151
|
Hurtado CAR, Rachubinski RA. Isolation and characterization of YlBEM1, a gene required for cell polarization and differentiation in the dimorphic yeast Yarrowia lipolytica. EUKARYOTIC CELL 2002; 1:526-37. [PMID: 12456001 PMCID: PMC118001 DOI: 10.1128/ec.1.4.526-537.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2002] [Accepted: 05/17/2002] [Indexed: 11/20/2022]
Abstract
The ability to switch between a unicellular yeast form and different filamentous forms (fungal dimorphism) is an important attribute of most pathogenic fungi. Dimorphism involves a series of events that ultimately result in dramatic changes in the polarity of cell growth in response to environmental factors. We have isolated and characterized YlBEM1, a gene encoding a protein of 639 amino acids that is essential for the yeast-to-hypha transition in the yeast Yarrowia lipolytica and whose transcription is significantly increased during this event. Cells with deletions of YlBEM1 are viable but show substantial alterations in morphology, disorganization of the actin cytoskeleton, delocalization of cortical actin and chitin deposition, multinucleation, and loss of mating ability, thus pointing to a major role for YlBEM1 in the regulation of cell polarity and morphogenesis in this fungus. This role is further supported by the localization of YlBemlp, which, like cortical actin, appears to be particularly abundant at sites of growth of yeast, hyphal, and pseudohyphal cells. In addition, the potential involvement of YlBem1p in septum formation and/or cytokinesis is suggested by the concentration of a green fluorescent protein-tagged version of this protein at the mother-bud neck during the last stages of cell division. Interestingly, overexpression of MHY1, YlRAC1, or YlSEC31, three genes involved in filamentous growth of Y. lipolytica, induced hyphal growth of bem1 null mutant cells.
Collapse
Affiliation(s)
- Cleofe A R Hurtado
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
152
|
Butty AC, Perrinjaquet N, Petit A, Jaquenoud M, Segall JE, Hofmann K, Zwahlen C, Peter M. A positive feedback loop stabilizes the guanine-nucleotide exchange factor Cdc24 at sites of polarization. EMBO J 2002; 21:1565-76. [PMID: 11927541 PMCID: PMC125953 DOI: 10.1093/emboj/21.7.1565] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In Saccharomyces cerevisiae, activation of Cdc42 by its guanine-nucleotide exchange factor Cdc24 triggers polarization of the actin cytoskeleton at bud emergence and in response to mating pheromones. The adaptor protein Bem1 localizes to sites of polarized growth where it interacts with Cdc42, Cdc24 and the PAK-like kinase Cla4. We have isolated Bem1 mutants (Bem1-m), which are specifically defective for binding to Cdc24. The mutations map within the conserved PB1 domain, which is necessary and sufficient to interact with the octicos peptide repeat (OPR) motif of Cdc24. Although Bem1-m mutant proteins localize normally, bem1-m cells are unable to maintain Cdc24 at sites of polarized growth. As a consequence, they are defective for apical bud growth and the formation of mating projections. Localization of Bem1 to the incipient bud site requires activated Cdc42, and conversely, expression of Cdc42-GTP is sufficient to accumulate Bem1 at the plasma membrane. Thus, our results suggest that Bem1 functions in a positive feedback loop: local activation of Cdc24 produces Cdc42-GTP, which recruits Bem1. In turn, Bem1 stabilizes Cdc24 at the site of polarization, leading to apical growth.
Collapse
Affiliation(s)
| | | | - Audrey Petit
- Swiss Institute for Experimental Cancer Research, Chemin des Boveresses 155, CH-1066 Epalinges/VD,
Institute of Organic Chemistry, University of Lausanne, CH-1015 Lausanne, Switzerland, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA and Bioinformatics Group, Memorec Stoffel GmbH, Stöckheimerweg 1, D-50829 Köln, Germany Corresponding author e-mail:
| | | | - Jeffrey E. Segall
- Swiss Institute for Experimental Cancer Research, Chemin des Boveresses 155, CH-1066 Epalinges/VD,
Institute of Organic Chemistry, University of Lausanne, CH-1015 Lausanne, Switzerland, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA and Bioinformatics Group, Memorec Stoffel GmbH, Stöckheimerweg 1, D-50829 Köln, Germany Corresponding author e-mail:
| | - Kay Hofmann
- Swiss Institute for Experimental Cancer Research, Chemin des Boveresses 155, CH-1066 Epalinges/VD,
Institute of Organic Chemistry, University of Lausanne, CH-1015 Lausanne, Switzerland, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA and Bioinformatics Group, Memorec Stoffel GmbH, Stöckheimerweg 1, D-50829 Köln, Germany Corresponding author e-mail:
| | - Catherine Zwahlen
- Swiss Institute for Experimental Cancer Research, Chemin des Boveresses 155, CH-1066 Epalinges/VD,
Institute of Organic Chemistry, University of Lausanne, CH-1015 Lausanne, Switzerland, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA and Bioinformatics Group, Memorec Stoffel GmbH, Stöckheimerweg 1, D-50829 Köln, Germany Corresponding author e-mail:
| | - Matthias Peter
- Swiss Institute for Experimental Cancer Research, Chemin des Boveresses 155, CH-1066 Epalinges/VD,
Institute of Organic Chemistry, University of Lausanne, CH-1015 Lausanne, Switzerland, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA and Bioinformatics Group, Memorec Stoffel GmbH, Stöckheimerweg 1, D-50829 Köln, Germany Corresponding author e-mail:
| |
Collapse
|
153
|
Gladfelter AS, Bose I, Zyla TR, Bardes ESG, Lew DJ. Septin ring assembly involves cycles of GTP loading and hydrolysis by Cdc42p. J Cell Biol 2002; 156:315-26. [PMID: 11807094 PMCID: PMC2199227 DOI: 10.1083/jcb.200109062] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
At the beginning of the budding yeast cell cycle, the GTPase Cdc42p promotes the assembly of a ring of septins at the site of future bud emergence. Here, we present an analysis of cdc42 mutants that display specific defects in septin organization, which identifies an important role for GTP hydrolysis by Cdc42p in the assembly of the septin ring. The mutants show defects in basal or stimulated GTP hydrolysis, and the septin misorganization is suppressed by overexpression of a Cdc42p GTPase-activating protein (GAP). Other mutants known to affect GTP hydrolysis by Cdc42p also caused septin misorganization, as did deletion of Cdc42p GAPs. In performing its roles in actin polarization and transcriptional activation, GTP-Cdc42p is thought to function by activating and/or recruiting effectors to the site of polarization. Excess accumulation of GTP-Cdc42p due to a defect in GTP hydrolysis by the septin-specific alleles might cause unphysiological activation of effectors, interfering with septin assembly. However, the recessive and dose-sensitive genetic behavior of the septin-specific cdc42 mutants is inconsistent with the septin defect stemming from a dominant interference of this type. Instead, we suggest that assembly of the septin ring involves repeated cycles of GTP loading and GTP hydrolysis by Cdc42p. These results suggest that a single GTPase, Cdc42p, can act either as a ras-like GTP-dependent "switch" to turn on effectors or as an EF-Tu-like "assembly factor" using the GTPase cycle to assemble a macromolecular structure.
Collapse
Affiliation(s)
- Amy S Gladfelter
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
154
|
Xu Y, Seet LF, Hanson B, Hong W. The Phox homology (PX) domain, a new player in phosphoinositide signalling. Biochem J 2001; 360:513-30. [PMID: 11736640 PMCID: PMC1222253 DOI: 10.1042/0264-6021:3600513] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphoinositides are key regulators of diverse cellular processes. The pleckstrin homology (PH) domain mediates the action of PtdIns(3,4)P(2), PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3), while the FYVE domain relays the pulse of PtdIns3P. The recent establishment that the Phox homology (PX) domain interacts with PtdIns3P and other phosphoinositides suggests another mechanism by which phosphoinositides can regulate/integrate multiple cellular events via a spectrum of PX domain-containing proteins. Together with the recent discovery that the epsin N-terminal homologue (ENTH) domain interacts with PtdIns(4,5)P(2), it is becoming clear that phosphoinositides regulate diverse cellular events through interactions with several distinct structural motifs present in many different proteins.
Collapse
Affiliation(s)
- Y Xu
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Singapore
| | | | | | | |
Collapse
|
155
|
Abstract
The Dbl family of guanine nucleotide exchange factors are multifunctional molecules that transduce diverse intracellular signals leading to the activation of Rho GTPases. The tandem Dbl-homology and pleckstrin-homology domains shared by all members of this family represent the structural module responsible for catalyzing the GDP-GTP exchange reaction of Rho proteins. Recent progress in genomic, genetic, structural and biochemical studies has implicated Dbl family members in diverse biological processes, including growth and development, skeletal muscle formation, neuronal axon guidance and tissue organization. The detailed pictures of their autoregulation, agonist-controlled activation and mechanism of interaction with Rho GTPase substrates, have begun to emerge.
Collapse
Affiliation(s)
- Y Zheng
- Dept of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
156
|
Yu JW, Lemmon MA. All phox homology (PX) domains from Saccharomyces cerevisiae specifically recognize phosphatidylinositol 3-phosphate. J Biol Chem 2001; 276:44179-84. [PMID: 11557775 DOI: 10.1074/jbc.m108811200] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phox homology (PX) domains are named for a 130-amino acid region of homology shared with part of two components of the phagocyte NADPH oxidase (phox) complex. They are found in proteins involved in vesicular trafficking, protein sorting, and lipid modification. It was recently reported that certain PX domains specifically recognize phosphatidylinositol 3-phosphate (PtdIns-3-P) and drive recruitment of their host proteins to the cytoplasmic leaflet of endosomal and/or vacuolar membranes where this phosphoinositide is enriched. We have analyzed phosphoinositide binding by all 15 PX domains encoded by the Saccharomyces cerevisiae genome. All yeast PX domains specifically recognize PtdIns-3-P in protein-lipid overlay experiments, with just one exception (a significant sequence outlier). In surface plasmon resonance studies, four of the yeast PX domains bind PtdIns-3-P with high (micromolar range) affinity. Although the remaining PX domains specifically recognize PtdIns-3-P, they bind this lipid with only low affinity. Interestingly, many proteins with "low affinity" PX domains are known to form large multimeric complexes, which may increase the overall avidity for membranes. Our results establish that PtdIns-3-P, and not other phosphoinositides, is the target of all PX domains in S. cerevisiae and suggest a role for PX domains in assembly of multiprotein complexes at specific membrane surfaces.
Collapse
Affiliation(s)
- J W Yu
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6059, USA
| | | |
Collapse
|
157
|
Gladfelter AS, Moskow JJ, Zyla TR, Lew DJ. Isolation and characterization of effector-loop mutants of CDC42 in yeast. Mol Biol Cell 2001; 12:1239-55. [PMID: 11359919 PMCID: PMC34581 DOI: 10.1091/mbc.12.5.1239] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2000] [Revised: 12/22/2000] [Accepted: 02/20/2001] [Indexed: 11/11/2022] Open
Abstract
The highly conserved small GTPase Cdc42p is a key regulator of cell polarity and cytoskeletal organization in eukaryotic cells. Multiple effectors of Cdc42p have been identified, although it is unclear how their activities are coordinated to produce particular cell behaviors. One strategy used to address the contributions made by different effector pathways downstream of small GTPases has been the use of "effector-loop" mutants of the GTPase that selectively impair only a subset of effector pathways. We now report the generation and preliminary characterization of a set of effector-loop mutants of Saccharomyces cerevisiae CDC42. These mutants define genetically separable pathways influencing actin or septin organization. We have characterized the phenotypic defects of these mutants and the binding defects of the encoded proteins to known yeast Cdc42p effectors in vitro. The results suggest that these effectors cannot account for the observed phenotypes, and therefore that unknown effectors exist that affect both actin and septin organization. The availability of partial function alleles of CDC42 in a genetically tractable system serves as a useful starting point for genetic approaches to identify such novel effectors.
Collapse
Affiliation(s)
- A S Gladfelter
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|