadalajara H, García-Olmo D. Understanding CAR T cell therapy and its role in ovarian cancer and peritoneal carcinomatosis from ovarian cancer. Front Oncol 2023; 13:1104547. [PMID: 37274261 PMCID: PMC10233107 DOI: 10.3389/fonc.2023.1104547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/05/2023] [Indexed: 06/06/2023] Open
Abstract
Ovarian cancer is the seventh most common cancer worldwide in women and the most lethal gynecologic malignancy due to the lack of accurate screening tools for early detection and late symptom onset. The absence of early-onset symptoms often delays diagnosis until the disease has progressed to advanced stages, frequently when there is peritoneal involvement. Although ovarian cancer is a heterogeneous malignancy with different histopathologic types, treatment for advanced tumors is usually based on chemotherapy and cytoreduction surgery. CAR T cells have shown promise for the treatment of hematological malignancies, though their role in treating solid tumors remains unclear. Outcomes are less favorable owing to the low capacity of CAR T cells to migrate to the tumor site, the influence of the protective tumor microenvironment, and the heterogeneity of surface antigens on tumor cells. Despite these results, CAR T cells have been proposed as a treatment approach for peritoneal carcinomatosis from colorectal and gastric origin. Local intraperitoneal administration of CAR T cells has been found to be superior to systemic administration, as this route is associated with increased tumor reduction, a more durable effect, protection against local relapse and distant metastases, and fewer systemic adverse effects. In this article we review the application of CAR T cells for the treatment of ovarian cancer and peritoneal carcinomatosis from ovarian cancer.
Collapse
Affiliation(s)
| | - Siyuan Qian
- Department of Surgery, Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | | | - Cecilia Meliga
- Department of Surgery, Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | - Sara González-Soares
- Department of Surgery, Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | | | | | - Mariano García-Arranz
- Department of Surgery, Universidad Autónoma de Madrid, Madrid, Spain
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Madrid, Spain
| | - Héctor Guadalajara
- Department of Surgery, Fundación Jimenez Diaz University Hospital, Madrid, Spain
- Department of Surgery, Universidad Autónoma de Madrid, Madrid, Spain
| | - Damián García-Olmo
- Department of Surgery, Fundación Jimenez Diaz University Hospital, Madrid, Spain
- Department of Surgery, Universidad Autónoma de Madrid, Madrid, Spain
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Madrid, Spain
| |
Collapse
|
191
|
Holborough-Kerkvliet MD, Kroos S, de Wetering RV, Toes REM. Addressing the key issue: Antigen-specific targeting of B cells in autoimmune diseases. Immunol Lett 2023:S0165-2478(23)00075-5. [PMID: 37209914 DOI: 10.1016/j.imlet.2023.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Autoimmune diseases are heterogeneous pathologies characterized by a breakdown of immunological tolerance to self, resulting in a chronic and aberrant immune response to self-antigens. The scope and extent of affected tissues can vary greatly per autoimmune disease and can involve multiple organs and tissue types. The pathogenesis of most autoimmune diseases remains unknown but it is widely accepted that a complex interplay between (autoreactive) B and T cells in the context of breached immunological tolerance drives autoimmune pathology. The importance of B cells in autoimmune disease is exemplified by the successful use of B cell targeting therapies in the clinic. For example, Rituximab, a depleting anti-CD20 antibody, has shown favorable results in reducing the signs and symptoms of multiple autoimmune diseases, including Rheumatoid Arthritis, Anti-Neutrophil Cytoplasmic Antibody associated vasculitis and Multiple Sclerosis. However, Rituximab depletes the entire B cell repertoire, leaving patients susceptible to (latent) infections. Therefore, multiple ways to target autoreactive cells in an antigen-specific manner are currently under investigation. In this review, we will lay out the current state of antigen-specific B cell inhibiting or depleting therapies in the context of autoimmune diseases.
Collapse
Affiliation(s)
| | - Sanne Kroos
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Renee van de Wetering
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
192
|
Mitra A, Barua A, Huang L, Ganguly S, Feng Q, He B. From bench to bedside: the history and progress of CAR T cell therapy. Front Immunol 2023; 14:1188049. [PMID: 37256141 PMCID: PMC10225594 DOI: 10.3389/fimmu.2023.1188049] [Citation(s) in RCA: 159] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy represents a major breakthrough in cancer care since the approval of tisagenlecleucel by the Food and Drug Administration in 2017 for the treatment of pediatric and young adult patients with relapsed or refractory acute lymphocytic leukemia. As of April 2023, six CAR T cell therapies have been approved, demonstrating unprecedented efficacy in patients with B-cell malignancies and multiple myeloma. However, adverse events such as cytokine release syndrome and immune effector cell-associated neurotoxicity pose significant challenges to CAR T cell therapy. The severity of these adverse events correlates with the pretreatment tumor burden, where a higher tumor burden results in more severe consequences. This observation is supported by the application of CD19-targeted CAR T cell therapy in autoimmune diseases including systemic lupus erythematosus and antisynthetase syndrome. These results indicate that initiating CAR T cell therapy early at low tumor burden or using debulking strategy prior to CAR T cell infusion may reduce the severity of adverse events. In addition, CAR T cell therapy is expensive and has limited effectiveness against solid tumors. In this article, we review the critical steps that led to this groundbreaking therapy and explore ongoing efforts to overcome these challenges. With the promise of more effective and safer CAR T cell therapies in development, we are optimistic that a broader range of cancer patients will benefit from this revolutionary therapy in the foreseeable future.
Collapse
Affiliation(s)
- Aroshi Mitra
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Amrita Barua
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Luping Huang
- Immunobiology and Transplant Science Center, Departments of Surgery and Urology, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
- Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Siddhartha Ganguly
- Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
- Section of Hematology, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | - Qin Feng
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Bin He
- Immunobiology and Transplant Science Center, Departments of Surgery and Urology, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
- Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
193
|
Kciuk M, Yahya EB, Mohamed Ibrahim Mohamed M, Rashid S, Iqbal MO, Kontek R, Abdulsamad MA, Allaq AA. Recent Advances in Molecular Mechanisms of Cancer Immunotherapy. Cancers (Basel) 2023; 15:2721. [PMID: 37345057 DOI: 10.3390/cancers15102721] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer is among the current leading causes of death worldwide, despite the novel advances that have been made toward its treatment, it is still considered a major public health concern. Considering both the serious impact of cancer on public health and the significant side effects and complications of conventional therapeutic options, the current strategies towards targeted cancer therapy must be enhanced to avoid undesired toxicity. Cancer immunotherapy has become preferable among researchers in recent years compared to conventional therapeutic options, such as chemotherapy, surgery, and radiotherapy. The understanding of how to control immune checkpoints, develop therapeutic cancer vaccines, genetically modify immune cells as well as enhance the activation of antitumor immune response led to the development of novel cancer treatments. In this review, we address recent advances in cancer immunotherapy molecular mechanisms. Different immunotherapeutic approaches are critically discussed, focusing on the challenges, potential risks, and prospects involving their use.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Muhammad Omer Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Muhanad A Abdulsamad
- Department of Molecular Biology, Faculty of Science, Sabratha University, Sabratha 00218, Libya
| | - Abdulmutalib A Allaq
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| |
Collapse
|
194
|
Ruffo E, Butchy AA, Tivon Y, So V, Kvorjak M, Parikh A, Adams EL, Miskov-Zivanov N, Finn OJ, Deiters A, Lohmueller J. Post-translational covalent assembly of CAR and synNotch receptors for programmable antigen targeting. Nat Commun 2023; 14:2463. [PMID: 37160880 PMCID: PMC10169838 DOI: 10.1038/s41467-023-37863-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/03/2023] [Indexed: 05/11/2023] Open
Abstract
Chimeric antigen receptors (CARs) and synthetic Notch (synNotch) receptors are engineered cell-surface receptors that sense a target antigen and respond by activating T cell receptor signaling or a customized gene program, respectively. Here, to expand the targeting capabilities of these receptors, we develop "universal" receptor systems for which receptor specificity can be directed post-translationally via covalent attachment of a co-administered antibody bearing a benzylguanine (BG) motif. A SNAPtag self-labeling enzyme is genetically fused to the receptor and reacts with BG-conjugated antibodies for covalent assembly, programming antigen recognition. We demonstrate that activation of SNAP-CAR and SNAP-synNotch receptors can be successfully targeted by clinically relevant BG-conjugated antibodies, including anti-tumor activity of SNAP-CAR T cells in vivo in a human tumor xenograft mouse model. Finally, we develop a mathematical model to better define the parameters affecting universal receptor signaling. SNAP receptors provide a powerful strategy to post-translationally reprogram the targeting specificity of engineered cells.
Collapse
Affiliation(s)
- Elisa Ruffo
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam A Butchy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yaniv Tivon
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Victor So
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Kvorjak
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Avani Parikh
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric L Adams
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Natasa Miskov-Zivanov
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jason Lohmueller
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
195
|
D’Silva SZ, Singh M, Pinto AS. NK cell defects: implication in acute myeloid leukemia. Front Immunol 2023; 14:1112059. [PMID: 37228595 PMCID: PMC10203541 DOI: 10.3389/fimmu.2023.1112059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Acute Myeloid Leukemia (AML) is a complex disease with rapid progression and poor/unsatisfactory outcomes. In the past few years, the focus has been on developing newer therapies for AML; however, relapse remains a significant problem. Natural Killer cells have strong anti-tumor potential against AML. This NK-mediated cytotoxicity is often restricted by cellular defects caused by disease-associated mechanisms, which can lead to disease progression. A stark feature of AML is the low/no expression of the cognate HLA ligands for the activating KIR receptors, due to which these tumor cells evade NK-mediated lysis. Recently, different Natural Killer cell therapies have been implicated in treating AML, such as the adoptive NK cell transfer, Chimeric antigen receptor-modified NK (CAR-NK) cell therapy, antibodies, cytokine, and drug treatment. However, the data available is scarce, and the outcomes vary between different transplant settings and different types of leukemia. Moreover, remission achieved by some of these therapies is only for a short time. In this mini-review, we will discuss the role of NK cell defects in AML progression, particularly the expression of different cell surface markers, the available NK cell therapies, and the results from various preclinical and clinical trials.
Collapse
Affiliation(s)
- Selma Z. D’Silva
- Transplant Immunology and Immunogenetics Lab, Advanced Centre for Treatment, Education and Research in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Meenakshi Singh
- Transplant Immunology and Immunogenetics Lab, Advanced Centre for Treatment, Education and Research in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Andrea S. Pinto
- Transplant Immunology and Immunogenetics Lab, Advanced Centre for Treatment, Education and Research in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| |
Collapse
|
196
|
Felten R, Mertz P, Sebbag E, Scherlinger M, Arnaud L. Novel therapeutic strategies for autoimmune and inflammatory rheumatic diseases. Drug Discov Today 2023; 28:103612. [PMID: 37164306 DOI: 10.1016/j.drudis.2023.103612] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Drugs of unknown mechanisms of action are no longer being developed because we have largely capitalized on our improved understanding of the immunopathogenesis of immune-mediated inflammatory diseases (IMIDs) to develop therapeutic monoclonal antibodies (mAbs) and targeted treatments. These therapies have profoundly revolutionized the care of IMIDs. However, because of the heterogeneity of IMIDs and the redundancy of the targeted molecular pathways, some patients with IMIDs might not respond to a specific targeted drug or their disease might relapse secondarily. Therefore, there is much at stake in the development of new therapeutic strategies, which include combinations of mAbs or bispecific mAbs (BsMAbs), nanobodies and nanoparticles (NPs), therapeutic vaccines, small interfering RNA (siRNA) interference, autologous hematopoietic stem cell transplantation (aHSCT), or chimeric antigen receptor (CAR)-T cells. With the broad pipeline of targeted treatments in clinical development, the therapeutic paradigm is rapidly evolving from whether new drugs will be available to the complex selection of the most adequate targeted treatment (or treatment combination) at the patient level. This paradigm change highlights the need to better characterize the heterogeneous immunological spectrum of these diseases. Only then will these novel therapeutic strategies be able to fully demonstrate their potential to treat IMIDs.
Collapse
Affiliation(s)
- Renaud Felten
- Centre d'Investigation Clinique, Inserm 1434, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Immunopathologie et Chimie Thérapeutique, CNRS UPR 3572, IBMC, Strasbourg, France; Service de Rhumatologie, Centre National de Référence des Maladies Autoimmunes (RESO), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Philippe Mertz
- Service de Rhumatologie, Centre National de Référence des Maladies Autoimmunes (RESO), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Eden Sebbag
- Service de Rhumatologie, Centre National de Référence des Maladies Autoimmunes (RESO), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Marc Scherlinger
- Service de Rhumatologie, Centre National de Référence des Maladies Autoimmunes (RESO), Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Strasbourg, France
| | - Laurent Arnaud
- Service de Rhumatologie, Centre National de Référence des Maladies Autoimmunes (RESO), Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Strasbourg, France.
| |
Collapse
|
197
|
Hiramatsu H. Current status of CAR-T cell therapy for pediatric hematologic malignancies. Int J Clin Oncol 2023; 28:729-735. [PMID: 37154980 DOI: 10.1007/s10147-023-02346-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in the pediatric population, and the long-term survival can reach 90%. However, approximately, 20% of pediatric ALL patients experience relapse and require second-line chemotherapy. This is frequently followed by hematopoietic stem cell transplantation, which can cause long-term sequelae. Recent advances in immunotherapy, such as monoclonal antibody therapy and chimeric antigen receptor (CAR)-T cell therapy, have revolutionized the treatment of relapsed and refractory ALL. Anti-CD19 CAR-T cells successfully eliminate B cell malignancies such as ALL. Tisagenlecleucel (Kymriah®) is the first CAR-T cell immunotherapy approved by the FDA. CAR-T cell therapy can cause specific adverse events (AEs) such as cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome, which are defined and graded according to the consensus grading system and treated with supportive therapies along with tocilizumab and corticosteroids. Other AEs include prolonged bone marrow suppression and hypogammaglobulinemia. Severe AEs are less common in the real-world experience than in clinical trials, probably due to better management of the patient before and during CAR-T cell therapy. The biggest challenge in CAR-T cell therapy against ALL is relapse. A high tumor burden on infusion, early loss of B cell aplasia, and minimal residual disease positivity after CAR-T cell infusion are predictive of relapse. Consolidative stem cell transplantation may improve the long-term outcome. The success of CD19 CAR-T cell therapy against B cell malignancy prompted extensive research into the use of CAR-T cells against other hematologic malignancies such as T cell leukemia or myeloid leukemia.
Collapse
Affiliation(s)
- Hidefumi Hiramatsu
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto City, Japan.
| |
Collapse
|
198
|
Mavi AK, Gaur S, Gaur G, Babita, Kumar N, Kumar U. CAR T-cell therapy: Reprogramming patient's immune cell to treat cancer. Cell Signal 2023; 105:110638. [PMID: 36822565 DOI: 10.1016/j.cellsig.2023.110638] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a game changer in cancer treatment. Although CAR-T cell therapy has achieved significant clinical responses in specific subgroups of B cell leukaemia or lymphoma, various difficulties restrict CAR-T cell therapy's therapeutic effectiveness in solid tumours and haematological malignancies. Severe life-threatening toxicities, poor anti-tumour effectiveness, antigen escape, restricted trafficking, and limited tumour penetration are all barriers to successful CAR-T cell treatment. Furthermore, CAR-T cell interactions with the host and tumour microenvironment have a significant impact on their activity. Furthermore, developing and implementing these therapies necessitates a complicated staff. Innovative methodologies and tactics to engineering more potent CAR-T cells with greater anti-tumour activity and less toxicity are required to address these important difficulties.
Collapse
Affiliation(s)
- Anil Kumar Mavi
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India
| | - Sonal Gaur
- Department of Biosciences and Biotechnology, Banasthali Vidyapith, Jaipur, Rajasthan 304022, India
| | - Gauri Gaur
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133203, India
| | - Babita
- Department of Pharmacology, Sharda School of Allied Health Sciences, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Neelesh Kumar
- Department of Aquaculture, College of Fisheries, GB Pant University of Agriculture & Technology, Pantnagar, Udham Singh Nagar, Uttarakhand 263145, India
| | - Umesh Kumar
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh 201015, India.
| |
Collapse
|
199
|
Trinh T, Adams WA, Calescibetta A, Tu N, Dalton R, So T, Wei M, Ward G, Kostenko E, Christiansen S, Cen L, McLemore A, Reed K, Whitting J, Gilvary D, Blanco NL, Segura CM, Nguyen J, Kandell W, Chen X, Cheng P, Wright GM, Cress WD, Liu J, Wright KL, Wei S, Eksioglu EA. CX3CR1 deficiency-induced TIL tumor restriction as a novel addition for CAR-T design in solid malignancies. iScience 2023; 26:106443. [PMID: 37070068 PMCID: PMC10105289 DOI: 10.1016/j.isci.2023.106443] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 11/15/2022] [Accepted: 03/14/2023] [Indexed: 04/19/2023] Open
Abstract
Advances in the understanding of the tumor microenvironment have led to development of immunotherapeutic strategies, such as chimeric antigen receptor T cells (CAR-Ts). However, despite success in blood malignancies, CAR-T therapies in solid tumors have been hampered by their restricted infiltration. Here, we used our understanding of early cytotoxic lymphocyte infiltration of human lymphocytes in solid tumors in vivo to investigate the receptors in normal, adjacent, and tumor tissues of primary non-small-cell lung cancer specimens. We found that CX3CL1-CX3CR1 reduction restricts cytotoxic cells from the solid-tumor bed, contributing to tumor escape. Based on this, we designed a CAR-T construct using the well-established natural killer group 2, member D (NKG2D) CAR-T expression together with overexpression of CX3CR1 to promote their infiltration. These CAR-Ts infiltrate tumors at higher rates than control-activated T cells or IL-15-overexpressing NKG2D CAR-Ts. This construct also had similar functionality in a liver-cancer model, demonstrating potential efficacy in other solid malignancies.
Collapse
Affiliation(s)
- ThuLe Trinh
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - William A. Adams
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alexandra Calescibetta
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Nhan Tu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert Dalton
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Tina So
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Max Wei
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Grace Ward
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Cancer Biology PhD Program, University of South Florida and H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Elena Kostenko
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sean Christiansen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ling Cen
- Bioinformatics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Amy McLemore
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kayla Reed
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Junmin Whitting
- Cancer Biology PhD Program, University of South Florida and H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Danielle Gilvary
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Neale Lopez Blanco
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Carlos Moran Segura
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jonathan Nguyen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Wendy Kandell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Cancer Biology PhD Program, University of South Florida and H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Pingyan Cheng
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Gabriela M. Wright
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - W. Douglas Cress
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jinghong Liu
- Department of Anesthesiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kenneth L. Wright
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sheng Wei
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Erika A. Eksioglu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
200
|
Ornella MSC, Badrinath N, Kim KA, Kim JH, Cho E, Hwang TH, Kim JJ. Immunotherapy for Peritoneal Carcinomatosis: Challenges and Prospective Outcomes. Cancers (Basel) 2023; 15:cancers15082383. [PMID: 37190310 DOI: 10.3390/cancers15082383] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Peritoneal metastasis, also known as peritoneal carcinomatosis (PC), is a refractory cancer that is typically resistant to conventional therapies. The typical treatment for PC is a combination of cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC). Recently, research in this area has seen significant advances, particularly in immunotherapy as an alternative therapy for PC, which is very encouraging. Catumaxomab is a trifunctional antibody intraperitoneal (IP) immunotherapy authorized in Europe that can be used to diminish malignant ascites by targeting EpCAM. Intraperitoneal (IP) immunotherapy breaks immunological tolerance to treat peritoneal illness. Increasing T-cell responses and vaccination against tumor-associated antigens are two methods of treatment. CAR-T cells, vaccine-based therapeutics, dendritic cells (DCs) in combination with pro-inflammatory cytokines and NKs, adoptive cell transfer, and immune checkpoint inhibitors are promising treatments for PC. Carcinoembryonic antigen-expressing tumors are suppressed by IP administration of CAR-T cells. This reaction was strengthened by anti-PD-L1 or anti-Gr1. When paired with CD137 co-stimulatory signaling, CAR-T cells for folate receptor cancers made it easier for T-cell tumors to find their way to and stay alive in the body.
Collapse
Affiliation(s)
- Mefotse Saha Cyrelle Ornella
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Narayanasamy Badrinath
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Kyeong-Ae Kim
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Jung Hee Kim
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Euna Cho
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Tae-Ho Hwang
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Jae-Joon Kim
- Division of Hematology & Oncology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|