151
|
Abstract
Portal hypertension develops as a result of increased intrahepatic vascular resistance often caused by chronic liver disease that leads to structural distortion by fibrosis, microvascular thrombosis, dysfunction of liver sinusoidal endothelial cells (LSECs), and hepatic stellate cell (HSC) activation. While the basic mechanisms of LSEC and HSC dysregulation have been extensively studied, the role of microvascular thrombosis and platelet function in the pathogenesis of portal hypertension remains to be clearly characterized. As a secondary event, portal hypertension results in splanchnic and systemic arterial vasodilation, leading to the development of a hyperdynamic circulatory syndrome and subsequently to clinically devastating complications including gastroesophageal varices and variceal hemorrhage, hepatic encephalopathy from the formation of portosystemic shunts, ascites, and renal failure due to the hepatorenal syndrome. This review article discusses: (1) mechanisms of sinusoidal portal hypertension, focusing on HSC and LSEC biology, pathological angiogenesis, and the role of microvascular thrombosis and platelets, (2) the mesenteric vasculature in portal hypertension, and (3) future directions for vascular biology research in portal hypertension.
Collapse
Affiliation(s)
- Matthew McConnell
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, 1080 LMP, 333 Cedar St., New Haven, CT, 06520, USA
| | - Yasuko Iwakiri
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, 1080 LMP, 333 Cedar St., New Haven, CT, 06520, USA.
| |
Collapse
|
152
|
Extracellular vesicles: Novel mediator for cell to cell communications in liver pathogenesis. Mol Aspects Med 2017; 60:115-122. [PMID: 29122679 DOI: 10.1016/j.mam.2017.11.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles (EVs) are membrane derived nanometer-sized vesicles. EVs are released by normal, diseased, and transformed cells in vitro and in vivo, and carry lipids, proteins, mRNAs, non-coding RNAs, and even DNA out of cells. Transferring biological information via EVs to neighboring cells and inter-cellular communication not only maintain physiological functions, but also involve in the pathogenesis of several diseases, including cancer. The aim of this review is to discuss the emerging role of EVs in viral hepatitis, non-alcoholic or alcoholic liver disease and liver cancers. We summarize what is known about exosome biogenesis, and role in liver disease progression, and discuss the potential clinical applications of EVs as predictive biomarkers and therapeutic modalities.
Collapse
|
153
|
Chen L, Chen R, Kemper S, Brigstock DR. Pathways of production and delivery of hepatocyte exosomes. J Cell Commun Signal 2017; 12:343-357. [PMID: 29063370 DOI: 10.1007/s12079-017-0421-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/19/2022] Open
Abstract
Hepatocyte exosomes (ExoHep) are proposed to mediate physiological or pathophysiological signaling in a variety of hepatic target cells. ExoHep were purified from the medium of primary mouse hepatocytes or AML12 cells and characterized as ~100 nm nanovesicles that were positive for proteins commonly found in exosomes (CD9, CD81, flotillin) or hepatocytes (asialoglycoprotein receptor). Ethanol treatment of hepatocytes caused increased ExoHep release and increased cellular mRNA expression of components involved in intracellular vesicle trafficking (Rab 5a,b,c, Rab 7a, Rab 27a,b) or exosome biogenesis via the ESCRT (HGS, Alix, STAM1, TSG101, VTA1, YKT6) or ceramide (nSmase2) pathways. RNA interference of HGS, Alix, TSG101 or nSmase 2 caused exosome production by normal or ethanol-treated hepatocytes to be reduced. In mice, in vivo administration of fluorescently-labeled ExoHep resulted in their accumulation in the liver and preferential localization to hepatic stellate cells (HSC) or hepatocytes, the latter of which showed enhanced ExoHep binding when isolated from fibrotic mice. In cell co-cultures, the intercellular transfer of RNA from hepatocytes to hepatocytes or HSC was blocked by the exosome inhibitor GW4869. ExoHep binding to HSC or hepatocytes occurred via mechanisms that involved heparin-like molecules and cellular integrin αv or β1 subunits , and resulted in a reversal of fibrosis-associated gene expression in HSC and of ethanol-induced damage in hepatocytes. These studies provide insight regarding the regulation and/or participation of exosome biogenesis or trafficking components in hepatocytes and show that ExoHep can mediate therapeutic changes in activated HSC or injured hepatocytes that occur downstream of heparin- or integrin-dependent binding interactions.
Collapse
Affiliation(s)
- Li Chen
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Ruju Chen
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Sherri Kemper
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - David R Brigstock
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA. .,Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
154
|
Rilla K, Mustonen AM, Arasu UT, Härkönen K, Matilainen J, Nieminen P. Extracellular vesicles are integral and functional components of the extracellular matrix. Matrix Biol 2017; 75-76:201-219. [PMID: 29066152 DOI: 10.1016/j.matbio.2017.10.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EV) are small plasma membrane-derived particles released into the extracellular space by virtually all cell types. Recently, EV have received increased interest because of their capability to carry nucleic acids, proteins, lipids and signaling molecules and to transfer their cargo into the target cells. Less attention has been paid to their role in modifying the composition of the extracellular matrix (ECM), either directly or indirectly via regulating the ability of target cells to synthesize or degrade matrix molecules. Based on recent results, EV can be considered one of the structural and functional components of the ECM that participate in matrix organization, regulation of cells within it, and in determining the physical properties of soft connective tissues, bone, cartilage and dentin. This review addresses the relevance of EV as specific modulators of the ECM, such as during the assembly and disassembly of the molecular network, signaling through the ECM and formation of niches suitable for tissue regeneration, inflammation and tumor progression. Finally, we assess the potential of these aspects of EV biology to translational medicine.
Collapse
Affiliation(s)
- Kirsi Rilla
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland.
| | - Anne-Mari Mustonen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| | - Uma Thanigai Arasu
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| | - Kai Härkönen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| | - Johanna Matilainen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| | - Petteri Nieminen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| |
Collapse
|
155
|
Wang J, Yeung BZ, Cui M, Peer CJ, Lu Z, Figg WD, Guillaume Wientjes M, Woo S, Au JLS. Exosome is a mechanism of intercellular drug transfer: Application of quantitative pharmacology. J Control Release 2017; 268:147-158. [PMID: 29054369 DOI: 10.1016/j.jconrel.2017.10.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/02/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE Exosomes are small membrane vesicles (30-100nm in diameter) secreted by cells into extracellular space. The present study evaluated the effect of chemotherapeutic agents on exosome production and/or release, and quantified the contribution of exosomes to intercellular drug transfer and pharmacodynamics. METHODS Human cancer cells (breast MCF7, breast-to-lung metastatic LM2, ovarian A2780 and OVCAR4) were treated with paclitaxel (PTX, 2-1000nM) or doxorubicin (DOX, 20-1000nM) for 24-48h. Exosomes were isolated from the culture medium of drug-treated donor cells (Donor cells) using ultra-centrifugation, and analyzed for acetylcholinesterase activity, total proteins, drug concentrations, and biological effects (cytotoxicity and anti-migration) on drug-naïve recipient cells (Recipient cells). These results were used to develop computational predictive quantitative pharmacology models. RESULTS Cells in exponential growth phase released ~220 exosomes/cell in culture medium. PTX and DOX significantly promoted exosome production and/or release in a dose- and time-dependent manner, with greater effects in ovarian cancer cells than in breast cancer cells. Exosomes isolated from Donor cells contained appreciable drug levels (2-7pmole/106 cells after 24h treatment with 100-1000nM PTX), and caused cytotoxicity and inhibited migration of Recipient cells. Quantitative pharmacology models that integrated cellular PTX pharmacokinetics with PTX pharmacodynamics successfully predicted effects of exosomes on intercellular drug transfer, cytotoxicity of PTX on Donor cells and cytotoxicity of PTX-containing exosomes on Recipient cells. Additional model simulations indicate that within clinically achievable PTX concentrations, the contribution of exosomes to active drug efflux increased with drug concentration and exceeded the p-glycoprotein efflux when the latter was saturated. CONCLUSIONS Our results indicate (a) chemotherapeutic agents stimulate exosome production or release, and (b) exosome is a mechanism of intercellular drug transfer that contributes to pharmacodynamics of neighboring cells.
Collapse
Affiliation(s)
- Jin Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, USA
| | - Bertrand Z Yeung
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, USA; Optimum Therapeutics LLC, Carlsbad, CA 92008, USA
| | - Minjian Cui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, USA; Optimum Therapeutics LLC, Carlsbad, CA 92008, USA
| | - Cody J Peer
- Clinical Pharmacology Program, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ze Lu
- Optimum Therapeutics LLC, Carlsbad, CA 92008, USA
| | - William D Figg
- Clinical Pharmacology Program, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - M Guillaume Wientjes
- Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, USA; Optimum Therapeutics LLC, Carlsbad, CA 92008, USA
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Jessie L-S Au
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, USA; Optimum Therapeutics LLC, Carlsbad, CA 92008, USA; College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
156
|
Deng F, Magee N, Zhang Y. Decoding the Role of Extracellular Vesicles in Liver Diseases. LIVER RESEARCH 2017; 1:147-155. [PMID: 29552373 PMCID: PMC5851463 DOI: 10.1016/j.livres.2017.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell-to-cell communication is a fascinating process that is essential for maintaining tissue and whole-body homeostasis. Extracellular vesicles (EVs) are cell-derived membrane-bound nanoparticles that are a means of communication between cells. Accumulating evidence indicates that EVs can render either beneficial or harmful outcomes, depending on the specific cargos (e.g. proteins, lipids, RNAs) transferred between cells. EVs also have great value as diagnostic and prognostic markers of disease because they are present in a variety of biological fluids and carry bioactive molecules from their cells or tissues of origin. Liver cells can both release and receive EVs derived from other cells and emerging evidence indicates that liver EVs play important roles in the pathogenesis of various liver diseases, including liver cancer, viral hepatitis, non-alcoholic fatty liver disease, and alcoholic liver disease. This review provides an overview of the biogenesis and secretion of EVs and summarizes the most recent advances in understanding the role of EVs in liver physiology and diseases. Additionally, we discuss potential applications of liver EVs as biomarkers and in therapeutic approaches to treat liver diseases.
Collapse
Affiliation(s)
- Fengyan Deng
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nancy Magee
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
157
|
Szabo G, Momen-Heravi F. Extracellular vesicles in liver disease and potential as biomarkers and therapeutic targets. Nat Rev Gastroenterol Hepatol 2017; 14. [PMID: 28634412 PMCID: PMC6380505 DOI: 10.1038/nrgastro.2017.71] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are membranous vesicles originating from different cells in the liver. The pathophysiological role of EVs is increasingly recognized in liver diseases, including alcoholic liver disease, NAFLD, viral hepatitis and hepatocellular carcinoma. EVs, via their cargo, can provide communication between different cell types in the liver and between organs. EVs are explored as biomarkers of disease and could also represent therapeutic targets and vehicles for treatment delivery. Here, we review advances in understanding the role of EVs in liver diseases and discuss their utility in biomarker discovery and therapeutics.
Collapse
|
158
|
Hajny S, Christoffersen C. A Novel Perspective on the ApoM-S1P Axis, Highlighting the Metabolism of ApoM and Its Role in Liver Fibrosis and Neuroinflammation. Int J Mol Sci 2017; 18:ijms18081636. [PMID: 28749426 PMCID: PMC5578026 DOI: 10.3390/ijms18081636] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocytes, renal proximal tubule cells as well as the highly specialized endothelium of the blood brain barrier (BBB) express and secrete apolipoprotein M (apoM). ApoM is a typical lipocalin containing a hydrophobic binding pocket predominantly carrying Sphingosine-1-Phosphate (S1P). The small signaling molecule S1P is associated with several physiological as well as pathological pathways whereas the role of apoM is less explored. Hepatic apoM acts as a chaperone to transport S1P through the circulation and kidney derived apoM seems to play a role in S1P recovery to prevent urinal loss. Finally, polarized endothelial cells constituting the lining of the BBB express apoM and secrete the protein to the brain as well as to the blood compartment. The review will provide novel insights on apoM and S1P, and its role in hepatic fibrosis, neuroinflammation and BBB integrity.
Collapse
Affiliation(s)
- Stefan Hajny
- Department of Clinical Biochemistry, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
- Department of Biomedical Sciences, Faculty of Health and Science, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Christina Christoffersen
- Department of Clinical Biochemistry, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
- Department of Biomedical Sciences, Faculty of Health and Science, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
- Department of Cardiology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| |
Collapse
|
159
|
Paolillo M, Schinelli S. Integrins and Exosomes, a Dangerous Liaison in Cancer Progression. Cancers (Basel) 2017; 9:cancers9080095. [PMID: 28933725 PMCID: PMC5575598 DOI: 10.3390/cancers9080095] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/20/2017] [Accepted: 07/22/2017] [Indexed: 12/19/2022] Open
Abstract
Integrin activity and function is classically related to the bi-directional regulation of cell-extracellular matrix (ECM) contacts that regulate a number of cell pathways linked to cell adhesion, cell detachment from ECM, cell migration, and anoikis. Interestingly, emerging data continue to uncover new roles for integrins in cancer-relevant pathways, particularly concerning the regulation of immune cell activity in the tumor niche, like myeloid cell differentiation and function and, very recently, the regulation of metastatic processes by exosomes. Exosomes are deeply involved in cell-cell communication processes and several studies have shown that integrins found in tumor-associated exosomes can promote cancer progression by two novel cooperative mechanisms: horizontal transfer of integrin transcripts as vescicle cargo, and selection of target tissues to form new tumor niches during metastatic spread by integrins carried on the exosome’s surface. In this review we will discuss mounting evidence that contribute to the development of a new picture for integrins in cancer, highlighting the role of integrins in the processes that leads to tumor niche formation. In particular, the role of the periostin pathway in the recruitment of tumor-associated macrophages, and the proposed contribution of exosome-derived integrins in the metastatic spread will be discussed. Finally, in light of the above considerations, an evaluation of integrins as possible therapeutic targets will be conducted.
Collapse
Affiliation(s)
- Mayra Paolillo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 14, Pavia 27100, Italy.
| | - Sergio Schinelli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 14, Pavia 27100, Italy.
| |
Collapse
|
160
|
Guo P, Yu H, Wang Y, Xie X, Chen G. Exosome: An Emerging Participant in the Development of Liver Disease. HEPATITIS MONTHLY 2017; 17. [DOI: 10.5812/hepatmon.58021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
161
|
Rohrbach T, Maceyka M, Spiegel S. Sphingosine kinase and sphingosine-1-phosphate in liver pathobiology. Crit Rev Biochem Mol Biol 2017; 52:543-553. [PMID: 28618839 DOI: 10.1080/10409238.2017.1337706] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over 20 years ago, sphingosine-1-phosphate (S1P) was discovered to be a bioactive signaling molecule. Subsequent studies later identified two related kinases, sphingosine kinase 1 and 2, which are responsible for the phosphorylation of sphingosine to S1P. Many stimuli increase sphingosine kinase activity and S1P production and secretion. Outside the cell, S1P can bind to and activate five S1P-specific G protein-coupled receptors (S1PR1-5) to regulate many important cellular and physiological processes in an autocrine or paracrine manner. S1P is found in high concentrations in the blood where it functions to control vascular integrity and trafficking of lymphocytes. Obesity increases blood S1P levels in humans and mice. With the world wide increase in obesity linked to consumption of high-fat, high-sugar diets, S1P is emerging as an accomplice in liver pathobiology, including acute liver failure, metabolic syndrome, control of blood lipid and glucose homeostasis, nonalcoholic fatty liver disease, and liver fibrosis. Here, we review recent research on the importance of sphingosine kinases, S1P, and S1PRs in liver pathobiology, with a focus on exciting insights for new therapeutic modalities that target S1P signaling axes for a variety of liver diseases.
Collapse
Affiliation(s)
- Timothy Rohrbach
- a Department of Biochemistry and Molecular Biology and the Massey Cancer Center , VCU School of Medicine , Richmond , VA , USA
| | - Michael Maceyka
- a Department of Biochemistry and Molecular Biology and the Massey Cancer Center , VCU School of Medicine , Richmond , VA , USA
| | - Sarah Spiegel
- a Department of Biochemistry and Molecular Biology and the Massey Cancer Center , VCU School of Medicine , Richmond , VA , USA
| |
Collapse
|
162
|
González-Fernández B, Sánchez DI, Crespo I, San-Miguel B, Álvarez M, Tuñón MJ, González-Gallego J. Inhibition of the SphK1/S1P signaling pathway by melatonin in mice with liver fibrosis and human hepatic stellate cells. Biofactors 2017; 43:272-282. [PMID: 27801960 DOI: 10.1002/biof.1342] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/07/2016] [Accepted: 10/03/2016] [Indexed: 01/02/2023]
Abstract
The sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) system is involved in different pathological processes, including fibrogenesis. Melatonin abrogates activation of hepatic stellate cells (HSCs) and attenuates different profibrogenic pathways in animal models of fibrosis, but it is unknown if protection associates with its inhibitory effect on the SphK1/S1P axis. Mice in treatment groups received carbon tetrachloride (CCl4 ) 5 μL g-1 body wt i.p. twice a week for 4 or 6 weeks. Melatonin was given at 5 or 10 mg kg-1 day-1 i.p, beginning 2 weeks after the start of CCl4 administration. At both 4 and 6 weeks following CCl4 treatment, liver mRNA levels, protein concentration and immunohistochemical labelling for SphK1 increased significantly. S1P production, and expression of S1P receptor (S1PR)1, S1PR3 and acid sphingomyelinase (ASMase) were significantly elevated. However, there was a decreased expression of S1PR2 and S1P lyase (S1PL). Melatonin attenuated liver fibrosis, as shown by a significant inhibition of the expression of α-smooth muscle actin (α-SMA), transforming growth factor (TGF)-β and collagen (Col) Ι. Furthermore, melatonin inhibited S1P production, lowered expression of SphK1, S1PR1, SP1R3, and ASMase, and increased expression of S1PL. Melatonin induced a reversal of activated human HSCs cell line LX2, as evidenced by a reduction in α-SMA, TGF-β, and Col I expression. Melatonin-treated cells also exhibited an inhibition of the SphK1/S1P axis. Antifibrogenic effect of SphK1 inhibition was confirmed by treatment of LX2 cells with PF543. Abrogation of the lipid signaling pathway by the indole reveals novel molecular pathways that may account for the protective effect of melatonin in liver fibrogenesis. © 2016 BioFactors, 43(2):272-282, 2017.
Collapse
Affiliation(s)
| | - Diana I Sánchez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Irene Crespo
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | | | | | - María J Tuñón
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| |
Collapse
|
163
|
Shen J, Huang CK, Yu H, Shen B, Zhang Y, Liang Y, Li Z, Feng X, Zhao J, Duan L, Cai X. The role of exosomes in hepatitis, liver cirrhosis and hepatocellular carcinoma. J Cell Mol Med 2017; 21:986-992. [PMID: 28224705 PMCID: PMC5387156 DOI: 10.1111/jcmm.12950] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/29/2016] [Indexed: 12/21/2022] Open
Abstract
Exosomes are small vesicles that were initially thought to be a mechanism for discarding unneeded membrane proteins from reticulocytes. Their mediation of intercellular communication appears to be associated with several biological functions. Current studies have shown that most mammalian cells undergo the process of exosome formation and utilize exosome‐mediated cell communication. Exosomes contain various microRNAs, mRNAs and proteins. They have been reported to mediate multiple functions, such as antigen presentation, immune escape and tumour progression. This concise review highlights the findings regarding the roles of exosomes in liver diseases, particularly hepatitis B, hepatitis C, liver cirrhosis and hepatocellular carcinoma. However, further elucidation of the contributions of exosomes to intercellular information transmission is needed. The potential medical applications of exosomes in liver diseases seem practical and will depend on the ingenuity of future investigators and their insights into exosome‐mediated biological processes.
Collapse
Affiliation(s)
- Jiliang Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Chiung-Kuei Huang
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Hong Yu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Bo Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yaping Zhang
- Department of Anesthesiology, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yuelong Liang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Zheyong Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xu Feng
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jie Zhao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Lian Duan
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
164
|
Natarajan V, Harris EN, Kidambi S. SECs (Sinusoidal Endothelial Cells), Liver Microenvironment, and Fibrosis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4097205. [PMID: 28293634 PMCID: PMC5331310 DOI: 10.1155/2017/4097205] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/16/2016] [Indexed: 01/17/2023]
Abstract
Liver fibrosis is a wound-healing response to chronic liver injury such as alcoholic/nonalcoholic fatty liver disease and viral hepatitis with no FDA-approved treatments. Liver fibrosis results in a continual accumulation of extracellular matrix (ECM) proteins and paves the way for replacement of parenchyma with nonfunctional scar tissue. The fibrotic condition results in drastic changes in the local mechanical, chemical, and biological microenvironment of the tissue. Liver parenchyma is supported by an efficient network of vasculature lined by liver sinusoidal endothelial cells (LSECs). These nonparenchymal cells are highly specialized resident endothelial cell type with characteristic morphological and functional features. Alterations in LSECs phenotype including lack of LSEC fenestration, capillarization, and formation of an organized basement membrane have been shown to precede fibrosis and promote hepatic stellate cell activation. Here, we review the interplay of LSECs with the dynamic changes in the fibrotic liver microenvironment such as matrix rigidity, altered ECM protein profile, and cell-cell interactions to provide insight into the pivotal changes in LSEC physiology and the extent to which it mediates the progression of liver fibrosis. Establishing the molecular aspects of LSECs in the light of fibrotic microenvironment is valuable towards development of novel therapeutic and diagnostic targets of liver fibrosis.
Collapse
Affiliation(s)
- Vaishaali Natarajan
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, USA
| | - Edward N. Harris
- Department of Biochemistry, University of Nebraska, Lincoln, NE, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska, Lincoln, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Nebraska Center for the Prevention of Obesity Diseases, University of Nebraska, Lincoln, NE, USA
| | - Srivatsan Kidambi
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska, Lincoln, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Nebraska Center for the Prevention of Obesity Diseases, University of Nebraska, Lincoln, NE, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE, USA
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
165
|
Lambrecht J, Jan Poortmans P, Verhulst S, Reynaert H, Mannaerts I, van Grunsven LA. Circulating ECV-Associated miRNAs as Potential Clinical Biomarkers in Early Stage HBV and HCV Induced Liver Fibrosis. Front Pharmacol 2017; 8:56. [PMID: 28232800 PMCID: PMC5298975 DOI: 10.3389/fphar.2017.00056] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/26/2017] [Indexed: 12/12/2022] Open
Abstract
Introduction: Chronic hepatitis B (HBV) and C (HCV) virus infection is associated with the activation of hepatic stellate cells (HSCs) toward a myofibroblastic phenotype, resulting in excessive deposition of extracellular matrix, the development of liver fibrosis, and its progression toward cirrhosis. The gold standard for the detection and staging of liver fibrosis remains the liver biopsy, which is, however, associated with some mild and severe drawbacks. Other non-invasive techniques evade these drawbacks, but lack inter-stage specificity and are unable to detect early stages of fibrosis. We investigated whether circulating vesicle-associated miRNAs can be used in the diagnosis and staging of liver fibrosis in HBV and HCV patients. Methods: Plasma samples were obtained from 14 healthy individuals and 39 early stage fibrotic patients (F0–F2) with chronic HBV or HCV infection who underwent transient elastography (Fibroscan). Extracellular vesicles were extracted from the plasma and the level of miRNA-122, -150, -192, -21, -200b, and -92a was analyzed by qRT-PCR in total plasma and circulating vesicles. Finally, these same miRNAs were also quantified in vesicles extracted from in vitro activating primary HSCs. Results: In total plasma samples, only miRNA-200b (HBV: p = 0.0384; HCV: p = 0.0069) and miRNA-122 (HBV: p < 0.0001; HCV: p = 0.0007) were significantly up-regulated during early fibrosis. In circulating vesicles, miRNA-192 (HBV: p < 0.0001; HCV: p < 0.0001), -200b (HBV: p < 0.0001; HCV: p < 0.0001), -92a (HBV: p < 0.0001; HCV: p < 0.0001), and -150 (HBV: p = 0.0016; HCV: p = 0.004) displayed a significant down-regulation in both HBV and HCV patients. MiRNA expression profiles in vesicles isolated from in vitro activating primary mouse HSCs resembled the miRNA expression profile in circulating vesicles. Conclusion: Our analysis revealed a distinct miRNA expression pattern in total plasma and its circulating vesicles. The expression profile of miRNAs in circulating vesicles of fibrotic patients suggests the potential use of these vesicle-associated miRNAs as markers for early stages of liver fibrosis.
Collapse
Affiliation(s)
- Joeri Lambrecht
- Liver Cell Biology Lab, Department of Basic Biomedical Sciences, Vrije Universiteit Brussel Brussels, Belgium
| | - Pieter Jan Poortmans
- Liver Cell Biology Lab, Department of Basic Biomedical Sciences, Vrije Universiteit Brussel Brussels, Belgium
| | - Stefaan Verhulst
- Liver Cell Biology Lab, Department of Basic Biomedical Sciences, Vrije Universiteit Brussel Brussels, Belgium
| | - Hendrik Reynaert
- Liver Cell Biology Lab, Department of Basic Biomedical Sciences, Vrije Universiteit BrusselBrussels, Belgium; Department of Gastroenterology and Hepatology, Universitair Ziekenhuis BrusselBrussels, Belgium
| | - Inge Mannaerts
- Liver Cell Biology Lab, Department of Basic Biomedical Sciences, Vrije Universiteit Brussel Brussels, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Lab, Department of Basic Biomedical Sciences, Vrije Universiteit Brussel Brussels, Belgium
| |
Collapse
|
166
|
Cai S, Cheng X, Pan X, Li J. Emerging role of exosomes in liver physiology and pathology. Hepatol Res 2017; 47:194-203. [PMID: 27539153 DOI: 10.1111/hepr.12794] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/21/2016] [Accepted: 08/10/2016] [Indexed: 12/13/2022]
Abstract
Exosomes can mediate intercellular communication by conveying various bioactive molecules. Plentiful evidence suggests that exosomes are involved in many liver diseases including hepatitis C virus infection, hepatitis B virus infection, hepatocellular carcinoma, liver fibrosis, cirrhosis, non-alcoholic fatty liver disease, and alcoholic liver disease. Moreover, exosomes are present in nearly all human body fluids. Therefore, exosomal miRNA or proteins have the potential to be novel biomarkers of liver diseases. In the treatment of liver diseases, exosomes could participate in adaptive immune response and mesenchymal stem cell-based therapy. Exosomes can also be used as vehicles for genetic materials and drug delivery.
Collapse
Affiliation(s)
- Shuangpeng Cai
- School of Pharmacy, Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei, China
| | - Xiaoyu Cheng
- School of Pharmacy, Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei, China
| | - Xueyin Pan
- School of Pharmacy, Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei, China
| | - Jun Li
- School of Pharmacy, Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei, China
| |
Collapse
|
167
|
Hirsova P, Ibrahim SH, Verma VK, Morton LA, Shah VH, LaRusso NF, Gores GJ, Malhi H. Extracellular vesicles in liver pathobiology: Small particles with big impact. Hepatology 2016; 64:2219-2233. [PMID: 27628960 PMCID: PMC5115968 DOI: 10.1002/hep.28814] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/26/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are nanometer-sized, membrane-bound vesicles released by cells into the extracellular milieu. EVs are now recognized to play a critical role in cell-to-cell communication. EVs contain important cargo in the form of proteins, lipids, and nucleic acids and serve as vectors for delivering this cargo from donor to acceptor or target cell. EVs are released under both physiologic and pathologic conditions, including liver diseases, and exert a wide range of effects on target cells. This review provides an overview on EV biogenesis, secretion, cargo, and target cell interactions in the context of select liver diseases. Specifically, the diverse roles of EVs in nonalcoholic steatohepatitis, alcoholic liver disease, viral hepatitis, cholangiopathies, and hepatobiliary malignancies are emphasized. Liver diseases often result in an increased release of EVs and/or in different cargo sorting into these EVs. Either of these alterations can drive disease pathogenesis. Given this fact, EVs represent a potential target for therapeutic intervention in liver disorders. Because altered EV composition may reflect the underlying disease condition, circulating EVs can be exploited for diagnostic and prognostic purposes as a liquid biopsy. Furthermore, ex vivo modified or synthesized EVs can be engineered as therapeutic nano-shuttles. Finally, we highlight areas that merit further investigation relevant to understanding how EVs regulate liver disease pathogenesis. (Hepatology 2016;64:2219-2233).
Collapse
Affiliation(s)
- Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Samar H. Ibrahim
- Division of Pediatric Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Vikas K. Verma
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Leslie A. Morton
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
168
|
Chen L, Brigstock DR. Integrins and heparan sulfate proteoglycans on hepatic stellate cells (HSC) are novel receptors for HSC-derived exosomes. FEBS Lett 2016; 590:4263-4274. [PMID: 27714787 PMCID: PMC5154766 DOI: 10.1002/1873-3468.12448] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 12/15/2022]
Abstract
Exosomes mediate intercellular microRNA delivery between hepatic stellate cells (HSC), the principal fibrosis-producing cells in the liver. The purpose of this study was to identify receptors on HSC for HSC-derived exosomes, which bind to HSC rather than to hepatocytes. Our findings indicate that exosome binding to HSC is blocked by treating HSC with RGD, EDTA, integrin αv or β1 siRNAs, integrin αvβ3 or α5β1 neutralizing antibodies, heparin, or sodium chlorate. Furthermore, exosome cargo delivery and exosome-regulated functions in HSC, including expression of fibrosis- or activation-associated genes and/or miR-214 target gene regulation, are dependent on cellular integrin αvβ3, integrin α5β1, or heparan sulfate proteolgycans (HSPG). Thus, integrins and HSPG mediate the binding of HSC-derived exosomes to HSC as well as the delivery and intracellular action of the exosomal payload.
Collapse
Affiliation(s)
- Li Chen
- The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus OH 43205 USA
| | - David R Brigstock
- The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus OH 43205 USA
- Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH 43212 USA
| |
Collapse
|
169
|
Tumor Necrosis Factor-Like Weak Inducer of Apoptosis Promotes Hepatic Stellate Cells Migration via Canonical NF-κB/MMP9 Pathway. PLoS One 2016; 11:e0167658. [PMID: 27907201 PMCID: PMC5132172 DOI: 10.1371/journal.pone.0167658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/17/2016] [Indexed: 12/18/2022] Open
Abstract
In the liver, the signal and function of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) have mainly been assessed in association with liver regeneration. However, the effects of TWEAK on liver fibrosis have not been fully elucidated. To investigate the effects of TWEAK on human hepatic stellate cells (HSCs) and to explore the relevant potential mechanisms, human HSCs line-LX-2 were cultured with TWEAK. Cell migration was detected by transwell assay; cell viability was evaluated by Cell Counting Kit-8; the expression of MMP1, MMP2, MMP3, MMP7, MMP8, MMP9, MMP10, MMP11, MMP12, MMP13 gene was identified by quantitative real-time polymerase chain reaction and western blotting; the activity of matrix metalloproteinases (MMPs) was tested by enzyme-linked immuno sorbent assay; small interfering RNA transfection was applied for depletion of MMP9 and p65. The result of transwell assay revealed that TWEAK promoted LX-2 migration. Subsequently, our data testified that the expression and activity of MMP9 was induced by TWEAK in LX-2 cells, which enhanced the migration. Furthermore, our findings showed that TWEAK upregulated the phosphorylation of IκBα and p65 protein to increase MMP9 expression in LX-2 cells. Meanwhile, the alpha-smooth muscle actin, vimentin and desmin expression were upregulated following TWEAK treatment. The results in the present study revealed that TWEAK promotes HSCs migration via canonical NF-κB/MMP9 pathway, which possibly provides a molecular basis targeting TWEAK for the therapy of liver fibrosis.
Collapse
|
170
|
Wang R, Ding Q, De Assuncao TM, Mounajjed T, Maiers JL, Dou C, Cao S, Yaqoob U, Huebert RC, Shah VH. Hepatic Stellate Cell Selective Disruption of Dynamin-2 GTPase Increases Murine Fibrogenesis through Up-Regulation of Sphingosine-1 Phosphate-Induced Cell Migration. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:134-145. [PMID: 27840081 PMCID: PMC5225297 DOI: 10.1016/j.ajpath.2016.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/22/2016] [Accepted: 09/01/2016] [Indexed: 01/04/2023]
Abstract
Dynamin-2 (Dyn2) is implicated in endocytosis of receptor tyrosine kinases, which contribute to hepatic stellate cell (HSC) activation and liver fibrosis. A point mutation converting lysine 44 of Dyn2 to alanine (Dyn2K44A) disrupts its GTPase activity. We hypothesized that Dyn2K44A expression in HSCs would decrease HSC activation and fibrogenesis in vivo by disrupting receptor tyrosine kinase endocytosis and signaling. Dyn2K44Afl/fl mice were crossed with Collagen1-Cre (Col1Cre) mice to generate offspring with HSC selective expression of Dyn2K44A (Col1Cre/Dyn2K44Afl/fl). Contrary to our hypothesis, Col1Cre/Dyn2K44Afl/fl mice showed increased hepatic fibrosis in response to liver injury. To elucidate mechanisms, we conducted in vitro experiments with HSCs infected with adenoviral vectors encoding LacZ, Dyn2K44A, or Dyn2WT. HSC-expressing Dyn2K44A displayed increased mRNA and protein levels of sphingosine kinase-1 (SK1), an enzyme previously implicated in the pathogenesis of fibrosis. To study the functional effects of Dyn2K44A regulation of SK1, we examined effects of AKT signaling and migration in HSCs. Dyn2K44A promoted both AKT phosphorylation and HSC migration in an SK1-dependent manner. Genetic disruption of Dyn2 GTPase activity selectively in HSC enhances fibrogenesis, driven at least in part through up-regulation of the SK1 pathway and cell migration in HSCs.
Collapse
Affiliation(s)
- Ruisi Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Qian Ding
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Thiago M De Assuncao
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Taofic Mounajjed
- Laboratory of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jessica L Maiers
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Changwei Dou
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Sheng Cao
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Usman Yaqoob
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Robert C Huebert
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Vijay H Shah
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
171
|
Dismuke WM, Klingeborn M, Stamer WD. Mechanism of Fibronectin Binding to Human Trabecular Meshwork Exosomes and Its Modulation by Dexamethasone. PLoS One 2016; 11:e0165326. [PMID: 27783649 PMCID: PMC5081181 DOI: 10.1371/journal.pone.0165326] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/10/2016] [Indexed: 12/13/2022] Open
Abstract
Exosomes are emerging as important mediators of cell-matrix interactions by means of specific adhesion proteins. Changes in the tissue-specific exosomal protein expression may underlie pathological conditions whereby extracellular matrix turnover and homeostasis is disrupted. Ocular hypertension due to extracellular matrix accumulation in the trabecular meshwork is a hallmark of glucocorticoid-induced glaucoma. In the trabecular meshwork, exosomal fibronectin mediates cell matrix interactions at cellular structures called “invadosomes”. Trabecular meshwork cells use invadosomes to turn over their surrounding matrix and maintain passageways for flow of aqueous humor. In this study, we observed that human trabecular meshwork explants treated with dexamethasone released exosomes with significantly reduced amounts of fibronectin bound per exosome. Further, we found that exosome-fibronectin binding is heparan sulfate-dependent, consistent with our observation that trabecular meshwork exosomes are enriched in the heparin/heparan sulfate binding annexins A2 and A6. In this way, dexamethasone-treated explants released exosomes with a significant reduction in annexin A2 and A6 per exosome. Interestingly, we did not detect exosomal matrix metalloproteinases, but we identified abundant dipeptidyl peptidase 4, a serine protease whose activity was reduced on exosomes isolated from dexamethasone-treated explants. Together, our findings demonstrate mechanistically how corticosteroid-induced alterations in exosomal adhesion cargo and properties can account for the pathological matrix accumulation seen in many glaucoma patients.
Collapse
Affiliation(s)
- W. Michael Dismuke
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
| | - Mikael Klingeborn
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
172
|
Abstract
Cellular crosstalk is a process through which a message is transmitted within an individual cell (intracellular crosstalk) or between different cells (intercellular crosstalk). Intercellular crosstalk within the liver microenvironment is critical for the maintenance of normal hepatic functions and for cells survival. Hepatic cells are closely connected to each other, work in synergy, and produce molecules that modulate their differentiation and activity. This review summarises the current knowledge regarding paracrine communication networks in parenchymal and non-parenchymal cells in liver fibrosis due to chronic injury, and regeneration after partial hepatectomy.
Collapse
|
173
|
Sato M, Ikeda H, Uranbileg B, Kurano M, Saigusa D, Aoki J, Maki H, Kudo H, Hasegawa K, Kokudo N, Yatomi Y. Sphingosine kinase-1, S1P transporter spinster homolog 2 and S1P2 mRNA expressions are increased in liver with advanced fibrosis in human. Sci Rep 2016; 6:32119. [PMID: 27562371 PMCID: PMC4999825 DOI: 10.1038/srep32119] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/02/2016] [Indexed: 12/12/2022] Open
Abstract
The role of sphingosine 1-phosphate (S1P) in liver fibrosis or inflammation was not fully examined in human. Controversy exists which S1P receptors, S1P1 and S1P3 vs S1P2, would be importantly involved in its mechanism. To clarify these matters, 80 patients who received liver resection for hepatocellular carcinoma and 9 patients for metastatic liver tumor were enrolled. S1P metabolism was analyzed in background, non-tumorous liver tissue. mRNA levels of sphingosine kinase 1 (SK1) but not SK2 were increased in livers with fibrosis stages 3-4 compared to those with 0-2 and to normal liver. However, S1P was not increased in advanced fibrotic liver, where mRNA levels of S1P transporter spinster homolog 2 (SPNS2) but not S1P-degrading enzymes were enhanced. Furthermore, mRNA levels of S1P2 but not S1P1 or S1P3 were increased in advanced fibrotic liver. These increased mRNA levels of SK1, SPNS2 and S1P2 in fibrotic liver were correlated with α-smooth muscle actin mRNA levels in liver, and with serum ALT levels. In conclusion, S1P may be actively generated, transported to outside the cells, and bind to its specific receptor in human liver to play a role in fibrosis or inflammation. Altered S1P metabolism in fibrotic liver may be their therapeutic target.
Collapse
Affiliation(s)
- Masaya Sato
- Department of Clinical Laboratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo Japan
| | - Hitoshi Ikeda
- Department of Clinical Laboratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo Japan.,CREST, JST, Japan
| | - Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo Japan.,CREST, JST, Japan
| | - Daisuke Saigusa
- CREST, JST, Japan.,Department of Integrative Genomics, Tohoku Medical Megabank Organization, 2-1 Seiryo machi, Aobaku Sendai, Miyagi, Japan
| | - Junken Aoki
- CREST, JST, Japan.,Graduate School of Pharmaceutical Science, Tohoku University, 6-3, Ara-makiazaaoba, Aobaku, Sendai, Miyagi, Japan
| | - Harufumi Maki
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Hiroki Kudo
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Norihiro Kokudo
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo Japan.,CREST, JST, Japan
| |
Collapse
|
174
|
Kostallari E, Shah VH. Angiocrine signaling in the hepatic sinusoids in health and disease. Am J Physiol Gastrointest Liver Physiol 2016; 311:G246-51. [PMID: 27288423 PMCID: PMC5007289 DOI: 10.1152/ajpgi.00118.2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/06/2016] [Indexed: 02/08/2023]
Abstract
The capillary network irrigating the liver is important not only for nutrient and oxygen delivery, but also for the signals distributed to other hepatic cell types necessary to maintain liver homeostasis. During development, endothelial cells are a key component in liver zonation. In adulthood, they maintain hepatic stellate cells and hepatocytes in quiescence. Their importance in pathobiology is highlighted in liver regeneration and chronic liver diseases, where they coordinate paracrine cell behavior. During regeneration, liver sinusoidal endothelial cells induce hepatocyte proliferation and angiogenesis. During fibrogenesis, they undergo morphological and functional changes, which are reflected by their role in hepatic stellate cell activation, inflammation, and distorted sinusoidal structure. Therapeutic strategies to target angiocrine signaling are in progress but are in the early stages. Here, we offer a short synthesis of recent studies on angiocrine signaling in liver homeostasis, regeneration, and fibrogenesis.
Collapse
Affiliation(s)
- Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
175
|
Sato K, Meng F, Glaser S, Alpini G. Exosomes in liver pathology. J Hepatol 2016; 65:213-221. [PMID: 26988731 PMCID: PMC4912847 DOI: 10.1016/j.jhep.2016.03.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 02/08/2023]
Abstract
Exosomes are small (∼100nm) membrane-bound extracellular vesicles released by various types of cells into biological fluids. They contain proteins, mRNAs and miRNAs as cargo. Different cell types can take up exosomes by endocytosis and the cargo contained within them can be transferred horizontally to these recipient cells. Exosomal proteins and miRNAs can be functional and regulate physiological cell events modifying the microenvironment in target cells, a key event of liver pathology. Exosome-mediated cell-cell communication can alter tumor growth, cell migration, antiviral infection and hepatocyte regeneration, indicating that exosomes have great potential for development as diagnostic or therapeutic tools. Analyses of circulating total or exosomal miRNAs have identified a large number of candidate miRNAs that are regulated in liver diseases, and the diagnostic testing using single or multiple miRNAs shows good sensitivity and specificity. Some candidate miRNAs have been identified to play an important role in various liver disorders. This review summarizes recent findings on the role of extracellular vesicles in liver diseases and their diagnostic and therapeutic potential, mainly focusing on exosomes but also includes microvesicles in liver pathology.
Collapse
Affiliation(s)
- Keisaku Sato
- Research, Central Texas Veterans Health Care System, Temple, TX 76504,Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, TX 76504,Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Scott & White Digestive Disease Research Center, Scott & White, Temple, TX 76504,Academic Research Integration, Baylor Scott & White Healthcare, Temple, TX 76504
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, TX 76504,Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Scott & White Digestive Disease Research Center, Scott & White, Temple, TX 76504
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, USA; Department of Medicine, Texas A&M Health Science Center, College of Medicine, USA; Scott & White Digestive Disease Research Center, Scott & White, USA.
| |
Collapse
|
176
|
Greuter T, Shah VH. Hepatic sinusoids in liver injury, inflammation, and fibrosis: new pathophysiological insights. J Gastroenterol 2016; 51:511-9. [PMID: 26939970 DOI: 10.1007/s00535-016-1190-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/16/2016] [Indexed: 02/04/2023]
Abstract
Changes of hepatic sinusoids are crucial in the pathogenesis of liver cirrhosis and portal hypertension. Liver injury leads to distinct morphological abnormalities such as loss of sinusoidal fenestration, vasoconstriction, and angiogenesis as well as molecular changes. Communication between the two key cells in this hepatic microenvironment-hepatic stellate cells (HSC) and sinusoidal endothelial cells (SEC)-has been studied for many years and several canonical pathways have been elucidated, such as decreased eNOS activity or increased PDGF and TGF-β production leading to activation and migration of HSC. In recent studies, alternative pathways of intercellular communication in liver diseases have been described such as cell-derived extracellular vesicles called exosomes, which deliver cell compounds to their target cells. Moreover, such extracellular vesicles may link injury to inflammation in alcoholic hepatitis. While inflammation leading to liver fibrosis has been studied in detail, in some circumstances pathways other than the known canonical inflammatory pathways may contribute to hepatic fibrogenesis. For example, in congestive hepatopathy, sinusoidal dilatation and fibrosis have been shown to be mediated by non-inflammatory mechanisms and associated with sinusoidal thrombi. A recently developed murine model further enables experimental studies of this disease entity. Increasing knowledge about these alternative disease pathways in liver injury, inflammation, and fibrosis may reveal possible target molecules for future therapies. This article builds upon a seminar given at the recent 3rd JSGE International Topic Conference in Sendai, Japan, and reviews the areas outlined above.
Collapse
Affiliation(s)
- Thomas Greuter
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Vijay H Shah
- Gastroenterology Research Unit, Department of Gastroenterology and Hepatology, Mayo Clinic and Foundation, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
177
|
Machado MV, Diehl AM. Pathogenesis of Nonalcoholic Steatohepatitis. Gastroenterology 2016; 150:1769-77. [PMID: 26928243 PMCID: PMC4887389 DOI: 10.1053/j.gastro.2016.02.066] [Citation(s) in RCA: 371] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/30/2016] [Accepted: 02/18/2016] [Indexed: 02/08/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a necro-inflammatory response that ensues when hepatocytes are injured by lipids (lipotoxicity). NASH is a potential outcome of nonalcoholic fatty liver (NAFL), a condition that occurs when lipids accumulate in hepatocytes. NASH may be reversible, but it can also result in cirrhosis and primary liver cancer. We are beginning to learn about the mechanisms of progression of NAFL and NASH. NAFL does not inevitably lead to NASH because NAFL is a heterogeneous condition. This heterogeneity exists because different types of lipids with different cytotoxic potential accumulate in the NAFL, and individuals with NAFL differ in their ability to defend against lipotoxicity. There are no tests that reliably predict which patients with NAFL will develop lipotoxicity. However, NASH encompasses the spectrum of wound-healing responses induced by lipotoxic hepatocytes. Differences in these wound-healing responses among individuals determine whether lipotoxic livers regenerate, leading to stabilization or resolution of NASH, or develop progressive scarring, cirrhosis, and possibly liver cancer. We review concepts that are central to the pathogenesis of NASH.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA,Gastroenterology Department, Hospital de Santa Maria, CHLN, Lisbon, Portugal
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
178
|
Lin LB, Que RY, Liu JK, Shen YT, Tao ZH, Li Y. Effect of saikosaponin-d on expression of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 in activated HSC-T6 cells: Underlying mechanism. Shijie Huaren Xiaohua Zazhi 2016; 24:1159-1165. [DOI: 10.11569/wcjd.v24.i8.1159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of saikosaponin-d (SSd) on the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and matrix metalloproteinase-1 (MMP-1) in activated HSC-T6 cells and the underlying mechanism, and to explore the mechanism of action of phytoestrogens on liver fibrosis to provide a theoretical basis for their clinical application.
METHODS: Rat hepatic stellate cell line HSC-T6 was used. Cells were seeded into cell culture plates with DMEM high glucose medium containing 10% fetal bovine serum for 24 h. After 1 h pretreatment with estrogen receptor (ER) antagonist (1 µmol/L) or P38 MAPK antagonist SB203580 (50 µmol/L), cells were incubated with SSd (5 µmol/L) or estradiol (E2) (1 µmol/L) for 24 h. ELISA was used to detect the contents of type I collagen (COL-I), MMP-1, and TIMP-1 in cell culture supernatants. Western blot analysis was used to detect the expression of MMP-1, TIMP-1, P38 and PP38 in HSC-T6 cells.
RESULTS: Compared with the control group, SSd or E2 treatment significantly decreased COL-1 (140.95 ± 12.14, 143.58 ± 4.81 vs 198.98 ± 15.08) and TIMP-1 contents (0.23 ± 0.01, 0.21 ± 0.01 vs 0.31 ± 0.01) in cell culture supernatants and P-P38 expression (0.51 ± 0.14, 0.52 ± 0.12 vs 1.00 ± 0.11), and significantly elevated MMP-1 content (0.0127 ± 0.0008, 0.0116 ± 0.0004 vs 0.0049 ± 0.0001, P < 0.01). In the inhibitor group, the expression levels of COL-1, TIMP-1 and P-P38 increased (P < 0.01) and MMP-1 content decreased (P < 0.01). MMP-1 expression was significantly increased in cells treated with P38 inhibitor SB203580 for 24 h compared with the control group (3.58 ± 0.35 vs 1.00 ± 0.15, P < 0.01), and TIMP-1 expression was significantly decreased (0.52 ± 0.14 vs 1.00 ± 0.18, P < 0.05).
CONCLUSION: The anti-fibrotic effect of SSd may be attributed to its inhibition of P38/MAPK activation and modulation of downstream molecules MMP-1 and TIMP-1 expression, which can promote the degradation of extracellular matrix via stimulating ERβ.
Collapse
|
179
|
Verma VK, Li H, Wang R, Hirsova P, Mushref M, Liu Y, Cao S, Contreras PC, Malhi H, Kamath PS, Gores GJ, Shah VH. Alcohol stimulates macrophage activation through caspase-dependent hepatocyte derived release of CD40L containing extracellular vesicles. J Hepatol 2016; 64:651-60. [PMID: 26632633 PMCID: PMC4761285 DOI: 10.1016/j.jhep.2015.11.020] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/26/2015] [Accepted: 11/09/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS The mechanisms by which hepatocyte exposure to alcohol activates inflammatory cells such as macrophages in alcoholic liver disease (ALD) are unclear. The role of released nano-sized membrane vesicles, termed extracellular vesicles (EV), in cell-to-cell communication has become increasingly recognized. We tested the hypothesis that hepatocytes exposed to alcohol may increase EV release to elicit macrophage activation. METHODS Primary hepatocytes or HepG2 hepatocyte cell lines overexpressing ethanol-metabolizing enzymes alcohol dehydrogenase (HepG2(ADH)) or cytochrome P450 2E1 (HepG2(Cyp2E1)) were treated with ethanol and EV release was quantified with nanoparticle tracking analysis. EV mediated macrophage activation was monitored by analysing inflammatory cytokines and macrophage associated mRNA expression, immunohistochemistry, biochemical serum alanine aminotransferase and triglycerides analysis in our in vitro macrophage activation and in vivo murine ethanol feeding studies. RESULTS Ethanol significantly increased EV release by 3.3-fold from HepG2(Cyp2E1) cells and was associated with activation of caspase-3. Blockade of caspase activation with pharmacological or genetic approaches abrogated alcohol-induced EV release. EV stimulated macrophage activation and inflammatory cytokine induction. An unbiased microarray-based approach and antibody neutralization experiments demonstrated a critical role of CD40 ligand (CD40L) in EV mediated macrophage activation. In vivo, wild-type mice receiving a pan-caspase, Rho kinase inhibitor or with genetic deletion of CD40 (CD40(-/-)) or the caspase-activating TRAIL receptor (TR(-/-)), were protected from alcohol-induced injury and associated macrophage infiltration. Moreover, serum from patients with alcoholic hepatitis showed increased levels of CD40L enriched EV. CONCLUSION In conclusion, hepatocytes release CD40L containing EV in a caspase-dependent manner in response to alcohol exposure which promotes macrophage activation, contributing to inflammation in ALD.
Collapse
Affiliation(s)
- Vikas K Verma
- Gastroenterology Research Unit, Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Haiyang Li
- Gastroenterology Research Unit, Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA; Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou, China
| | - Ruisi Wang
- Gastroenterology Research Unit, Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Petra Hirsova
- Gastroenterology Research Unit, Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Malek Mushref
- Gastroenterology Research Unit, Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Yaming Liu
- Gastroenterology Research Unit, Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA; First Hospital of Jilin University, China
| | - Sheng Cao
- Gastroenterology Research Unit, Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | - Harmeet Malhi
- Gastroenterology Research Unit, Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Patrick S Kamath
- Gastroenterology Research Unit, Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Gregory J Gores
- Gastroenterology Research Unit, Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Vijay H Shah
- Gastroenterology Research Unit, Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|