151
|
Kim CA, Berg JM. A 2.2 A resolution crystal structure of a designed zinc finger protein bound to DNA. NATURE STRUCTURAL BIOLOGY 1996; 3:940-5. [PMID: 8901872 DOI: 10.1038/nsb1196-940] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Considerable recent effort has been devoted to the design and selection of sequence-specific DNA binding proteins based on tandem arrays of Cys2His2 zinc finger domains. While the DNA binding properties of these designed proteins have been studied extensively, the structural basis for site-specific binding has not been examined experimentally. Here we report the crystal structure of a complex between a protein comprised of three consensus-sequence-based zinc finger domains and an oligonucleotide corresponding to a favourable DNA binding site. This structure reveals relatively simple modular interactions and structural adaptations that compensate for differences in contact residue side-chain lengths.
Collapse
Affiliation(s)
- C A Kim
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
152
|
Elrod-Erickson M, Rould MA, Nekludova L, Pabo CO. Zif268 protein-DNA complex refined at 1.6 A: a model system for understanding zinc finger-DNA interactions. Structure 1996; 4:1171-80. [PMID: 8939742 DOI: 10.1016/s0969-2126(96)00125-6] [Citation(s) in RCA: 342] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Zinc fingers of the Cys2 His2 class recognize a wide variety of different DNA sequences and are one of the most abundant DNA-binding motifs found in eukaryotes. The previously determined 2.1 A structure of a complex containing the three zinc fingers from Zif268 has served as a basis for many modeling and design studies, and Zif268 has proved to be a very useful model system for studying how TFIIIA-like zinc fingers recognize DNA. RESULTS We have refined the structure of the Zif268 protein-DNA complex at 1.6 A resolution. Our structure confirms all the basic features of the previous model and allows us to focus on some critical details at the protein-DNA interface. In particular, our refined structure helps explain the roles of several acidic residues located in the recognition helices and shows that the zinc fingers make a number of water-mediated contacts with bases and phosphates. Modeling studies suggest that the distinctive DNA conformation observed in the Zif268-DNA complex is correlated with finger-finger interactions and the length of the linkers between adjacent fingers. Circular dichroism studies indicate that at least some of the features of this distinctive DNA conformation are induced upon complex formation. CONCLUSIONS Our 1.6 A structure should provide an excellent framework for analyzing the effects of Zif268 mutations, for modeling related zinc finger-DNA complexes, and for designing and selecting Zif268 variants that will recognize other DNA sites.
Collapse
Affiliation(s)
- M Elrod-Erickson
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
153
|
Trauger JW, Baird EE, Dervan PB. Recognition of DNA by designed ligands at subnanomolar concentrations. Nature 1996; 382:559-61. [PMID: 8700233 DOI: 10.1038/382559a0] [Citation(s) in RCA: 317] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Small molecules that specifically bind with high affinity to any predetermined DNA sequence in the human genome would be useful tools in molecular biology and potentially in human medicine. Simple rules have been developed to control rationally the sequence specificity of minor-groove-binding polyamides containing N-methylimidazole and N-methylpyrrole amino acids. Two eight-ring pyrrole-imidazole polyamides differing in sequence by a single amino acid bind specifically to respective six-base-pair target sites which differ in sequence by a single base pair. Binding is observed at subnanomolar concentrations of ligand. The replacement of a single nitrogen atom with a C-H regulates affinity and specificity by two orders of magnitude. The broad range of sequences that can be specifically targeted with pyrrole-imidazole polyamides, coupled with an efficient solid-phase synthesis methodology, identify a powerful class of small molecules for sequence-specific recognition of double-helical DNA.
Collapse
Affiliation(s)
- J W Trauger
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125, USA
| | | | | |
Collapse
|
154
|
Drakopoulou E, Zinn-Justin S, Guenneugues M, Gilqin B, Ménez A, Vita C. Changing the structural context of a functional beta-hairpin. Synthesis and characterization of a chimera containing the curaremimetic loop of a snake toxin in the scorpion alpha/beta scaffold. J Biol Chem 1996; 271:11979-87. [PMID: 8662609 DOI: 10.1074/jbc.271.20.11979] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An approach to obtain new active proteins is the incorporation of all or a part of a well defined active site onto a natural structure acting as a structural scaffold. According to this strategy we tentatively engineered a new curaremimetic molecule by transferring the functional central loop of a snake toxin, sequence 26-37, sandwiched between two hairpins, onto the structurally similar beta-hairpin of the scorpion toxin charybdotoxin, stabilized by a short helix. The resulting chimeric molecule, only 31 amino acids long, was produced by solid phase synthesis, refolded, and purified to homogeneity. As shown by structural analysis performed by CD and NMR spectroscopy, the chimera maintained the expected alpha/beta fold characteristic of scorpion toxins and presented a remarkable structural stability. The chimera competitively displaces the snake curaremimetic toxin alpha from the acetylcholine receptor at 10(-5) M concentrations. Antibodies, elicited in rabbits against the chimera, recognize the parent snake toxin and prevent its binding to the acetylcholine receptor, thus neutralizing its toxic function. All these data demonstrate that the strategy of active site transfer to the charybdotoxin scaffold has general applications in the engineering of novel ligands for membrane receptors and in vaccine design.
Collapse
Affiliation(s)
- E Drakopoulou
- Département d'Ingénierie et d'Etudes des Protéines, CE Saclay, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
155
|
Pedone PV, Ghirlando R, Clore GM, Gronenborn AM, Felsenfeld G, Omichinski JG. The single Cys2-His2 zinc finger domain of the GAGA protein flanked by basic residues is sufficient for high-affinity specific DNA binding. Proc Natl Acad Sci U S A 1996; 93:2822-6. [PMID: 8610125 PMCID: PMC39717 DOI: 10.1073/pnas.93.7.2822] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Specific DNA binding to the core consensus site GAGAGAG has been shown with an 82-residue peptide (residues 310-391) taken from the Drosophila transcription factor GAGA. Using a series of deletion mutants, it was demonstrated that the minimal domain required for specific binding (residues 310-372) includes a single zinc finger of the Cys2-His2 family and a stretch of basic amino acids located on the N-terminal end of the zinc finger. In gel retardation assays, the specific binding seen with either the peptide or the whole protein is zinc dependent and corresponds to a dissociation constant of approximately 5 x 10(-9) M for the purified peptide. It has previously been thought that a single zinc finger of the Cys2-His2 family is incapable of specific, high-affinity binding to DNA. The combination of an N-terminal basic region with a single Cys2-His2 zinc finger in the GAGA protein can thus be viewed as a novel DNA binding domain. This raises the possibility that other proteins carrying only one Cys2-His2 finger are also capable of high-affinity specific binding to DNA.
Collapse
Affiliation(s)
- P V Pedone
- Laboratory of Molecular Biology, Naional Institutes of Health, Bethesda, MD 20892-0530, USA
| | | | | | | | | | | |
Collapse
|
156
|
Abstract
Zinc ions are key structural components of a large number of proteins. The binding of zinc stabilizes the folded conformations of domains so that they may facilitate interactions between the proteins and other macromolecules such as DNA. The modular nature of some of these zinc-containing proteins has allowed the rational design of site-specific DNA binding proteins. The ability of zinc to be bound specifically within a range of tetrahedral sites appears to be responsible for the evolution of the side range of zinc-stabilized structural domains now known to exist. The lack of redox activity for the zinc ion and its binding and exchange kinetics also may be important in the use of zinc for specific functional roles.
Collapse
Affiliation(s)
- J M Berg
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
157
|
Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 1996; 93:1156-60. [PMID: 8577732 PMCID: PMC40048 DOI: 10.1073/pnas.93.3.1156] [Citation(s) in RCA: 1310] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A long-term goal in the field of restriction-modification enzymes has been to generate restriction endonucleases with novel sequence specificities by mutating or engineering existing enzymes. This will avoid the increasingly arduous task of extensive screening of bacteria and other microorganisms for new enzymes. Here, we report the deliberate creation of novel site-specific endonucleases by linking two different zinc finger proteins to the cleavage domain of Fok I endonuclease. Both fusion proteins are active and under optimal conditions cleave DNA in a sequence-specific manner. Thus, the modular structure of Fok I endonuclease and the zinc finger motifs makes it possible to create "artificial" nucleases that will cut DNA near a predetermined site. This opens the way to generate many new enzymes with tailor-made sequence specificities desirable for various applications.
Collapse
Affiliation(s)
- Y G Kim
- Department of Environmental Health Sciences, Johns Hopkins University, School of Hygiene and Public Health, Baltimore, MD 21205-2179, USA
| | | | | |
Collapse
|
158
|
Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 1996. [PMID: 8577732 DOI: 10.1073/pnas.93.31156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
A long-term goal in the field of restriction-modification enzymes has been to generate restriction endonucleases with novel sequence specificities by mutating or engineering existing enzymes. This will avoid the increasingly arduous task of extensive screening of bacteria and other microorganisms for new enzymes. Here, we report the deliberate creation of novel site-specific endonucleases by linking two different zinc finger proteins to the cleavage domain of Fok I endonuclease. Both fusion proteins are active and under optimal conditions cleave DNA in a sequence-specific manner. Thus, the modular structure of Fok I endonuclease and the zinc finger motifs makes it possible to create "artificial" nucleases that will cut DNA near a predetermined site. This opens the way to generate many new enzymes with tailor-made sequence specificities desirable for various applications.
Collapse
Affiliation(s)
- Y G Kim
- Department of Environmental Health Sciences, Johns Hopkins University, School of Hygiene and Public Health, Baltimore, MD 21205-2179, USA
| | | | | |
Collapse
|
159
|
Bryson JW, Betz SF, Lu HS, Suich DJ, Zhou HX, O'Neil KT, DeGrado WF. Protein design: a hierarchic approach. Science 1995; 270:935-41. [PMID: 7481798 DOI: 10.1126/science.270.5238.935] [Citation(s) in RCA: 458] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The de novo design of peptides and proteins has recently emerged as an approach for investigating protein structure and function. Designed, helical peptides provide model systems for dissecting and quantifying the multiple interactions that stabilize secondary structure formation. De novo design is also useful for exploring the features that specify the stoichiometry and stability of alpha-helical coiled coils and for defining the requirements for folding into structures that resemble native, functional proteins. The design process often occurs in a series of discrete steps. Such steps reflect the hierarchy of forces required for stabilizing tertiary structures, beginning with hydrophobic forces and adding more specific interactions as required to achieve a unique, functional protein.
Collapse
Affiliation(s)
- J W Bryson
- DuPont Merck Pharmaceutical Company, Wilmington, DE 19880, USA
| | | | | | | | | | | | | |
Collapse
|
160
|
Abstract
Initially, it was hoped that very simple rules could be sued to design proteins that embody all the characteristics of natural proteins. Indeed, with single-domain proteins as targets, it has been possible to design proteins that adopt the desired global fold. Yet, designed proteins with well defined structures and properties that mimic those of natural proteins remain elusive. Recent efforts in protein design have been directed toward addressing the basis for non-native characteristics in most protein designs. Although it is clear that specific tertiary interactions between all residues in a protein contribute to the final folded state, much attention has been placed on optimizing the packing of side chains in the hydrophobic core, with substantial success.
Collapse
|
161
|
Abstract
The strategy of molecular evolution by phage display recently has been applied to the study of interactions between protein and DNA. This technology will imminently enable DNA-binding proteins to be made to measure. In the first instance, this will greatly advance our understanding of protein-DNA interactions, but in the long term, it is expected to yield powerful tools for use in medicine and research.
Collapse
Affiliation(s)
- Y Choo
- Medical Research Council, Cambridge, UK
| | | |
Collapse
|
162
|
Vortkamp A, Gessler M, Grzeschik KH. Identification of optimized target sequences for the GLI3 zinc finger protein. DNA Cell Biol 1995; 14:629-34. [PMID: 7626222 DOI: 10.1089/dna.1995.14.629] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
GLI3 represents an important control gene for development and differentiation of several body structures. Reduction in gene dosage already leads to severe perturbation, especially of limb morphogenesis. The gene encodes a zinc finger protein that likely functions as a transcriptional modulator. Because the five zinc fingers should be capable of recognizing an extended stretch of genomic DNA, we sought to identify sequences bound by GLI3 that may facilitate the search for target genes acting downstream of GLI3. Starting from the nonamer DNA binding sequence of the highly related GLI protein, we employed an oligonucleotide selection protocol to determine an optimized binding sequence for the GLI3 protein. The resulting sequence bound by the GLI3 zinc fingers consists of 16 nucleotides and shows a high degree of similarity to sequences bound by the GLI and tra-1 proteins. Comparison with protein-DNA interactions in the known crystal structure of the GLI-DNA complex suggests relevant interactions of additional amino acids of GLI3 with its target site. The newly identified GLI3 target sequence should prove very useful for both the structural analysis of the protein-DNA complex and the search for genes whose expression is subject to regulation by the GLI3 gene product.
Collapse
Affiliation(s)
- A Vortkamp
- Institut für Humangenetik, Marburg, Germany
| | | | | |
Collapse
|
163
|
Abstract
Zinc finger proteins of the Cys2His2 type represent a large class of proteins that have been assumed to function by means of specific interactions with DNA. Experiments motivated by structural characteristics of zinc finger protein-DNA complexes revealed that certain zinc finger proteins bound DNA-RNA hybrids with affinities comparable to or greater than those for DNA duplexes. The interactions between the zinc finger proteins and the DNA-RNA hybrids were dependent on which strand was RNA and were sequence-specific. Thus, interactions with DNA-RNA hybrids should be considered with regard to the biological roles of zinc finger proteins.
Collapse
Affiliation(s)
- Y Shi
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
164
|
Swirnoff AH, Milbrandt J. DNA-binding specificity of NGFI-A and related zinc finger transcription factors. Mol Cell Biol 1995; 15:2275-87. [PMID: 7891721 PMCID: PMC230455 DOI: 10.1128/mcb.15.4.2275] [Citation(s) in RCA: 267] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
NGFI-A is the prototypic member of a family of immediate-early gene-encoded transcription factors which includes NGFI-C, Egr3, and Krox20. These proteins possess highly homologous DNA-binding domains, composed of three Cys2-His2 zinc fingers, and all bind to and activate transcription from the sequence GCGGGGGCG. We used a PCR-mediated random site selection protocol to determine whether other sites could be bound by these proteins and the extent to which their binding site preferences are similar or different. The high-affinity consensus sites generated from the selection data are similar, and the combined consensus sequence is T-G-C-G-T/g-G/A-G-G-C/a/t-G-G/T (lowercase letters indicate bases selected less frequently). Using gel shift assays, we found that sequences that diverge from the consensus were bound by NGFI-A, confirming that there is greater variability in binding sites than has generally been acknowledged. We also provide evidence that protein-DNA interactions not noted, or whose importance was not apparent from the X-ray cocrystal structure of the NGFI-A zinc fingers complexed with DNA, contribute significantly to the binding energy of these proteins and confirm that an optimal site is at least 10 instead of 9 nucleotides in length. In contrast to the similarities in binding specificity among these proteins we found that while NGFI-A, Egr3, and Krox20 have comparable DNA binding affinities and kinetics of dissociation, the affinity of NGFI-C is more than threefold lower. This could result in differential regulation of target genes in cells where NGFI-C and the other proteins are coexpressed. Furthermore, we show that this affinity difference is a property not of the zinc fingers themselves but rather of the protein context of the DNA-binding domain.
Collapse
Affiliation(s)
- A H Swirnoff
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
165
|
Taylor WE, Suruki HK, Lin AH, Naraghi-Arani P, Igarashi RY, Younessian M, Katkus P, Vo NV. Designing zinc-finger ADR1 mutants with altered specificity of DNA binding to T in UAS1 sequences. Biochemistry 1995; 34:3222-30. [PMID: 7880816 DOI: 10.1021/bi00010a011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Yeast ADR1 contains two Cys2,His2 zinc fingers needed for DNA binding to the upstream activation sequence UAS1, with bases T5T6G7-G8A9G10 in the ADH2 promoter. Potential DNA-contacting amino acid residues at -1, +3, and +6 in the alpha-helical domains of ADR1's fingers one and two include RHR-RLR; however, the latter finger two residues Leu146 and Arg149 had not proved to be crucial for ADR1 binding, even though Leu146-T6 and Arg149-T5 interactions with UAS1 DNA were predicted. We altered Leu146 or Arg149 by PCR cassette mutagenesis, to study ADR1 mutant binding to 16 UAS1 variants of thymine bases T5 and T6. Mutation of Leu146 to His, making finger two (RLR) like finger one (RHR), decreased binding to wild type UAS1 having T6, but enhanced its binding strength to sequences having purines G6 or A6, similar to binding seen between finger one's His118 and base A9 of UAS1. Mutating Leu146 to Lys caused this finger two RKR mutant to bind strongly to both G6 and T6, possibly by lysine's amine H-bonding to the carbonyl of guanine or thymine. Specificity of ADR1 for UAS1 with T6 may thus be due to hydrophobic interaction between Leu146 and the T6 methyl group. ADR1 mutants with either His or Lys in the central +3 residue (146) of zinc finger two, which have Arg149 in the +6 alpha-helical position, bind with UAS1 mutant sequences having G5 very strongly, T5 strongly, A5 intermediately, and C5 weakly.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W E Taylor
- Department of Chemistry and Biochemistry, California State University, Fullerton 92634
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Wu H, Yang WP, Barbas CF. Building zinc fingers by selection: toward a therapeutic application. Proc Natl Acad Sci U S A 1995; 92:344-8. [PMID: 7831288 PMCID: PMC42736 DOI: 10.1073/pnas.92.2.344] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A phage display approach was utilized to modify the specificity of each of the three fingers of the murine transcription factor Zif268. Selections were performed by using the consensus binding sequence of the natural protein and a conserved sequence in the genome of the type 1 human immunodeficiency virus. By using an extensive randomization strategy, the entire 3-bp specificity of a finger has been changed. Rapid analysis of selected zinc fingers was facilitated by the development of an immunoscreening assay for DNA binding and specificity. To investigate the mechanism of binding and specificity, the binding kinetics of Zif268 and 10 selected variants were determined in real time with an assay based on surface plasmon resonance. Differential mechanisms for sequence-specific recognition were observed. No evidence in support of a single general coding relationship between zinc finger and target DNA sequence was observed. The prospects for the development of this class of proteins in human therapy are considered.
Collapse
Affiliation(s)
- H Wu
- Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037
| | | | | |
Collapse
|
167
|
Abstract
Computer modeling suggested that transcription factors with novel sequence specificities could be designed by combining known DNA binding domains. This structure-based strategy was tested by construction of a fusion protein, ZFHD1, that contained zinc fingers 1 and 2 from Zif268, a short polypeptide linker, and the homeodomain from Oct-1. The fusion protein bound optimally to a sequence containing adjacent homeodomain (TAATTA) and zinc finger (NGGGNG) subsites. When fused to an activation domain, ZFHD1 regulated promoter activity in vivo in a sequence-specific manner. Analysis of known protein-DNA complexes suggests that many other DNA binding proteins could be designed in a similar fashion.
Collapse
Affiliation(s)
- J L Pomerantz
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
168
|
Abstract
Biological diversity reflects an underlying molecular diversity. The molecules found in nature may be regarded as solutions to challenges that have been confronted and overcome during molecular evolution. As our understanding of these solutions deepens, the efficiency with which we can discover and/or design new treatments for human disease grows. Nature assists our drug discovery efforts in a variety of ways. Some compounds synthesized by microorganisms and plants are used directly as drugs. Human genetic variations that predispose to (or protect against) certain diseases may point to important drug targets. Organisms that manipulate molecules within us to their benefit also may help us to recognize key biochemical control points. Drug design efforts are expedited by knowledge of the biochemistry of a target. To supplement this knowledge, we screen compounds from sources selected to maximize molecular diversity. Organisms known to manipulate biochemical pathways of other organisms can be sources of particular interest. By using high throughput assays, pharmaceutical companies can rapidly scan the contents of tens of thousands of extracts of microorganisms, plants, and insects. A screen may be designed to search for compounds that affect the activity of an individual targeted human receptor, enzyme, or ion channel, or the screen might be designed to capture compounds that affect any step in a targeted metabolic or biochemical signaling pathway. While a natural product discovered by such a screen will itself only rarely become a drug (its potency, selectivity, bioavailability, and/or stability may be inadequate), it may suggest a type of structure that would interact with the target, serving as a point of departure for a medicinal chemistry effort--i.e., it may be a "lead." It is still beyond our capability to design, routinely, such lead structures, based simply upon knowledge of the structure of our target. However, if a drug discovery target contains regions of structure homologous to that in other proteins, structures known to interact with those proteins may prove useful as leads for a medicinal chemistry effort. The specificity of a lead for a target may be optimized by directing structural variation to specificity-determining sites and away from those sites required for interaction with conserved features of the targeted protein structure. Strategies that facilitate recognition and exploration of sites at which variation is most likely to generate a novel function increase the efficiency with which useful molecules can be created.
Collapse
|
169
|
Suzuki M, Yagi N. DNA recognition code of transcription factors in the helix-turn-helix, probe helix, hormone receptor, and zinc finger families. Proc Natl Acad Sci U S A 1994; 91:12357-61. [PMID: 7809040 PMCID: PMC45436 DOI: 10.1073/pnas.91.26.12357] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have previously reported that in four transcription factor families the DNA-recognition rules can be described as (i) chemical rules, which list possible pairings between the 20 amino acid residues and the four DNA bases, and (ii) stereochemical rules, which describe the base and amino acid positions in contact. We have incorporated these rules into a computer program and examined the nature of the rules. Here we conclude that the DNA recognition rules are simple, logical, and consistent. The rules are specific enough to predict DNA-binding characteristics from a protein sequence.
Collapse
Affiliation(s)
- M Suzuki
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | |
Collapse
|
170
|
Desjarlais JR, Berg JM. Length-encoded multiplex binding site determination: application to zinc finger proteins. Proc Natl Acad Sci U S A 1994; 91:11099-103. [PMID: 7972017 PMCID: PMC45174 DOI: 10.1073/pnas.91.23.11099] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The screening of combinatorial libraries is becoming a powerful method for identifying or refining the structures of ligands for binding proteins, enzymes, and other receptors. We describe an oligonucleotide library search procedure in which the identity of each member is encoded in the length of oligonucleotides. This encoding scheme allows binding-site preferences to be evaluated via DNA length determination by denaturing gel electrophoresis. We have applied this method to determine the binding-site preferences for 18 Cys2His2 zinc finger domains as the central domain within a fixed context of flanking zinc fingers. An advantage of the method is that the relative affinities of all members of the library can be estimated in addition to simply determining the sequence of the optimal or consensus ligand. The zinc finger domain specificities determined will be useful for modular zinc finger protein design.
Collapse
Affiliation(s)
- J R Desjarlais
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | | |
Collapse
|
171
|
Choo Y, Klug A. Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions. Proc Natl Acad Sci U S A 1994; 91:11168-72. [PMID: 7972028 PMCID: PMC45188 DOI: 10.1073/pnas.91.23.11168] [Citation(s) in RCA: 213] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In the preceding paper [Choo, Y. & Klug, A. (1994) Proc. Natl. Acad. Sci. USA 91, 11163-11167], we showed how selections from a library of zinc fingers displayed on phage yielded fingers able to bind to a number of DNA triplets. Here, we describe a technique to deal efficiently with the converse problem--namely, the selection of a DNA binding site for a given zinc finger. This is done by screening against libraries of DNA triplet binding sites randomized in two positions but having one base fixed in the third position. The technique is applied here to determine the specificity of fingers previously selected by phage display. We find that some of these fingers are able to specify a unique base in each position of the cognate triplet. This is further illustrated by examples of fingers which can discriminate between closely related triplets as measured by their respective equilibrium dissociation constants. Comparing the amino acid sequences of fingers which specify a particular base in a triplet, we infer that in most instances, sequence-specific binding of zinc fingers to DNA can be achieved by using a small set of amino acid-nucleotide base contacts amenable to a code.
Collapse
Affiliation(s)
- Y Choo
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | |
Collapse
|
172
|
Song Z, Krishna S, Thanos D, Strominger JL, Ono SJ. A novel cysteine-rich sequence-specific DNA-binding protein interacts with the conserved X-box motif of the human major histocompatibility complex class II genes via a repeated Cys-His domain and functions as a transcriptional repressor. J Exp Med 1994; 180:1763-74. [PMID: 7964459 PMCID: PMC2191754 DOI: 10.1084/jem.180.5.1763] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The class II major histocompatibility complex (MHC) molecules function in the presentation of processed peptides to helper T cells. As most mammalian cells can endocytose and process foreign antigen, the critical determinant of an antigen-presenting cell is its ability to express class II MHC molecules. Expression of these molecules is usually restricted to cells of the immune system and dysregulated expression is hypothesized to contribute to the pathogenesis of a severe combined immunodeficiency syndrome and certain autoimmune diseases. Human complementary DNA clones encoding a newly identified, cysteine-rich transcription factor, NF-X1, which binds to the conserved X-box motif of class II MHC genes, were obtained, and the primary amino acid sequence deduced. The major open reading frame encodes a polypeptide of 1,104 amino acids with a symmetrical organization. A central cysteine-rich portion encodes the DNA-binding domain, and is subdivided into seven repeated motifs. This motif is similar to but distinct from the LIM domain and the RING finger family, and is reminiscent of known metal-binding regions. The unique arrangement of cysteines indicates that the consensus sequence CX3CXL-XCGX1-5HXCX3CHXGXC represents a novel cysteine-rich motif. Two lines of evidence indicate that the polypeptide encodes a potent and biologically relevant repressor of HLA-DRA transcription: (a) overexpression of NF-X1 from a retroviral construct strongly decreases transcription from the HLA-DRA promoter; and (b) the NF-X1 transcript is markedly induced late after induction with interferon gamma (IFN-gamma), coinciding with postinduction attenuation of HLA-DRA transcription. The NF-X1 protein may therefore play an important role in regulating the duration of an inflammatory response by limiting the period in which class II MHC molecules are induced by IFN-gamma.
Collapse
Affiliation(s)
- Z Song
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | |
Collapse
|
173
|
Suzuki M, Gerstein M, Yagi N. Stereochemical basis of DNA recognition by Zn fingers. Nucleic Acids Res 1994; 22:3397-405. [PMID: 8078776 PMCID: PMC523735 DOI: 10.1093/nar/22.16.3397] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
DNA-recognition rules for Zn fingers are discussed in terms of crystal structures. The rules can explain the DNA-binding characteristics of a number of Zn finger proteins for which there are no crystal structures. The rules have two parts: chemical rules, which list the possible pairings between the 4 DNA bases and the 20 amino acid residues, and stereochemical rules, which describe the specific base positions contacted by several amino acid positions in the Zn finger. It is discussed that to maintain the correct binding geometry, in which the N-terminus of the recognition helix is closer to the DNA than the C-terminus, the residues facing the DNA on the helix must be larger near the C-terminus, and that two different types of fingers (A and B) bind to DNA in distinctly different ways and cover different numbers of base pairs.
Collapse
Affiliation(s)
- M Suzuki
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
174
|
Pieler T, Bellefroid E. Perspectives on zinc finger protein function and evolution--an update. Mol Biol Rep 1994; 20:1-8. [PMID: 7531280 DOI: 10.1007/bf00999848] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Complexity is one of the hallmarks that applies to C2H2 type zinc finger proteins (ZFPs). Structurally distinct clusters of zinc finger modules define an extremely large superfamily of nucleic acid binding proteins with several hundred, perhaps thousands of different members in vertebrates. Recent discoveries have provided new insights into the biochemistry of RNA and DNA recognition, into ZFP evolution and genomic organization, and also into basic aspects of their biological function. However, as much as we have learned, other fundamental questions about ZFP function remain highly enigmatic. This essay is meant to define what we personally feel are important questions, rather than trying to provide a comprehensive, encyclopaedic review.
Collapse
Affiliation(s)
- T Pieler
- Institut für Biochemie und Molekulare Zellbiologie, Göttingen, Germany
| | | |
Collapse
|
175
|
Abstract
The Wilms' tumor suppressor, WT1, is a zinc finger transcriptional regulator which exists as multiple forms owing to alternative mRNA splicing. The most abundant splicing variants contain a nine-nucleotide insertion encoding lysine, threonine, and serine (KTS) in the H-C link region between the third and fourth WT1 zinc fingers which disrupts binding to a previously defined WT1-EGR1 binding site. We have identified WT1[+KTS] binding sites in the insulin-like growth factor II gene and show that WT1[+KTS] represses transcription from the insulin-like growth factor II P3 promoter. The highest affinity WT1[+KTS] DNA binding sites included nucleotide contacts involving all four WT1 zinc fingers. We also found that different subsets of three WT1 zinc fingers could bind to distinct DNA recognition elements. A tumor-associated, WT1 finger 3 deletion mutant was shown to bind to juxtaposed nucleotide triplets for the remaining zinc fingers 1, 2, and 4. The characterization of novel WT1 DNA recognition elements adds a new level of complexity to the potential gene regulatory activity of WT1. The results also present the possibility that altered DNA recognition by the dominant WT1 zinc finger 3 deletion mutant may contribute to tumorigenesis.
Collapse
|
176
|
Drummond IA, Rupprecht HD, Rohwer-Nutter P, Lopez-Guisa JM, Madden SL, Rauscher FJ, Sukhatme VP. DNA recognition by splicing variants of the Wilms' tumor suppressor, WT1. Mol Cell Biol 1994; 14:3800-9. [PMID: 8196623 PMCID: PMC358747 DOI: 10.1128/mcb.14.6.3800-3809.1994] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Wilms' tumor suppressor, WT1, is a zinc finger transcriptional regulator which exists as multiple forms owing to alternative mRNA splicing. The most abundant splicing variants contain a nine-nucleotide insertion encoding lysine, threonine, and serine (KTS) in the H-C link region between the third and fourth WT1 zinc fingers which disrupts binding to a previously defined WT1-EGR1 binding site. We have identified WT1[+KTS] binding sites in the insulin-like growth factor II gene and show that WT1[+KTS] represses transcription from the insulin-like growth factor II P3 promoter. The highest affinity WT1[+KTS] DNA binding sites included nucleotide contacts involving all four WT1 zinc fingers. We also found that different subsets of three WT1 zinc fingers could bind to distinct DNA recognition elements. A tumor-associated, WT1 finger 3 deletion mutant was shown to bind to juxtaposed nucleotide triplets for the remaining zinc fingers 1, 2, and 4. The characterization of novel WT1 DNA recognition elements adds a new level of complexity to the potential gene regulatory activity of WT1. The results also present the possibility that altered DNA recognition by the dominant WT1 zinc finger 3 deletion mutant may contribute to tumorigenesis.
Collapse
Affiliation(s)
- I A Drummond
- Harvard Medical School, Department of Medicine, Beth Israel Hospital, Boston, Massachusetts 02215
| | | | | | | | | | | | | |
Collapse
|
177
|
Jamieson AC, Kim SH, Wells JA. In vitro selection of zinc fingers with altered DNA-binding specificity. Biochemistry 1994; 33:5689-95. [PMID: 8180194 DOI: 10.1021/bi00185a004] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have used random mutagenesis and phage display to alter the DNA-binding specificity of Zif268, a transcription factor that contains three zinc finger domains. Four residues in the helix of finger 1 of Zif268 that potentially mediate DNA binding were identified from an X-ray structure of the Zif268-DNA complex. A library was constructed in which these residues were randomly mutated and the Zif268 variants were fused to a truncated version of the gene III coat protein on the surface of M13 filamentous phage particles. The phage displayed the mutant proteins in a monovalent fashion and were sorted by repeated binding and elution from affinity matrices containing different DNA sequences. When the matrix contained the natural nine base pair operator sequence 5'-GCG-TGG-GCG-3', native-like zinc fingers were isolated. New finger 1 variants were found by sorting with two different operators in which the singly modified triplets, GTG and TCG, replaced the native finger 1 triplet, GCG. Overall, the selected finger 1 variants contained a preponderance of polar residues at the four sites. Interestingly, the net charge of the four residues in any selected finger never derived more that one unit from neutrality despite the fact that about half the variants contained three or four charged residues over the four sites. Measurements of the dissociation constants for two of these purified finger 1 variants by gel-shift assay showed their specificities to vary over a 10-fold range, with the greatest affinity being for the DNA binding site for which they were sorted.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A C Jamieson
- Department of Chemistry, University of California, Berkeley 94720
| | | | | |
Collapse
|
178
|
Suzuki M. A framework for the DNA-protein recognition code of the probe helix in transcription factors: the chemical and stereochemical rules. Structure 1994; 2:317-26. [PMID: 8087558 DOI: 10.1016/s0969-2126(00)00033-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Understanding the general mechanisms of sequence specific DNA recognition by proteins is a major challenge in structural biology. The existence of a 'DNA recognition code' for proteins, by which certain amino acid residues on a protein surface confer specificity for certain DNA bases, has been the subject of much discussion. However, no simple code has yet been established. RESULTS The principles of DNA recognition can be described at two levels. The 'chemical' rules describe the partnerships between amino acid side chains and DNA bases making favourable interactions in the major groove of DNA. Here I analyze the occurrence of nucleotide-amino acid contacts in previously determined crystal structures of DNA-protein complexes and find that simple rules pertain. I also describe 'stereochemical' rules for the probe helix type of DNA-binding motif found in certain transcription factors including leucine zipper and homeodomain proteins. These are a consequence of the binding geometry, and specify the amino acid and base positions used for the contacts, and the sizes of residues in the contact interface. CONCLUSIONS The chemical rules can be generalized for any DNA-binding motif, while the stereochemical rules are specific to a particular DNA-binding motif. The recognition code for a particular binding motif can be described by combining the two sets of rules.
Collapse
Affiliation(s)
- M Suzuki
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
179
|
Rebar EJ, Pabo CO. Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science 1994; 263:671-3. [PMID: 8303274 DOI: 10.1126/science.8303274] [Citation(s) in RCA: 347] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A phage display system was developed and used to select zinc finger proteins with altered DNA-binding specificities. The three zinc fingers of the Zif268 protein were expressed on the surface of filamentous phage, and a library of variants was prepared by randomizing critical amino acids in the first zinc finger. Affinity selections, using DNA sites with base changes in the region recognized by the first finger, yielded Zif268 variants that bound tightly and specifically to the new sites. This phage system provides a tool for the study of protein-DNA interactions and may offer a general method for selecting zinc finger proteins that recognize desired target sites on double-stranded DNA.
Collapse
Affiliation(s)
- E J Rebar
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
180
|
Rupprecht H, Drummond I, Madden S, Rauscher F, Sukhatme V. The Wilms' tumor suppressor gene WT1 is negatively autoregulated. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37588-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
181
|
Fairall L, Schwabe JW, Chapman L, Finch JT, Rhodes D. The crystal structure of a two zinc-finger peptide reveals an extension to the rules for zinc-finger/DNA recognition. Nature 1993; 366:483-7. [PMID: 8247159 DOI: 10.1038/366483a0] [Citation(s) in RCA: 304] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Cys2-His2 zinc-finger is the most widely occurring DNA-binding motif. The first structure of a zinc-finger/DNA complex revealed a fairly simple mechanism for DNA recognition suggesting that the zinc-finger might represent a candidate template for designing proteins to recognize DNA. Residues at three key positions in an alpha-helical 'reading head' play a dominant role in base-recognition and have been targets for mutagenesis experiments aimed at deriving a recognition code. Here we report the structure of a two zinc-finger DNA-binding domain from the protein Tramtrack complexed with DNA. The amino-terminal zinc-finger and its interaction with DNA illustrate several novel features. These include the use of a serine residue, which is semi-conserved and located outside the three key positions, to make a base contact. Its role in base-recognition correlates with a large, local, protein-induced deformation of the DNA helix at a flexible A-T-A sequence and may give insight into previous mutagenesis experiments. It is apparent from this structure that zinc-finger/DNA recognition is more complex than was originally perceived.
Collapse
Affiliation(s)
- L Fairall
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | |
Collapse
|