151
|
McElhinny AS, Perry CN, Witt CC, Labeit S, Gregorio CC. Muscle-specific RING finger-2 (MURF-2) is important for microtubule, intermediate filament and sarcomeric M-line maintenance in striated muscle development. J Cell Sci 2004; 117:3175-88. [PMID: 15199100 DOI: 10.1242/jcs.01158] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The efficient functioning of striated muscle is dependent upon the structure of several cytoskeletal networks including myofibrils, microtubules, and intermediate filaments. However, little is known about how these networks function together during muscle differentiation and maintenance. In vitro studies suggest that members of the muscle-specific RING finger protein family (MURF-1, 2, and 3) act as cytoskeletal adaptors and signaling molecules by associating with myofibril components (including the giant protein, titin), microtubules and/or nuclear factors. We investigated the role of MURF-2, the least-characterized family member, in primary cultures of embryonic chick skeletal and cardiac myocytes. MURF-2 is detected as two species (approximately 55 kDa and approximately 60 kDa) in embryonic muscle, which are down-regulated in adult muscle. Although predominantly located diffusely in the cytoplasm, MURF-2 also colocalizes with a sub-group of microtubules and the M-line region of titin. Reducing MURF-2 levels in cardiac myocytes using antisense oligonucleotides perturbed the structure of stable microtubule populations, the intermediate filament proteins desmin and vimentin, and the sarcomeric M-line region. In contrast, other sarcomeric regions and dynamic microtubules remained unaffected. MURF-2 knock-down studies in skeletal myoblasts also delayed myoblast fusion and myofibrillogenesis. Furthermore, contractile activity was also affected. We speculate that some of the roles of MURF-2 are modulated via titin-based mechanisms.
Collapse
Affiliation(s)
- Abigail S McElhinny
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
152
|
Diaz BG, Moldoveanu T, Kuiper MJ, Campbell RL, Davies PL. Insertion sequence 1 of muscle-specific calpain, p94, acts as an internal propeptide. J Biol Chem 2004; 279:27656-66. [PMID: 15073171 DOI: 10.1074/jbc.m313290200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The physiological role of the skeletal muscle-specific calpain 3, p94, is presently unknown, but defects in its gene cause limb girdle muscular dystrophy type 2A. This calcium-dependent cysteine protease resembles the large subunit of m-calpain but with three unique additional sequences: an N-terminal region (NS), and two insertions (IS1 and IS2). The latter two insertions have been linked to the chronic instability of the whole enzyme both in vivo and in vitro. We have shown previously that the core of p94 comprising NS, domains I and II, and IS1 is stable as a recombinant protein in the absence of Ca(2+) and undergoes autolysis in its presence. Here we show that p94I-II cannot hydrolyze an exogenous substrate before autolysis but is increasingly able to do so when autolysis proceeds for several hours. This gain in activity is caused by cleavage of IS1 during autolysis because a deletion mutant lacking the NS region (p94I-II DeltaNS) shows the same activation profile. Similarly, the calpain inhibitors E-64 and leupeptin have almost no inhibitory effect on substrate hydrolysis by p94I-II soon after calcium addition but cause complete inhibition when autolysis progresses for several hours. As autolysis proceeds, there is release of the internal IS1 peptide, but the two portions of the core remain tightly associated. Modeling of p94I-II suggests that IS1 contains an amphipathic alpha-helix flanked by extended loops. The latter are the targets of autolysis and limited digestion by exogenous proteases. The presence and location of the alpha-helix in recombinant IS1 were confirmed by circular dichroism and by the introduction of a L286P helix-disrupting mutation. Within p94I-II, L286P caused premature autoproteolysis of the enzyme. IS1 is an elaboration of a loop in domain II near the active site, and it acts as an internal autoinhibitory propeptide, blocking the active site of p94 from substrates and inhibitors.
Collapse
Affiliation(s)
- Beatriz Garcia Diaz
- Department of Biochemistry and the Protein Engineering Network of Centres of Excellence, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | |
Collapse
|
153
|
Laval SH, Bushby KMD. Limb-girdle muscular dystrophies - from genetics to molecular pathology. Neuropathol Appl Neurobiol 2004; 30:91-105. [PMID: 15043707 DOI: 10.1111/j.1365-2990.2004.00555.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The limb-girdle muscular dystrophies are a diverse group of muscle-wasting disorders characteristically affecting the large muscles of the pelvic and shoulder girdles. Molecular genetic analyses have demonstrated causative mutations in the genes encoding a disparate collection of proteins involved in all aspects of muscle cell biology. Muscular dystrophy includes a spectrum of disorders caused by loss of the linkage between the extracellular matrix and the actin cytoskeleton. Within this are the forms of limb-girdle muscular dystrophy caused by deficiencies of the sarcoglycan complex and by aberrant glycosylation of alpha-dystroglycan caused by mutations in the fukutin-related protein gene. However, other forms of this disease have distinct pathophysiological mechanisms. For example, deficiency of dysferlin disrupts sarcolemmal membrane repair, whilst loss of calpain-3 may exert its pathological influence either by perturbation of the IkappaBalpha/NF-kappaB pathway, or through calpain-dependent cytoskeletal remodelling. Caveolin-3 is implicated in numerous cell-signalling pathways and involved in the biogenesis of the T-tubule system. Alterations in the nuclear lamina caused by mutations in laminA/C, sarcomeric changes in titin, telethonin or myotilin at the Z-disc, and subtle changes in the extracellular matrix proteins laminin-alpha2 or collagen VI can all lead to a limb-girdle muscular dystrophy phenotype, although the specific pathological mechanisms remain obscure. Differential diagnosis of these disorders requires the careful application of a broad range of disciplines: clinical assessment, immunohistochemistry and immunoblotting using a panel of antibodies and extensive molecular genetic analyses.
Collapse
Affiliation(s)
- S H Laval
- Institute of Human Genetics, International Centre for Life, Newcastle-upon-Tyne, UK
| | | |
Collapse
|
154
|
Opitz CA, Leake MC, Makarenko I, Benes V, Linke WA. Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart. Circ Res 2004; 94:967-75. [PMID: 14988228 DOI: 10.1161/01.res.0000124301.48193.e1] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Before birth, the compliance of the heart is limited predominantly by extracardiac constraint. Reduction of this constraint at birth requires that myocardial compliance be determined mainly by the heart's own constituents. Because titin is a principal contributor to ventricular passive tension (PT), we studied the expression and mechanics of cardiac-titin isoforms during perinatal rat heart development. Gel electrophoresis and immunoblotting revealed a single, 3.7-MDa, N2BA isoform present 6 days before birth and an additional, also previously unknown, N2BA isoform of 3.5 to 3.6 MDa expressed in the near-term fetus. These large isoforms rapidly disappear after birth and are replaced by a small N2B isoform (3.0 MDa) predominating in 1-week-old and adult rats. In addition, neonatal pig hearts showed large N2BA-titin isoforms distinct from those present in the adult porcine myocardium. By quantitative reverse transcriptase-polymerase chain reaction, developmentally expressed titin-mRNA species were detected in rat heart. Titin-based PT was much lower (approximately 15 times) in fetal than adult rat cardiomyocytes, and measured PT levels were readily predictable with a model of worm-like chain titin elasticity. Immunofluorescence microscopy showed the extensibility of the differentially spliced molecular spring regions of fetal/neonatal titin isoforms in isolated rat cardiomyofibrils. Whereas the titin-isoform shift by 700 kDa ensures high passive stiffness of the postnatal cardiac myofibrils, the expression of specific fetal/neonatal cardiac-titin isoforms may also have important functions for contractile properties, myofibril assembly or turnover, and myocardial signaling during perinatal heart development.
Collapse
Affiliation(s)
- Christiane A Opitz
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
155
|
Abstract
Variation in the calpain 10 gene has recently been shown to be associated with type 2 diabetes by positional cloning. Since then, studies on calpain 10 have been started in correlation with diabetes and insulin-mediated signaling. In this review, the activation mechanism of calpain by calcium ions, which is essential to understand its physiological functions, is discussed on the basis of recent X-ray structural analyses. Further, special features of the structure of calpain 10 that differ from those of typical micro - or m-calpain used in most studies are summarized together with discussion of the physiological function of calpain with respect to type 2 diabetes.
Collapse
Affiliation(s)
- Koichi Suzuki
- Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| | | | | | | |
Collapse
|
156
|
Witt CC, Ono Y, Puschmann E, McNabb M, Wu Y, Gotthardt M, Witt SH, Haak M, Labeit D, Gregorio CC, Sorimachi H, Granzier H, Labeit S. Induction and Myofibrillar Targeting of CARP, and Suppression of the Nkx2.5 Pathway in the MDM Mouse with Impaired Titin-based Signaling. J Mol Biol 2004; 336:145-54. [PMID: 14741210 DOI: 10.1016/j.jmb.2003.12.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Muscular dystrophy with myositis (mdm) is a recessive mouse mutation that is caused by a small deletion in the giant elastic muscle protein titin. Homozygous mdm/mdm mice develop a progressive muscular dystrophy, leading to death at approximately 2 months of age. We surveyed the transcriptomes of skeletal muscles from 24 day old homozygous mdm/mdm and +/+ wild-type mice, an age when MDM animals have normal passive and active tensions and sarcomeric structure. Of the 12488 genes surveyed (U74 affymetrix array), 75 genes were twofold to 30-fold differentially expressed, including CARP (cardiac ankyrin repeat protein), ankrd2/Arpp (a CARP-like protein) and MLP (muscle LIM protein), all of which associate with the titin filament system. The four genes most strongly affected (eightfold to 30-fold change) were all members of the CARP-regulated Nkx-2.5-dependent signal pathway, and CARP mRNA level was 30-fold elevated in MDM skeletal muscle tissues. The CARP protein overexpressed in MDM became associated with the I-band region of the sarcomere. The mdm mutation excises the C-terminal portion of titin's N2A region, abolishing its interaction with p94/calpain-3 protease. Thus, the composition of the titin N2A protein complex is altered in MDM by incorporation of CARP and loss of p94/calpain-3. These changes were absent from the following control tissues (1). cardiac muscles from homozygous mdm/mdm animals, (2). skeletal and cardiac muscle from heterozygous mdm/+ animals, and (3). dystrophic muscles from MDX mice. Thus, the altered composition of the titin N2A complex is specific for the titin-based skeletal muscular dystrophy in MDM.
Collapse
Affiliation(s)
- Christian C Witt
- Institut für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Mannheim, Mannheim 68167, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Kawabata Y, Hata S, Ono Y, Ito Y, Suzuki K, Abe K, Sorimachi H. Newly identified exons encoding novel variants of p94/calpain 3 are expressed ubiquitously and overlap the alpha-glucosidase C gene. FEBS Lett 2004; 555:623-30. [PMID: 14675785 DOI: 10.1016/s0014-5793(03)01324-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There are two classes of an intracellular 'modulator protease', calpain: ubiquitous and tissue-specific. p94/calpain 3 is an example of the latter, predominantly expressed in muscle. A defect in the p94 gene causes muscular dystrophy. Here we report that human and mouse p94 genes have a possible novel alternative promoter expressing p94 variants in all tissues examined including human lens epithelial cells. The possible promoter region and the following novel exons overlap the 3' region of the neutral alpha-glucosidase C gene. Unlike p94, the novel p94 variants expressed in COS7 cells do not undergo rapid autolysis, suggesting basic functions different from p94.
Collapse
Affiliation(s)
- Yukiko Kawabata
- Laboratory of Biological Function, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
158
|
Raynaud F, Bonnal C, Fernandez E, Bremaud L, Cerutti M, Lebart MC, Roustan C, Ouali A, Benyamin Y. The calpain 1-alpha-actinin interaction. Resting complex between the calcium-dependent protease and its target in cytoskeleton. ACTA ACUST UNITED AC 2004; 270:4662-70. [PMID: 14622253 DOI: 10.1046/j.1432-1033.2003.03859.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Calpain 1 behaviour toward cytoskeletal targets was investigated using two alpha-actinin isoforms from smooth and skeletal muscles. These two isoforms which are, respectively, sensitive and resistant to calpain cleavage, interact with the protease when using in vitro binding assays. The stability of the complexes in EGTA [Kd(-Ca2+) = 0.5 +/- 0.1 microM] was improved in the presence of 1 mm calcium ions [Kd(+Ca2+) = 0.05 +/- 0.01 microM]. Location of the binding structures shows that the C-terminal domain of alpha-actinin and each calpain subunit, 28 and 80 kDa, participates in the interaction. In particular, the autolysed calpain form (76/18) affords a similar binding compared to the 80/28 intact enzyme, with an identified binding site in the catalytic subunit, located in the C-terminal region of the chain (domain III-IV). The in vivo colocalization of calpain 1 and alpha-actinin was shown to be likely in the presence of calcium, when permeabilized muscle fibres were supplemented by exogenous calpain 1 and the presence of calpain 1 in Z-line cores was shown by gold-labelled antibodies. The demonstration of such a colocalization was brought by coimmunoprecipitation experiments of calpain 1 and alpha-actinin from C2.7 myogenic cells. We propose that calpain 1 interacts in a resting state with cytoskeletal targets, and that this binding is strengthened in pathological conditions, such as ischaemia and dystrophies, associated with high calcium concentrations.
Collapse
Affiliation(s)
- Fabrice Raynaud
- UMR 5539 - CNRS, laboratoire de Motilité Cellulaire - EPHE, cc107, USTL, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Ilian MA, Bickerstaffe R, Greaser ML. Postmortem changes in myofibrillar-bound calpain 3 revealed by immunofluorescence microscopy. Meat Sci 2004; 66:231-40. [DOI: 10.1016/s0309-1740(03)00096-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2003] [Revised: 04/10/2003] [Accepted: 04/11/2003] [Indexed: 01/17/2023]
|
160
|
Lim CC, Zuppinger C, Guo X, Kuster GM, Helmes M, Eppenberger HM, Suter TM, Liao R, Sawyer DB. Anthracyclines induce calpain-dependent titin proteolysis and necrosis in cardiomyocytes. J Biol Chem 2003; 279:8290-9. [PMID: 14676206 DOI: 10.1074/jbc.m308033200] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Titin, the largest myofilament protein, serves as a template for sarcomere assembly and acts as a molecular spring to contribute to diastolic function. Titin is known to be extremely susceptible to calcium-dependent protease degradation in vitro. We hypothesized that titin degradation is an early event in doxorubicin-induced cardiac injury and that titin degradation occurs by activation of the calcium-dependent proteases, the calpains. Treatment of cultured adult rat cardiomyocytes with 1 or 3 micromol/liter doxorubicin for 24 h resulted in degradation of titin in myocyte lysates, which was confirmed by a reduction in immunostaining of an antibody to the spring-like (PEVK) domain of titin at the I-band of the sarcomere. The elastic domain of titin appears to be most susceptible to proteolysis because co-immunostaining with an antibody to titin at the M-line was preserved, suggesting targeted proteolysis of the spring-like domain of titin. Doxorubicin treatment for 1 h resulted in approximately 3-fold increase in calpain activity, which remained elevated at 48 h. Co-treatment with calpain inhibitors resulted in preservation of titin, reduction in myofibrillar disarray, and attenuation of cardiomyocyte necrosis but not apoptosis. Co-treatment with a caspase inhibitor did not prevent the degradation of titin, which precludes caspase-3 as an early mechanism of titin proteolysis. We conclude that calpain activation is an early event after doxorubicin treatment in cardiomyocytes and appears to target the degradation of titin. Proteolysis of the spring-like domain of titin may predispose cardiomyocytes to diastolic dysfunction, myofilament instability, and cell death by necrosis.
Collapse
Affiliation(s)
- Chee Chew Lim
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Taveau M, Bourg N, Sillon G, Roudaut C, Bartoli M, Richard I. Calpain 3 is activated through autolysis within the active site and lyses sarcomeric and sarcolemmal components. Mol Cell Biol 2003; 23:9127-35. [PMID: 14645524 PMCID: PMC309685 DOI: 10.1128/mcb.23.24.9127-9135.2003] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Revised: 08/06/2003] [Accepted: 09/16/2003] [Indexed: 01/24/2023] Open
Abstract
Calpain 3 (Capn3) is known as the skeletal muscle-specific member of the calpains, a family of intracellular nonlysosomal cysteine proteases. This enigmatic protease has many unique features among the calpain family and, importantly, mutations in Capn3 have been shown to be responsible for limb girdle muscular dystrophy type 2A. Here we demonstrate that the Capn3 activation mechanism is similar to the universal activation of caspases and corresponds to an autolysis within the active site of the protease. We undertook a search for substrates in immature muscle cells, as several lines of evidence suggest that Capn3 is mostly in an inactive state in muscle and needs a signal to be activated. In this model, Capn3 proteolytic activity leads to disruption of the actin cytoskeleton and disorganization of focal adhesions through cleavage of several endogenous proteins. In addition, we show that titin, a previously identified Capn3 partner, and filamin C are further substrates of Capn3. Finally, we report that Capn3 colocalizes in vivo with its substrates at various sites along cytoskeletal structures. We propose that Capn3-mediated cleavage produces an adaptive response of muscle cells to external and/or internal stimuli, establishing Capn3 as a muscle cytoskeleton regulator.
Collapse
Affiliation(s)
- Mathieu Taveau
- Généthon, CNRS UMR-8115, 1 rue de l'Internationale, 91000 Evry, France
| | | | | | | | | | | |
Collapse
|
162
|
Miller MK, Bang ML, Witt CC, Labeit D, Trombitas C, Watanabe K, Granzier H, McElhinny AS, Gregorio CC, Labeit S. The Muscle Ankyrin Repeat Proteins: CARP, ankrd2/Arpp and DARP as a Family of Titin Filament-based Stress Response Molecules. J Mol Biol 2003; 333:951-64. [PMID: 14583192 DOI: 10.1016/j.jmb.2003.09.012] [Citation(s) in RCA: 273] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CARP, ankrd-2/Arpp, and DARP, are three members of a conserved gene family, referred to here as MARPs (muscle ankyrin repeat proteins). The expression of MARPs is induced upon injury and hypertrophy (CARP), stretch or denervation (ankrd2/Arpp), and during recovery following starvation (DARP), suggesting that they are involved in muscle stress response pathways. Here, we show that MARP family members contain within their ankyrin repeat region a binding site for the myofibrillar elastic protein titin. Within the myofibril, MARPs, myopalladin, and the calpain protease p94 appear to be components of a titin N2A-based signaling complex. Ultrastructural studies demonstrated that all three endogenous MARP proteins co-localize with I-band titin N2A epitopes in adult heart muscle tissues. In cultured fetal rat cardiac myocytes, passive stretch induced differential distribution patterns of CARP and DARP: staining for both proteins was increased in the nucleus and at the I-band region of myofibrils, while DARP staining also increased at intercalated discs. We speculate that the myofibrillar MARPs are regulated by stretch, and that this links titin-N2A-based myofibrillar stress/strain signals to a MARP-based regulation of muscle gene expression.
Collapse
Affiliation(s)
- Melanie K Miller
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Ono Y, Kakinuma K, Torii F, Irie A, Nakagawa K, Labeit S, Abe K, Suzuki K, Sorimachi H. Possible regulation of the conventional calpain system by skeletal muscle-specific calpain, p94/calpain 3. J Biol Chem 2003; 279:2761-71. [PMID: 14594950 DOI: 10.1074/jbc.m308789200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p94 (also called calpain 3) is the skeletal muscle-specific calpain and is considered to be a "modulator protease" in various cellular processes. Analysis of p94 at the protein level is an urgent issue because the loss of p94 protease activity causes limb-girdle muscular dystrophy type 2A. In this study, we enzymatically characterized one alternatively spliced variant of p94, p94:exons 6(-)15(-)16(-) (p94delta), which lacks two of the p94-specific insertion sequences. In contrast to p94, which has hardly been studied enzymatically due to its rapid, thorough, and apparently Ca(2+)-independent autolytic activity, p94delta was stably expressed in COS and insect cells. p94delta showed Ca(2+)-dependent caseinolytic and autolytic activities and an inhibitor spectrum similar to those of the conventional calpains. However, calpastatin did not inhibit p94delta and is a substrate for p94delta, which is consistent with the properties of p94, presenting p94 as a possible regulator of the conventional calpain system. We also established a semi-quantitative fluorescence resonance energy transfer assay using the calpastatin sequence specifically to measure p94 activity. This method detects the activity of COS-expressed p94 and p94delta, suggesting that it has potential to evaluate p94 activity in vivo and in the diagnosis of limb-girdle muscular dystrophy type 2A.
Collapse
Affiliation(s)
- Yasuko Ono
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Guyon JR, Kudryashova E, Potts A, Dalkilic I, Brosius MA, Thompson TG, Beckmann JS, Kunkel LM, Spencer MJ. Calpain 3 cleaves filamin C and regulates its ability to interact with ?- and ?-sarcoglycans. Muscle Nerve 2003; 28:472-83. [PMID: 14506720 DOI: 10.1002/mus.10465] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Calpain 3 (C3) is the only muscle-specific member of the calcium-dependent protease family. Although neither its physiological function nor its in vivo substrates are known, C3 must be an important protein for normal muscle function as mutations in the C3 gene result in limb-girdle muscular dystrophy type 2A. Previous reports have shown that the ubiquitous calpains (mu and m) proteolyze filamins in nonmuscle cells. This observation suggests that the muscle-specific filamin C (FLNC) is a good candidate substrate for C3. Binding studies using recombinant proteins establish that recombinant C3 and native FLNC can interact. When these two proteins are translated in vitro and incubated together, C3 cleaves the C-terminal portion of FLNC. Cleavage is specific as C3 fails to cleave FLNC lacking its C-terminal hinge and putative dimerization domains. Cotransfection experiments in COS-7 cells confirm that C3 can cleave the C-terminus of FLNC in live cells. The C-terminus of FLNC has been shown to bind the cytoplasmic domains of both delta- and gamma-sarcoglycan. Removal of the last 127 amino acids from FLNC, a protein that mimics FLNC after C3 cleavage, abolishes this interaction with the sarcoglycans. These studies confirm that C3 can cleave FLNC in vitro and suggest that FLNC may be an in vivo substrate for C3, functioning to regulate protein-protein interactions with the sarcoglycans. Thus, calpain-mediated remodeling of cytoskeletal-membrane interactions, such as those that occur during myoblast fusion and muscle repair, may involve regulation of FLNC-sarcoglycan interactions.
Collapse
Affiliation(s)
- Jeffrey R Guyon
- Howard Hughes Medical Institute at Children's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Granzier H, Labeit D, Wu Y, Labeit S. Titin as a modular spring: emerging mechanisms for elasticity control by titin in cardiac physiology and pathophysiology. J Muscle Res Cell Motil 2003; 23:457-71. [PMID: 12785097 DOI: 10.1023/a:1023458406346] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Titin is a giant elastic protein that functions as a molecular spring that develops passive muscle stiffness. Here we discuss the molecular basis of titin's extensibility, how titin's contribution to passive muscle stiffness may be adjusted and how adjustment of titin's stiffness may influence muscle contraction. We also focus on ligands that link titin to membrane channel activity, protein turnover and gene expression.
Collapse
Affiliation(s)
- Henk Granzier
- Department VCAPP, Washington State University, Pullman, WA 99164-6520, USA.
| | | | | | | |
Collapse
|
166
|
Kimura E, Abe K, Suzuki K, Sorimachi H. Heterogeneous nuclear ribonucleoprotein K interacts with and is proteolyzed by calpain in vivo. Biosci Biotechnol Biochem 2003; 67:1786-96. [PMID: 12951515 DOI: 10.1271/bbb.67.1786] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Calpain is a cytosolic "modulator protease" that modulates cellular functions in response to Ca2+. To identify in vivo substrates of calpain, yeast two-hybrid screening was done using the 5-EF-hand (penta-EF-hand; PEF) domain of the micro-calpain large subunit (domain IV), since several possible in vivo substrates for calpain have been previously reported to bind to the 5-EF-hand domains. Other than the regulatory subunit of calpain, which binds to the domain IV, heterogeneous nuclear ribonucleoproteins (hnRNP) K and R were identified, and shown to be proteolyzed by micro-calpain in vitro. When expressed in COS7 cells, hnRNP K and micro-calpain co-localized in the cytosol, and Ca2+-ionophore stimulation of the cells resulted in proteolysis of hnRNP K, indicating that hnRNP K is an in vivo substrate for calpain. Now, hnRNP K is considered to function as a scaffold protein for its binding proteins, such as PKCdelta and C/EBPbeta, which were reported to be calpain substrates, suggesting that hnRNP-K is a scaffold for calpain to proteolyze these proteins.
Collapse
Affiliation(s)
- Eiichi Kimura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
167
|
Abstract
The calpain system originally comprised three molecules: two Ca2+-dependent proteases, mu-calpain and m-calpain, and a third polypeptide, calpastatin, whose only known function is to inhibit the two calpains. Both mu- and m-calpain are heterodimers containing an identical 28-kDa subunit and an 80-kDa subunit that shares 55-65% sequence homology between the two proteases. The crystallographic structure of m-calpain reveals six "domains" in the 80-kDa subunit: 1). a 19-amino acid NH2-terminal sequence; 2). and 3). two domains that constitute the active site, IIa and IIb; 4). domain III; 5). an 18-amino acid extended sequence linking domain III to domain IV; and 6). domain IV, which resembles the penta EF-hand family of polypeptides. The single calpastatin gene can produce eight or more calpastatin polypeptides ranging from 17 to 85 kDa by use of different promoters and alternative splicing events. The physiological significance of these different calpastatins is unclear, although all bind to three different places on the calpain molecule; binding to at least two of the sites is Ca2+ dependent. Since 1989, cDNA cloning has identified 12 additional mRNAs in mammals that encode polypeptides homologous to domains IIa and IIb of the 80-kDa subunit of mu- and m-calpain, and calpain-like mRNAs have been identified in other organisms. The molecules encoded by these mRNAs have not been isolated, so little is known about their properties. How calpain activity is regulated in cells is still unclear, but the calpains ostensibly participate in a variety of cellular processes including remodeling of cytoskeletal/membrane attachments, different signal transduction pathways, and apoptosis. Deregulated calpain activity following loss of Ca2+ homeostasis results in tissue damage in response to events such as myocardial infarcts, stroke, and brain trauma.
Collapse
Affiliation(s)
- Darrell E Goll
- Muscle Biology Group, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | | | |
Collapse
|
168
|
Sorimachi H, Kawabata Y. [Calpain and pathology in view of structure-function relationships]. Nihon Yakurigaku Zasshi 2003; 122:21-9. [PMID: 12843569 DOI: 10.1254/fpj.122.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Calpain, a Ca(2+)-requiring cytoplasmic cysteine protease, plays indispensable roles in various cellular functions such as signal transduction, cell growth and differentiation, apoptosis, necrosis, and so on. Although most of the detailed physiological functions of calpains have not yet been elucidated, the importance of calpain is obvious from the increasing numbers of papers describing relationships between human disease states (such as Alzheimer's disease, cataract, and muscular dystrophies) and malfunction of calpain. One of the recent remarkable topics of calpain is that a single nucleotide polymorphism of CAPN10, the gene for calpain 10, is related to type 2 diabetes. However, physiological functions of calpain 10 and its relation to diabetes are still unclear. Among 14 human calpain genes, mutations in CAPN3, the gene for p94/calpain 3a and Lp82/calpain 3b, are the only example that genetically connects the calpain gene and human disease, in this case, limb-girdle muscular dystrophy type 2A (LGMD2A). p94 has unique characteristics such as apparent Ca(2+)-independent activation and very rapid autolytic activity, which are dependent on p94-specific regions, NS, IS1, and IS2. Based on the 3D structures of micro - and m-calpain, molecular functions of p94 in relation to LGMD2A are discussed, with the hope of providing us with some clues to understand calpain functions and its relationships to human diseases.
Collapse
Affiliation(s)
- Hiroyuki Sorimachi
- Laboratory of Biological Function, Dept. of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan.
| | | |
Collapse
|
169
|
Hansen C, Tarabykina S, la Cour JM, Lollike K, Berchtold MW. The PEF family proteins sorcin and grancalcin interact in vivo and in vitro. FEBS Lett 2003; 545:151-4. [PMID: 12804766 DOI: 10.1016/s0014-5793(03)00518-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The penta-EF hand (PEF) family of calcium binding proteins includes grancalcin, peflin, sorcin, calpain large and small subunits as well as ALG-2. Systematic testing of the heterodimerization abilities of the PEF proteins using the yeast two-hybrid and glutathione S-transferase pull-down assays revealed the new finding that grancalcin interacts strongly with sorcin. In addition, sorcin and grancalcin can be co-immunoprecipitated from lysates of human umbilical vein endothelial cells. Our results indicate that heterodimerization, in addition to differential interactions with target proteins, might be a way to regulate and fine tune processes mediated by calcium binding proteins of the penta-EF hand type.
Collapse
Affiliation(s)
- Christian Hansen
- Institute of Molecular Biology, Department of Molecular Cell Biology, University of Copenhagen, Oester Farimagsgade 2A, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
170
|
Ray SK, Hogan EL, Banik NL. Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2003; 42:169-85. [PMID: 12738057 DOI: 10.1016/s0165-0173(03)00152-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Spinal cord injury (SCI) evokes an increase in intracellular free Ca(2+) level resulting in activation of calpain, a Ca(2+)-dependent cysteine protease, which cleaves many cytoskeletal and myelin proteins. Calpain is widely expressed in the central nervous system (CNS) and regulated by calpastatin, an endogenous calpain-specific inhibitor. Calpastatin degraded by overactivation of calpain after SCI may lose its regulatory efficiency. Evidence accumulated over the years indicates that uncontrolled calpain activity mediates the degradation of many cytoskeletal and membrane proteins in the course of neuronal death and contributes to the pathophysiology of SCI. Cleavage of the key cytoskeletal and membrane proteins by calpain is an irreversible process that perturbs the integrity and stability of CNS cells leading to cell death. Calpain in conjunction with caspases, most notably caspase-3, can cause apoptosis of the CNS cells following trauma. Aberrant Ca(2+) homeostasis following SCI inevitably activates calpain, which has been shown to play a crucial role in the pathophysiology of SCI. Therefore, calpain appears to be a potential therapeutic target in SCI. Substantial research effort has been focused upon the development of highly specific inhibitors of calpain and caspase-3 for therapeutic applications. Administration of cell permeable and specific inhibitors of calpain and caspase-3 in experimental animal models of SCI has provided significant neuroprotection, raising the hope that humans suffering from SCI may be treated with these inhibitors in the near future.
Collapse
Affiliation(s)
- Swapan K Ray
- Department of Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 309, P.O. Box 250606, Charleston, SC 29425, USA
| | | | | |
Collapse
|
171
|
König N, Raynaud F, Feane H, Durand M, Mestre-Francès N, Rossel M, Ouali A, Benyamin Y. Calpain 3 is expressed in astrocytes of rat and Microcebus brain. J Chem Neuroanat 2003; 25:129-36. [PMID: 12663060 DOI: 10.1016/s0891-0618(02)00102-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The calcium-dependent protease calpain is involved in numerous functions, including the control of cell survival, plasticity and motility. Whereas the isoforms calpain 1 and 2 have been described as ubiquitously expressed enzymes, calpain 3 has been called "muscle-specific", although trace amounts of calpain 3 mRNA have been detected by Northern blot in brain homogenates. In this study, we validated antibodies raised either against the peptides that were specific for a given isoform or the peptides present in all the three isoforms. We then used the anti-calpain 3 antibodies together with antibodies directed against cell-type-specific proteins to determine by double- and triple-labelling immunocytochemistry if the protease is expressed in specific cell populations of rat as well as lesser mouse lemur (Microcebus murinus) brain. Calpain 3 was almost exclusively found in cells displaying astrocyte morphology. These cells, most of which co-expressed glial fibrillary acidic protein, were particularly numerous close to the striatal subventricular zone (where numerous neurones forming the rostral migratory stream (RMS) towards the olfactory bulbs are generated) and the RMS itself. Other immunoreactive cells were found close to the pial surface of the forebrain, in the corpus callosum and in the dentate gyrus. Calpain 3 may be involved in astrocyte plasticity and/or motility.
Collapse
Affiliation(s)
- Norbert König
- EPHE Biologie Cellulaire Quantitative, INSERM EMI 12/Univ. Montpellier 2, CC 103, Place E. Bataillon, 34095 Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Bushby KMD, Beckmann JS. The 105th ENMC sponsored workshop: pathogenesis in the non-sarcoglycan limb-girdle muscular dystrophies, Naarden, April 12-14, 2002. Neuromuscul Disord 2003; 13:80-90. [PMID: 12467737 DOI: 10.1016/s0960-8966(02)00183-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- K M D Bushby
- Institute of Human Genetics, International Centre for Life, Central Parkway, NE1 3BZ, Newcastle upon Tyne, UK.
| | | |
Collapse
|
173
|
Rey MA, Davies PL. The protease core of the muscle-specific calpain, p94, undergoes Ca2+-dependent intramolecular autolysis. FEBS Lett 2002; 532:401-6. [PMID: 12482600 DOI: 10.1016/s0014-5793(02)03722-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Limb girdle muscular dystrophy type 2A is linked to a skeletal muscle-specific calpain isoform known as p94. Isolation of the intact 94-kDa enzyme has been difficult to achieve due to its rapid autolysis, and uncertainty has arisen over its Ca2+-dependence for activity. We have expressed a C-terminally truncated form of the enzyme that comprises the protease core (domains I and II) along with its insertion sequence, IS1, and N-terminal leader sequence, NS. This 47-kDa p94I-II mini-calpain was stable during purification. In the presence of Ca2+, p94I-II cleaved itself within the NS and IS1 sequences. Mapping of the autolysis sites showed that NS and IS1 have the potential to be removed without damage to the protease core. Ca2+-dependent autolysis must be an intramolecular event because the inactive p94I-II C129S mutant was not cleaved by incubation with wild-type p94I-II. In addition, the rate of autolysis of p94I-II was independent of the concentration of the enzyme.
Collapse
Affiliation(s)
- Michelle A Rey
- Department of Biochemistry and Protein Engineering Network of Centres of Excellence Queen's University, K7L 3N6, Kingston, ON, Canada
| | | |
Collapse
|
174
|
Hackman P, Vihola A, Haravuori H, Marchand S, Sarparanta J, de Seze J, Labeit S, Witt C, Peltonen L, Richard I, Udd B. Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am J Hum Genet 2002; 71:492-500. [PMID: 12145747 PMCID: PMC379188 DOI: 10.1086/342380] [Citation(s) in RCA: 311] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2002] [Accepted: 06/10/2002] [Indexed: 11/03/2022] Open
Abstract
Tibial muscular dystrophy (TMD) is an autosomal dominant late-onset distal myopathy linked to chromosome 2q31. The linked region includes the giant TTN gene, which encodes the central sarcomeric protein, titin. We have previously shown a secondary calpain-3 defect to be associated with TMD, which further underscored that titin is the candidate. We now report the first mutations in TTN to cause a human skeletal-muscle disease, TMD. In Mex6, the last exon of TTN, a unique 11-bp deletion/insertion mutation, changing four amino acid residues, completely cosegregated with all tested 81 Finnish patients with TMD in 12 unrelated families. The mutation was not found in 216 Finnish control samples. In a French family with TMD, a Leu-->Pro mutation at position 293,357 in Mex6 was discovered. Mex6 is adjacent to the known calpain-3 binding site Mex5 of M-line titin. Immunohistochemical analysis using two exon-specific antibodies directed to the M-line region of titin demonstrated the specific loss of carboxy-terminal titin epitopes in the TMD muscle samples that we studied, thus implicating a functional defect of the M-line titin in the genesis of the TMD disease phenotype.
Collapse
Affiliation(s)
- Peter Hackman
- Department of Medical Genetics and The Folkhälsan Institute of Genetics, University of Helsinki, and Department of Molecular Medicine, National Public Health Institute, Biomedicum Helsinki, Helsinki; Department of Neurology, Vasa Central Hospital, Vasa, Finland; Généthon, Évry, France; Department of Neurology, Centre Hospitalier Regional Universitaire de Lille, Lille, France; Department of Anesthesiology, Klinikum Mannheim, Mannheim, Germany; and Department of Human Genetics, University of California, Los Angeles
| | - Anna Vihola
- Department of Medical Genetics and The Folkhälsan Institute of Genetics, University of Helsinki, and Department of Molecular Medicine, National Public Health Institute, Biomedicum Helsinki, Helsinki; Department of Neurology, Vasa Central Hospital, Vasa, Finland; Généthon, Évry, France; Department of Neurology, Centre Hospitalier Regional Universitaire de Lille, Lille, France; Department of Anesthesiology, Klinikum Mannheim, Mannheim, Germany; and Department of Human Genetics, University of California, Los Angeles
| | - Henna Haravuori
- Department of Medical Genetics and The Folkhälsan Institute of Genetics, University of Helsinki, and Department of Molecular Medicine, National Public Health Institute, Biomedicum Helsinki, Helsinki; Department of Neurology, Vasa Central Hospital, Vasa, Finland; Généthon, Évry, France; Department of Neurology, Centre Hospitalier Regional Universitaire de Lille, Lille, France; Department of Anesthesiology, Klinikum Mannheim, Mannheim, Germany; and Department of Human Genetics, University of California, Los Angeles
| | - Sylvie Marchand
- Department of Medical Genetics and The Folkhälsan Institute of Genetics, University of Helsinki, and Department of Molecular Medicine, National Public Health Institute, Biomedicum Helsinki, Helsinki; Department of Neurology, Vasa Central Hospital, Vasa, Finland; Généthon, Évry, France; Department of Neurology, Centre Hospitalier Regional Universitaire de Lille, Lille, France; Department of Anesthesiology, Klinikum Mannheim, Mannheim, Germany; and Department of Human Genetics, University of California, Los Angeles
| | - Jaakko Sarparanta
- Department of Medical Genetics and The Folkhälsan Institute of Genetics, University of Helsinki, and Department of Molecular Medicine, National Public Health Institute, Biomedicum Helsinki, Helsinki; Department of Neurology, Vasa Central Hospital, Vasa, Finland; Généthon, Évry, France; Department of Neurology, Centre Hospitalier Regional Universitaire de Lille, Lille, France; Department of Anesthesiology, Klinikum Mannheim, Mannheim, Germany; and Department of Human Genetics, University of California, Los Angeles
| | - Jerome de Seze
- Department of Medical Genetics and The Folkhälsan Institute of Genetics, University of Helsinki, and Department of Molecular Medicine, National Public Health Institute, Biomedicum Helsinki, Helsinki; Department of Neurology, Vasa Central Hospital, Vasa, Finland; Généthon, Évry, France; Department of Neurology, Centre Hospitalier Regional Universitaire de Lille, Lille, France; Department of Anesthesiology, Klinikum Mannheim, Mannheim, Germany; and Department of Human Genetics, University of California, Los Angeles
| | - Siegfried Labeit
- Department of Medical Genetics and The Folkhälsan Institute of Genetics, University of Helsinki, and Department of Molecular Medicine, National Public Health Institute, Biomedicum Helsinki, Helsinki; Department of Neurology, Vasa Central Hospital, Vasa, Finland; Généthon, Évry, France; Department of Neurology, Centre Hospitalier Regional Universitaire de Lille, Lille, France; Department of Anesthesiology, Klinikum Mannheim, Mannheim, Germany; and Department of Human Genetics, University of California, Los Angeles
| | - Christian Witt
- Department of Medical Genetics and The Folkhälsan Institute of Genetics, University of Helsinki, and Department of Molecular Medicine, National Public Health Institute, Biomedicum Helsinki, Helsinki; Department of Neurology, Vasa Central Hospital, Vasa, Finland; Généthon, Évry, France; Department of Neurology, Centre Hospitalier Regional Universitaire de Lille, Lille, France; Department of Anesthesiology, Klinikum Mannheim, Mannheim, Germany; and Department of Human Genetics, University of California, Los Angeles
| | - Leena Peltonen
- Department of Medical Genetics and The Folkhälsan Institute of Genetics, University of Helsinki, and Department of Molecular Medicine, National Public Health Institute, Biomedicum Helsinki, Helsinki; Department of Neurology, Vasa Central Hospital, Vasa, Finland; Généthon, Évry, France; Department of Neurology, Centre Hospitalier Regional Universitaire de Lille, Lille, France; Department of Anesthesiology, Klinikum Mannheim, Mannheim, Germany; and Department of Human Genetics, University of California, Los Angeles
| | - Isabelle Richard
- Department of Medical Genetics and The Folkhälsan Institute of Genetics, University of Helsinki, and Department of Molecular Medicine, National Public Health Institute, Biomedicum Helsinki, Helsinki; Department of Neurology, Vasa Central Hospital, Vasa, Finland; Généthon, Évry, France; Department of Neurology, Centre Hospitalier Regional Universitaire de Lille, Lille, France; Department of Anesthesiology, Klinikum Mannheim, Mannheim, Germany; and Department of Human Genetics, University of California, Los Angeles
| | - Bjarne Udd
- Department of Medical Genetics and The Folkhälsan Institute of Genetics, University of Helsinki, and Department of Molecular Medicine, National Public Health Institute, Biomedicum Helsinki, Helsinki; Department of Neurology, Vasa Central Hospital, Vasa, Finland; Généthon, Évry, France; Department of Neurology, Centre Hospitalier Regional Universitaire de Lille, Lille, France; Department of Anesthesiology, Klinikum Mannheim, Mannheim, Germany; and Department of Human Genetics, University of California, Los Angeles
| |
Collapse
|
175
|
Dargelos E, Moyen C, Dedieu S, Veschambre P, Poussard S, Vuillier-Devillers K, Brustis JJ, Cottin P. Development of an inducible system to assess p94 (CAPN3) function in cultured muscle cells. J Biotechnol 2002; 96:271-9. [PMID: 12044555 DOI: 10.1016/s0168-1656(02)00052-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
p94 belongs to the calpain family of enzymes, also called calcium-activated neutral proteases and is mainly expressed in the skeletal muscle. Mutations affecting the gene coding for p94 are responsible for a myopathy syndrome called Limb Girdle Muscular Dystrophy type 2A (LGMD2A). Although the activity of p94 seems necessary for muscle function, the biological role of the enzyme is still unknown. The goal of this study was to develop a muscle cell line in which the expression level of p94 can be regulated, by an inducible way. In this study, a biological system was developed which allowed mimicking, in vitro, of part of the events occurring in patients (i.e. a decrease of p94 activity). The first results indicate that the decrease in p94 activity results in a significant increase of myogenin level, a high specific transcription factor involved in myoblast fusion. This muscle specific inducible system is an interesting biological tool to assess specifically p94 function(s) in cultured muscle cells. According to the present results, p94 seems at least to be involved in a myogenesis regulation pathway via its action on certain proteins belonging to the myogenic regulator factor family.
Collapse
Affiliation(s)
- Elise Dargelos
- Laboratoire de Biochimie et Technologie des Aliments, ISTAB, USC-INRA, Université Bordeaux I, Avenue des Facultés, 33405 Talence Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Spencer MJ, Guyon JR, Sorimachi H, Potts A, Richard I, Herasse M, Chamberlain J, Dalkilic I, Kunkel LM, Beckmann JS. Stable expression of calpain 3 from a muscle transgene in vivo: immature muscle in transgenic mice suggests a role for calpain 3 in muscle maturation. Proc Natl Acad Sci U S A 2002; 99:8874-9. [PMID: 12084932 PMCID: PMC124391 DOI: 10.1073/pnas.132269299] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2002] [Indexed: 11/18/2022] Open
Abstract
Limb-girdle muscular dystrophy, type 2A (LGMD 2A), is an autosomal recessive disorder that causes late-onset muscle-wasting, and is due to mutations in the muscle-specific protease calpain 3 (C3). Although LGMD 2A would be a feasible candidate for gene therapy, the reported instability of C3 in vitro raised questions about the potential of obtaining a stable, high-level expression of C3 from a transgene in vivo. We have generated transgenic (Tg) mice with muscle-specific overexpression of full-length C3 or C3 isoforms, which arise from alternative splicing, to test whether stable expression of C3 transgenes could occur in vivo. Unexpectedly, we found that full-length C3 can be overexpressed at high levels in vivo, without toxicity. In addition, we found that Tg expressing C3 lacking exon 6, an isoform expressed embryonically, have muscles that resemble regenerating or developing muscle. Tg expressing C3 lacking exon 15 shared this morphology in the soleus, but not other muscles. Assays of inflammation or muscle membrane damage indicated that the Tg muscles were not degenerative, suggesting that the immature muscle resulted from a developmental block rather than degeneration and regeneration. These studies show that C3 can be expressed stably in vivo from a transgene, and indicate that alternatively spliced C3 isoforms should not be used in gene-therapy applications because they impair proper muscle development.
Collapse
Affiliation(s)
- M J Spencer
- Department of Pediatrics, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Fukiage C, Nakajima E, Ma H, Azuma M, Shearer TR. Characterization and regulation of lens-specific calpain Lp82. J Biol Chem 2002; 277:20678-85. [PMID: 11904300 DOI: 10.1074/jbc.m200697200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eye tissues contain splice variants of muscle-preferred p94 (calpain 3), such as lens-specific Lp82 and Lp85, retina-specific Rt88, and cornea-specific Cn94. The purpose of the present experiment was to analyze the activation and regulation of the best characterized p94 splice variant, Lp82. Recombinant rat Lp82 (rLp82) was expressed using the baculovirus system, purified with Ni-NTA affinity and DEAE-ion exchange chromatographies, and characterized by SDS-PAGE, casein zymography, and immunoblotting. After incubation with calcium, rLp82 autolyzed into two major fragments at approximately 60 and 22 kDa. Sequencing of the autolytic fragments showed loss of three amino acids from the N terminus and cleavage near the IS2 region. Also, Lp82 and calpain 2 were found to hydrolyze each other. Calpastatin inhibited calpain 2 activity, but not Lp82. Homology modeling suggested that the lack of inhibition of Lp82 by calpastatin was due to molecular clashes at the unique AX1 region of Lp82. Lp82 also hydrolyzed calpastatin. These results suggested that Lp82 might regulate other calpain activities and cause hydrolysis of substrates such as crystallins during lens cataract formation.
Collapse
Affiliation(s)
- Chiho Fukiage
- Department of Oral Molecular Biology and Ophthalmology, Oregon Health and Science University, Portland, Oregon 97201, USA.
| | | | | | | | | |
Collapse
|
178
|
Abstract
The giant elastic protein titin contains a molecular spring segment that underlies the majority of myocardial passive stiffness. The mechanical characteristics of this spring may be tuned to match changing mechanical demands placed on muscle, using mechanisms that operate on different time scales and that include post-transcriptional and post-translational processes. Recent work also suggests that titin performs roles that go beyond passive stiffness generation. In contracting myocardium, titin may modulate actomyosin interaction by a titin-based alteration of the distance between myosin heads and actin. Furthermore, novel ligands have been identified that link titin to membrane channels, protein turnover and gene expression. This review highlights that titin is a versatile and adjustable spring with a range of important functions in passive and contracting myocardium.
Collapse
Affiliation(s)
- Henk Granzier
- Department VCAPP, Washington State University, Pullman, WA 99164-6520, USA.
| | | |
Collapse
|
179
|
Abstract
Muscular dystrophies are associated with mutations in genes encoding several classes of proteins. These range from extracellular matrix and integral membrane proteins to cytoskeletal proteins, but also include a heterogeneous group of proteins including proteases, nuclear proteins, and signalling molecules. Muscular dystrophy phenotypes have also become evident in studies on various knockout mice defective in proteins not previously considered or known to be mutated in muscular dystrophies. Some unifying themes are beginning to emerge from all of these data. This review will consider recent advances in our understanding of the molecules involved and bring together data that suggest a role for the cytoskeleton and cell adhesion in muscular dystrophies.
Collapse
Affiliation(s)
- Heather J Spence
- Institute of Biological and Life Sciences, Glasgow Cell Biology Group, Scotland
| | | | | |
Collapse
|
180
|
Schröder R, Reimann J, Iakovenko A, Mues A, Bönnemann CG, Matten J, Gautel M. Early and selective disappearance of telethonin protein from the sarcomere in neurogenic atrophy. J Muscle Res Cell Motil 2002; 22:259-64. [PMID: 11763198 DOI: 10.1023/a:1012242011109] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mutations of the human telethonin gene have recently been shown to cause limb girdle muscular dystrophy type 2G in three Brazilian families. The mRNA has been shown to be dynamically regulated in animals, however, the fate of the protein in human muscle is unknown. In order to assess the expression of telethonin in more frequently encountered myopathological conditions we generated and characterized a rabbit antiserum raised against the C-terminal end of telethonin by immunoblotting and immunogold EM. Indirect immunofluorescence analysis of a wide variety of neuromuscular disorders including dystrophinopathies, metabolic myopathies, denervation disorders, congenital and inflammatory myopathies revealed that the characteristic Z-band staining of telethonin was preserved in all disease entities included in our study. However, a reduced telethonin immunoreactivity was observed in up to 10% of type II fibers in 10 cases of neurogenic atrophy. A decreased telethonin staining was more frequently observed in early stages of fiber atrophy than in type II fibers displaying normal or highly atrophic fiber diameters. Hence, not only the telethonin transcript is rapidly downregulated in denervated muscle but the protein itself undergoes dynamic changes while its known sarcomeric binding partner titin remains unaltered. Beyond its role as a static component of Z-bands, these findings indicate that telethonin protein levels seems to be at least in part regulated by neuronal activity and is thus linked to the dynamic control of myofibrillogenesis and muscle turnover in human skeletal muscle.
Collapse
Affiliation(s)
- R Schröder
- Department of Neurology, University of Bonn, Germany.
| | | | | | | | | | | | | |
Collapse
|
181
|
Itoh-Satoh M, Hayashi T, Nishi H, Koga Y, Arimura T, Koyanagi T, Takahashi M, Hohda S, Ueda K, Nouchi T, Hiroe M, Marumo F, Imaizumi T, Yasunami M, Kimura A. Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem Biophys Res Commun 2002; 291:385-93. [PMID: 11846417 DOI: 10.1006/bbrc.2002.6448] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dilated cardiomyopathy (DCM) is a heterogeneous cardiac disease characterized by ventricular dilatation and systolic dysfunction. Recent genetic studies have revealed that mutations in genes for cardiac sarcomere components lead to DCM. The cardiac sarcomere consists of thick and thin filaments and a giant protein, titin. Because one of the loci of familial DCM was mapped to the region of the titin gene, we searched for titin mutations in the patients and identified four possible disease-associated mutations. Two mutations, Val54Met and Ala743Val, were found in the Z-line region of titin and decreased binding affinities of titin to Z-line proteins T-cap/telethonin and alpha-actinin, respectively, in yeast two-hybrid assays. The other two mutations were found in the cardiac-specific N2-B region of titin and one of them was a nonsense mutation, Glu4053ter, presumably encoding for a truncated nonfunctional molecule. These observations suggest that titin mutations may cause DCM in a subset of the patients.
Collapse
Affiliation(s)
- Manatsu Itoh-Satoh
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Garvey SM, Rajan C, Lerner AP, Frankel WN, Cox GA. The muscular dystrophy with myositis (mdm) mouse mutation disrupts a skeletal muscle-specific domain of titin. Genomics 2002; 79:146-9. [PMID: 11829483 DOI: 10.1006/geno.2002.6685] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscular dystrophy with myositis (mdm) is a recessive mouse mutation that causes severe and progressive muscular degeneration. Here we report the identification of the mdm mutation as a complex rearrangement that includes a deletion and a LINE insertion in the titin (Ttn) gene. Mutant allele-specific splicing results in the deletion of 83 amino acids from the N2A region of TTN, a domain thought to bind calpain-3 (CAPN3) the product of the human limb-girdle muscular dystrophy type 2A (LGMD2A) gene. The Ttn(mdm) mutant mouse may serve as a model for human tibial muscular dystrophy, which maps to the TTN locus at 2q31 and shows a secondary reduction of CAPN3 similar to that observed in mdm skeletal muscle. This is the first demonstration that a mutation in Ttn is associated with muscular dystrophy and provides a novel animal model to test for functional interactions between TTN and CAPN3.
Collapse
Affiliation(s)
- Sean M Garvey
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA
| | | | | | | | | |
Collapse
|
183
|
Gerull B, Gramlich M, Atherton J, McNabb M, Trombitás K, Sasse-Klaassen S, Seidman JG, Seidman C, Granzier H, Labeit S, Frenneaux M, Thierfelder L. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat Genet 2002; 30:201-4. [PMID: 11788824 DOI: 10.1038/ng815] [Citation(s) in RCA: 423] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Congestive heart failure (CHF) can result from various disease states with inadequate cardiac output. CHF due to dilated cardiomyopathy (DCM) is a familial disease in 20-30% of cases and is associated with mutations in genes encoding cytoskeletal, contractile or inner-nuclear membrane proteins. We show that mutations in the gene encoding giant-muscle filament titin (TTN) cause autosomal dominant DCM linked to chromosome 2q31 (CMD1G; MIM 604145). Titin molecules extend from sarcomeric Z-discs to M-lines, provide an extensible scaffold for the contractile machinery and are crucial for myofibrillar elasticity and integrity. In a large DCM kindred, a segregating 2-bp insertion mutation in TTN exon 326 causes a frameshift, truncating A-band titin. The truncated protein of approximately 2 mD is expressed in skeletal muscle, but western blot studies with epitope-specific anti-titin antibodies suggest that the mutant protein is truncated to a 1.14-mD subfragment by site-specific cleavage. In another large family with DCM linked to CMD1G, a TTN missense mutation (Trp930Arg) is predicted to disrupt a highly conserved hydrophobic core sequence of an immunoglobulin fold located in the Z-disc-I-band transition zone. The identification of TTN mutations in individuals with CMD1G should provide further insights into the pathogenesis of familial forms of CHF and myofibrillar titin turnover.
Collapse
Affiliation(s)
- Brenda Gerull
- Max-Delbrueck Center for Molecular Medicine, D-13092 Berlin-Buch, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Tatsumi R, Maeda K, Hattori A, Takahashi K. Calcium binding to an elastic portion of connectin/titin filaments. J Muscle Res Cell Motil 2002; 22:149-62. [PMID: 11519738 DOI: 10.1023/a:1010349416723] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alpha-connectin/titin-1 exists as an elastic filament that links a thick filament with the Z-disk, keeping thick filaments centered within the sarcomere during force generation. We have shown that the connectin filament has an affinity for calcium ions and its binding site(s) is restricted to the beta-connectin/titin-2 portion. We now report the localization and the characterization of calcium-binding sites on beta-connectin. Purified beta-connectin was digested by trypsin into 1700- and 400-kDa fragments. which were then subjected to fluorescence calcium-binding assays. The 400-kDa fragment possesses calcium-binding activity; the binding constant was 1.0 x 10(7) M(-1) and the molar ratio of bound calcium ions to the 400-kDa fragment reached a maximum of 12 at a free calcium ion concentration of approximately 1.0 microM. Antibodies against the 400-kDa fragment formed a sharp dense stripe at the boundary of the A and the I bands, indicating that the calcium-binding domain constitutes the N-terminal region of beta-connectin, that is, the elastic portion of connectin filaments. Furthermore, we estimated the N-terminal location of beta-connectin of various origins (n = 26). Myofibrils were treated with a solution containing 0.1 mM CaCl2 and 70 microM leupeptin to split connectin filaments into beta-connectin and a subfragment, and chain weights of these polypeptides were estimated according to their mobility in 2% polyacrylamide slab gels. The subfragment exhibited a similar chain weight of 1200+/-33 kDa (mean+/-SD), while alpha- and beta-connectins were variable in size according to their origin. These results suggest that the apparent length of the 1200-kDa subfragment portion is almost constant in all instances, about 0.34 microm at the slack condition, therefore that the C-terminus of the 1200-kDa subfragment, that is, the N-terminus of the calcium-binding domain, is at the N2 line region of parent filaments in situ. Because the secondary structure of the 400-kDa fragment was changed by the binding of calcium ions, connectin filaments could be expected to alter their elasticity during the contraction-relaxation cycle of skeletal muscle.
Collapse
Affiliation(s)
- R Tatsumi
- Department of Animal Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan.
| | | | | | | |
Collapse
|
185
|
Carragher NO, Westhoff MA, Riley D, Potter DA, Dutt P, Elce JS, Greer PA, Frame MC. v-Src-induced modulation of the calpain-calpastatin proteolytic system regulates transformation. Mol Cell Biol 2002; 22:257-69. [PMID: 11739739 PMCID: PMC134206 DOI: 10.1128/mcb.22.1.257-269.2002] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
v-Src-induced oncogenic transformation is characterized by alterations in cell morphology, adhesion, motility, survival, and proliferation. To further elucidate some of the signaling pathways downstream of v-Src that are responsible for the transformed cell phenotype, we have investigated the role that the calpain-calpastatin proteolytic system plays during oncogenic transformation induced by v-Src. We recently reported that v-Src-induced transformation of chicken embryo fibroblasts is accompanied by calpain-mediated proteolytic cleavage of the focal adhesion kinase (FAK) and disassembly of the focal adhesion complex. In this study we have characterized a positive feedback loop whereby activation of v-Src increases protein synthesis of calpain II, resulting in degradation of its endogenous inhibitor calpastatin. Reconstitution of calpastatin levels by overexpression of exogenous calpastatin suppresses proteolytic cleavage of FAK, morphological transformation, and anchorage-independent growth. Furthermore, calpastatin overexpression represses progression of v-Src-transformed cells through the G(1) stage of the cell cycle, which correlates with decreased pRb phosphorylation and decreased levels of cyclins A and D and cyclin-dependent kinase 2. Calpain 4 knockout fibroblasts also exhibit impaired v-Src-induced morphological transformation and anchorage-independent growth. Thus, modulation of the calpain-calpastatin proteolytic system plays an important role in focal adhesion disassembly, morphological transformation, and cell cycle progression during v-Src-induced cell transformation.
Collapse
Affiliation(s)
- N O Carragher
- The Beatson Institute for Cancer Research, Cancer Research Campaign Beatson Laboratories, Glasgow, Scotland, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Purintrapiban J, Wang M, Forsberg NE. Identification of glycogen phosphorylase and creatine kinase as calpain substrates in skeletal muscle. Int J Biochem Cell Biol 2001; 33:531-40. [PMID: 11331208 DOI: 10.1016/s1357-2725(01)00012-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The goal of this study was to identify calpain substrates in muscle cells. Our hypothesis was that the yeast two-hybrid method could be used to identify novel calpain substrates. To accomplish this, native mu- and m-calpains, as well as a variety of calpain DNA fragments, were expressed in yeast cells and used to screen for binding proteins in a human skeletal muscle cDNA library. Calpain constructs that were used in the screening process included native mu- and m-calpains, a dominant negative (DN) m-calpain (i.e. active site modified), N-terminal truncated DN m-calpain (i.e. autolyzed DN-m-calpain) and, finally, an N- and C-terminal truncated m-calpain (i.e. autolyzed DN-m-calpain lacking a calcium-binding domain). Yeast cells were transformed using yeast two-hybrid expression vectors containing the different calpain constructs as "baits". Beta-galactosidase activity was assayed as an index of interaction between calpain and its potential target proteins. From this analysis, four clones (Ca2+-ATPase, novel nebulin-related protein (N-RAP), creatine kinase and glycogen phosphorylase) were recovered. Two of these, creatine kinase and glycogen phosphorylase, were selected for further study. In in-vitro assays, calpain was able to partially digest both proteins, suggesting that both creatine kinase and glycogen phosphorylase are natural calpain substrates.
Collapse
Affiliation(s)
- J Purintrapiban
- Department of Animal Sciences, Oregon State University, Corvallis, OR 97331-6702, USA
| | | | | |
Collapse
|
187
|
Haravuori H, Vihola A, Straub V, Auranen M, Richard I, Marchand S, Voit T, Labeit S, Somer H, Peltonen L, Beckmann JS, Udd B. Secondary calpain3 deficiency in 2q-linked muscular dystrophy: titin is the candidate gene. Neurology 2001; 56:869-77. [PMID: 11294923 DOI: 10.1212/wnl.56.7.869] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Tibial muscular dystrophy (TMD), a late-onset dominant distal myopathy, is caused by yet unknown mutations on chromosome 2q, whereas MD with myositis (MDM) is a muscular dystrophy of the mouse, also progressing with age and linked to mouse chromosome 2. For both disorders, linkage studies have implicated titin as a potential candidate gene. METHODS The authors analyzed major candidate regions in the titin gene by sequencing and Southern blot hybridization, and performed titin immunohistochemistry on TMD patient material to identify the underlying mutation. Western blot studies were performed on the known titin ligands in muscle samples of both disorders and controls, and analysis of apoptosis was also performed. RESULTS The authors identified almost complete loss of calpain3, a ligand of titin, in the patient with limb-girdle MD (LGMD) with a homozygous state of TMD haplotype when primary calpain3 gene defect was excluded. Apoptotic myonuclei with altered distribution of transcription factor NF-kB and its inhibitor IkBalpha were encountered in muscle samples of patients with either heterozygous or homozygous TMD haplotype. Similar findings were confirmed in the MDM mouse. CONCLUSIONS These results imply that titin mutations may be responsible for TMD, and that the pathophysiologic pathway following calpain3 deficiency may overlap with LGMD2A. The loss of calpain3 could be a downstream effect of the deficient TMD gene product. The significance of the secondary calpain3 defect for the pathogenesis of TMD was emphasized by similar calpain3 deficiency in the MDM mouse, which is suggested to be a mouse model for TMD. Homozygous mutation at the 2q locus may thus be capable of producing yet another LGMD.
Collapse
Affiliation(s)
- H Haravuori
- Department of Human Molecular Genetics, National Public Health Institute, University of Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Schröder R, van der Ven PF, Warlo I, Schumann H, Fürst DO, Blümcke I, Schmidt MC, Hatzfeld M. p0071, a member of the armadillo multigene family, is a constituent of sarcomeric I-bands in human skeletal muscle. J Muscle Res Cell Motil 2001; 21:577-86. [PMID: 11206135 DOI: 10.1023/a:1026587530656] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
p0071 is a member of the armadillo gene family that is expressed in a wide variety of mammalian tissues and cell types with a prominent cell-cell contact association in epithelial cells. Here, we report the expression and localization patterns of p0071 in differentiating human skeletal muscle cells and in normal and diseased human skeletal muscle tissues. Northern blots revealed expression of p0071 mRNA in adult skeletal muscle tissue. RT-PCR analysis and Western blotting experiments identified two differentially spliced isoforms of p0071. The balance between these isoforms shifted during in vitro differentiation of isolated muscle cells from predominant expression of the short variant to a preponderance of the larger variant from day 6 onwards. Immunolocalization studies in mature skeletal muscle tissue revealed that p0071 is a constituent of myofibrils with a distinct localization at the level of sarcomeric N2-lines. During myofibrillogenesis, p0071 was not detected in non-striated nascent myofibrils, but became apparent shortly after the development of compact Z-discs in early myotubes. Furthermore, we studied the expression of p0071 in a wide variety of neuromuscular disorders by indirect immunofluorescence. Here, the myofibrillar staining of p0071 was preserved in all the disease entities included in our study. Our results provide the first evidence that a member of the armadillo multigene family is a constituent of the contractile apparatus in human skeletal muscle. The localization of p0071 at the level of I-bands and the timepoint of its integration into developing myofibrils suggest a possible role in the organization of thin filaments.
Collapse
Affiliation(s)
- R Schröder
- Department of Neurology, University Hospital Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Ilian MA, Morton JD, Bekhit AE, Roberts N, Palmer B, Sorimachi H, Bickerstaffe R. Effect of preslaughter feed withdrawal period on longissimus tenderness and the expression of calpains in the ovine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2001; 49:1990-1998. [PMID: 11308358 DOI: 10.1021/jf0010026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The objective was to study the role of calpains in meat tenderness. Lambs were fasted for various periods of time to generate differences in meat tenderness and to determine in tandem the expression of calpain 1, calpain 2, calpain 3, and calpastatin. The assumption has been that increased calpain expression associated with an increase in tenderness indicates a role for calpain in the tenderization process and vice versa. Fasting lambs for 1 day caused a significant improvement in longissimus (LD) tenderness compared to the control. Correlations between the tenderness of the LD and the expression of the calpains and calpastatin were significant for calpains 1 and 3 but not for calpain 2 or calpastatin. Consequently, this study supports a role for calpains 1 and 3, but not for calpain 2, in the tenderization of the LD from fasted lambs during post-mortem aging.
Collapse
Affiliation(s)
- M A Ilian
- Molecular Biotechnology Group, Animal and Food Sciences Division, P.O. Box 84, Lincoln University, Canterbury, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
190
|
Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC, Bang ML, Trombitas K, Granzier H, Gregorio CC, Sorimachi H, Labeit S. Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol 2001; 306:717-26. [PMID: 11243782 DOI: 10.1006/jmbi.2001.4448] [Citation(s) in RCA: 305] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The giant myofibrillar protein titin contains within its C-terminal region a serine-threonine kinase of unknown function. We have identified a novel muscle specific RING finger protein, referred to as MURF-1, that binds in vitro to the titin repeats A168/A169 adjacent to the titin kinase domain. In myofibrils, MURF-1 is present within the periphery of the M-line lattice in close proximity to titin's catalytic kinase domain, within the Z-line lattice, and also in soluble form within the cytoplasm. Yeast two-hybrid screens with MURF-1 as a bait identified two other highly homologous MURF proteins, MURF-2 and MURF-3. MURF-1,2,3 proteins are encoded by distinct genes, share highly conserved N-terminal RING domains and in vitro form dimers/heterodimers by shared coiled-coil motifs. Of the MURF family, only MURF-1 interacts with titin repeats A168/A169, whereas MURF-3 has been reported to affect microtubule stability. Association of MURF-1 with M-line titin may potentially modulate titin's kinase activity similar to other known kinase-associated proteins, whereas differential expression and heterodimerization of MURF1, 2 and 3 may link together titin kinase and microtubule-dependent signal pathways in striated muscles.
Collapse
Affiliation(s)
- T Centner
- European Molecular Biology Laboratory, Heidelberg, D-69117, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Paul-Pletzer K, Palnitkar SS, Jimenez LS, Morimoto H, Parness J. The skeletal muscle ryanodine receptor identified as a molecular target of [3H]azidodantrolene by photoaffinity labeling. Biochemistry 2001; 40:531-42. [PMID: 11148048 DOI: 10.1021/bi001502s] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dantrolene is a skeletal muscle relaxant which acts by inhibiting intracellular Ca(2+) release from sarcoplasmic reticulum (SR). It is used primarily in the treatment of malignant hyperthermia (MH), a pharmacogenetic sensitivity to volatile anesthetics resulting in massive intracellular Ca(2+) release. Determination of the site and mechanism of action of dantrolene should contribute to the understanding of the regulation of intracellular Ca(2+) release in skeletal muscle. Photoaffinity labeling of porcine SR with [(3)H]azidodantrolene, a photoactivatable analogue of dantrolene, has identified a 160 kDa SR protein with immunologic cross-reactivity to skeletal muscle ryanodine receptor (RyR) as a possible target [Palnitkar et al. (1999) J. Med. Chem. 42, 1872-1880]. Here we demonstrate specific, AMP-PCP-enhanced, [(3)H]azidodantrolene photolabeling of both the RyR monomer and a 160 or 172 kDa protein in porcine and rabbit SR, respectively. The 160/172 kDa protein is shown to be the NH(2)-terminus of the RyR cleaved from the monomer by an endogenous protease activity consistent with that of n-calpain. MALDI-mass spectrometric analysis of the porcine 160 kDa protein identifies it as the 1400 amino acid NH(2)-terminal fragment of the skeletal muscle RyR reportedly generated by n-calpain [Shevchenko et al. (1998) J. Membr. Biol. 161, 33-34]. Immunoprecipitation of solubilized, [(3)H]azidodantrolene-photolabeled SR protein reveals that the cleaved 160/172 kDa protein remains associated with the C-terminal, 410 kDa portion of the RyR. [(3)H]Dantrolene binding to both the intact and the n-calpain-cleaved channel RyR is similarly enhanced by AMP-PCP. n-Calpain cleavage of the RyR does not affect [(3)H]dantrolene binding in the presence of AMP-PCP, but depresses drug binding in the absence of nucleotide. These results demonstrate that the NH(2)-terminus of the RyR is a molecular target for dantrolene, and suggest a regulatory role for both n-calpain activity and ATP in the interaction of dantrolene with the RyR in vivo.
Collapse
Affiliation(s)
- K Paul-Pletzer
- Department of Anesthesia, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
192
|
Abstract
Muscular dystrophies represent a heterogeneous group of disorders, which have been largely classified by clinical phenotype. In the last 10 years, identification of novel skeletal muscle genes including extracellular matrix, sarcolemmal, cytoskeletal, cytosolic, and nuclear membrane proteins has changed the phenotype-based classification and shed new light on the molecular pathogenesis of these disorders. A large number of genes involved in muscular dystrophy encode components of the dystrophin-glycoprotein complex (DGC) which normally links the intracellular cytoskeleton to the extracellular matrix. Mutations in components of this complex are thought to lead to loss of sarcolemmal integrity and render muscle fibers more susceptible to damage. Recent evidence suggests the involvement of vascular smooth muscle DGC in skeletal and cardiac muscle pathology in some forms of sarcoglycan-deficient limb-girdle muscular dystrophy. Intriguingly, two other forms of limb-girdle muscular dystrophy are possibly caused by perturbation of sarcolemma repair mechanisms. The complete clarification of these various pathways will lead to further insights into the pathogenesis of this heterogeneous group of muscle disorders.
Collapse
Affiliation(s)
- R D Cohn
- Howard Hughes Medical Institute, Department of Physiology and Biophysics and of Neurology, University of Iowa College of Medicine, 400 EMRB, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
193
|
Berchtold MW, Brinkmeier H, Müntener M. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 2000; 80:1215-65. [PMID: 10893434 DOI: 10.1152/physrev.2000.80.3.1215] [Citation(s) in RCA: 638] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian skeletal muscle shows an enormous variability in its functional features such as rate of force production, resistance to fatigue, and energy metabolism, with a wide spectrum from slow aerobic to fast anaerobic physiology. In addition, skeletal muscle exhibits high plasticity that is based on the potential of the muscle fibers to undergo changes of their cytoarchitecture and composition of specific muscle protein isoforms. Adaptive changes of the muscle fibers occur in response to a variety of stimuli such as, e.g., growth and differentition factors, hormones, nerve signals, or exercise. Additionally, the muscle fibers are arranged in compartments that often function as largely independent muscular subunits. All muscle fibers use Ca(2+) as their main regulatory and signaling molecule. Therefore, contractile properties of muscle fibers are dependent on the variable expression of proteins involved in Ca(2+) signaling and handling. Molecular diversity of the main proteins in the Ca(2+) signaling apparatus (the calcium cycle) largely determines the contraction and relaxation properties of a muscle fiber. The Ca(2+) signaling apparatus includes 1) the ryanodine receptor that is the sarcoplasmic reticulum Ca(2+) release channel, 2) the troponin protein complex that mediates the Ca(2+) effect to the myofibrillar structures leading to contraction, 3) the Ca(2+) pump responsible for Ca(2+) reuptake into the sarcoplasmic reticulum, and 4) calsequestrin, the Ca(2+) storage protein in the sarcoplasmic reticulum. In addition, a multitude of Ca(2+)-binding proteins is present in muscle tissue including parvalbumin, calmodulin, S100 proteins, annexins, sorcin, myosin light chains, beta-actinin, calcineurin, and calpain. These Ca(2+)-binding proteins may either exert an important role in Ca(2+)-triggered muscle contraction under certain conditions or modulate other muscle activities such as protein metabolism, differentiation, and growth. Recently, several Ca(2+) signaling and handling molecules have been shown to be altered in muscle diseases. Functional alterations of Ca(2+) handling seem to be responsible for the pathophysiological conditions seen in dystrophinopathies, Brody's disease, and malignant hyperthermia. These also underline the importance of the affected molecules for correct muscle performance.
Collapse
Affiliation(s)
- M W Berchtold
- Department of Molecular Cell Biology, Institute of Molecular Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
194
|
Fougerousse F, Anderson LV, Delezoide AL, Suel L, Durand M, Beckmann JS. Calpain3 expression during human cardiogenesis. Neuromuscul Disord 2000; 10:251-6. [PMID: 10838251 DOI: 10.1016/s0960-8966(99)00107-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Transcripts of calpain3, the gene involved in limb girdle muscular dystrophy type 2A, appear in organs other than the skeletal muscle during human development, the first of which being the early embryonic heart. We examined more precisely the spatio-temporal transcription pattern of calpain3 during human cardiogenesis and the appearance of its protein in fetal tissues, and correlated it to titin expression. Different events of the heart's maturation can be recognized: (i) the presence of titin RNA or protein constitute very precocious developmental cardiac markers appearing before the fusion of the two lateral endocardial tubes; (ii) the disappearance of calpain3 RNA from the ventricular compartment later in the embryonic heart. Finally, although calpain3 transcripts are present in the heart, the corresponding protein is not detected elsewhere than in skeletal muscle.
Collapse
Affiliation(s)
- F Fougerousse
- URA 1922-G¿en¿ethon, 1 rue de l'Internationale, BP 60, 91002, Evry, France
| | | | | | | | | | | |
Collapse
|
195
|
Abstract
X-linked Emery-Dreifuss muscular dystrophy is caused by mutations in emerin, a novel nuclear membrane protein. Other major inherited neuromuscular diseases have now also been shown to involve proteins which localize and function at least partly in the cell nucleus. These include lamin A/C in autosomal dominant Emery-Dreifuss muscular dystrophy, SMN in spinal muscular atrophy, SIX5 in myotonic dystrophy, calpain3 in type 2A limb-girdle muscular dystrophy, PABP2 in oculopharyngeal dystrophy, androgen receptor in spinal and bulbar muscular atrophy and the ataxins in hereditary ataxias. This review compares the molecular basis for these various disorders and considers the role of cell death, including apoptosis, in their pathogenesis.
Collapse
Affiliation(s)
- G E Morris
- MRIC Biochemistry Group, The North East Wales Institute, LL11 2AW, Wrexham, UK.
| |
Collapse
|
196
|
Busquets S, García-Martínez C, Alvarez B, Carbó N, López-Soriano FJ, Argilés JM. Calpain-3 gene expression is decreased during experimental cancer cachexia. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1475:5-9. [PMID: 10806331 DOI: 10.1016/s0304-4165(00)00050-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Yoshida AH-130 rat ascites hepatoma is a model system for studying the mechanisms involved in the protein hypercatabolism associated with cancer cachexia. The present study was aimed at investigating if the calpain-3 gene expression in skeletal muscle was affected by tumor growth. The results presented clearly show that calpain-3 gene expression is considerably reduced in experimental cancer cachexia, while there is a reciprocal change in the expression of the ubiquitin-dependent proteolytic system and in the ubiquitous m-calpain. The results, observed during cancer cachexia, suggest a potential counterregulatory role of calpain-3 in muscle proteolysis.
Collapse
Affiliation(s)
- S Busquets
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
197
|
Abstract
Calpains are a ubiquitous, well-conserved family of calcium-dependent, cysteine proteases. Their function in muscle has received increased interest because of the discoveries that the activation and concentration of the ubiquitous calpains increase in the mouse model of Duchenne muscular dystrophy (DMD), but null mutations of muscle specific calpain causes limb girdle muscular dystrophy 2A (LGMD2A). These findings indicate that modulation of calpain activity contributes to muscular dystrophies by disrupting normal regulatory mechanisms influenced by calpains, rather than through a general, nonspecific increase in proteolysis. Thus, modulation of calpain activity or expression through pharmacological or molecular genetic approaches may provide therapies for some muscular dystrophies.
Collapse
Affiliation(s)
- J G Tidball
- Department of Physiological Science, Duchenne Muscular Dystrophy Research Center, University of California, Los Angeles 90095, USA.
| | | |
Collapse
|
198
|
Minami N, Nishino I, Kobayashi O, Ikezoe K, Goto Y, Nonaka I. Mutations of calpain 3 gene in patients with sporadic limb-girdle muscular dystrophy in Japan. J Neurol Sci 1999; 171:31-7. [PMID: 10567047 DOI: 10.1016/s0022-510x(99)00245-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations of the calpain 3 gene, an intracellular calcium-activated neutral protease, is one of the causes of limb-girdle muscular dystrophy (LGMD). We examined 14 Japanese patients with sporadic LGMD for calpain 3 mutations, and found four mutations in five patients. Three (R461C, D707G and R147P) were novel missense mutations, and one was a splice-site mutation (801+1g-->a) resulting in skipping of exons 4 and 5. Of the five patients, three patients with homozygous missense mutations showed later onset and slower progression than the other two patients with an exon skipping or mRNA loss of unknown cause. It would appear that the occurrence of calpain 3 gene mutations in sporadic LGMD in Japan may be quite high since all five patients with mutations in this gene were among the 14 patients without apparent family history, an incidence of 36%. These findings also suggest that calpain 3 deficiency occurs in both sporadic and familial LGMD and that direct analysis of the calpain 3 gene may be useful in the definitive diagnosis not only of the 15q-linked familial but also of sporadic cases of LGMD.
Collapse
Affiliation(s)
- N Minami
- Department of Laboratory Medicine, National Center Hospital for Mental, Nervous and Muscular Disorders, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
199
|
Nakamura Y, Fukiage C, Ma H, Shih M, Azuma M, Shearer TR. Decreased sensitivity of lens-specific calpain Lp82 to calpastatin inhibitor. Exp Eye Res 1999; 69:155-62. [PMID: 10433852 DOI: 10.1006/exer.1998.0686] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The purpose of the present investigation was to test three calpain inhibitors (recombinant calpastatin domain I, E64, and SJA6017) against Lp82 calpain in rat lenses. Lp82 is a lens-specific isoenzyme from the calpain super family of calcium-activated, cysteine proteases (EC 34.22.17). Lp82 and m-calpain proteolytic activities and protein levels were measured by casein zymography and immunoblotting. Activity of endogenous Lp82 against vimentin was also tested by in vitro incubation of rat lens soluble and insoluble fractions with calcium. Most of the Lp82 activity could be inhibited by irreversible inhibitor E64 and reversible inhibitor SJA6017. However, a major finding of the present investigation was that Lp82 in the soluble and insoluble fractions of the lens was less sensitive to inhibition by recombinant domain I from the endogenous tissue inhibitor of ubiquitous calpains, calpastatin, than m-calpain. By using recombinant calpastatin to inhibit endogenous lens m-calpain, we were able to demonstrate the first example of a substrate for Lp82, vimentin. These data suggest that Lp82-induced proteolysis in rodent lenses may occur even in the presence of calpastatin.
Collapse
Affiliation(s)
- Y Nakamura
- Research Laboratories, Senju Pharmaceutical Co., Ltd., 1-5-4 Murotani, Nishi-ku, Kobe, 651-2241, Japan
| | | | | | | | | | | |
Collapse
|
200
|
Abstract
The clinical heterogeneity which has long been recognized in the limb-girdle muscular dystrophies (LGMD) has been shown to relate to the involvement of a large number of different genes. At least eight forms of autosomal recessive LGMD and three forms of autosomal dominant disease are now recognized and can be defined by the primary gene or protein involved, or by a genetic localization. These advances have combined the approaches of positional cloning and candidate gene analysis to great effect, with the pivotal role of the dystrophin-associated complex confirmed through the involvement of at least four dystrophin-associated proteins in different subtypes of autosomal recessive LGMD (the sarcoglycanopathies). Two novel mechanisms may have to be postulated to explain the involvement of the calpain 3 and dysferlin genes in other forms of LGMD. Using the diagnostic tools which have become available as a result of this increased understanding, the clinical features of the various subtypes are also becoming clearer, with useful diagnostic and prognostic information at last available to the practising clinician.
Collapse
Affiliation(s)
- K M Bushby
- Department of Biochemistry and Genetics, University of Newcastle-upon-Tyne, UK.
| |
Collapse
|