151
|
Dreher I, Jakobs TC, Köhrle J. Cloning and characterization of the human selenoprotein P promoter. Response of selenoprotein P expression to cytokines in liver cells. J Biol Chem 1997; 272:29364-71. [PMID: 9361018 DOI: 10.1074/jbc.272.46.29364] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We isolated an 18-kilobase (kb) genomic selenoprotein P clone from a human placenta library and cloned, sequenced, and characterized the 5'-flanking region of the human selenoprotein P gene. Sequence analysis revealed an intron between base pairs (bp) -13 and -14 upstream of the ATG codon and another one between bp 534 and 535 of the coding region. The major transcription start site of selenoprotein P in human HepG2 hepatocarcinoma cells was mapped to bp -70 by 5'-rapid amplification of cDNA ends and by primer extension. 1.8 kb of the 5'-flanking sequence were fused to a luciferase reporter gene. They exhibited functional promoter activity in HepG2 hepatocarcinoma and Caco2 colon carcinoma cells in transient transfection experiments. Treatment of transfected HepG2 cells with the cytokines interleukin 1beta, tumor necrosis factor alpha, and interferon gamma repressed promoter activity. Nuclear extracts of interferon gamma-treated cells bound to a signal transducer and activator of transcription response element of the promoter in gel retardation experiments. By transfection of promoter-deletion constructs, a TATA box and a putative SP1 site were identified to be necessary for selenoprotein P transcription. These data indicate that the human selenoprotein P gene contains a strong promoter that is cytokine responsive. Furthermore, selenoprotein P, secreted by the liver, might react as a negative acute phase protein.
Collapse
Affiliation(s)
- I Dreher
- Klinische Forschergruppe, Medizinische Poliklinik, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | |
Collapse
|
152
|
Reed MJ, Purohit A. Breast cancer and the role of cytokines in regulating estrogen synthesis: an emerging hypothesis. Endocr Rev 1997; 18:701-15. [PMID: 9331549 DOI: 10.1210/edrv.18.5.0314] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- M J Reed
- Unit of Metabolic Medicine, Imperial College School of Medicine at St. Mary's, London, United Kingdom
| | | |
Collapse
|
153
|
Abstract
Endometriosis is a common gynecological disorder with varied symptomatology including chronic pelvic pain, dysmenorrhea, and infertility. The association of endometriosis and infertility has been recognized for years, although definite evidence of causality still eludes us. In this review, we will explore three general concepts that enhance our understanding of the cellular and molecular interactions contributing to the pathophysiology of this disorder and that have steered current research in endometriosis. First, we review evidence of a local peritoneal inflammatory process, supported by the findings of elevated cytokine and growth factor concentrations in peritoneal fluid of affected patients. Second, we propose a role for angiogenic factors in the establishment of ectopic implants. Third, we review evidence for biochemical differences of eutopic and ectopic endometrium in endometriosis patients, which may contribute to both the pathogenesis and sequelae of this important disorder. Through information derived from these research efforts, we hope to develop better therapeutic interventions as adjunctive or alternative therapies to our current medical and surgical armamentarium.
Collapse
Affiliation(s)
- I P Ryan
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco 94143-0556, USA
| | | |
Collapse
|
154
|
Nishiya T, Uehara T, Edamatsu H, Kaziro Y, Itoh H, Nomura Y. Activation of Stat1 and subsequent transcription of inducible nitric oxide synthase gene in C6 glioma cells is independent of interferon-gamma-induced MAPK activation that is mediated by p21ras. FEBS Lett 1997; 408:33-8. [PMID: 9180263 DOI: 10.1016/s0014-5793(97)00383-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Rat C6 glioma cells have been used to characterize molecular events involved in the regulation of inducible nitric oxide synthase (iNOS) gene expression stimulated by interferon-gamma (IFN-gamma) plus lipopolysaccharide (LPS). IFNs induce a signaling event which involves activation of Stat1 transcription factor. Previous studies have shown that IFNs also induce extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) activation. However, the mechanisms by which IFNs stimulate MAPK activation remain elusive. Here we show that in C6 glioma cells, transiently expressing the dominant-negative form of c-Ha-Ras (Asn-17) abrogated IFN-gamma-induced ERK1 and ERK2 activation. Furthermore, PD98059, a specific MEK1 inhibitor, also blocked this activation. These results indicate that p21ras and MEK1 are required for IFN-gamma-induced ERK1 and ERK2 activation. Recent studies have reported that MAPK is responsible for serine phosphorylation of Stat1 which is required for Stat1's DNA binding and maximal transcriptional activity. Thus, we examined the role of the Ras-MAPK pathway in Stat1 activation and subsequent iNOS induction in C6 glioma cells. Further experiments showed that neither Asn-17 Ras expression nor concentrations of PD98059, which completely abrogated IFN-gamma-induced ERK1 and ERK2 activation, affected Stat1 DNA binding activity or iNOS induction, indicating that the Ras-MAPK pathway does not appear to be involved in the activation of Stat1 and subsequent iNOS induction in C6 glioma cells.
Collapse
Affiliation(s)
- T Nishiya
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
155
|
Zhao Y, Agarwal VR, Mendelson CR, Simpson ER. Transcriptional regulation of CYP19 gene (aromatase) expression in adipose stromal cells in primary culture. J Steroid Biochem Mol Biol 1997; 61:203-10. [PMID: 9365191 DOI: 10.1016/s0960-0760(97)80013-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Estrogen biosynthesis in adipose tissue increases with age and obesity, and has been implicated in the development of endometrial cancer and breast cancer. In normal human adipose tissue, expression of the CYP19 gene which encodes aromatase P450, the enzyme responsible for estrogen biosynthesis, is regulated by a distal promoter, namely promoter I.4. Stimulation of expression in adipose stromal cells by members of the type 1 cytokine family, i.e. interleukin (IL)-6, IL-11, leukemia inhibitory factor (LIF) and oncostatin M (OSM), is mediated via a Jak-STAT3 signaling pathway and a GAS element upstream of promoter I.4. In contrast, aromatase expression in breast adipose tissue proximal to tumor is increased three- to four-fold to the utilization of another promoter, namely promoter II, proximal to the translation initiation site. In the present report, we show that prostaglandin (PG) E2 is the most potent factor which stimulates aromatase expression via cyclic AMP and promoter II. PGE2 acts via EP1 and EP2 receptor subtypes to stimulate both the PKC and PKA pathways. The combined stimulation of both of these pathways results in the maximal expression of promoter II-specific CYP19 transcripts. Because PGE2 is a major secretory product both of breast tumor epithelial cells and fibroblasts, as well as of macrophages infiltrating the tumor site, then this could be the mechanism whereby estrogen biosynthesis is stimulated in breast sites adjacent to a tumor, leading in turn to increased growth and development of the tumor itself.
Collapse
Affiliation(s)
- Y Zhao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, and the Department of Obstetrics/Gynecology, The University of Texas Southwestern Medical Center, Dallas 75235-9051, U.S.A
| | | | | | | |
Collapse
|
156
|
Decker T, Kovarik P, Meinke A. GAS elements: a few nucleotides with a major impact on cytokine-induced gene expression. J Interferon Cytokine Res 1997; 17:121-34. [PMID: 9085936 DOI: 10.1089/jir.1997.17.121] [Citation(s) in RCA: 322] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gamma interferon activation site (GAS) elements are short stretches of DNA, originally defined as a requirement for the rapid transcriptional induction of genes in response to interferon-gamma (IFN-gamma). The protein complex binding to GAS sequences in IFN-gamma-treated cells, the gamma interferon activation factor (GAF), is a dimer of Stat1, the prototype of a family of cytokine-responsive transcription factors, the signal transducers and activators of transcription. To date, seven different Stats are known (excluding alternatively spliced or processed forms), six of which recognize the same small palindromic consensus sequence TTCN2-4 GAA that defines a GAS element. Because one or several Stats take part in nuclear signaling in response to most cytokines or growth factors, the GAS sequence has changed from being viewed as a specific site for IFN-activated GAF to becoming the general nuclear end of the Jak-Stat signaling pathways. This review focuses on the identification and definition of GAS elements, their interaction with Stat transcription factors, and their contribution to the specificity of cytokine-induced gene expression.
Collapse
Affiliation(s)
- T Decker
- Vienna Biocenter, Institute of Microbiology and Genetics, Austria.
| | | | | |
Collapse
|
157
|
Yang K, Khalil MW, Strutt BJ, Killinger DW. 11 beta-Hydroxysteroid dehydrogenase 1 activity and gene expression in human adipose stromal cells: effect on aromatase activity. J Steroid Biochem Mol Biol 1997; 60:247-53. [PMID: 9191983 DOI: 10.1016/s0960-0760(96)00187-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The biological activity of glucocorticoids in target tissues can be influenced by locally produced 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD), the enzyme responsible for the interconversion of cortisol and its inactive metabolite cortisone. In human adipose stromal cells, glucocorticoids are potent stimulators of the conversion of androgens to estrogens (aromatase activity). The present study was designed to determine whether 11 beta-HSD activity was present in human adipose stromal cells, and if changes in the activity of this enzyme could influence aromatase activity. 11 beta-HSD activity was determined by a radiometric conversion assay in breast adipose tissue from six patients. It was found that both dehydrogenase (cortisol to cortisone) and reductase (cortisone to cortisol) activities were present in all six subjects, and the reductase activity was always predominant. Carbenoxolone (CBX), a potent inhibitor of 11 beta-HSD, added to the culture medium at 50 and 200 microM, resulted in 39 +/- 4% and 85 +/- 1% inhibition, respectively, of both reductase and dehydrogenase activity of 11 beta-HSD. To determine whether alterations in 11 beta-HSD could influence aromatase activity, the effect of CBX (200 microM) on cortisol- and cortisone-induced changes in the conversion of androstenedione to estrone was examined. CBX prevented the stimulatory effect of cortisone and minimally potentiated the stimulatory effect of cortisol on aromatase activity, reflecting an inhibition of the local activation of cortisone and the local metabolism of cortisol, respectively. In order to determine whether the product of the 11 beta-HSD 1 gene was responsible for the observed 11 beta-HSD activity, total RNA extracts from these cells were subjected to Northern blot analysis using human 11 beta-HSD 1 cDNA as the probe. A single 1.8 11 beta-HSD 1 transcript was detected, and its abundance was reduced by CBX. No 11 beta-HSD 2 mRNA was detected. The present results demonstrate that the 11 beta-HSD 1 gene is expressed and functional in human breast adipose stromal cells and that changes in 11 beta-HSD 1 activity result in alterations in aromatase activity.
Collapse
Affiliation(s)
- K Yang
- Department of Obstetrics and Gynaecology and Physiology, University of Western Ontario, Lawson Research Institute, St Joseph's Health Centre, London, Canada
| | | | | | | |
Collapse
|
158
|
Tanase S, Bawden JW. The immunohistochemical localization of stat-2, -3, -4 and -5 during early enamel and dentine formation in rat molars. Arch Oral Biol 1996; 41:1149-60. [PMID: 9134104 DOI: 10.1016/s0003-9969(96)00084-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
STATs (signal transduction and activators of transcription) are key components of the signal transduction pathways in the cytokine receptor superfamily-linked pathway. STATs are activated directly by members of the Jak (Janus kinase) family and, when activated, migrate to the nucleus to modify gene expression to produce a variety of cellular responses. Individual cytokines activate specific combinations of the Jak/STAT isoforms. A previous study localized the known Jak isoforms and STAT-1 in 5-day-old rat molars during the early stages of enamel and dentine formation. The present study was undertaken to localize immunohistochemically STAT isoforms STAT-2. -3, -4 and -5 in association with events involved in early dentine and enamel formation in 5-day-old rat molars. Each of the isoform localization patterns was different from the others. Combining the results of the previous study with the present findings, it appears that all of the known Jaks and STATs-1, -2, -3, -4 and -5 are located in the cells directly involved in early enamel or dentine formation. Using colocalization patterns of the individual Jaks and STATs, individual receptor locations may be predicted. In the proximal ends of differentiated ameloblasts, several cytokine receptors [interleukin (IL) -5, -6, -7, -9, -10, -12, growth hormone granulocyte colony-stimulating factor interferon-alpha/beta. -gamma] are predicted. In other areas of the early odontogenic cells, the proximal ends of differentiating ameloblasts are predicted to have IL-7 receptors, inner enamel epithelium IL-6 and IL-10 receptors, and stratum intermedium cells IL-6 receptors. In the early developing dentine, differentiating odontoblasts are predicted to have IL-6 and IL-10 receptors, and differentiated odontoblasts no cytokine receptors identified by known Jak/STAT combinations. Mapping of the Jak and STAT isoforms in the cells involved in early enamel and dentine formation indicates that a sizeable list of ligands and their respective cytokine receptor/pathway complexes are involved in the regulation of these processes.
Collapse
Affiliation(s)
- S Tanase
- Department of Pediatric Dentistry, University of North Carolina, Chapel Hill 27599, USA
| | | |
Collapse
|
159
|
Tanase S, Bawden JW. The immunohistochemical localization of signal-transduction pathway components Jak1, Jak2, Jak3, Tyk2 and STAT-1 during early enamel and dentine formation in rat molars. Arch Oral Biol 1996; 41:925-40. [PMID: 9031700 DOI: 10.1016/s0003-9969(96)00048-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study sought to localize immunohistochemically Janus kinase (Jak) and Tyk isoforms and STAT-1 in association with events involved in early dentine and enamel formation in the rat molar. The Jaks and STATs (signal transducers and activators of transcription) are key signal-transduction pathway components in the cytokine receptor-linked pathway. The histological sections were not demineralized or fixed, providing optimum conditions for immunohistochemical localization. It appears that all of the Jak isoforms and STAT-1 are involved in enamel formation. Jak2 and STAT-1 colocalized in the proximal ends of presecretory and secretory-stage ameloblasts, supporting work by others that growth hormone receptor is located at that site. The colocalization of Jak1, Jak2 and STAT-1 along the proximal ends of presecretory and secretory ameloblasts suggests that the interferon receptor is up-regulated in these cells as well. Also, colocalization of Jak3 and STAT-1 in the proximal ends of the ameloblasts and the cells of the stratum intermedium predicts the location of the interleukin-7 receptor in those locations. Jak1, Tyk2 and STAT-1, but not Jak2 or Jak3, stain was seen in the odontoblasts.
Collapse
Affiliation(s)
- S Tanase
- Department of Pediatric Dentistry, University of North Carolina, Chapel Hill 27599, USA
| | | |
Collapse
|
160
|
Crichton MB, Nichols JE, Zhao Y, Bulun SE, Simpson ER. Expression of transcripts of interleukin-6 and related cytokines by human breast tumors, breast cancer cells, and adipose stromal cells. Mol Cell Endocrinol 1996; 118:215-20. [PMID: 8735608 DOI: 10.1016/0303-7207(96)03761-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The expression of transcripts of cytokines of the interleukin-6 (IL-6) family has been examined in human breast tumors, breast cancer cell lines, and adipose stromal cells, by means of reverse transcription polymerase chain reaction amplification. Of the six breast tumor samples examined, all expressed transcripts encoding IL-6 and Leukemia Inhibitory Factor (LIF). Four of the samples also expressed transcripts for oncostatin M (OSM) and IL-11, and three expressed the IL-6 receptor. Adipose stromal cells expressed IL-6, IL-11 and LIF, but not the IL-6 receptor, consistent with previous conclusions that IL-6 activity in these cells required addition of IL-6 soluble receptor. In the case of T47D cells, expression of IL-11 protein was confirmed by immunotitration. Moreover, in these cells, expression of IL-11 transcripts was induced 3-fold by addition of estradiol to the culture medium. These results add credence to our previous proposal that breast cancer development is regulated in part by local autocrine and paracrine mechanisms via epithelial/mesenchymal interactions, in which estrogen produced by stromal cells surrounding the tumor acts to stimulate the production of growth factors and cytokines by the tumor cells. Some of these may act to stimulate further the growth and development of the tumor, while these or other factors may act on the surrounding mesenchymal cells in a paracrine fashion to stimulate aromatase expression in the presence of glucocorticoids. Thus, a positive feedback loop is established which leads to the development and growth of the tumor.
Collapse
Affiliation(s)
- M B Crichton
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, USA 75235-9051
| | | | | | | | | |
Collapse
|