151
|
Quirk BJ, Torbey M, Buchmann E, Verma S, Whelan HT. Near-infrared photobiomodulation in an animal model of traumatic brain injury: improvements at the behavioral and biochemical levels. Photomed Laser Surg 2012; 30:523-9. [PMID: 22793787 DOI: 10.1089/pho.2012.3261] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE The purpose of this was to evaluate the neuroprotective effects of near-infrared (NIR) light using an in-vivo rodent model of traumatic brain injury (TBI), controlled cortical impact (CCI), and to characterize changes at the behavioral and biochemical levels. BACKGROUND DATA NIR upregulates mitochondrial function, and decreases oxidative stress. Mitochondrial oxidative stress and apoptosis are important in TBI. NIR enhanced cell viability and mitochondrial function in previous in-vitro TBI models, supporting potential NIR in-vivo benefits. METHODS Sprague-Dawley rats were divided into three groups: severe TBI, sham surgery, and anesthetization only (behavioral response only). Cohorts in each group were administered either no NIR or NIR. They received two 670 nm LED treatments (5 min, 50 mW/cm(2), 15 J/cm(2)) per day for 72 h (chemical analysis) or 10 days (behavioral). During the recovery period, animals were tested for locomotor and behavioral activities using a TruScan device. Frozen brain tissue was obtained at 72 h and evaluated for apoptotic markers and reduced glutathione (GSH) levels. RESULTS Significant differences were seen in the TBI plus and minus NIR (TBI+/-) and sham plus and minus NIR (S+/-) comparisons for some of the TruScan nose poke parameters. A statistically significant decrease was found in the Bax pro-apoptotic marker attributable to NIR exposure, along with lesser increases in Bcl-2 anti-apoptotic marker and GSH levels. CONCLUSIONS These results show statistically significant, preclinical outcomes that support the use of NIR treatment after TBI in effecting changes at the behavioral, cellular, and chemical levels.
Collapse
Affiliation(s)
- Brendan J Quirk
- Department of Neurology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
152
|
Neutzner A, Li S, Xu S, Karbowski M. The ubiquitin/proteasome system-dependent control of mitochondrial steps in apoptosis. Semin Cell Dev Biol 2012; 23:499-508. [PMID: 22516642 PMCID: PMC11500647 DOI: 10.1016/j.semcdb.2012.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/24/2012] [Accepted: 03/28/2012] [Indexed: 12/31/2022]
Abstract
Insights into the role of ubiquitin-dependent signaling in the regulation of apoptosis have provided one of the most significant breakthroughs in recent years for cell death research. It has been revealed that all steps in the apoptotic cascade, including transcriptional regulation of apoptotic gene expression, outer mitochondrial membrane permeabilization and caspase activation, are under the control of the ubiquitin/proteasome system. This makes ubiquitin signaling one on the most critical life and death decision checkpoints in mammalian cells. Here we discuss the ubiquitylation-dependent regulation of the mitochondrial steps in apoptosis, with a focus on the role of regulated protein degradation in this process. The newly identified ubiquitylation-dependent processes in the Bcl-2 family-regulated outer mitochondrial membrane permeabilization, as well as the role of mitochondria-associated ubiquitin ligases and other molecular components of the ubiquitin/proteasome system in the control of mitochondrial steps in apoptosis, are discussed.
Collapse
Affiliation(s)
- Albert Neutzner
- Department of Biomedicine and Department of Ophthalmology, University Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Sunan Li
- Center for Biomedical Engineering and Technology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 W. Lombard St, Baltimore, MD 21201, USA
| | - Shan Xu
- Center for Biomedical Engineering and Technology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 W. Lombard St, Baltimore, MD 21201, USA
| | - Mariusz Karbowski
- Center for Biomedical Engineering and Technology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 W. Lombard St, Baltimore, MD 21201, USA
| |
Collapse
|
153
|
Hussain AR, Ahmed SO, Ahmed M, Khan OS, Al AbdulMohsen S, Platanias LC, Al-Kuraya KS, Uddin S. Cross-talk between NFkB and the PI3-kinase/AKT pathway can be targeted in primary effusion lymphoma (PEL) cell lines for efficient apoptosis. PLoS One 2012; 7:e39945. [PMID: 22768179 PMCID: PMC3386924 DOI: 10.1371/journal.pone.0039945] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 05/29/2012] [Indexed: 01/01/2023] Open
Abstract
Background A number of constitutively activated signaling pathways play critical roles in the survival and growth of primary effusion lymphoma cells (PELs) including NFkB and PI3/AKT kinase cascades. NFkBis constitutively activated in a number of malignancies, including multiple myeloma, Burkitt’s lymphoma and diffuse large cell B-cell lymphoma. However, its role in primary effusion lymphoma has not been fully explored. Methodology/Principal Findings We used pharmacological inhibition and gene silencing to define the role of NFkB in growth and survival of PEL cells. Inhibition of NFkB activity by Bay11-7085 resulted in decreased expression of p65 in the nuclear compartment as detected by EMSA assays. In addition, Bay11-7085 treatment caused de-phosphorylation of AKT and its downstream targets suggesting a cross-talk between NFkB and the PI3-kinase/AKT pathway. Importantly, treatment of PEL cells with Bay11-7085 led to inhibition of cell viability and induced apoptosis in a dose dependent manner. Similar apoptotic effects were found when p65 was knocked down using specific small interference RNA. Finally, co-treatment of PEL cells with suboptimal doses of Bay11-7085 and LY294002 led to synergistic apoptotic responses in PEL cells. Conclusion/Significance These data support a strong biological-link between NFkB and the PI3-kinase/AKT pathway in the modulation of anti-apoptotic effects in PEL cells. Synergistic targeting of these pathways using NFKB- and PI3-kinase/AKT- inhibitors may have a therapeutic potential for the treatment of PEL and possibly other malignancies with constitutive activation of these pathways.
Collapse
Affiliation(s)
- Azhar R. Hussain
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saeeda O. Ahmed
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Maqbool Ahmed
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Omar S. Khan
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sally Al AbdulMohsen
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Leonidas C. Platanias
- Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, United States of America
| | - Khawla S. Al-Kuraya
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Shahab Uddin
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- * E-mail:
| |
Collapse
|
154
|
Smeele KM, Eerbeek O, Schaart G, Koeman A, Bezemer R, Nelson JK, Ince C, Nederlof R, Boek M, Laakso M, de Haan A, Drost MR, Hollmann MW, Zuurbier CJ. Reduced hexokinase II impairs muscle function 2 wk after ischemia-reperfusion through increased cell necrosis and fibrosis. J Appl Physiol (1985) 2012; 113:608-18. [PMID: 22723631 DOI: 10.1152/japplphysiol.01494.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously demonstrated that hexokinase (HK) II plays a key role in the pathophysiology of ischemia-reperfusion (I/R) injury of the heart (Smeele et al. Circ Res 108: 1165-1169, 2011; Wu et al. Circ Res 108: 60-69, 2011). However, it is unknown whether HKII also plays a key role in I/R injury and healing thereafter in skeletal muscle, and if so, through which mechanisms. We used male wild-type (WT) and heterozygous HKII knockout mice (HKII(+/-)) and performed in vivo unilateral skeletal muscle I/R, executed by 90 min hindlimb occlusion using orthodontic rubber bands followed by 1 h, 1 day, or 14 days reperfusion. The contralateral (CON) limb was used as internal control. No difference was observed in muscle glycogen turnover between genotypes at 1 h reperfusion. At 1 day reperfusion, the model resulted in 36% initial cell necrosis in WT gastrocnemius medialis (GM) muscle that was doubled (76% cell necrosis) in the HKII(+/-) mice. I/R-induced apoptosis (29%) was similar between genotypes. HKII reduction eliminated I/R-induced mitochondrial Bax translocation and oxidative stress at 1 day reperfusion. At 14 days recovery, the tetanic force deficit of the reperfused GM (relative to control GM) was 35% for WT, which was doubled (70%) in HKII(+/-) mice, mirroring the initial damage observed for these muscles. I/R increased muscle fatigue resistance equally in GM of both genotypes. The number of regenerating fibers in WT muscle (17%) was also approximately doubled in HKII(+/-) I/R muscle (44%), thus again mirroring the increased cell death in HKII(+/-) mice at day 1 and suggesting that HKII does not significantly affect muscle regeneration capacity. Reduced HKII was also associated with doubling of I/R-induced fibrosis. In conclusion, reduced muscle HKII protein content results in impaired muscle functionality during recovery from I/R. The impaired recovery seems to be mainly a result of a greater susceptibility of HKII(+/-) mice to the initial I/R-induced necrosis (not apoptosis), and not a HKII-related deficiency in muscle regeneration.
Collapse
Affiliation(s)
- Kirsten M Smeele
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Human embryonic stem cells have constitutively active Bax at the Golgi and are primed to undergo rapid apoptosis. Mol Cell 2012; 46:573-83. [PMID: 22560721 DOI: 10.1016/j.molcel.2012.04.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 12/05/2011] [Accepted: 04/02/2012] [Indexed: 12/21/2022]
Abstract
Human embryonic stem (hES) cells activate a rapid apoptotic response after DNA damage but the underlying mechanisms are unknown. A critical mediator of apoptosis is Bax, which is reported to become active and translocate to the mitochondria only after apoptotic stimuli. Here we show that undifferentiated hES cells constitutively maintain Bax in its active conformation. Surprisingly, active Bax was maintained at the Golgi rather than at the mitochondria, thus allowing hES cells to effectively minimize the risks associated with having preactivated Bax. After DNA damage, active Bax rapidly translocated to the mitochondria by a p53-dependent mechanism. Interestingly, upon differentiation, Bax was no longer active, and cells were not acutely sensitive to DNA damage. Thus, maintenance of Bax in its active form is a unique mechanism that can prime hES cells for rapid death, likely to prevent the propagation of mutations during the early critical stages of embryonic development.
Collapse
|
156
|
Wakeman D, Guo J, Santos JA, Wandu WS, Schneider JE, McMellen ME, Leinicke JA, Erwin CR, Warner BW. p38 MAPK regulates Bax activity and apoptosis in enterocytes at baseline and after intestinal resection. Am J Physiol Gastrointest Liver Physiol 2012; 302:G997-1005. [PMID: 22383494 PMCID: PMC3362074 DOI: 10.1152/ajpgi.00485.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/27/2012] [Indexed: 01/31/2023]
Abstract
Increased apoptosis in crypt enterocytes is a key feature of intestinal adaptation following massive small bowel resection (SBR). Expression of the proapoptotic factor Bax has been shown to be required for resection-induced apoptosis. It has also been demonstrated that p38-α MAPK (p38) is necessary for Bax activation and apoptosis in vitro. The present studies were designed to test the hypothesis that p38 is a key regulator of Bax activation during adaptation after SBR in vivo. Enterocyte expression of p38 was deleted by tamoxifen administration to activate villin-Cre in adult mice with a floxed Mapk14 (p38-α) gene. Proximal 50% SBR or sham operations were performed on wild-type (WT) and p38 intestinal knockout (p38-IKO) mice under isoflurane anesthesia. Mice were killed 3 or 7 days after operation, and adaptation was analyzed by measuring intestinal morphology, proliferation, and apoptosis. Bax activity was quantified by immunoprecipitation, followed by Western blotting. After SBR, p38-IKO mice had deeper crypts, longer villi, and accelerated proliferation compared with WT controls. Rates of crypt apoptosis were significantly lower in p38-IKO mice, both at baseline and after SBR. Levels of activated Bax were twofold higher in WT mice after SBR relative to sham. In contrast, activated Bax levels were reduced by 67% in mice after p38 MAPK deletion. Deleted p38 expression within the intestinal epithelium leads to enhanced adaptation and reduced levels of enterocyte apoptosis after massive intestinal resection. p38-regulated Bax activation appears to be an important mechanism underlying resection-induced apoptosis.
Collapse
Affiliation(s)
- Derek Wakeman
- Department of Surgery, Division of Pediatric Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Zhou J, Du Y. Acquisition of resistance of pancreatic cancer cells to 2-methoxyestradiol is associated with the upregulation of manganese superoxide dismutase. Mol Cancer Res 2012; 10:768-77. [PMID: 22547077 DOI: 10.1158/1541-7786.mcr-11-0378] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acquired resistance of cancer cells to anticancer drugs or ionizing radiation (IR) is one of the major obstacles in cancer treatment. Pancreatic cancer is an exceptional aggressive cancer, and acquired drug resistance in this cancer is common. Reactive oxygen species (ROS) play an essential role in cell apoptosis, which is a key mechanism by which radio- or chemotherapy induce cell killing. Mitochondria are the major source of ROS in cells. Thus, alterations in the expression of mitochondrial proteins, involved in ROS production or scavenging, may be closely linked to the resistance of cancer cells to radio- or chemotherapy. In the present study, we generated a stable cell line by exposing pancreatic cancer cells to increasing concentrations of ROS-inducing, anticancer compound 2-methoxyestradiol (2-ME) over a 3-month period. The resulting cell line showed strong resistance to 2-ME and contained an elevated level of ROS. We then used a comparative proteomics method to profile the differential expression of mitochondrial proteins between the parental and the resistant cells. One protein identified to be upregulated in the resistant cells was manganese superoxide dismutase (SOD2), a mitochondrial protein that converts superoxide radicals to hydrogen peroxides. Silencing of SOD2 resensitized the resistant cells to 2-ME, and overexpression of SOD2 led the parental cells to 2-ME resistance. In addition, the 2-ME-resistant cells also showed resistance to IR. Our results suggest that upregulation of SOD2 expression is an important mechanism by which pancreatic cancer cells acquire resistance to ROS-inducing, anticancer drugs, and potentially also to IR.
Collapse
Affiliation(s)
- Jianhong Zhou
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | | |
Collapse
|
158
|
Dynamic interaction of cBid with detergents, liposomes and mitochondria. PLoS One 2012; 7:e35910. [PMID: 22540011 PMCID: PMC3335097 DOI: 10.1371/journal.pone.0035910] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 03/26/2012] [Indexed: 11/19/2022] Open
Abstract
The BH3-only protein Bid plays a key role in the induction of mitochondrial apoptosis, but its mechanism of action is still not completely understood. Here we studied the two main activation events of Bid: Caspase-8 cleavage and interaction with the membrane bilayer. We found a striking reversible behaviour of the dissociation-association events between the Bid fragments p15 and p7. Caspase-8 cleavage does not induce per se separation of the two Bid fragments, which remain in a stable complex resembling the full length Bid. Detergents trigger a complete dissociation, which can be fully reversed by detergent removal in a range of protein concentrations from 100 µM down to 500 nM. Incubation of cBid with cardiolipin-containing liposomes leads to partial dissociation of the complex. Only p15 (tBid) fragments are found at the membrane, while p7 shows no tendency to interact with the bilayer, but complete removal of p7 strongly increases the propensity of tBid to become membrane-associated. Despite the striking structural similarities of inactive Bid and Bax, Bid does not form oligomers and reacts differently in the presence of detergents and membranes, highlighting clear differences in the modes of action of the two proteins. The partial dissociation of cBid triggered by the membrane is suggested to depend on the strong and specific interaction between p15 and p7. The reversible disassembly and re-assembly of the cBid molecules at the membrane was as well proven by EPR using spin labeled cBid in the presence of isolated mitochondria. The observed dynamic dissociation of the two Bid fragments could allow the assistance to the pore-forming Bax to occur repeatedly and may explain the proposed “hit-and-run" mode of action of Bid at the bilayer.
Collapse
|
159
|
Huang NJ, Zhang L, Tang W, Chen C, Yang CS, Kornbluth S. The Trim39 ubiquitin ligase inhibits APC/CCdh1-mediated degradation of the Bax activator MOAP-1. ACTA ACUST UNITED AC 2012; 197:361-7. [PMID: 22529100 PMCID: PMC3341153 DOI: 10.1083/jcb.201111141] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Trim39 inhibits the ability of APC/CCdh1 to ubiquitylate and promote the degradation of MOAP-1, leading to enhanced apoptosis. Proapoptotic Bcl-2 family members, such as Bax, promote release of cytochrome c from mitochondria, leading to caspase activation and cell death. It was previously reported that modulator of apoptosis protein 1 (MOAP-1), an enhancer of Bax activation induced by DNA damage, is stabilized by Trim39, a protein of unknown function. In this paper, we show that MOAP-1 is a novel substrate of the anaphase-promoting complex (APC/CCdh1) ubiquitin ligase. The influence of Trim39 on MOAP-1 levels stems from the ability of Trim39 (a RING domain E3 ligase) to directly inhibit APC/CCdh1-mediated protein ubiquitylation. Accordingly, small interfering ribonucleic acid–mediated knockdown of Cdh1 stabilized MOAP-1, thereby enhancing etoposide-induced Bax activation and apoptosis. These data identify Trim39 as a novel APC/C regulator and provide an unexpected link between the APC/C and apoptotic regulation via MOAP-1.
Collapse
Affiliation(s)
- Nai-Jia Huang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710
| | | | | | | | | | | |
Collapse
|
160
|
Ferrer PE, Frederick P, Gulbis JM, Dewson G, Kluck RM. Translocation of a Bak C-terminus mutant from cytosol to mitochondria to mediate cytochrome C release: implications for Bak and Bax apoptotic function. PLoS One 2012; 7:e31510. [PMID: 22442658 PMCID: PMC3307716 DOI: 10.1371/journal.pone.0031510] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 01/11/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND One of two proapoptotic Bcl-2 proteins, Bak or Bax, is required to permeabilize the mitochondrial outer membrane during apoptosis. While Bax is mostly cytosolic and translocates to mitochondria following an apoptotic stimulus, Bak is constitutively integrated within the outer membrane. Membrane anchorage occurs via a C-terminal transmembrane domain that has been studied in Bax but not in Bak, therefore what governs their distinct subcellular distribution is uncertain. In addition, whether the distinct subcellular distributions of Bak and Bax contributes to their differential regulation during apoptosis remains unclear. METHODOLOGY/PRINCIPAL FINDINGS To gain insight into Bak and Bax targeting to mitochondria, elements of the Bak C-terminus were mutated, or swapped with those of Bax. Truncation of the C-terminal six residues (C-segment) or substitution of three basic residues within the C-segment destabilized Bak. Replacing the Bak C-segment with that from Bax rescued stability and function, but unexpectedly resulted in a semi-cytosolic protein, termed Bak/BaxCS. When in the cytosol, both Bax and Bak/BaxCS sequestered their hydrophobic transmembrane domains in their hydrophobic surface groove. Upon apoptotic signalling, Bak/BaxCS translocated to the mitochondrial outer membrane, inserted its transmembrane domain, oligomerized, and released cytochrome c. Despite this Bax-like subcellular distribution, Bak/BaxCS retained Bak-like regulation following targeting of Mcl-1. CONCLUSIONS/SIGNIFICANCE Residues in the C-segment of Bak and of Bax contribute to their distinct subcellular localizations. That a semi-cytosolic form of Bak, Bak/BaxCS, could translocate to mitochondria and release cytochrome c indicates that Bak and Bax share a conserved mode of activation. In addition, the differential regulation of Bak and Bax by Mcl-1 is predominantly independent of the initial subcellular localizations of Bak and Bax.
Collapse
Affiliation(s)
- Pedro Eitz Ferrer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Paul Frederick
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Jacqueline M. Gulbis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Grant Dewson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ruth M. Kluck
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
161
|
Interaction of the full-length Bax protein with biomimetic mitochondrial liposomes: A small-angle neutron scattering and fluorescence study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:384-401. [DOI: 10.1016/j.bbamem.2011.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 09/15/2011] [Accepted: 10/07/2011] [Indexed: 12/13/2022]
|
162
|
Zhou Z, Zhou J, Du Y. Estrogen receptor alpha interacts with mitochondrial protein HADHB and affects beta-oxidation activity. Mol Cell Proteomics 2012; 11:M111.011056. [PMID: 22375075 DOI: 10.1074/mcp.m111.011056] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It is known that estrogen receptors can function as nuclear receptors and transcription factors in the nucleus and as signaling molecules in the plasma membrane. In addition, the localization of the receptors in mitochondria suggests that they may play important roles in mitochondria. In order to identify novel proteins that are involved in ERα-mediated actions of estrogens, we used a proteomic method that integrated affinity purification, two-dimensional gel electrophoresis, and mass spectrometry to isolate and identify cellular proteins that interact with ERα. One of the proteins identified was trifunctional protein β-subunit (HADHB), a mitochondrial protein that is required for β-oxidation of fatty acids in mitochondria. We have verified the interaction between ERα and HADHB by coimmunoprecipitation and established that ERα directly binds to HADHB by performing an in vitro binding assay. In addition, we have shown that ERα colocalizes with HADHB in the mitochondria by confocal microscopy, and the two proteins interact with each other within mitochondria by performing coimmunoprecipitation using purified mitochondria as starting materials. We have demonstrated that the expression of ERα affects HADHB activity, and a combination of 17β-estrodiol and tamoxifen affects the activity of HADHB prepared from human breast cancer cells that express ERα but not from the cells that are ERα deficient. Furthermore, we have demonstrated that 17β-estrodiol plus tamoxifen affects the association of ERα with HADHB in human cell extract. Our results suggest that HADHB is a functional molecular target of ERα in the mitochondria, and the interaction may play an important role in the estrogen-mediated lipid metabolism in animals and humans.
Collapse
Affiliation(s)
- Zhenqi Zhou
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | | | |
Collapse
|
163
|
Gall JM, Wang Z, Liesa M, Molina A, Havasi A, Schwartz JH, Shirihai O, Borkan SC, Bonegio RGB. Role of mitofusin 2 in the renal stress response. PLoS One 2012; 7:e31074. [PMID: 22292091 PMCID: PMC3266928 DOI: 10.1371/journal.pone.0031074] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 01/02/2012] [Indexed: 11/19/2022] Open
Abstract
The role of mitofusin 2 (MFN2), a key regulator of mitochondrial morphology and function in the renal stress response is unknown. To assess its role, the MFN2 floxed gene was conditionally deleted in the kidney of mice (MFN2 cKO) by Pax2 promoter driven Cre expression (Pax2Cre). MFN2 cKO caused severe mitochondrial fragmentation in renal epithelial cells that are critical for normal kidney tubular function. However, despite a small (20%) decrease in nephron number, newborn cKO pups had organ or tubular function that did not differ from littermate Cre-negative pups. MFN2 deficiency in proximal tubule epithelial cells in primary culture induced mitochondrial fragmentation but did not significantly alter ATP turnover, maximal mitochondrial oxidative reserve capacity, or the low level of oxygen consumption during cyanide exposure. MFN2 deficiency also did not increase apoptosis of tubule epithelial cells under non-stress conditions. In contrast, metabolic stress caused by ATP depletion exacerbated mitochondrial outer membrane injury and increased apoptosis by 80% in MFN2 deficient vs. control cells. Despite similar stress-induced Bax 6A7 epitope exposure in MFN2 deficient and control cells, MFN2 deficiency significantly increased mitochondrial Bax accumulation and was associated with greater release of both apoptosis inducing factor and cytochrome c. In conclusion, MFN2 deficiency in the kidney causes mitochondrial fragmentation but does not affect kidney or tubular function during development or under non-stress conditions. However, MFN2 deficiency exacerbates renal epithelial cell injury by promoting Bax-mediated mitochondrial outer membrane injury and apoptosis.
Collapse
Affiliation(s)
- Jonathan M Gall
- Renal Section, Boston Medical Center, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Sadagopan S, Veettil MV, Chakraborty S, Sharma-Walia N, Paudel N, Bottero V, Chandran B. Angiogenin functionally interacts with p53 and regulates p53-mediated apoptosis and cell survival. Oncogene 2012; 31:4835-47. [PMID: 22266868 PMCID: PMC3337890 DOI: 10.1038/onc.2011.648] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenin, a 14-kDa multi-functional pro-angiogenic growth factor, is up-regulated in several types of cancers. Anti-angiogenin monoclonal antibodies used as antagonists inhibited the establishment, progression, and metastasis of human cancer cells in athymic mice (Olson et al. 1994). Silencing angiogenin and inhibition of angiogenin’s nuclear translocation blocked cell survival and induced cell death in B-lymphoma and endothelial cells latently infected with Kaposi sarcoma associated herpesvirus (KSHV) (Sadagopan et al. 2009) suggesting that actively proliferating cancer cells could be inducing angiogenin for inhibiting apoptotic pathways. However, the mechanism of cell survival and apoptosis regulation by angiogenin and their functional significance in cancer is not known. We demonstrate that angiogenin interacts with p53 and colocalizes in the nucleus. Silencing endogenous angiogenin induced p53 promoter activation and p53 target gene (p53, p21 and Bax) expression, down-regulated anti-apoptotic Bcl-2 gene expression and increased p53 mediated cell death. In contrast, angiogenin expression blocked pro-apoptotic Bax and p21 expression, induced Bcl-2 and blocked cell death. Angiogenin also co-immunoprecipitated with p53 regulator protein Mdm2. Angiogenin expression resulted in the inhibition of p53 phosphorylation, increased p53-Mdm2 interaction, and consequently increased ubiquitination of p53. Taken together these studies demonstrate that angiogenin promotes the inhibition of p53 function to mediate anti-apoptosis and cell survival. Our results reveal for the first time a novel p53 interacting function of angiogenin in anti-apoptosis and survival of cancer cells and suggest that targeting angiogenin could be an effective therapy for several cancers.
Collapse
Affiliation(s)
- S Sadagopan
- Department of Microbiology and Immunology, H.M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
165
|
Schultheiss M, Schnichels S, Miteva K, Warstat K, Szurman P, Spitzer MS, Van Linthout S. Staurosporine-induced differentiation of the RGC-5 cell line leads to apoptosis and cell death at the lowest differentiating concentration. Graefes Arch Clin Exp Ophthalmol 2012; 250:1221-9. [DOI: 10.1007/s00417-011-1906-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/28/2011] [Accepted: 12/13/2011] [Indexed: 11/29/2022] Open
|
166
|
Shoshan-Barmatz V, Ben-Hail D. VDAC, a multi-functional mitochondrial protein as a pharmacological target. Mitochondrion 2012; 12:24-34. [DOI: 10.1016/j.mito.2011.04.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 02/16/2011] [Accepted: 04/14/2011] [Indexed: 12/31/2022]
|
167
|
Abstract
Abstract
Collapse
|
168
|
Chenal A, Vendrely C, Vitrac H, Karst JC, Gonneaud A, Blanchet CE, Pichard S, Garcia E, Salin B, Catty P, Gillet D, Hussy N, Marquette C, Almunia C, Forge V. Amyloid Fibrils Formed by the Programmed Cell Death Regulator Bcl-xL. J Mol Biol 2012; 415:584-99. [DOI: 10.1016/j.jmb.2011.11.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/07/2011] [Accepted: 11/13/2011] [Indexed: 12/21/2022]
|
169
|
Liu Y, Sun SY, Owonikoko TK, Sica GL, Curran WJ, Khuri FR, Deng X. Rapamycin induces Bad phosphorylation in association with its resistance to human lung cancer cells. Mol Cancer Ther 2011; 11:45-56. [PMID: 22057915 DOI: 10.1158/1535-7163.mct-11-0578] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibition of mTOR signaling by rapamycin has been shown to activate extracellular signal-regulated kinase 1 or 2 (ERK1/2) and Akt in various types of cancer cells, which contributes to rapamycin resistance. However, the downstream effect of rapamycin-activated ERKs and Akt on survival or death substrate(s) remains unclear. We discovered that treatment of human lung cancer cells with rapamycin results in enhanced phosphorylation of Bad at serine (S) 112 and S136 but not S155 in association with activation of ERK1/2 and Akt. A higher level of Bad phosphorylation was observed in rapamycin-resistant cells compared with parental rapamycin-sensitive cells. Thus, Bad phosphorylation may contribute to rapamycin resistance. Mechanistically, rapamycin promotes Bad accumulation in the cytosol, enhances Bad/14-3-3 interaction, and reduces Bad/Bcl-XL binding. Rapamycin-induced Bad phosphorylation promotes its ubiquitination and degradation, with a significant reduction of its half-life (i.e., from 53.3-37.5 hours). Inhibition of MEK/ERK by PD98059 or depletion of Akt by RNA interference blocks rapamycin-induced Bad phosphorylation at S112 or S136, respectively. Simultaneous blockage of S112 and S136 phosphorylation of Bad by PD98059 and silencing of Akt significantly enhances rapamycin-induced growth inhibition in vitro and synergistically increases the antitumor efficacy of rapamycin in lung cancer xenografts. Intriguingly, either suppression of Bad phosphorylation at S112 and S136 sites or expression of the nonphosphorylatable Bad mutant (S112A/S136A) can reverse rapamycin resistance. These findings uncover a novel mechanism of rapamycin resistance, which may promote the development of new strategies for overcoming rapamycin resistance by manipulating Bad phosphorylation at S112 and S136 in human lung cancer.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
170
|
Dewson G, Ma S, Frederick P, Hockings C, Tan I, Kratina T, Kluck RM. Bax dimerizes via a symmetric BH3:groove interface during apoptosis. Cell Death Differ 2011; 19:661-70. [PMID: 22015607 DOI: 10.1038/cdd.2011.138] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
During apoptotic cell death, Bax and Bak change conformation and homo-oligomerize to permeabilize mitochondria. We recently reported that Bak homodimerizes via an interaction between the BH3 domain and hydrophobic surface groove, that this BH3:groove interaction is symmetric, and that symmetric dimers can be linked via the α6-helices to form the high order oligomers thought responsible for pore formation. We now show that Bax also dimerizes via a BH3:groove interaction after apoptotic signaling in cells and in mitochondrial fractions. BH3:groove dimers of Bax were symmetric as dimers but not higher order oligomers could be linked by cysteine residues placed in both the BH3 and groove. The BH3:groove interaction was evident in the majority of mitochondrial Bax after apoptotic signaling, and correlated strongly with cytochrome c release, supporting its central role in Bax function. A second interface between the Bax α6-helices was implicated by cysteine linkage studies, and could link dimers to higher order oligomers. We also found that a population of Bax:Bak heterodimers generated during apoptosis formed via a BH3:groove interaction, further demonstrating that Bax and Bak oligomerize via similar mechanisms. These findings highlight the importance of BH3:groove interactions in apoptosis regulation by the Bcl-2 protein family.
Collapse
Affiliation(s)
- G Dewson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
171
|
Pang X, Moussa SH, Targy NM, Bose JL, George NM, Gries C, Lopez H, Zhang L, Bayles KW, Young R, Luo X. Active Bax and Bak are functional holins. Genes Dev 2011; 25:2278-90. [PMID: 22006182 DOI: 10.1101/gad.171645.111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The mechanism of Bax/Bak-dependent mitochondrial outer membrane permeabilization (MOMP), a central apoptotic event primarily controlled by the Bcl-2 family proteins, remains not well understood. Here, we express active Bax/Bak in bacteria, the putative origin of mitochondria, and examine their functional similarities to the λ bacteriophage (λ) holin. As critical effectors for bacterial lysis, holin oligomers form membrane lesions, through which endolysin, a muralytic enzyme, escapes the cytoplasm to attack the cell wall at the end of the infection cycle. We found that active Bax/Bak, but not any other Bcl-2 family protein, displays holin behavior, causing bacterial lysis by releasing endolysin in an oligomerization-dependent manner. Strikingly, replacing the holin gene with active alleles of Bax/Bak results in plaque-forming phages. Furthermore, we provide evidence that active Bax produces large membrane holes, the size of which is controlled by structural elements of Bax. Notably, lysis by active Bax is inhibited by Bcl-xL, and the lysis activity of the wild-type Bax is stimulated by a BH3-only protein. Together, these results mechanistically link MOMP to holin-mediated hole formation in the bacterial plasma membrane.
Collapse
Affiliation(s)
- Xiaming Pang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
BAX unleashed: the biochemical transformation of an inactive cytosolic monomer into a toxic mitochondrial pore. Trends Biochem Sci 2011; 36:642-52. [PMID: 21978892 DOI: 10.1016/j.tibs.2011.08.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/26/2011] [Accepted: 08/31/2011] [Indexed: 02/07/2023]
Abstract
BAX, the BCL-2-associated X protein, is a cardinal proapoptotic member of the BCL-2 family, which regulates the critical balance between cellular life and death. Because so many medical conditions can be categorized as diseases of either too many or too few cells, dissecting the biochemistry of BCL-2 family proteins and developing pharmacological strategies to target them have become high priority scientific objectives. Here, we focus on BAX, a latent, cytosolic and monomeric protein that transforms into a lethal mitochondrial oligomer in response to cellular stress. New insights into the structural location of BAX's 'on switch', and the multi-step conformational changes that ensue upon BAX activation, are providing fresh opportunities to modulate BAX for potential benefit in human diseases characterized by pathologic cell survival or unwanted cellular demise.
Collapse
|
173
|
Nickells RW. WITHDRAWN: Reprint of: Variations in the rheostat model of apoptosis: What studies of retinal ganglion cell death tell us about the functions of the Bcl2 family proteins. Exp Eye Res 2011:S0014-4835(11)00226-0. [PMID: 21819979 DOI: 10.1016/j.exer.2011.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 03/06/2010] [Indexed: 11/17/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, doi:10.1016/j.exer.2010.03.004. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, 6640 MSC, 1300 University Ave, Madison, WI 53706, USA
| |
Collapse
|
174
|
Kai W, Xiaojun X, Ximing P, Zhenqing H, Qiqing Z. Cytotoxic effects and the mechanism of three types of magnetic nanoparticles on human hepatoma BEL-7402 cells. NANOSCALE RESEARCH LETTERS 2011; 6:480. [PMID: 21801413 PMCID: PMC3211994 DOI: 10.1186/1556-276x-6-480] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/29/2011] [Indexed: 05/22/2023]
Abstract
The evaluation of the toxicity of magnetic nanoparticles (MNPs) has attracted much attention in recent years. The current study aimed to investigate the cytotoxic effects of Fe3O4, oleic acid-coated Fe3O4 (OA-Fe3O4), and carbon-coated Fe (C-Fe) nanoparticles on human hepatoma BEL-7402 cells and the mechanisms. WST-1 assay demonstrated that the cytotoxicity of three types of MNPs was in a dose-dependent manner. G1 (Fe3O4 and OA-Fe3O4) phase and G2 (C-Fe) phase cell arrests and apoptosis induced by MNPs were detected by flow cytometry analysis. The increase in apoptosis was accompanied with the Bax over-expression, mitochondrial membrane potential decrease, and the release of cytochrome C from mitochondria into cytosol. Moreover, apoptosis was further confirmed by morphological and biochemical hallmarks, such as swollen mitochondria with lysing cristae and caspase-3 activation. Our results revealed that certain concentrations of the three types of MNPs affect BEL-7402 cells viability via cell arrest and inducing apoptosis, and the MNPs-induced apoptosis is mediated through the mitochondrial-dependent pathway. The influence potency of MNPs observed in all experiments would be: C-Fe > Fe3O4 > OA-Fe3O4.
Collapse
Affiliation(s)
- Wei Kai
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
- Research Center of Biomedical Engineering, Department of Materials Science and Engineering, College of Materials, Xiamen University, Technology Research Center of Biomedical Engineering of Xiamen City, The Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen 361005, PR China
| | - Xu Xiaojun
- Zhejiang Fishery Technical Extention Center, Hangzhou 310012, PR China
| | - Pu Ximing
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
- Research Center of Biomedical Engineering, Department of Materials Science and Engineering, College of Materials, Xiamen University, Technology Research Center of Biomedical Engineering of Xiamen City, The Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen 361005, PR China
| | - Hou Zhenqing
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
- Research Center of Biomedical Engineering, Department of Materials Science and Engineering, College of Materials, Xiamen University, Technology Research Center of Biomedical Engineering of Xiamen City, The Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen 361005, PR China
| | - Zhang Qiqing
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
- Research Center of Biomedical Engineering, Department of Materials Science and Engineering, College of Materials, Xiamen University, Technology Research Center of Biomedical Engineering of Xiamen City, The Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen 361005, PR China
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, The Key Laboratory of Biomedical Material of Tianjin, Tianjin 300192, PR China
| |
Collapse
|
175
|
Khan S, Kaur R, Shah BA, Malik F, Kumar A, Bhushan S, Jain SK, Taneja SC, Singh J. A novel cyano derivative of 11-keto-β-boswellic acid causes apoptotic death by disrupting PI3K/AKT/Hsp-90 cascade, mitochondrial integrity, and other cell survival signaling events in HL-60 cells. Mol Carcinog 2011; 51:679-95. [PMID: 21751262 DOI: 10.1002/mc.20821] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 05/23/2011] [Accepted: 06/02/2011] [Indexed: 11/07/2022]
Abstract
Intervention of apoptosis is a promising strategy for discovery of novel anti-cancer therapeutics. In this study, we examined the ability of a novel cyano derivative of 11-keto-β-boswellic acid, that is, butyl 2-cyano-3,11-dioxours-1,12-dien-24-oate (BCDD) to induce apoptosis in cancer cells. BCDD inhibited cell proliferation with 48 h IC(50) of 0.67 µM in HL-60, 1 µM in Molt4, and 1.5 µM in THP1 cells. The mechanism of cell death was investigated in HL-60 cells where it caused apoptosis by acting against several potential apoptosis suppressive targets. It inhibited phosphatidylinositol-3-kinase (PI3K)/AKT activity, NF-κB, Hsp-90, and survivin which may enhance the sensitivity of cells to apoptosis. Also, BCDD decreased the activity of Bid and Bax in cytosol, caused ΔΨ(mt) loss, releasing pro-apoptotic cytochrome c, SMAC/DIABLO leading to caspase-9-mediated down stream activation of caspase-3, ICAD, and PARP1 cleavage. Translocation of apoptotis-inducing factor (AIF) from mitochondria to the nucleus indicated some caspases-independent apoptosis. Though it upregulated DR-5 and caspase-8, the caspase inhibitor yet had no effect on apoptosis as against 75% inhibition by caspase-9 inhibitor. Attempts were made to examine any acclaimed role of AIF in the activation of caspase-8 using siRNA where it had no effect on caspase-8 activity while the Bax-siRNA inhibited caspase-3 activation suggesting predominance of intrinsic signaling. Our studies thus demonstrated that BCDD exerts multi-focal action in cancer cells while it required 10-fold higher the concentration to produce cytotoxicity in normal human PBMC and gingival cell line, and therefore, may find usefulness in the management of human leukemia.
Collapse
Affiliation(s)
- Sheema Khan
- Division of Cancer Pharmacology and Bio-Organic Chemistry and Natural Products, Indian Institute of Integrative Medicine (Council of Scientific and Industrial Research), Jammu-Tawi, India
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Translocation and oligomerization of Bax is regulated independently by activation of p38 MAPK and caspase-2 during MN9D dopaminergic neurodegeneration. Apoptosis 2011; 16:1087-100. [DOI: 10.1007/s10495-011-0627-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
177
|
Dai H, Smith A, Meng XW, Schneider PA, Pang YP, Kaufmann SH. Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization. ACTA ACUST UNITED AC 2011; 194:39-48. [PMID: 21727192 PMCID: PMC3135403 DOI: 10.1083/jcb.201102027] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mechanism by which the proapoptotic Bcl-2 family members Bax and Bak release cytochrome c from mitochondria is incompletely understood. In this paper, we show that activator BH3-only proteins bind tightly but transiently to the Bak hydrophobic BH3-binding groove to induce Bak oligomerization, liposome permeabilization, mitochondrial cytochrome c release, and cell death. Analysis by surface plasmon resonance indicated that the initial binding of BH3-only proteins to Bak occurred with similar kinetics with or without detergent or mitochondrial lipids, but these reagents increase the strength of the Bak-BH3-only protein interaction. Point mutations in Bak and reciprocal mutations in the BH3-only proteins not only confirmed the identity of the interacting residues at the Bak-BH3-only protein interface but also demonstrated specificity of complex formation in vitro and in a cellular context. These observations indicate that transient protein-protein interactions involving the Bak BH3-binding groove initiate Bak oligomerization and activation.
Collapse
Affiliation(s)
- Haiming Dai
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
178
|
Ho SY, Wu WJ, Chiu HW, Chen YA, Ho YS, Guo HR, Wang YJ. Arsenic trioxide and radiation enhance apoptotic effects in HL-60 cells through increased ROS generation and regulation of JNK and p38 MAPK signaling pathways. Chem Biol Interact 2011; 193:162-71. [PMID: 21741957 DOI: 10.1016/j.cbi.2011.06.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 06/16/2011] [Accepted: 06/20/2011] [Indexed: 12/21/2022]
Abstract
The induction of apoptotic cell death is a significant mechanism of tumor cells under the influence of radio-/chemotherapy, and resistance to these treatments has been linked to some cancer cell lines with a low propensity for apoptosis. The present study aimed to investigate the enhanced effects and mechanisms in apoptosis and the cycle distribution of HL-60 cells, a human leukemia cell line lacking a functional p53 protein, after combination treatment with arsenic trioxide (ATO) and irradiation (IR). Our results indicated that combined treatment led to increased cytotoxicity and apoptotic cell death in HL-60 cells, which was correlated with the activation of cdc-2 and increased expression of cyclin B, the induction of intracellular reactive oxygen species (ROS) generation, the loss of mitochondria membrane potential, and the activation of caspase-3. The combined treatment of HL-60 cells pre-treated with Z-VAD or NAC resulted in a significant reduction in apoptotic cells. In addition, activation of JNK and p38 MAPK may be involved in combined treatment-mediated apoptosis. The data suggest that a combination of IR and ATO could be a potential therapeutic strategy against p53-deficient leukemia cells.
Collapse
|
179
|
Hikita H, Takehara T, Kodama T, Shimizu S, Shigekawa M, Hosui A, Miyagi T, Tatsumi T, Ishida H, Li W, Kanto T, Hiramatsu N, Shimizu S, Tsujimoto Y, Hayashi N. Delayed-onset caspase-dependent massive hepatocyte apoptosis upon Fas activation in Bak/Bax-deficient mice. Hepatology 2011; 54:240-51. [PMID: 21425311 DOI: 10.1002/hep.24305] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 03/09/2011] [Indexed: 01/16/2023]
Abstract
UNLABELLED The proapoptotic Bcl-2 family proteins Bak and Bax serve as an essential gateway to the mitochondrial pathway of apoptosis. When activated by BH3-only proteins, Bak/Bax triggers mitochondrial outer membrane permeabilization leading to release of cytochrome c followed by activation of initiator and then effector caspases to dismantle the cells. Hepatocytes are generally considered to be type II cells because, upon Fas stimulation, they are reported to require the BH3-only protein Bid to undergo apoptosis. However, the significance of Bak and Bax in the liver is unclear. To address this issue, we generated hepatocyte-specific Bak/Bax double knockout mice and administered Jo2 agonistic anti-Fas antibody or recombinant Fas ligand to them. Fas-induced rapid fulminant hepatocyte apoptosis was partially ameliorated in Bak knockout mice but not in Bax knockout mice, and was completely abolished in double knockout mice 3 hours after Jo2 injection. Importantly, at 6 hours, double knockout mice displayed severe liver injury associated with repression of XIAP, activation of caspase-3/7 and oligonucleosomal DNA breaks in the liver, without evidence of mitochondrial disruption or cytochrome c-dependent caspase-9 activation. This liver injury was not ameliorated in a cyclophilin D knockout background nor by administration of necrostatin-1, but was completely inhibited by administration of a caspase inhibitor after Bid cleavage. CONCLUSION Whereas either Bak or Bax is critically required for rapid execution of Fas-mediated massive apoptosis in the liver, delayed onset of mitochondria-independent, caspase-dependent apoptosis develops even in the absence of both. The present study unveils an extrinsic pathway of apoptosis, like that in type I cells, which serves as a backup system even in type II cells.
Collapse
Affiliation(s)
- Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Gogada R, Prabhu V, Amadori M, Scott R, Hashmi S, Chandra D. Resveratrol induces p53-independent, X-linked inhibitor of apoptosis protein (XIAP)-mediated Bax protein oligomerization on mitochondria to initiate cytochrome c release and caspase activation. J Biol Chem 2011; 286:28749-28760. [PMID: 21712378 DOI: 10.1074/jbc.m110.202440] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Resveratrol, a naturally occurring phytoalexin, is known to induce apoptosis in multiple cancer cell types, but the underlying molecular mechanisms remain unclear. Here, we show that resveratrol induced p53-independent, X-linked inhibitor of apoptosis protein (XIAP)-mediated translocation of Bax to mitochondria where it underwent oligomerization to initiate apoptosis. Resveratrol treatment promoted interaction between Bax and XIAP in the cytosol and on mitochondria, suggesting that XIAP plays a critical role in the activation and translocation of Bax to mitochondria. This process did not involve p53 but required accumulation of Bim and t-Bid on mitochondria. Bax primarily underwent homo-oligomerization on mitochondria and played a major role in release of cytochrome c to the cytosol. Bak, another key protein that regulates the mitochondrial membrane permeabilization, did not interact with p53 but continued to associate with Bcl-xL. Thus, the proapoptotic function of Bak remained suppressed during resveratrol-induced apoptosis. Caspase-9 silencing inhibited resveratrol-induced caspase activation, whereas caspase-8 knockdown did not affect caspase activity, suggesting that resveratrol induces caspase-9-dependent apoptosis. Together, our findings characterize the molecular mechanisms of resveratrol-induced caspase activation and subsequent apoptosis in cancer cells.
Collapse
Affiliation(s)
- Raghu Gogada
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Varun Prabhu
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Michael Amadori
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Rachael Scott
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Sana Hashmi
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263.
| |
Collapse
|
181
|
Mitochondrial ceramide-rich macrodomains functionalize Bax upon irradiation. PLoS One 2011; 6:e19783. [PMID: 21695182 PMCID: PMC3113798 DOI: 10.1371/journal.pone.0019783] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 04/15/2011] [Indexed: 11/19/2022] Open
Abstract
Background Evidence indicates that Bax functions as a “lipidic” pore to regulate mitochondrial outer membrane permeabilization (MOMP), the apoptosis commitment step, through unknown membrane elements. Here we show mitochondrial ceramide elevation facilitates MOMP-mediated cytochrome c release in HeLa cells by generating a previously-unrecognized mitochondrial ceramide-rich macrodomain (MCRM), which we visualize and isolate, into which Bax integrates. Methodology/Principal Findings MCRMs, virtually non-existent in resting cells, form upon irradiation coupled to ceramide synthase-mediated ceramide elevation, optimizing Bax insertion/oligomerization and MOMP. MCRMs are detected by confocal microscopy in intact HeLa cells and isolated biophysically as a light membrane fraction from HeLa cell lysates. Inhibiting ceramide generation using a well-defined natural ceramide synthase inhibitor, Fumonisin B1, prevented radiation-induced Bax insertion, oligomerization and MOMP. MCRM deconstruction using purified mouse hepatic mitochondria revealed ceramide alone is non-apoptogenic. Rather Bax integrates into MCRMs, oligomerizing therein, conferring 1–2 log enhanced cytochrome c release. Consistent with this mechanism, MCRM Bax isolates as high molecular weight “pore-forming” oligomers, while non-MCRM membrane contains exclusively MOMP-incompatible monomeric Bax. Conclusions/Significance Our recent studies in the C. elegans germline indicate that mitochondrial ceramide generation is obligate for radiation-induced apoptosis, although a mechanism for ceramide action was not delineated. Here we demonstrate that ceramide, generated in the mitochondrial outer membrane of mammalian cells upon irradiation, forms a platform into which Bax inserts, oligomerizes and functionalizes as a pore. We posit conceptualization of ceramide as a membrane-based stress calibrator, driving membrane macrodomain organization, which in mitochondria regulates intensity of Bax-induced MOMP, and is pharmacologically tractable in vitro and in vivo.
Collapse
|
182
|
Bandiera S, Rüberg S, Girard M, Cagnard N, Hanein S, Chrétien D, Munnich A, Lyonnet S, Henrion-Caude A. Nuclear outsourcing of RNA interference components to human mitochondria. PLoS One 2011; 6:e20746. [PMID: 21695135 PMCID: PMC3113838 DOI: 10.1371/journal.pone.0020746] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 05/12/2011] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that associate with Argonaute proteins to regulate gene expression at the post-transcriptional level in the cytoplasm. However, recent studies have reported that some miRNAs localize to and function in other cellular compartments. Mitochondria harbour their own genetic system that may be a potential site for miRNA mediated post-transcriptional regulation. We aimed at investigating whether nuclear-encoded miRNAs can localize to and function in human mitochondria. To enable identification of mitochondrial-enriched miRNAs, we profiled the mitochondrial and cytosolic RNA fractions from the same HeLa cells by miRNA microarray analysis. Mitochondria were purified using a combination of cell fractionation and immunoisolation, and assessed for the lack of protein and RNA contaminants. We found 57 miRNAs differentially expressed in HeLa mitochondria and cytosol. Of these 57, a signature of 13 nuclear-encoded miRNAs was reproducibly enriched in mitochondrial RNA and validated by RT-PCR for hsa-miR-494, hsa-miR-1275 and hsa-miR-1974. The significance of their mitochondrial localization was investigated by characterizing their genomic context, cross-species conservation and instrinsic features such as their size and thermodynamic parameters. Interestingly, the specificities of mitochondrial versus cytosolic miRNAs were underlined by significantly different structural and thermodynamic parameters. Computational targeting analysis of most mitochondrial miRNAs revealed not only nuclear but also mitochondrial-encoded targets. The functional relevance of miRNAs in mitochondria was supported by the finding of Argonaute 2 localization to mitochondria revealed by immunoblotting and confocal microscopy, and further validated by the co-immunoprecipitation of the mitochondrial transcript COX3. This study provides the first comprehensive view of the localization of RNA interference components to the mitochondria. Our data outline the molecular bases for a novel layer of crosstalk between nucleus and mitochondria through a specific subset of human miRNAs that we termed 'mitomiRs'.
Collapse
Affiliation(s)
| | | | - Muriel Girard
- INSERM U781 Hôpital Necker – Enfants Malades, Paris, France
| | - Nicolas Cagnard
- Paris-Descartes Bioinformatics Platform, Faculté de Médecine, Site Necker – Enfants Malades, Paris, France
| | - Sylvain Hanein
- INSERM U781 Hôpital Necker – Enfants Malades, Paris, France
| | | | - Arnold Munnich
- INSERM U781 Hôpital Necker – Enfants Malades, Paris, France
| | | | | |
Collapse
|
183
|
Rovini A, Savry A, Braguer D, Carré M. Microtubule-targeted agents: When mitochondria become essential to chemotherapy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:679-88. [DOI: 10.1016/j.bbabio.2011.01.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/02/2011] [Accepted: 01/04/2011] [Indexed: 12/22/2022]
|
184
|
Alkhouri N, Carter-Kent C, Feldstein AE. Apoptosis in nonalcoholic fatty liver disease: diagnostic and therapeutic implications. Expert Rev Gastroenterol Hepatol 2011; 5:201-12. [PMID: 21476915 PMCID: PMC3119461 DOI: 10.1586/egh.11.6] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pathological increases in cell death in the liver as well as in peripheral tissues has emerged as an important mechanism involved in the development and progression of nonalcoholic fatty liver disease (NAFLD). An increase in hepatocyte cell death by apoptosis is typically present in patients with NAFLD and in experimental models of steatohepatitis, while an increase in adipocyte cell death in visceral adipose tissue may be an important mechanism triggering insulin resistance and hepatic steatosis. The two fundamental pathways of apoptosis, the extrinsic (death receptor-mediated) and intrinsic (organelle-initiated) pathways, are both involved. This article summarizes the current knowledge related to the distinct molecular and biochemical pathways of cell death involved in NAFLD pathogenesis. In particular, it will highlight the efforts for the development of both novel diagnostic and therapeutic strategies based on this knowledge.
Collapse
Affiliation(s)
- Naim Alkhouri
- Department of Pediatric Gastroenterology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
185
|
Westphal D, Dewson G, Czabotar PE, Kluck RM. Molecular biology of Bax and Bak activation and action. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:521-31. [PMID: 21195116 DOI: 10.1016/j.bbamcr.2010.12.019] [Citation(s) in RCA: 385] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 12/17/2010] [Accepted: 12/19/2010] [Indexed: 12/26/2022]
Abstract
Bax and Bak are two nuclear-encoded proteins present in higher eukaryotes that are able to pierce the mitochondrial outer membrane to mediate cell death by apoptosis. Thus, organelles recruited by nucleated cells to supply energy can be recruited by Bax and Bak to kill cells. The two proteins lie in wait in healthy cells where they adopt a globular α-helical structure, seemingly as monomers. Following a variety of stress signals, they convert into pore-forming proteins by changing conformation and assembling into oligomeric complexes in the mitochondrial outer membrane. Proteins from the mitochondrial intermembrane space then empty into the cytosol to activate proteases that dismantle the cell. The arrangement of Bax and Bak in membrane-bound complexes, and how the complexes porate the membrane, is far from being understood. However, recent data indicate that they first form symmetric BH3:groove dimers which can be linked via an interface between the α6-helices to form high order oligomers. Here, we review how Bax and Bak change conformation and oligomerize, as well as how oligomers might form a pore. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
|
186
|
Rizvi F, Heimann T, Herrnreiter A, O'Brien WJ. Mitochondrial dysfunction links ceramide activated HRK expression and cell death. PLoS One 2011; 6:e18137. [PMID: 21483866 PMCID: PMC3069046 DOI: 10.1371/journal.pone.0018137] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/26/2011] [Indexed: 11/24/2022] Open
Abstract
Purpose Cell death is an essential process in normal development and homeostasis. In
eyes, corneal epithelial injury leads to the death of cells in underlying
stroma, an event believed to initiate corneal wound healing. The molecular
basis of wound induced corneal stromal cell death is not understood in
detail. Studies of others have indicated that ceramide may play significant
role in stromal cell death following LASIK surgery. We have undertaken the
present study to investigate the mechanism of death induced by C6 ceramide
in cultures of human corneal stromal (HCSF) fibroblasts. Methods Cultures of HCSF were established from freshly excised corneas. Cell death
was induced in low passage (p<4) cultures of HCSF by treating the cells
with C6 ceramide or C6 dihydroceramide as a control. Cell death was assessed
by Live/Dead cell staining with calcein AM and ethidium homodimer-1 as well
as Annexin V staining, caspase activation and TUNEL staining Mitochondrial
dysfunction was assessed by Mito Sox Red, JC-1 and cytochrome C release Gene
expression was examined by qPCR and western blotting. Results Our data demonstrate ceramide caused mitochondrial dysfunction as evident
from reduced MTT staining, cyto c release from
mitochondria, enhanced generation of ROS, and loss in mitochondrial membrane
potential (ΔΨm). Cell death was evident from Live -Dead
Cell staining and the inability to reestablish cultures from detached cells.
Ceramide induced the expression of the harikari gene(HRK) and up-regulated
JNK phosphorylation. In ceramide treated cells HRK was translocated to
mitochondria, where it was found to interact with mitochondrial protein p32.
The data also demonstrated HRK, p32 and BAD interaction. Ceramide-induced
expression of HRK, mitochondrial dysfunction and cell death were reduced by
HRK knockdown with HRK siRNA. Conclusion Our data document that ceramide is capable of inducing death of corneal
stromal fibroblasts through the induction of HRK mediated mitochondria
dysfunction.
Collapse
Affiliation(s)
- Farhan Rizvi
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee,
Wisconsin, United States of America
- * E-mail: (FR); (WJOB)
| | - Tom Heimann
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee,
Wisconsin, United States of America
| | - Anja Herrnreiter
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee,
Wisconsin, United States of America
| | - William J. O'Brien
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee,
Wisconsin, United States of America
- Department of Microbiology/Molecular Genetics, Medical College of
Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail: (FR); (WJOB)
| |
Collapse
|
187
|
Abstract
The Staphylococcus aureus cid and lrg operons are known to be involved in biofilm formation by controlling cell lysis and the release of genomic DNA, which ultimately becomes a structural component of the biofilm matrix. Although the molecular mechanisms controlling cell death and lysis are unknown, it has been hypothesized that the cidA and lrgA genes encode holin- and antiholin-like proteins and function to regulate these processes similarly to bacteriophage-induced death and lysis. In this study, we focused on the biochemical and molecular characterization of CidA and LrgA with the goal of testing the holin model. First, membrane fractionation and fluorescent protein fusion studies revealed that CidA and LrgA are membrane-associated proteins. Furthermore, similarly to holins, CidA and LrgA were found to oligomerize into high-molecular-mass complexes whose formation was dependent on disulfide bonds formed between cysteine residues. To determine the function of disulfide bond-dependent oligomerization of CidA, an S. aureus mutant in which the wild-type copy of the cidA gene was replaced with the cysteine mutant allele was generated. As determined by β-galactosidase release assays, this mutant exhibited increased cell lysis during stationary phase, suggesting that oligomerization has a negative impact on this process. When analyzed for biofilm development and maturation, this mutant displayed increased biofilm adhesion in a static assay and a greater amount of dead-cell accumulation during biofilm maturation. These studies support the model that CidA and LrgA proteins are bacterial holin-/antiholin-like proteins that function to control cell death and lysis during biofilm development.
Collapse
|
188
|
Kodama T, Takehara T, Hikita H, Shimizu S, Shigekawa M, Li W, Miyagi T, Hosui A, Tatsumi T, Ishida H, Kanto T, Hiramatsu N, Yin XM, Hayashi N. BH3-only activator proteins Bid and Bim are dispensable for Bak/Bax-dependent thrombocyte apoptosis induced by Bcl-xL deficiency: molecular requisites for the mitochondrial pathway to apoptosis in platelets. J Biol Chem 2011; 286:13905-13. [PMID: 21367852 DOI: 10.1074/jbc.m110.195370] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A pivotal step in the mitochondrial pathway of apoptosis is activation of Bak and Bax, although the molecular mechanism remains controversial. To examine whether mitochondrial apoptosis can be induced by just a lack of antiapoptotic Bcl-2-like proteins or requires direct activators of the BH3-only proteins including Bid and Bim, we studied the molecular requisites for platelet apoptosis induced by Bcl-xL deficiency. Severe thrombocytopenia induced by thrombocyte-specific Bcl-xL knock-out was fully rescued in a Bak and Bax double knock-out background but not with single knock-out of either one. In sharp contrast, deficiency of either Bid, Bim, or both did not alleviate thrombocytopenia in Bcl-xL knock-out mice. An in vitro study revealed that ABT-737, a Bad mimetic, induced platelet apoptosis in association with a conformational change of the amino terminus, translocation from the cytosol to mitochondria, and homo-oligomerization of Bax. ABT-737-induced Bax activation and apoptosis were also observed in Bid/Bim-deficient platelets. Human platelets, upon storage, underwent spontaneous apoptosis with a gradual decline of Bcl-xL expression despite a decrease in Bid and Bim expression. Apoptosis was attenuated in Bak/Bax-deficient or Bcl-xL-overexpressing platelets but not in Bid/Bim-deficient platelets upon storage. In conclusion, platelet lifespan is regulated by a fine balance between anti- and proapoptotic multidomain Bcl-2 family proteins. Despite residing in platelets, BH3-only activator proteins Bid and Bim are dispensable for Bax activation and mitochondrial apoptosis.
Collapse
Affiliation(s)
- Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Synergistic antitumor effect of dichloroacetate in combination with 5-fluorouracil in colorectal cancer. J Biomed Biotechnol 2011; 2011:740564. [PMID: 21403907 PMCID: PMC3043319 DOI: 10.1155/2011/740564] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 12/29/2010] [Accepted: 01/13/2011] [Indexed: 01/22/2023] Open
Abstract
Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), has been recently demonstrated as a promising nontoxic antineoplastic agent that promotes apoptosis of cancer cells. In the present study, we aimed to investigate the antitumor effect of DCA combined with 5-Fluorouracil (5-FU) on colorectal cancer (CRC) cells. Four human CRC cell lines were treated with DCA or 5-FU, or a combination of DCA and 5-FU. The cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The interaction between DCA and 5-FU was evaluated by the median effect principle. Immunocytochemistry with bromodeoxyuridine (BrdU) was carried out to determine the proliferation of CRC cells. Cell cycle and apoptosis were measured by flow cytometry, and the expression of apoptosis-related molecules was assessed by western blot. Our results demonstrated that DCA inhibited the viability of CRC cells and had synergistic antiproliferation in combination with 5-FU. Moreover, compared with 5-FU alone, the apoptosis of CRC cells treated with DCA and 5-FU was enhanced and demonstrated with the changes of Bcl-2, Bax, and caspase-3 proteins. Our results suggest that DCA has a synergistic antitumor effect with 5-FU on CRC cell lines in vitro.
Collapse
|
190
|
Ilkow CS, Goping IS, Hobman TC. The Rubella virus capsid is an anti-apoptotic protein that attenuates the pore-forming ability of Bax. PLoS Pathog 2011; 7:e1001291. [PMID: 21379337 PMCID: PMC3040668 DOI: 10.1371/journal.ppat.1001291] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 01/12/2011] [Indexed: 11/18/2022] Open
Abstract
Apoptosis is an important mechanism by which virus-infected cells are eliminated from the host. Accordingly, many viruses have evolved strategies to prevent or delay apoptosis in order to provide a window of opportunity in which virus replication, assembly and egress can take place. Interfering with apoptosis may also be important for establishment and/or maintenance of persistent infections. Whereas large DNA viruses have the luxury of encoding accessory proteins whose primary function is to undermine programmed cell death pathways, it is generally thought that most RNA viruses do not encode these types of proteins. Here we report that the multifunctional capsid protein of Rubella virus is a potent inhibitor of apoptosis. The main mechanism of action was specific for Bax as capsid bound Bax and prevented Bax-induced apoptosis but did not bind Bak nor inhibit Bak-induced apoptosis. Intriguingly, interaction with capsid protein resulted in activation of Bax in the absence of apoptotic stimuli, however, release of cytochrome c from mitochondria and concomitant activation of caspase 3 did not occur. Accordingly, we propose that binding of capsid to Bax induces the formation of hetero-oligomers that are incompetent for pore formation. Importantly, data from reverse genetic studies are consistent with a scenario in which the anti-apoptotic activity of capsid protein is important for virus replication. If so, this would be among the first demonstrations showing that blocking apoptosis is important for replication of an RNA virus. Finally, it is tempting to speculate that other slowly replicating RNA viruses employ similar mechanisms to avoid killing infected cells. Among the variety of defense systems employed by mammalian cells to combat virus infection, apoptosis or programmed cell death is the most drastic response. Some large DNA viruses encode proteins whose sole function is to block apoptosis. Conversely, very little is known about whether RNA viruses encode analogous proteins. In many cases, RNA viruses are able to replicate before cell death occurs, which may be one reason why so little thought has been given to this topic. However, a number of RNA viruses, some of which are important human pathogens, have slow replication cycles and it stands to reason that they must block apoptosis during this time period. Here we show that the multifunctional capsid protein of Rubella virus is a potent inhibitor of apoptosis. Data from reverse genetic experiments suggest that the anti-apoptotic function of a virus-encoded protein is important for replication of an RNA virus. We anticipate that other slowly replicating RNA viruses may employ similar mechanisms and, as such, these studies have implications for development of novel anti-virals and vaccines.
Collapse
Affiliation(s)
- Carolina S. Ilkow
- Department of Cell Biology, University of Alberta, Edmonton, Canada
- School of Molecular and Systems Medicine, University of Alberta, Edmonton, Canada
| | - Ing Swie Goping
- School of Molecular and Systems Medicine, University of Alberta, Edmonton, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Canada
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Tom C. Hobman
- Department of Cell Biology, University of Alberta, Edmonton, Canada
- School of Molecular and Systems Medicine, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
191
|
Lee SH, Ryu B, Je JY, Kim SK. Diethylaminoethyl chitosan induces apoptosis in HeLa cells via activation of caspase-3 and p53 expression. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.12.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
192
|
Shao L, Goronzy JJ, Weyand CM. DNA-dependent protein kinase catalytic subunit mediates T-cell loss in rheumatoid arthritis. EMBO Mol Med 2011; 2:415-27. [PMID: 20878914 PMCID: PMC3017722 DOI: 10.1002/emmm.201000096] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In the autoimmune syndrome rheumatoid arthritis (RA), T cells and T-cell precursors have age-inappropriate shortening of telomeres and accumulate deoxyribonucleic acid (DNA) double strand breaks. Whether damaged DNA elicits DNA repair activity and how this affects T-cell function and survival is unknown. Here, we report that naïve and resting T cells from RA patients are susceptible to undergo apoptosis. In such T cells, unrepaired DNA stimulates a p53-ataxia telangiectasia mutated-independent pathway involving the non-homologous-end-joining protein DNA-protein kinase catalytic subunit (DNA-PKcs). Upregulation of DNA-PKcs transcription, protein expression and phosphorylation in RA T cells co-occurs with diminished expression of the Ku70/80 heterodimer, limiting DNA repair capacity. Inhibition of DNA-PKcs kinase activity or gene silencing of DNA-PKcs protects RA T cells from apoptosis. DNA-PKcs induces T-cell death by activating the JNK pathway and upregulating the apoptogenic BH3-only proteins Bim and Bmf. In essence, in RA, the DNA-PKcs-JNK-Bim/Bmf axis transmits genotoxic stress into shortened survival of naïve resting T cells, imposing chronic proliferative turnover of the immune system and premature immunosenescence. Therapeutic blockade of the DNA-PK-dependent cell-death machinery may rejuvenate the immune system in RA.
Collapse
Affiliation(s)
- Lan Shao
- Department of Medicine, Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
193
|
Krasnikov BF, Melik-Nubarov NS, Zorova LD, Kuzminova AE, Isaev NK, Cooper AJL, Zorov DB. Synthetic and natural polyanions induce cytochrome c release from mitochondria in vitro and in situ. Am J Physiol Cell Physiol 2011; 300:C1193-203. [PMID: 21209366 DOI: 10.1152/ajpcell.00519.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A synthetic polyanion composed of styrene, maleic anhydride, and methacrylic acid (molar ratio 56:37:7) significantly inhibited the respiration of isolated rat liver mitochondria in a time-dependent fashion that correlated with 1) collapse of the mitochondrial membrane potential and 2) high amplitude mitochondrial swelling. The process is apparently Ca(2+) dependent. Since it is blocked by cyclosporin A, the process is ascribed to induction of the mitochondrial permeability transition. In mitoplasts, i.e., mitochondria lacking their outer membranes, the polyanion rapidly blocked respiration. After incubation of rat liver mitochondria with the polyanion, cytochrome c was released into the incubation medium. In solution, the polyanion modified by conjugation with fluorescein formed a complex with cytochrome c. Addition of the polyanion to cytochrome c-loaded phosphatidylcholine/cardiolipin liposomes induced the release of the protein from liposomal membrane evidently due to coordinated interplay of Coulomb and hydrophobic interactions of the polymer with cytochrome c. We conclude that binding of the polyanion to cytochrome c renders it inactive in the respiratory chain due to exclusion from its native binding sites. Apparently, the polyanion interacts with cytochrome c in mitochondria and releases it to the medium through breakage of the outer membrane as a result of severe swelling. Similar properties were demonstrated for the natural polyanion, tobacco mosaic virus RNA. An electron microscopy study confirmed that both polyanions caused mitochondrial swelling. Exposure of cerebellar astroglial cells in culture to the synthetic polyanion resulted in cell death, which was associated with nuclear fragmentation.
Collapse
Affiliation(s)
- Boris F Krasnikov
- Dept. of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10995, USA.
| | | | | | | | | | | | | |
Collapse
|
194
|
Abstract
Apoptosis plays a critical role for the development of a variety of cardiac diseases. Cardiomyocytes are enriched in mitochondria, while mitochondrial fission can regulate apoptosis. The molecular mechanism governing cardiomyocyte apoptosis remain to be fully elucidated. Our results showed that Smac/DIABLO is necessary for apoptosis in cardiomyocytes, and it is released from mitochondria into cytosol in response to apoptotic stimulation. Smac/DIABLO release is a consequence of mitochondrial fission mediated by dynamin-related protein-1 (Drp1). Upon release Smac/DIABLO binds to X-linked inhibitor of apoptosis protein (XIAP), resulting in the activation of caspase-9 and caspase-3. Their activation is a prerequisite for the initiation of apoptosis because the administration of z-LEHD-fmk and z-DQMD-fmk, two relatively specific inhibitors for caspase-9, and caspase-3, respectively, could significantly attenuate apoptosis. Smac/DIABLO release could not be blocked by these caspase inhibitors, indicating that it is an event upstream of caspase activation. ARC (apoptosis repressor with caspase recruitment domain), an abundantly expressed apoptotic repressor in cardiomyocytes, could inhibit mitochondrial fission and Smac/DIABLO release. Our data reveal that Smac/DIABLO is a target of ARC in counteracting apoptosis.
Collapse
|
195
|
Vento MT, Zazzu V, Loffreda A, Cross JR, Downward J, Stoppelli MP, Iaccarino I. Praf2 is a novel Bcl-xL/Bcl-2 interacting protein with the ability to modulate survival of cancer cells. PLoS One 2010; 5:e15636. [PMID: 21203533 PMCID: PMC3006391 DOI: 10.1371/journal.pone.0015636] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/18/2010] [Indexed: 11/18/2022] Open
Abstract
Increased expression of Bcl-xL in cancer has been shown to confer resistance to a broad range of apoptotic stimuli and to modulate a number of other aspects of cellular physiology, including energy metabolism, cell cycle, autophagy, mitochondrial fission/fusion and cellular adhesion. However, only few of these activities have a mechanistic explanation. Here we used Tandem Affinity purification to identify novel Bcl-xL interacting proteins that could explain the pleiotropic effects of Bcl-xL overexpression. Among the several proteins co-purifying with Bcl-xL, we focused on Praf2, a protein with a predicted role in trafficking. The interaction of Praf2 with Bcl-xL was found to be dependent on the transmembrane domain of Bcl-xL. We found that Bcl-2 also interacts with Praf2 and that Bcl-xL and Bcl-2 can interact also with Arl6IP5, an homologue of Praf2. Interestingly, overexpression of Praf2 results in the translocation of Bax to mitochondria and the induction of apoptotic cell death. Praf2 dependent cell death is prevented by the co-transfection of Bcl-xL but not by its transmembrane domain deleted mutant. Accordingly, knock-down of Praf2 increases clonogenicity of U2OS cells following etoposide treatment by reducing cell death. In conclusion a screen for Bcl-xL-interacting membrane proteins let us identify a novel proapoptotic protein whose activity is strongly counteracted exclusively by membrane targeted Bcl-xL.
Collapse
Affiliation(s)
- Maria Teresa Vento
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Valeria Zazzu
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Alessia Loffreda
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Justin R. Cross
- Signal Transduction Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Julian Downward
- Signal Transduction Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Maria Patrizia Stoppelli
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Ingram Iaccarino
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
- * E-mail:
| |
Collapse
|
196
|
Abstract
Poxviruses encode numerous proteins that inhibit apoptosis, a form of cell death critical to the elimination of virally infected cells. Sequencing of the deerpox virus genome revealed DPV022, a protein that lacks obvious homology to cellular members of the Bcl-2 family but shares limited regions of amino acid identity with two unique poxviral inhibitors of apoptosis, M11L and F1L. Given the limited homology, we sought to determine whether DPV022 could inhibit apoptosis. Here we show that DPV022 localized to the mitochondria, where it inhibited apoptosis. We used a Saccharomyces cerevisiae model system to demonstrate that in the absence of all other Bcl-2 family proteins, DPV022 interacted directly with Bak and Bax. We confirmed the ability of DPV022 to interact with Bak and Bax by immunoprecipitation and showed that DPV022 prevented apoptosis induced by Bak and Bax overexpression. Moreover, we showed that DPV022 blocked apoptosis even when all the endogenous mammalian antiapoptotic proteins were neutralized by a combination of selective BH3 ligands. During virus infection, DPV022 interacted with endogenous Bak and Bax and prevented the conformational activation of both of them. Thus, we have characterized a novel poxviral inhibitor of apoptosis with intriguing amino acid differences from the well-studied proteins M11L and F1L.
Collapse
|
197
|
Bogner C, Leber B, Andrews DW. Apoptosis: embedded in membranes. Curr Opin Cell Biol 2010; 22:845-51. [DOI: 10.1016/j.ceb.2010.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 08/01/2010] [Accepted: 08/05/2010] [Indexed: 01/03/2023]
|
198
|
Cheng S, Gao N, Zhang Z, Chen G, Budhraja A, Ke Z, Son YO, Wang X, Luo J, Shi X. Quercetin induces tumor-selective apoptosis through downregulation of Mcl-1 and activation of Bax. Clin Cancer Res 2010; 16:5679-91. [PMID: 21138867 PMCID: PMC3069720 DOI: 10.1158/1078-0432.ccr-10-1565] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To investigate the in vivo antitumor efficacy of quercetin in U937 xenografts and the functional roles of Mcl-1 and Bax in quercetin-induced apoptosis in human leukemia. EXPERIMENTAL DESIGN Leukemia cells were treated with quercetin, after which apoptosis, Mcl-1 expression, and Bax activation and translocation were evaluated. The efficacy of quercetin as well as Mcl-1 expression and Bax activation were investigated in xenografts of U937 cells. RESULTS Administration of quercetin caused pronounced apoptosis in both transformed and primary leukemia cells but not in normal blood peripheral mononuclear cells. Quercetin-induced apoptosis was accompanied by Mcl-1 downregulation and Bax conformational change and mitochondrial translocation that triggered cytochrome c release. Knockdown of Bax by siRNA reversed quercetin-induced apoptosis and abrogated the activation of caspase and apoptosis. Ectopic expression of Mcl-1 attenuated quercetin-mediated Bax activation, translocation, and cell death. Conversely, interruption of Mcl-1 by siRNA enhanced Bax activation and translocation, as well as lethality induced by quercetin. However, the absence of Bax had no effect on quercetin-mediated Mcl-1 downregulation. Furthermore, in vivo administration of quercetin attenuated tumor growth in U937 xenografts. The TUNEL-positive apoptotic cells in tumor sections increased in quercetin-treated mice as compared with controls. Mcl-1 downregulation and Bax activation were also observed in xenografts. CONCLUSIONS These data suggest that quercetin may be useful for the treatment of leukemia by preferentially inducing apoptosis in leukemia versus normal hematopoietic cells through a process involving Mcl-1 downregulation, which, in turn, potentiates Bax activation and mitochondrial translocation, culminating in apoptosis.
Collapse
Affiliation(s)
- Senping Cheng
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Ning Gao
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Zhuo Zhang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Gang Chen
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Amit Budhraja
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Zunji Ke
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Young-ok Son
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Xin Wang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jia Luo
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Xianglin Shi
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
199
|
Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria. Nat Cell Biol 2010; 12:1154-65. [PMID: 21102437 PMCID: PMC2996476 DOI: 10.1038/ncb2119] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 11/05/2010] [Indexed: 12/19/2022]
Abstract
IRGM, a human immunity related GTPase, confers autophagic defense against intracellular pathogens by an unknown mechanism. Here we report the unexpected mode of IRGM action. IRGM showed differential affinity for mitochondrial lipid cardiolipin, translocated to mitochondria, affected mitochondrial fission and induced autophagy. Mitochondrial fission was necessary for autophagic control of intracellular mycobacteria by IRGM. IRGM influenced mitochondrial membrane polarization and cell death. Overexpression of IRGMd but not IRGMb splice isoforms caused mitochondrial depolarization and autophagy-independent but Bax/Bak-dependent cell death. By acting on mitochondria IRGM confers autophagic protection or cell death, explaining IRGM action both in defense against tuberculosis and in damaging inflammation in Crohn's disease.
Collapse
|
200
|
Hou Q, Jin J, Zhou H, Novgorodov SA, Bielawska A, Szulc ZM, Hannun YA, Obeid LM, Hsu YT. Mitochondrially targeted ceramides preferentially promote autophagy, retard cell growth, and induce apoptosis. J Lipid Res 2010; 52:278-88. [PMID: 21081756 DOI: 10.1194/jlr.m012161] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C(6)-pyridinium (D-erythro-2-N-[6'-(1''-pyridinium)-hexanoyl]sphingosine bromide [LCL29]) is a cationic mitochondrion-targeting ceramide analog that promotes mitochondrial permeabilization and cancer cell death. In this study, we compared the biological effects of that compound with those of D-erythro-C(6)-ceramide, its non-mitochondrion-targeting analog. In MCF7 cells it was found that C(6)-pyridinium ceramide preferentially promoted autophagosome formation and retarded cell growth more extensively than its uncharged analog. This preferential inhibition of cell growth was also observed in breast epithelial cells and other breast cancer cells. In addition, this compound could promote Bax translocation to mitochondria. This redistribution of Bax in MCF7 cells could be blocked by the pan-caspase inhibitor zVAD-fmk but via a Bid-independent signaling pathway. Moreover, C(6)-pyridinium ceramide-induced translocation of Bax to mitochondria led to mitochondrial permeabilization and cell death. Overall, we show that mitochondrial targeting of C(6)-pyridinium ceramide significantly enhances cellular response to this compound.
Collapse
Affiliation(s)
- Qi Hou
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P R China
| | | | | | | | | | | | | | | | | |
Collapse
|