151
|
Prediction of substrate specificity and preliminary kinetic characterization of the hypothetical protein PVX_123945 from Plasmodium vivax. Exp Parasitol 2015; 151-152:56-63. [PMID: 25655405 DOI: 10.1016/j.exppara.2015.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 01/12/2015] [Accepted: 01/27/2015] [Indexed: 11/22/2022]
Abstract
Members of the haloacid dehalogenase (HAD) superfamily are emerging as an important group of enzymes by virtue of their role in diverse chemical reactions. In different Plasmodium species their number varies from 16 to 21. One of the HAD superfamily members, PVX_123945, a hypothetical protein from Plasmodium vivax, was selected for examining its substrate specificity. Based on distant homology searches and structure comparisons, it was predicted to be a phosphatase. Thirty-eight metabolites were screened to identify potential substrates. Further, to validate the prediction, biochemical and kinetic studies were carried out that showed that the protein was a monomer with high catalytic efficiency for β-glycerophosphate followed by pyridoxal 5'-phosphate. The enzyme also exhibited moderate catalytic efficiencies for α-glycerophosphate, xanthosine 5'-monophosphate and adenosine 5'-monophosphate. It also hydrolyzed the artificial substrate p-nitrophenyl phosphate (pNPP). Mg(2+) was the most preferred divalent cation and phosphate inhibited the enzyme activity. The study is the first attempt at understanding the substrate specificity of a hypothetical protein belonging to HAD superfamily from the malarial parasite P. vivax.
Collapse
|
152
|
Copley SD. An evolutionary biochemist's perspective on promiscuity. Trends Biochem Sci 2015; 40:72-8. [PMID: 25573004 DOI: 10.1016/j.tibs.2014.12.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/08/2014] [Accepted: 12/08/2014] [Indexed: 12/31/2022]
Abstract
Evolutionary biochemists define enzyme promiscuity as the ability to catalyze secondary reactions that are physiologically irrelevant, either because they are too inefficient to affect fitness or because the enzyme never encounters the substrate. Promiscuous activities are common because evolution of a perfectly specific active site is both difficult and unnecessary; natural selection ceases when the performance of a protein is 'good enough' that it no longer affects fitness. Although promiscuous functions are accidental and physiologically irrelevant, they are of great importance because they provide opportunities for the evolution of new functions in nature and in the laboratory, as well as targets for therapeutic drugs and tools for a wide range of technological applications.
Collapse
Affiliation(s)
- Shelley D Copley
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
153
|
London N, Farelli JD, Brown SD, Liu C, Huang H, Korczynska M, Al-Obaidi NF, Babbitt PC, Almo SC, Allen KN, Shoichet BK. Covalent docking predicts substrates for haloalkanoate dehalogenase superfamily phosphatases. Biochemistry 2015; 54:528-37. [PMID: 25513739 PMCID: PMC4303301 DOI: 10.1021/bi501140k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
Enzyme function prediction remains
an important open problem. Though
structure-based modeling, such as metabolite docking, can identify
substrates of some enzymes, it is ill-suited to reactions that progress
through a covalent intermediate. Here we investigated the ability
of covalent docking to identify substrates that pass through such
a covalent intermediate, focusing particularly on the haloalkanoate
dehalogenase superfamily. In retrospective assessments, covalent docking
recapitulated substrate binding modes of known cocrystal structures
and identified experimental substrates from a set of putative phosphorylated
metabolites. In comparison, noncovalent docking of high-energy intermediates
yielded nonproductive poses. In prospective predictions against seven
enzymes, a substrate was identified for five. For one of those cases,
a covalent docking prediction, confirmed by empirical screening, and
combined with genomic context analysis, suggested the identity of
the enzyme that catalyzes the orphan phosphatase reaction in the riboflavin
biosynthetic pathway of Bacteroides.
Collapse
Affiliation(s)
- Nir London
- Department of Pharmaceutical Chemistry, and §Department of Bioengineering and Therapeutic Sciences, University of California San Francisco , San Francisco, California 94158, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Kamal AHM, Rashid H, Sakata K, Komatsu S. Gel-free quantitative proteomic approach to identify cotyledon proteins in soybean under flooding stress. J Proteomics 2015; 112:1-13. [PMID: 25201076 DOI: 10.1016/j.jprot.2014.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/22/2014] [Accepted: 08/27/2014] [Indexed: 01/10/2023]
Abstract
Flooding stress causes growth inhibition and ultimately death in most crop species by limiting of energy production. To better understand plant responses to flooding stress, here, flooding-responsive proteins in the cotyledons of soybean were identified using a gel-free quantitative proteomic approach. One hundred forty six proteins were commonly observed in both control and flooding-stressed plants, and 19 were identified under only flooding stress conditions. The main functional categories were protein and development-related proteins. Protein-protein interaction analysis revealed that zincin-like metalloprotease and cupin family proteins were found to highly interact with other proteins under flooding stress. Plant stearoyl acyl-carrier protein, ascorbate peroxidase 1, and secretion-associated RAS superfamily 2 were down-regulated, whereas ferretin 1 was up-regulated at the transcription level. Notably, the levels of all corresponding proteins were decreased, indicating that mRNA translation to proteins is impaired under flooding conditions. Decreased levels of ferritin may lead to a strong deregulation of the expression of several metal transporter genes and over-accumulation of iron, which led to increased levels of reactive oxygen species, resulting to detoxification of these reactive species. Taken together, these results suggest that ferritin might have an essential role in protecting plant cells against oxidative damage under flooding conditions. BIOLOGICAL SIGNIFICANCE This study reported the comparative proteomic analysis of cotyledon of soybean plants between non-flooding and flooding conditions using the gel-free quantitative techniques. Mass spectrometry analysis of the proteins from cotyledon resulted in the identification of a total of 165 proteins under flooding stress. These proteins were assigned to different functional categories, such as protein, development, stress, redox, and glycolysis. Therefore, this study provides not only the comparative proteomic analysis but also the molecular mechanism underlying the flooding responsive protein functions in the cotyledon.
Collapse
Affiliation(s)
| | - Hamid Rashid
- Mohammad Ali Jinnah University, Islamabad, Pakistan
| | - Katsumi Sakata
- Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Setsuko Komatsu
- National Institute of Crop Science, NARO, Tsukuba 305-8518, Japan.
| |
Collapse
|
155
|
Mori H, Takeuchi R, Otsuka Y, Bowden S, Yokoyama K, Muto A, Libourel I, Wanner BL. Toward Network Biology in E. coli Cell. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 883:155-68. [DOI: 10.1007/978-3-319-23603-2_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
156
|
George KW, Alonso-Gutierrez J, Keasling JD, Lee TS. Isoprenoid drugs, biofuels, and chemicals--artemisinin, farnesene, and beyond. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:355-89. [PMID: 25577395 DOI: 10.1007/10_2014_288] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Isoprenoids have been identified and used as natural pharmaceuticals, fragrances, solvents, and, more recently, advanced biofuels. Although isoprenoids are most commonly found in plants, researchers have successfully engineered both the eukaryotic and prokaryotic isoprenoid biosynthetic pathways to produce these valuable chemicals in microorganisms at high yields. The microbial synthesis of the precursor to artemisinin--an important antimalarial drug produced from the sweet wormwood Artemisia annua--serves as perhaps the most successful example of this approach. Through advances in synthetic biology and metabolic engineering, microbial-derived semisynthetic artemisinin may soon replace plant-derived artemisinin as the primary source of this valuable pharmaceutical. The richness and diversity of isoprenoid structures also make them ideal candidates for advanced biofuels that may act as "drop-in" replacements for gasoline, diesel, and jet fuel. Indeed, the sesquiterpenes farnesene and bisabolene, monoterpenes pinene and limonene, and hemiterpenes isopentenol and isopentanol have been evaluated as fuels or fuel precursors. As in the artemisinin project, these isoprenoids have been produced microbially through synthetic biology and metabolic engineering efforts. Here, we provide a brief review of the numerous isoprenoid compounds that have found use as pharmaceuticals, flavors, commodity chemicals, and, most importantly, advanced biofuels. In each case, we highlight the metabolic engineering strategies that were used to produce these compounds successfully in microbial hosts. In addition, we present a current outlook on microbial isoprenoid production, with an eye towards the many challenges that must be addressed to achieve higher yields and industrial-scale production.
Collapse
Affiliation(s)
- Kevin W George
- Joint BioEnergy Institute, 5885 Hollis St. 4th floor, Emeryville, CA, 94608, USA
| | | | | | | |
Collapse
|
157
|
Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 2014; 81:1601-9. [PMID: 25527558 DOI: 10.1128/aem.03474-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The haloacid dehalogenase (HAD) superfamily is one of the largest enzyme families, consisting mainly of phosphatases. Although intracellular phosphate plays important roles in many cellular activities, the biological functions of HAD enzymes are largely unknown. Pho13 is 1 of 16 putative HAD enzymes in Saccharomyces cerevisiae. Pho13 has not been studied extensively, but previous studies have identified PHO13 to be a deletion target for the generation of industrially attractive phenotypes, namely, efficient xylose fermentation and high tolerance to fermentation inhibitors. In order to understand the molecular mechanisms underlying the improved xylose-fermenting phenotype produced by deletion of PHO13 (pho13Δ), we investigated the response of S. cerevisiae to pho13Δ at the transcriptomic level when cells were grown on glucose or xylose. Transcriptome sequencing analysis revealed that pho13Δ resulted in upregulation of the pentose phosphate (PP) pathway and NADPH-producing enzymes when cells were grown on glucose or xylose. We also found that the transcriptional changes induced by pho13Δ required the transcription factor Stb5, which is activated specifically under NADPH-limiting conditions. Thus, pho13Δ resulted in the upregulation of the PP pathway and NADPH-producing enzymes as a part of an oxidative stress response mediated by activation of Stb5. Because the PP pathway is the primary pathway for xylose, its upregulation by pho13Δ might explain the improved xylose metabolism. These findings will be useful for understanding the biological function of S. cerevisiae Pho13 and the HAD superfamily enzymes and for developing S. cerevisiae strains with industrially attractive phenotypes.
Collapse
|
158
|
Phosphoryl transfer from α-d-glucose 1-phosphate catalyzed by Escherichia coli sugar-phosphate phosphatases of two protein superfamily types. Appl Environ Microbiol 2014; 81:1559-72. [PMID: 25527541 DOI: 10.1128/aem.03314-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Cori ester α-d-glucose 1-phosphate (αGlc 1-P) is a high-energy intermediate of cellular carbohydrate metabolism. Its glycosidic phosphomonoester moiety primes αGlc 1-P for flexible exploitation in glucosyl and phosphoryl transfer reactions. Two structurally and mechanistically distinct sugar-phosphate phosphatases from Escherichia coli were characterized in this study for utilization of αGlc 1-P as a phosphoryl donor substrate. The agp gene encodes a periplasmic αGlc 1-P phosphatase (Agp) belonging to the histidine acid phosphatase family. Had13 is from the haloacid dehydrogenase-like phosphatase family. Cytoplasmic expression of Agp (in E. coli Origami B) gave a functional enzyme preparation (kcat for phosphoryl transfer from αGlc 1-P to water, 40 s(-1)) that was shown by mass spectrometry to exhibit no free cysteines and the native intramolecular disulfide bond between Cys(189) and Cys(195). Enzymatic phosphoryl transfer from αGlc 1-P to water in H2 (18)O solvent proceeded with complete (18)O label incorporation into the phosphate released, consistent with catalytic reaction through O-1-P, but not C-1-O, bond cleavage. Hydrolase activity of both enzymes was not restricted to a glycosidic phosphomonoester substrate, and d-glucose 6-phosphate was converted with a kcat similar to that of αGlc 1-P. By examining phosphoryl transfer from αGlc 1-P to an acceptor substrate other than water (d-fructose or d-glucose), we discovered that Agp exhibited pronounced synthetic activity, unlike Had13, which utilized αGlc 1-P mainly for phosphoryl transfer to water. By applying d-fructose in 10-fold molar excess over αGlc 1-P (20 mM), enzymatic conversion furnished d-fructose 1-phosphate as the main product in a 55% overall yield. Agp is a promising biocatalyst for use in transphosphorylation from αGlc 1-P.
Collapse
|
159
|
Pfeiffer M, Wildberger P, Nidetzky B. Yihx-encoded haloacid dehalogenase-like phosphatase HAD4 from Escherichia coli is a specific α-d-glucose 1-phosphate hydrolase useful for substrate-selective sugar phosphate transformations. ACTA ACUST UNITED AC 2014; 110:39-46. [PMID: 25484615 PMCID: PMC4251788 DOI: 10.1016/j.molcatb.2014.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 11/30/2022]
Abstract
Functional expression of Escherichia coli haloacid dehalogenase-like phosphatase 4 (HAD4). Characterization of HAD4 fusion to the cationic module Zbasic2. Single-step capture and polishing purification of Zbasic2_HAD4. Selective conversion of α-d-glucose 1-phosphate in mixture with glucose 6-phosphate. Oriented immobilization with high effectiveness of Zbasic2_HAD4 on porous support.
Phosphomonoester hydrolases (phosphatases; EC 3.1.3.) often exhibit extremely relaxed substrate specificity which limits their application to substrate-selective biotransformations. In search of a phosphatase catalyst specific for hydrolyzing α-d-glucose 1-phosphate (αGlc 1-P), we selected haloacid dehalogenase-like phosphatase 4 (HAD4) from Escherichia coli and obtained highly active recombinant enzyme through a fusion protein (Zbasic2_HAD4) that contained Zbasic2, a strongly positively charged three α-helical bundle module, at its N-terminus. Highly pure Zbasic2_HAD4 was prepared directly from E. coli cell extract using capture and polishing combined in a single step of cation exchange chromatography. Kinetic studies showed Zbasic2_HAD4 to exhibit 565-fold preference for hydrolyzing αGlc 1-P (kcat/KM = 1.87 ± 0.03 mM−1 s−1; 37 °C, pH 7.0) as compared to d-glucose 6-phosphate (Glc 6-P). Also among other sugar phosphates, αGlc 1-P was clearly preferred. Using different mixtures of αGlc 1-P and Glc 6-P (e.g. 180 mM each) as the substrate, Zbasic2_HAD4 could be used to selectively convert the αGlc 1-P present, leaving back all of the Glc 6-P for recovery. Zbasic2_HAD4 was immobilized conveniently using direct loading of E. coli cell extract on sulfonic acid group-containing porous carriers, yielding a recyclable heterogeneous biocatalyst that was nearly as effective as the soluble enzyme, probably because protein attachment to the anionic surface occurred in a preferred orientation via the cationic Zbasic2 module. Selective removal of αGlc 1-P from sugar phosphate preparations could be an interesting application of Zbasic2_HAD4 for which readily available broad-spectrum phosphatases are unsuitable.
Collapse
Affiliation(s)
- Martin Pfeiffer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, A-8010 Graz, Austria
| | - Patricia Wildberger
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, A-8010 Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, A-8010 Graz, Austria ; ACIB - Austrian Centre of Industrial Biotechnology, Petersgasse 14, A-8010 Graz, Austria
| |
Collapse
|
160
|
Gurung S, Mamidi S, Bonman JM, Xiong M, Brown-Guedira G, Adhikari TB. Genome-wide association study reveals novel quantitative trait Loci associated with resistance to multiple leaf spot diseases of spring wheat. PLoS One 2014; 9:e108179. [PMID: 25268502 PMCID: PMC4182470 DOI: 10.1371/journal.pone.0108179] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/23/2014] [Indexed: 11/18/2022] Open
Abstract
Accelerated wheat development and deployment of high-yielding, climate resilient, and disease resistant cultivars can contribute to enhanced food security and sustainable intensification. To facilitate gene discovery, we assembled an association mapping panel of 528 spring wheat landraces of diverse geographic origin for a genome-wide association study (GWAS). All accessions were genotyped using an Illumina Infinium 9K wheat single nucleotide polymorphism (SNP) chip and 4781 polymorphic SNPs were used for analysis. To identify loci underlying resistance to the major leaf spot diseases and to better understand the genomic patterns, we quantified population structure, allelic diversity, and linkage disequilibrium. Our results showed 32 loci were significantly associated with resistance to the major leaf spot diseases. Further analysis identified QTL effective against major leaf spot diseases of wheat which appeared to be novel and others that were previously identified by association analysis using Diversity Arrays Technology (DArT) and bi-parental mapping. In addition, several identified SNPs co-localized with genes that have been implicated in plant disease resistance. Future work could aim to select the putative novel loci and pyramid them in locally adapted wheat cultivars to develop broad-spectrum resistance to multiple leaf spot diseases of wheat via marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Suraj Gurung
- Department of Plant Pathology, University of California Davis, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Salinas, California, United States of America
| | - Sujan Mamidi
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - J. Michael Bonman
- USDA-ARS, Small Grains and Potato Germplasm Research Unit, Aberdeen, Idaho, United States of America
| | - Mai Xiong
- USDA-ARS, Plant Science Research Unit, Department of Crop Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Gina Brown-Guedira
- USDA-ARS, Plant Science Research Unit, Department of Crop Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Tika B. Adhikari
- Center for Integrated Pest Management and Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
161
|
Pandya C, Farelli JD, Dunaway-Mariano D, Allen KN. Enzyme promiscuity: engine of evolutionary innovation. J Biol Chem 2014; 289:30229-30236. [PMID: 25210039 DOI: 10.1074/jbc.r114.572990] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Catalytic promiscuity and substrate ambiguity are keys to evolvability, which in turn is pivotal to the successful acquisition of novel biological functions. Action on multiple substrates (substrate ambiguity) can be harnessed for performance of functions in the cell that supersede catalysis of a single metabolite. These functions include proofreading, scavenging of nutrients, removal of antimetabolites, balancing of metabolite pools, and establishing system redundancy. In this review, we present examples of enzymes that perform these cellular roles by leveraging substrate ambiguity and then present the structural features that support both specificity and ambiguity. We focus on the phosphatases of the haloalkanoate dehalogenase superfamily and the thioesterases of the hotdog fold superfamily.
Collapse
Affiliation(s)
- Chetanya Pandya
- Bioinformatics Graduate Program and Boston University, Boston, Massachusetts 02215
| | - Jeremiah D Farelli
- Department of Chemistry, Boston University, Boston, Massachusetts 02215 and
| | - Debra Dunaway-Mariano
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131.
| | - Karen N Allen
- Bioinformatics Graduate Program and Boston University, Boston, Massachusetts 02215; Department of Chemistry, Boston University, Boston, Massachusetts 02215 and.
| |
Collapse
|
162
|
Yang J, Zhu Y, Li J, Men Y, Sun Y, Ma Y. Biosynthesis of rare ketoses through constructing a recombination pathway in an engineered Corynebacterium glutamicum. Biotechnol Bioeng 2014; 112:168-80. [PMID: 25060350 DOI: 10.1002/bit.25345] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/15/2014] [Accepted: 07/11/2014] [Indexed: 01/05/2023]
Abstract
Rare sugars have various known biological functions and potential for applications in pharmaceutical, cosmetics, and food industries. Here we designed and constructed a recombination pathway in Corynebacterium glutamicum, in which dihydroxyacetone phosphate (DHAP), an intermediate of the glycolytic pathway, and a variety of aldehydes were condensed to synthesize rare ketoses sequentially by rhamnulose-1-phosphate aldolase (RhaD) and fructose-1-phosphatase (YqaB) obtained from Escherichia coli. A wild-type strain harboring this artificial pathway had the ability to produce D-sorbose and D-psicose using D-glyceraldehyde and glucose as the substrates. The tpi gene, encoding triose phosphate isomerase was further deleted, and the concentration of DHAP increased to nearly 20-fold relative to that of the wild-type. After additional optimization of expression levels from rhaD and yqaB genes and of the fermentation conditions, the engineered strain SY6(pVRTY) exhibited preferable performance for rare ketoses production. Its yield increased to 0.59 mol/mol D-glyceraldehyde from 0.33 mol/mol D-glyceraldehyde and productivity to 2.35 g/L h from 0.58 g/L h. Moreover, this strain accumulated 19.5 g/L of D-sorbose and 13.4 g/L of D-psicose using a fed-batch culture mode under the optimal conditions. In addition, it was verified that the strain SY6(pVRTY) meanwhile had the ability to synthesize C4, C5, C6, and C7 rare ketoses when a range of representative achiral and homochiral aldehydes were applied as the substrates. Therefore, the platform strain exhibited the potential for microbial production of rare ketoses and deoxysugars.
Collapse
Affiliation(s)
- Jiangang Yang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | | | | | | | | | | |
Collapse
|
163
|
Caparrós-Martín JA, McCarthy-Suárez I, Culiáñez-Macià FA. The kinetic analysis of the substrate specificity of motif 5 in a HAD hydrolase-type phosphosugar phosphatase of Arabidopsis thaliana. PLANTA 2014; 240:479-487. [PMID: 24915748 DOI: 10.1007/s00425-014-2102-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/16/2014] [Indexed: 06/03/2023]
Abstract
The Arabidopsis thaliana gene AtSgpp (locus tag At2g38740), encodes a protein whose sequence motifs and expected structure reveal that it belongs to the HAD hydrolases subfamily I, with the C1-type cap domain (Caparrós-Martín et al. in Planta 237:943-954, 2013). In the presence of Mg(2+) ions, the enzyme has a phosphatase activity over a wide range of phosphosugar substrates. AtSgpp promiscuity is preferentially detectable on D-ribose-5-phosphate, 2-deoxy-D-ribose-5-phosphate, 2-deoxy-D-glucose-6-phosphate, D-mannose-6-phosphate, D-fructose-1-phosphate, D-glucose-6-phosphate, DL-glycerol-3-phosphate, and D-fructose-6-phosphate. Site-directed mutagenesis analysis of the putative signature sequence motif-5 (IAGKH), which defines its specific chemistry, brings to light the active-site residues Ala-69 and His-72. Mutation A69M, changes the pH dependence of AtSgpp catalysis, and mutant protein AtSgpp-H72K was inactive in phosphomonoester dephosphorylation. It was also observed that substitutions I68M and K71R slightly affect the substrate specificity, while the replacement of the entire motif for that of homologous DL-glycerol-3-phosphatase AtGpp (MMGRK) does not switch AtSgpp activity to the specific targeting for DL-glycerol-3-phosphate.
Collapse
Affiliation(s)
- José A Caparrós-Martín
- Instituto de Biología Molecular y Celular de Plantas "Eduardo Primo Yúfera" (UPV-CSIC), Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación (CPI), C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | | | | |
Collapse
|
164
|
Network-level architecture and the evolutionary potential of underground metabolism. Proc Natl Acad Sci U S A 2014; 111:11762-7. [PMID: 25071190 DOI: 10.1073/pnas.1406102111] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A central unresolved issue in evolutionary biology is how metabolic innovations emerge. Low-level enzymatic side activities are frequent and can potentially be recruited for new biochemical functions. However, the role of such underground reactions in adaptation toward novel environments has remained largely unknown and out of reach of computational predictions, not least because these issues demand analyses at the level of the entire metabolic network. Here, we provide a comprehensive computational model of the underground metabolism in Escherichia coli. Most underground reactions are not isolated and 45% of them can be fully wired into the existing network and form novel pathways that produce key precursors for cell growth. This observation allowed us to conduct an integrated genome-wide in silico and experimental survey to characterize the evolutionary potential of E. coli to adapt to hundreds of nutrient conditions. We revealed that underground reactions allow growth in new environments when their activity is increased. We estimate that at least ∼20% of the underground reactions that can be connected to the existing network confer a fitness advantage under specific environments. Moreover, our results demonstrate that the genetic basis of evolutionary adaptations via underground metabolism is computationally predictable. The approach used here has potential for various application areas from bioengineering to medical genetics.
Collapse
|
165
|
A sugar phosphatase regulates the methylerythritol phosphate (MEP) pathway in malaria parasites. Nat Commun 2014; 5:4467. [PMID: 25058848 PMCID: PMC4112465 DOI: 10.1038/ncomms5467] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 06/20/2014] [Indexed: 01/30/2023] Open
Abstract
Isoprenoid biosynthesis through the methylerythritol phosphate (MEP) pathway generates commercially important products and is a target for antimicrobial drug development. MEP pathway regulation is poorly understood in microorganisms. Here we employ a forward genetics approach to understand MEP pathway regulation in the malaria parasite, Plasmodium falciparum. The antimalarial fosmidomycin inhibits the MEP pathway enzyme deoxyxylulose 5-phosphate reductoisomerase (DXR). Fosmidomycin-resistant P. falciparum are enriched for changes in the PF3D7_1033400 locus (hereafter referred to as PfHAD1), encoding a homologue of haloacid dehalogenase (HAD)-like sugar phosphatases. We describe the structural basis for loss-of-function PfHAD1 alleles and find that PfHAD1 dephosphorylates a variety of sugar phosphates, including glycolytic intermediates. Loss of PfHAD1 is required for fosmidomycin resistance. Parasites lacking PfHAD1 have increased MEP pathway metabolites, particularly the DXR substrate, deoxyxylulose 5-phosphate. PfHAD1 therefore controls substrate availability to the MEP pathway. Because PfHAD1 has homologues in plants and bacteria, other HAD proteins may be MEP pathway regulators.
Collapse
|
166
|
Papenfort K, Vogel J. Small RNA functions in carbon metabolism and virulence of enteric pathogens. Front Cell Infect Microbiol 2014; 4:91. [PMID: 25077072 PMCID: PMC4098024 DOI: 10.3389/fcimb.2014.00091] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/19/2014] [Indexed: 12/30/2022] Open
Abstract
Enteric pathogens often cycle between virulent and saprophytic lifestyles. To endure these frequent changes in nutrient availability and composition bacteria possess an arsenal of regulatory and metabolic genes allowing rapid adaptation and high flexibility. While numerous proteins have been characterized with regard to metabolic control in pathogenic bacteria, small non-coding RNAs have emerged as additional regulators of metabolism. Recent advances in sequencing technology have vastly increased the number of candidate regulatory RNAs and several of them have been found to act at the interface of bacterial metabolism and virulence factor expression. Importantly, studying these riboregulators has not only provided insight into their metabolic control functions but also revealed new mechanisms of post-transcriptional gene control. This review will focus on the recent advances in this area of host-microbe interaction and discuss how regulatory small RNAs may help coordinate metabolism and virulence of enteric pathogens.
Collapse
Affiliation(s)
- Kai Papenfort
- Department of Molecular Biology, Princeton University Princeton, NJ, USA
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg Würzburg, Germany
| |
Collapse
|
167
|
Laehnemann D, Peña-Miller R, Rosenstiel P, Beardmore R, Jansen G, Schulenburg H. Genomics of rapid adaptation to antibiotics: convergent evolution and scalable sequence amplification. Genome Biol Evol 2014; 6:1287-301. [PMID: 24850796 PMCID: PMC4079197 DOI: 10.1093/gbe/evu106] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Evolutionary adaptation can be extremely fast, especially in response to high selection intensities. A prime example is the surge of antibiotic resistance in bacteria. The genomic underpinnings of such rapid changes may provide information on the genetic processes that enhance fast responses and the particular trait functions under selection. Here, we use experimentally evolved Escherichia coli for a detailed dissection of the genomics of rapid antibiotic resistance evolution. Our new analyses demonstrate that amplification of a sequence region containing several known antibiotic resistance genes represents a fast genomic response mechanism under high antibiotic stress, here exerted by drug combination. In particular, higher dosage of such antibiotic combinations coincided with higher copy number of the sequence region. The amplification appears to be evolutionarily costly, because amplification levels rapidly dropped after removal of the drugs. Our results suggest that amplification is a scalable process, as copy number rapidly changes in response to the selective pressure encountered. Moreover, repeated patterns of convergent evolution were found across the experimentally evolved bacterial populations, including those with lower antibiotic selection intensities. Intriguingly, convergent evolution was identified on different organizational levels, ranging from the above sequence amplification, high variant frequencies in specific genes, prevalence of individual nonsynonymous mutations to the unusual repeated occurrence of a particular synonymous mutation in Glycine codons. We conclude that constrained evolutionary trajectories underlie rapid adaptation to antibiotics. Of the identified genomic changes, sequence amplification seems to represent the most potent, albeit costly genomic response mechanism to high antibiotic stress.
Collapse
Affiliation(s)
- David Laehnemann
- Department of Evolutionary Ecology and Genetics, University of Kiel, Germany
| | - Rafael Peña-Miller
- Biosciences, Geoffrey Pope Building, University of Exeter, United KingdomDepartment of Zoology, University of Oxford, United Kingdom
| | - Philip Rosenstiel
- Institute for Clinical Molecular Biology, University of Kiel, Germany
| | - Robert Beardmore
- Biosciences, Geoffrey Pope Building, University of Exeter, United Kingdom
| | - Gunther Jansen
- Department of Evolutionary Ecology and Genetics, University of Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, University of Kiel, Germany
| |
Collapse
|
168
|
Liu Y, Zhu Y, Li J, Shin HD, Chen RR, Du G, Liu L, Chen J. Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production. Metab Eng 2014; 23:42-52. [DOI: 10.1016/j.ymben.2014.02.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/05/2014] [Accepted: 02/06/2014] [Indexed: 12/12/2022]
|
169
|
Gawand P, Mahadevan R. EngineeringEscherichia colifor D-Ribose Production from Glucose-Xylose Mixtures. Ind Biotechnol (New Rochelle N Y) 2014. [DOI: 10.1089/ind.2013.0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Pratish Gawand
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| |
Collapse
|
170
|
Galperin MY, Koonin EV. Comparative Genomics Approaches to Identifying Functionally Related Genes. ALGORITHMS FOR COMPUTATIONAL BIOLOGY 2014. [DOI: 10.1007/978-3-319-07953-0_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
171
|
García-Martínez J, Castrillo M, Avalos J. The gene cutA of Fusarium fujikuroi, encoding a protein of the haloacid dehalogenase family, is involved in osmotic stress and glycerol metabolism. Microbiology (Reading) 2014; 160:26-36. [DOI: 10.1099/mic.0.071761-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Survival of micro-organisms in natural habitats depends on their ability to adapt to variations in osmotic conditions. We previously described the gene cut-1 of Neurospora crassa, encoding a protein of the haloacid dehalogenase family with an unknown function in the osmotic stress response. Here we report on the functional analysis of cutA, the orthologous gene in the phytopathogenic fungus Fusarium fujikuroi. cutA mRNA levels increased transiently after exposure to 0.68 M NaCl and were reduced upon return to normal osmotic conditions; deletion of the gene resulted in a partial reduction in tolerance to osmotic stress. ΔcutA mutants contained much lower intracellular levels of glycerol than the wild-type, and did not exhibit the increase following hyper-osmotic shock expected from the high osmolarity glycerol (HOG) response. cutA is linked and divergently transcribed with the putative glycerol dehydrogenase gene gldB, which showed the same regulation by osmotic shock. The intergenic cutA/gldB regulatory region contains putative stress-response elements conserved in other fungi, and both genes shared other regulatory features, such as induction by heat shock and by illumination. Photoinduction was also observed in the HOG response gene hogA, and was lost in mutants of the white collar gene wcoA. Previous data on glycerol production in Aspergillus spp. and features of the predicted CutA protein lead us to propose that F. fujikuroi produces glycerol from dihydroxyacetone, and that CutA is the enzyme involved in the synthesis of this precursor by dephosphorylation of dihydroxyacetone-3P.
Collapse
Affiliation(s)
- Jorge García-Martínez
- Departamento of Genética, Facultad of Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Marta Castrillo
- Departamento of Genética, Facultad of Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Javier Avalos
- Departamento of Genética, Facultad of Biología, Universidad de Sevilla, E-41012 Seville, Spain
| |
Collapse
|
172
|
Haase I, Sarge S, Illarionov B, Laudert D, Hohmann HP, Bacher A, Fischer M. Enzymes from the Haloacid Dehalogenase (HAD) Superfamily Catalyse the Elusive Dephosphorylation Step of Riboflavin Biosynthesis. Chembiochem 2013; 14:2272-5. [DOI: 10.1002/cbic.201300544] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Indexed: 11/09/2022]
|
173
|
Smyth KM, Marchant A. Conservation of the 2-keto-3-deoxymanno-octulosonic acid (Kdo) biosynthesis pathway between plants and bacteria. Carbohydr Res 2013; 380:70-5. [DOI: 10.1016/j.carres.2013.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/02/2013] [Accepted: 07/12/2013] [Indexed: 01/22/2023]
|
174
|
Liu Y, Liu L, Shin HD, Chen RR, Li J, Du G, Chen J. Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine. Metab Eng 2013; 19:107-15. [DOI: 10.1016/j.ymben.2013.07.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 06/08/2013] [Accepted: 07/11/2013] [Indexed: 01/11/2023]
|
175
|
Pyrimidine homeostasis is accomplished by directed overflow metabolism. Nature 2013; 500:237-41. [PMID: 23903661 PMCID: PMC4470420 DOI: 10.1038/nature12445] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 07/11/2013] [Indexed: 12/21/2022]
Abstract
Cellular metabolism converts available nutrients into usable energy and biomass precursors. The process is regulated to facilitate efficient nutrient use and metabolic homeostasis. Feedback inhibition of the first committed step of a pathway by its final product is a classical means of controlling biosynthesis1–4. In a canonical example, the first committed enzyme in the pyrimidine pathway in Escherichia coli is allosterically inhibited by cytidine triphosphate1,4,5. The physiological consequences of disrupting this regulation, however, have not been previously explored. Here we identify an alternative regulatory strategy that enables precise control of pyrimidine pathway end-product levels, even in the presence of dysregulated biosynthetic flux. The mechanism involves cooperative feedback regulation of the near-terminal pathway enzyme uridine monophosphate kinase6. Such feedback leads to build-up of the pathway intermediate uridine monophosphate, which is in turn degraded by a conserved phosphatase, here termed UmpH, with previously unknown physiological function7,8. Such directed overflow metabolism allows homeostasis of uridine triphosphate and cytidine triphosphate levels at the expense of uracil excretion and slower growth during energy limitation. Disruption of the directed overflow regulatory mechanism impairs growth in pyrimidine-rich environments. Thus, pyrimidine homeostasis involves dual regulatory strategies, with classical feedback inhibition enhancing metabolic efficiency and directed overflow metabolism ensuring end-product homeostasis.
Collapse
|
176
|
Physiological consequences of multiple-target regulation by the small RNA SgrS in Escherichia coli. J Bacteriol 2013; 195:4804-15. [PMID: 23873911 DOI: 10.1128/jb.00722-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cells use complex mechanisms to regulate glucose transport and metabolism to achieve optimal energy and biomass production while avoiding accumulation of toxic metabolites. Glucose transport and glycolytic metabolism carry the risk of the buildup of phosphosugars, which can inhibit growth at high concentrations. Many enteric bacteria cope with phosphosugar accumulation and associated stress (i.e., sugar-phosphate stress) by producing a small RNA (sRNA) regulator, SgrS, which decreases phosphosugar accumulation in part by repressing translation of sugar transporter mRNAs (ptsG and manXYZ) and enhancing translation of a sugar phosphatase mRNA (yigL). Despite a molecular understanding of individual target regulation by SgrS, previously little was known about how coordinated regulation of these multiple targets contributes to the rescue of cell growth during sugar-phosphate stress. This study examines how SgrS regulation of different targets impacts growth under different nutritional conditions when sugar-phosphate stress is induced. The severity of stress-associated growth inhibition depended on nutrient availability. Stress in nutrient-rich media necessitated SgrS regulation of only sugar transporter mRNAs (ptsG or manXYZ). However, repression of transporter mRNAs was insufficient for growth rescue during stress in nutrient-poor media; here SgrS regulation of the phosphatase (yigL) and as-yet-undefined targets also contributed to growth rescue. The results of this study imply that regulation of only a subset of an sRNA's targets may be important in a given environment. Further, the results suggest that SgrS and perhaps other sRNAs are flexible regulators that modulate expression of multigene regulons to allow cells to adapt to an array of stress conditions.
Collapse
|
177
|
Wang M, Song F, Wu R, Allen KN, Mariano PS, Dunaway-Mariano D. Co-evolution of HAD phosphatase and hotdog-fold thioesterase domain function in the menaquinone-pathway fusion proteins BF1314 and PG1653. FEBS Lett 2013; 587:2851-9. [PMID: 23851007 DOI: 10.1016/j.febslet.2013.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 07/02/2013] [Indexed: 01/25/2023]
Abstract
The function of a Bacteroidetes menaquinone biosynthetic pathway fusion protein comprised of an N-terminal haloacid dehalogenase (HAD) family domain and a C-terminal hotdog-fold family domain is described. Whereas the thioesterase domain efficiently catalyzes 1,4-dihydroxynapthoyl-CoA hydrolysis, an intermediate step in the menaquinone pathway, the HAD domain is devoid of catalytic activity. In some Bacteroidetes a homologous, catalytically active 1,4-dihydroxynapthoyl-CoA thioesterase replaces the fusion protein. Following the gene fusion event, sequence divergence resulted in a HAD domain that functions solely as the oligomerization domain of an otherwise inactive thioesterase domain.
Collapse
Affiliation(s)
- Min Wang
- Department of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|
178
|
Design, synthesis, functional and structural characterization of an inhibitor of N-acetylneuraminate-9-phosphate phosphatase: Observation of extensive dynamics in an enzyme/inhibitor complex. Bioorg Med Chem Lett 2013; 23:4107-11. [DOI: 10.1016/j.bmcl.2013.05.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/10/2013] [Accepted: 05/14/2013] [Indexed: 11/18/2022]
|
179
|
Discovery of a glycerol 3-phosphate phosphatase reveals glycerophospholipid polar head recycling in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2013; 110:11320-5. [PMID: 23801751 DOI: 10.1073/pnas.1221597110] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Functional assignment of enzymes encoded by the Mycobacterium tuberculosis genome is largely incomplete despite recent advances in genomics and bioinformatics. Here, we applied an activity-based metabolomic profiling method to assign function to a unique phosphatase, Rv1692. In contrast to its annotation as a nucleotide phosphatase, metabolomic profiling and kinetic characterization indicate that Rv1692 is a D,L-glycerol 3-phosphate phosphatase. Crystal structures of Rv1692 reveal a unique architecture, a fusion of a predicted haloacid dehalogenase fold with a previously unidentified GCN5-related N-acetyltransferase region. Although not directly involved in acetyl transfer, or regulation of enzymatic activity in vitro, this GCN5-related N-acetyltransferase region is critical for the solubility of the phosphatase. Structural and biochemical analysis shows that the active site features are adapted for recognition of small polyol phosphates, and not nucleotide substrates. Functional assignment and metabolomic studies of M. tuberculosis lacking rv1692 demonstrate that Rv1692 is the final enzyme involved in glycerophospholipid recycling/catabolism, a pathway not previously described in M. tuberculosis.
Collapse
|
180
|
Papenfort K, Sun Y, Miyakoshi M, Vanderpool CK, Vogel J. Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose homeostasis. Cell 2013; 153:426-37. [PMID: 23582330 DOI: 10.1016/j.cell.2013.03.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/26/2013] [Accepted: 03/01/2013] [Indexed: 10/27/2022]
Abstract
Glucose homeostasis is strictly controlled in all domains of life. Bacteria that are unable to balance intracellular sugar levels and deal with potentially toxic phosphosugars cease growth and risk being outcompeted. Here, we identify the conserved haloacid dehalogenase (HAD)-like enzyme YigL as the previously hypothesized phosphatase for detoxification of phosphosugars and reveal that its synthesis is activated by an Hfq-dependent small RNA in Salmonella typhimurium. We show that the glucose-6-P-responsive small RNA SgrS activates YigL synthesis in a translation-independent fashion by the selective stabilization of a decay intermediate of the dicistronic pldB-yigL messenger RNA (mRNA). Intriguingly, the major endoribonuclease RNase E, previously known to function together with small RNAs to degrade mRNA targets, is also essential for this process of mRNA activation. The exploitation of and targeted interference with regular RNA turnover described here may constitute a general route for small RNAs to rapidly activate both coding and noncoding genes.
Collapse
Affiliation(s)
- Kai Papenfort
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg 97070, Germany
| | | | | | | | | |
Collapse
|
181
|
Yip SHC, Matsumura I. Substrate ambiguous enzymes within the Escherichia coli proteome offer different evolutionary solutions to the same problem. Mol Biol Evol 2013; 30:2001-12. [PMID: 23728795 DOI: 10.1093/molbev/mst105] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Many enzymes exhibit some catalytic promiscuity or substrate ambiguity. These weak activities do not affect the fitness of the organism under ordinary circumstances, but can serve as potential evolutionary precursors of new catalytic functions. We wondered whether different proteins with the same substrate ambiguous activity evolve differently under identical selection conditions. Patrick et al. (Patrick WM, Quandt EM, Swartzlander DB, Matsumura I. 2007. Multicopy suppression underpins metabolic evolvability. Mol Biol Evol. 24:2716-2722.) previously showed that three multicopy suppressors, gph, hisB, and ytjC, rescue ΔserB Escherichia coli cells from starvation on minimal media. We directed the evolution of variants of Gph, histidinol phosphatase (HisB), and YtjC that complemented ΔserB more efficiently, and characterized the effects of the amino acid changes, alone and in combination, upon the evolved phosphoserine phosphatase (PSP) activity. Gph and HisB are members of the HAD superfamily of hydrolases, but they adapted through different, kinetically distinguishable, biochemical mechanisms. All of the selected mutations, except N102T in YtjC, proved to be beneficial in isolation. They exhibited a pattern of antagonistic epistasis, as their effects in combination upon the kinetic parameters of the three proteins in reactions with phosphoserine were nonmultiplicative. The N102T mutation exhibited sign epistasis, as it was deleterious in isolation but beneficial in the context of other mutations. We also showed that the D57N mutation in the chromosomal copy of hisB is sufficient to suppress the ΔserB deletion. These results in combination show that proteomes can offer multiple mechanistic solutions to a molecular recognition problem.
Collapse
Affiliation(s)
- Sylvia Hsu-Chen Yip
- Department of Biochemistry, Center for Fundamental and Applied Molecular Evolution, Rollins Research Center, Emory University School of Medicine, USA
| | | |
Collapse
|
182
|
Xu YF, Létisse F, Absalan F, Lu W, Kuznetsova E, Brown G, Caudy AA, Yakunin AF, Broach JR, Rabinowitz JD. Nucleotide degradation and ribose salvage in yeast. Mol Syst Biol 2013; 9:665. [PMID: 23670538 PMCID: PMC4039369 DOI: 10.1038/msb.2013.21] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/08/2013] [Indexed: 12/30/2022] Open
Abstract
Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose-derived carbon accumulates as sedoheptulose-7-phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde-3-phosphate. Oxidative stress increases glyceraldehyde-3-phosphate, resulting in rapid consumption of sedoheptulose-7-phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress.
Collapse
Affiliation(s)
- Yi-Fan Xu
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Caparrós-Martín JA, McCarthy-Suárez I, Culiáñez-Macià FA. HAD hydrolase function unveiled by substrate screening: enzymatic characterization of Arabidopsis thaliana subclass I phosphosugar phosphatase AtSgpp. PLANTA 2013; 237:943-54. [PMID: 23179445 PMCID: PMC3607736 DOI: 10.1007/s00425-012-1809-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 11/02/2012] [Indexed: 05/18/2023]
Abstract
This work presents the isolation and the biochemical characterization of the Arabidopsis thaliana gene AtSgpp. This gene shows homology with the Arabidopsis low molecular weight phosphatases AtGpp1 and AtGpp2 and the yeast counterpart GPP1 and GPP2, which have a high specificity for DL-glycerol-3-phosphate. In addition, it exhibits homology with DOG1 and DOG2 that dephosphorylate 2-deoxy-D-glucose-6-phosphate. Using a comparative genomic approach, we identified the AtSgpp gene as a conceptual translated haloacid dehalogenase-like hydrolase HAD protein. AtSgpp (locus tag At2g38740), encodes a protein with a predicted Mw of 26.7 kDa and a pI of 4.6. Its sequence motifs and expected structure revealed that AtSgpp belongs to the HAD hydrolases subfamily I, with the C1-type cap domain. In the presence of Mg(2+) ions, the enzyme has a phosphatase activity over a wide range of phosphosugars substrates (pH optima at 7.0 and K m in the range of 3.6-7.7 mM). AtSgpp promiscuity is preferentially detectable on D-ribose-5-phosphate, 2-deoxy-D-ribose-5-phosphate, 2-deoxy-D-glucose-6-phosphate, D-mannose-6-phosphate, D-fructose-1-phosphate, D-glucose-6-phosphate, DL-glycerol-3-phosphate, and D-fructose-6-phosphate, as substrates. AtSgpp is ubiquitously expressed throughout development in most plant organs, mainly in sepal and guard cell. Interestingly, expression is affected by abiotic and biotic stresses, being the greatest under Pi starvation and cyclopentenone oxylipins induction. Based on both, substrate lax specificity and gene expression, the physiological function of AtSgpp in housekeeping detoxification, modulation of sugar-phosphate balance and Pi homeostasis, is provisionally assigned.
Collapse
Affiliation(s)
- José A. Caparrós-Martín
- Instituto de Biología Molecular y Celular de Plantas ‘‘Eduardo Primo Yúfera’’ (UPV-CSIC), Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación (CPI), C/Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Iva McCarthy-Suárez
- Instituto de Biología Molecular y Celular de Plantas ‘‘Eduardo Primo Yúfera’’ (UPV-CSIC), Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación (CPI), C/Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Francisco A. Culiáñez-Macià
- Instituto de Biología Molecular y Celular de Plantas ‘‘Eduardo Primo Yúfera’’ (UPV-CSIC), Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación (CPI), C/Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| |
Collapse
|
184
|
Jojima T, Igari T, Gunji W, Suda M, Inui M, Yukawa H. Identification of a HAD superfamily phosphatase, HdpA, involved in 1,3-dihydroxyacetone production during sugar catabolism in Corynebacterium glutamicum. FEBS Lett 2012; 586:4228-32. [PMID: 23108048 DOI: 10.1016/j.febslet.2012.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/04/2012] [Accepted: 10/18/2012] [Indexed: 11/28/2022]
Abstract
Corynebacterium glutamicum produces 1,3-dihydroxyacetone (DHA) as metabolite of sugar catabolism but the responsible enzyme is yet to be identified. Using a transposon mutant library, the gene hdpA (cgR_2128) was shown to encode a haloacid dehalogenase superfamily member that catalyzes dephosphorylation of dihydroxyacetone phosphate to produce DHA. Inactivation of hdpA led to a drastic decrease in DHA production from each of glucose, fructose, and sucrose, indicating that HdpA is the main enzyme responsible for DHA production from sugars in C. glutamicum. Confirmation of DHA production via dihydroxyacetone phosphatase finally confirms a long-speculated route through which bacteria produce DHA.
Collapse
Affiliation(s)
- Toru Jojima
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | | | | | | | | | | |
Collapse
|
185
|
Inhibitory cross-talk upon introduction of a new metabolic pathway into an existing metabolic network. Proc Natl Acad Sci U S A 2012; 109:E2856-64. [PMID: 22984162 DOI: 10.1073/pnas.1208509109] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Evolution or engineering of novel metabolic pathways can endow microbes with new abilities to degrade anthropogenic pollutants or synthesize valuable chemicals. Most studies of the evolution of new pathways have focused on the origins and quality of function of the enzymes involved. However, there is an additional layer of complexity that has received less attention. Introduction of a novel pathway into an existing metabolic network can result in inhibitory cross-talk due to adventitious interactions between metabolites and macromolecules that have not previously encountered one another. Here, we report a thorough examination of inhibitory cross-talk between a novel metabolic pathway for synthesis of pyridoxal 5'-phosphate and the existing metabolic network of Escherichia coli. We demonstrate multiple problematic interactions, including (i) interference by metabolites in the novel pathway with metabolic processes in the existing network, (ii) interference by metabolites in the existing network with the function of the novel pathway, and (iii) diversion of metabolites from the novel pathway by promiscuous activities of enzymes in the existing metabolic network. Identification of the mechanisms of inhibitory cross-talk can reveal the types of adaptations that must occur to enhance the performance of a novel metabolic pathway as well as the fitness of the microbial host. These findings have important implications for evolutionary studies of the emergence of novel pathways in nature as well as genetic engineering of microbes for "green" manufacturing processes.
Collapse
|
186
|
Synthetic pathway for production of five-carbon alcohols from isopentenyl diphosphate. Appl Environ Microbiol 2012; 78:7849-55. [PMID: 22941086 DOI: 10.1128/aem.01175-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synthetic biological pathways could enhance the development of novel processes to produce chemicals from renewable resources. On the basis of models that describe the evolution of metabolic pathways and enzymes in nature, we developed a framework to rationally identify enzymes able to catalyze reactions on new substrates that overcomes one of the major bottlenecks in the assembly of a synthetic biological pathway. We verified the framework by implementing a pathway with two novel enzymatic reactions to convert isopentenyl diphosphate into 3-methyl-3-butenol, 3-methyl-2-butenol, and 3-methylbutanol. To overcome competition with native pathways that share the same substrate, we engineered two bifunctional enzymes that redirect metabolic flux toward the synthetic pathway. Taken together, our work demonstrates a new approach to the engineering of novel synthetic pathways in the cell.
Collapse
|
187
|
Skretas G, Makino T, Varadarajan N, Pogson M, Georgiou G. Multi-copy genes that enhance the yield of mammalian G protein-coupled receptors in Escherichia coli. Metab Eng 2012; 14:591-602. [PMID: 22609824 DOI: 10.1016/j.ymben.2012.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 04/18/2012] [Accepted: 05/07/2012] [Indexed: 01/01/2023]
Abstract
Low yields of recombinant expression represent a major barrier to the physical characterization of membrane proteins. Here, we have identified genes that globally enhance the production of properly folded G protein-coupled receptors (GPCRs) in Escherichia coli. Libraries of bacterial chromosomal fragments were screened using two separate systems that monitor: (i) elevated fluorescence conferred by enhanced expression of GPCR-GFP fusions and (ii) increased binding of fluorescent ligand in cells producing more active receptor. Three multi-copy hits were isolated by both methods: nagD, encoding the ribonucleotide phosphatase NagD; a fragment of nlpD, encoding a truncation of the predicted lipoprotein NlpD, and the three-gene cluster ptsN-yhbJ-npr, encoding three proteins of the nitrogen phosphotransferase system. Expression of these genes resulted in a 3- to 10-fold increase in the yields of different mammalian GPCRs. Our data is consistent with the hypothesis that the expression of these genes may serve to maintain the integrity of the bacterial periplasm and to provide a favorable environment for proper membrane protein folding, possibly by inducing a fine-tuned stress response and/or via modifying the composition of the bacterial cell envelope.
Collapse
Affiliation(s)
- Georgios Skretas
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
188
|
The ancestral SgrS RNA discriminates horizontally acquired Salmonella mRNAs through a single G-U wobble pair. Proc Natl Acad Sci U S A 2012; 109:E757-64. [PMID: 22383560 DOI: 10.1073/pnas.1119414109] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SgrS RNA is a model for the large class of Hfq-associated small RNAs that act to posttranscriptionally regulate bacterial mRNAs. The function of SgrS is well-characterized in nonpathogenic Escherichia coli, where it was originally shown to counteract glucose-phosphate stress by acting as a repressor of the ptsG mRNA, which encodes the major glucose transporter. We have discovered additional SgrS targets in Salmonella Typhimurium, a pathogen related to E. coli that recently acquired one-quarter of all genes by horizontal gene transfer. We show that the conserved short seed region of SgrS that recognizes ptsG was recruited to target the Salmonella-specific sopD mRNA of a secreted virulence protein. The SgrS-sopD interaction is exceptionally selective; we find that sopD2 mRNA, whose gene arose from sopD duplication during Salmonella evolution, is deaf to SgrS because of a nonproductive G-U pair in the potential SgrS-sopD2 RNA duplex vs. G-C in SgrS-sopD. In other words, SgrS discriminates the two virulence factor mRNAs at the level of a single hydrogen bond. Our study suggests that bacterial pathogens use their large suites of conserved Hfq-associated regulators to integrate horizontally acquired genes into existing posttranscriptional networks, just as conserved transcription factors are recruited to tame foreign genes at the DNA level. The results graphically illustrate the importance of the seed regions of bacterial small RNAs to select new targets with high fidelity and suggest that target predictions must consider all or none decisions by individual seed nucleotides.
Collapse
|
189
|
Chiba Y, Oshima K, Arai H, Ishii M, Igarashi Y. Discovery and analysis of cofactor-dependent phosphoglycerate mutase homologs as novel phosphoserine phosphatases in Hydrogenobacter thermophilus. J Biol Chem 2012; 287:11934-41. [PMID: 22337887 DOI: 10.1074/jbc.m111.330621] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoserine phosphatase (PSP) catalyzes the dephosphorylation of phosphoserine to serine and inorganic phosphate. PSPs, which have been found in all three domains of life, belong to the haloacid dehalogenase-like hydrolase superfamily. However, certain organisms, particularly bacteria, lack a classical PSP gene, although they appear to possess a functional phosphoserine synthetic pathway. The apparent lack of a PSP ortholog in Hydrogenobacter thermophilus, an obligately chemolithoautotrophic and thermophilic bacterium, represented a missing link in serine anabolism because our previous study suggested that serine should be synthesized from phosphoserine. Here, we detected PSP activity in cell-free extracts of H. thermophilus and purified two proteins with PSP activity. Surprisingly, these proteins belonged to the histidine phosphatase superfamily and had been annotated as cofactor-dependent phosphoglycerate mutase (dPGM). However, because they possessed neither mutase activity nor the residues important for the activity, we defined these proteins as novel-type PSPs. Considering the strict substrate specificity toward l-phosphoserine, kinetic parameters, and PSP activity levels in cell-free extracts, these proteins were strongly suggested to function as PSPs in vivo. We also detected PSP activity from "dPGM-like" proteins of Thermus thermophilus and Arabidopsis thaliana, suggesting that PSP activity catalyzed by dPGM-like proteins may be distributed among a broad range of organisms. In fact, a number of bacterial genera, including Firmicutes and Cyanobacteria, were proposed to be strong candidates for possessing this novel type of PSP. These findings will help to identify the missing link in serine anabolism.
Collapse
Affiliation(s)
- Yoko Chiba
- Department of Biotechnology, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
190
|
Rawat R, Sandoval FJ, Wei Z, Winkler R, Roje S. An FMN hydrolase of the haloacid dehalogenase superfamily is active in plant chloroplasts. J Biol Chem 2011; 286:42091-42098. [PMID: 22002057 PMCID: PMC3234908 DOI: 10.1074/jbc.m111.260885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 10/13/2011] [Indexed: 11/06/2022] Open
Abstract
FMN hydrolases catalyze dephosphorylation of FMN to riboflavin. Although these enzymes have been described in many organisms, few had their corresponding genes cloned and their recombinant proteins biochemically characterized, and none had their physiological roles determined. We found previously that FMN hydrolase activity in pea chloroplasts is Mg(2+)-dependent, suggesting an enzyme of the haloacid dehalogenase (HAD) superfamily. In this study, a new FMN hydrolase was purified by multistep chromatography after ammonium sulfate precipitation. The molecular weight of the native protein was estimated at ∼59,400, a dimer of about twice the predicted molecular weight of most HAD superfamily phosphatases. After SDS-PAGE of the partially purified material, two separate protein bands within 25-30 kDa were extracted from the gel and analyzed by nanoLC-MS/MS. Peptide sequence matching to the protein samples suggested the presence of three HAD-like hydrolases. cDNAs for sequence homologs from Arabidopsis thaliana of these proteins were expressed in Escherichia coli. Activity screening of the encoded proteins showed that the At1g79790 gene encodes an FMN hydrolase (AtcpFHy1). Plastid localization of AtcpFHy1 was confirmed using fluorescence microscopy of A. thaliana protoplasts transiently expressing the N-terminal fusion of AtcpFHy1 to enhanced green fluorescent protein. Phosphatase activity of AtcpFHy1 is FMN-specific, as assayed with 19 potential substrates. Kinetic parameters and pH and temperature optima for AtcpFHy1 were determined. A phylogenetic analysis of putative phosphatases of the HAD superfamily suggested distinct evolutionary origins for the plastid AtcpFHy1 and the cytosolic FMN hydrolase characterized previously.
Collapse
Affiliation(s)
- Renu Rawat
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| | - Francisco J Sandoval
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| | - Zhaoyang Wei
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| | - Robert Winkler
- Departamento de Biotecnología y Tecnología de Alimentos, Instituto Tecnológico y de Estudios Superiores de Monterrey, 64849 Monterrey, Nuevo León, Mexico
| | - Sanja Roje
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164.
| |
Collapse
|
191
|
The evolution of metabolic networks of E. coli. BMC SYSTEMS BIOLOGY 2011; 5:182. [PMID: 22044664 PMCID: PMC3229490 DOI: 10.1186/1752-0509-5-182] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 11/01/2011] [Indexed: 11/19/2022]
Abstract
Background Despite the availability of numerous complete genome sequences from E. coli strains, published genome-scale metabolic models exist only for two commensal E. coli strains. These models have proven useful for many applications, such as engineering strains for desired product formation, and we sought to explore how constructing and evaluating additional metabolic models for E. coli strains could enhance these efforts. Results We used the genomic information from 16 E. coli strains to generate an E. coli pangenome metabolic network by evaluating their collective 76,990 ORFs. Each of these ORFs was assigned to one of 17,647 ortholog groups including ORFs associated with reactions in the most recent metabolic model for E. coli K-12. For orthologous groups that contain an ORF already represented in the MG1655 model, the gene to protein to reaction associations represented in this model could then be easily propagated to other E. coli strain models. All remaining orthologous groups were evaluated to see if new metabolic reactions could be added to generate a pangenome-scale metabolic model (iEco1712_pan). The pangenome model included reactions from a metabolic model update for E. coli K-12 MG1655 (iEco1339_MG1655) and enabled development of five additional strain-specific genome-scale metabolic models. These additional models include a second K-12 strain (iEco1335_W3110) and four pathogenic strains (two enterohemorrhagic E. coli O157:H7 and two uropathogens). When compared to the E. coli K-12 models, the metabolic models for the enterohemorrhagic (iEco1344_EDL933 and iEco1345_Sakai) and uropathogenic strains (iEco1288_CFT073 and iEco1301_UTI89) contained numerous lineage-specific gene and reaction differences. All six E. coli models were evaluated by comparing model predictions to carbon source utilization measurements under aerobic and anaerobic conditions, and to batch growth profiles in minimal media with 0.2% (w/v) glucose. An ancestral genome-scale metabolic model based on conserved ortholog groups in all 16 E. coli genomes was also constructed, reflecting the conserved ancestral core of E. coli metabolism (iEco1053_core). Comparative analysis of all six strain-specific E. coli models revealed that some of the pathogenic E. coli strains possess reactions in their metabolic networks enabling higher biomass yields on glucose. Finally the lineage-specific metabolic traits were compared to the ancestral core model predictions to derive new insight into the evolution of metabolism within this species. Conclusion Our findings demonstrate that a pangenome-scale metabolic model can be used to rapidly construct additional E. coli strain-specific models, and that quantitative models of different strains of E. coli can accurately predict strain-specific phenotypes. Such pangenome and strain-specific models can be further used to engineer metabolic phenotypes of interest, such as designing new industrial E. coli strains.
Collapse
|
192
|
Huang H, Yury P, Toro R, Farelli JD, Pandya C, Almo SC, Allen KN, Dunaway-Mariano D. Divergence of structure and function in the haloacid dehalogenase enzyme superfamily: Bacteroides thetaiotaomicron BT2127 is an inorganic pyrophosphatase. Biochemistry 2011; 50:8937-49. [PMID: 21894910 PMCID: PMC3342813 DOI: 10.1021/bi201181q] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The explosion of protein sequence information requires that current strategies for function assignment evolve to complement experimental approaches with computationally based function prediction. This necessitates the development of strategies based on the identification of sequence markers in the form of specificity determinants and a more informed definition of orthologues. Herein, we have undertaken the function assignment of the unknown haloalkanoate dehalogenase superfamily member BT2127 (Uniprot accession code Q8A5 V9) from Bacteroides thetaiotaomicron using an integrated bioinformatics-structure-mechanism approach. The substrate specificity profile and steady-state rate constants of BT2127 (with a k(cat)/K(m) value for pyrophosphate of ~1 × 10(5) M(-1) s(-1)), together with the gene context, support the assigned in vivo function as an inorganic pyrophosphatase. The X-ray structural analysis of wild-type BT2127 and several variants generated by site-directed mutagenesis shows that substrate discrimination is based, in part, on active site space restrictions imposed by the cap domain (specifically by residues Tyr76 and Glu47). Structure-guided site-directed mutagenesis coupled with kinetic analysis of the mutant enzymes identified the residues required for catalysis, substrate binding, and domain-domain association. On the basis of this structure-function analysis, the catalytic residues Asp11, Asp13, Thr113, and Lys147 as well the metal binding residues Asp171, Asn172, and Glu47 were used as markers to confirm BT2127 orthologues identified via sequence searches. This bioinformatic analysis demonstrated that the biological range of BT2127 orthologue is restricted to the phylum Bacteroidetes/Chlorobi. The key structural determinants in the divergence of BT2127 and its closest homologue, β-phosphoglucomutase, control the leaving group size (phosphate vs glucose phosphate) and the position of the Asp acid/base in the open versus closed conformations. HADSF pyrophosphatases represent a third mechanistic and fold type for bacterial pyrophosphatases.
Collapse
Affiliation(s)
- Hua Huang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Patskovsky Yury
- Department of Biochemistry, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Rafael Toro
- Department of Biochemistry, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Jeremiah D. Farelli
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215-2521
| | - Chetanya Pandya
- Bioinformatics Graduate Program, Boston University, 24 Cummington Street Boston, MA 02215-2521
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Karen N. Allen
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215-2521
| | - Debra Dunaway-Mariano
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131
| |
Collapse
|
193
|
Li Z, Cai L, Qi Q, Styslinger TJ, Zhao G, Wang PG. Synthesis of rare sugars with L-fuculose-1-phosphate aldolase (FucA) from Thermus thermophilus HB8. Bioorg Med Chem Lett 2011; 21:5084-7. [PMID: 21482110 PMCID: PMC3445428 DOI: 10.1016/j.bmcl.2011.03.072] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 03/15/2011] [Accepted: 03/17/2011] [Indexed: 11/20/2022]
Abstract
We report herein a one-pot four-enzyme approach for the synthesis of the rare sugars d-psicose, d-sorbose, l-tagatose, and l-fructose with aldolase FucA from a thermophilic source (Thermus thermophilus HB8). Importantly, the cheap starting material DL-GP (DL-glycerol 3-phosphate), was used to significantly reduce the synthetic cost.
Collapse
Affiliation(s)
- Zijie Li
- National Glycoengineering Research Center and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Li Cai
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Qingsheng Qi
- National Glycoengineering Research Center and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Thomas J. Styslinger
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Guohui Zhao
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Peng George Wang
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
194
|
Li J, Wang N. Genome-wide mutagenesis of Xanthomonas axonopodis pv. citri reveals novel genetic determinants and regulation mechanisms of biofilm formation. PLoS One 2011; 6:e21804. [PMID: 21750733 PMCID: PMC3130047 DOI: 10.1371/journal.pone.0021804] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/07/2011] [Indexed: 11/18/2022] Open
Abstract
Xanthomonas axonopodis pv. citri (Xac) causes citrus canker disease, a major threat to citrus production worldwide. Accumulating evidence suggests that the formation of biofilms on citrus leaves plays an important role in the epiphytic survival of this pathogen prior to the development of canker disease. However, the process of Xac biofilm formation is poorly understood. Here, we report a genome-scale study of Xac biofilm formation in which we identified 92 genes, including 33 novel genes involved in biofilm formation and 7 previously characterized genes, colR, fhaB, fliC, galU, gumD, wxacO, and rbfC, known to be important for Xac biofilm formation. In addition, 52 other genes with defined or putative functions in biofilm formation were identified, even though they had not previously reported been to be associated with biofilm formation. The 92 genes were isolated from 292 biofilm-defective mutants following a screen of a transposon insertion library containing 22,000 Xac strain 306 mutants. Further analyses indicated that 16 of the novel genes are involved in the production of extracellular polysaccharide (EPS) and/or lipopolysaccharide (LPS), 7 genes are involved in signaling and regulatory pathways, and 5 genes have unknown roles in biofilm formation. Furthermore, two novel genes, XAC0482, encoding a haloacid dehalogenase-like phosphatase, and XAC0494 (designated as rbfS), encoding a two-component sensor protein, were confirmed to be biofilm-related genes through complementation assays. Our data demonstrate that the formation of mature biofilm requires EPS, LPS, both flagellum-dependent and flagellum-independent cell motility, secreted proteins and extracellular DNA. Additionally, multiple signaling pathways are involved in Xac biofilm formation. This work is the first report on a genome-wide scale of the genetic processes of biofilm formation in plant pathogenic bacteria. The report provides significant new information about the genetic determinants and regulatory mechanism of biofilm formation.
Collapse
Affiliation(s)
- Jinyun Li
- Department of Microbiology and Cell Science, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Nian Wang
- Department of Microbiology and Cell Science, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
- * E-mail:
| |
Collapse
|
195
|
Godinho LM, de Sá-Nogueira I. Characterization and regulation of a bacterial sugar phosphatase of the haloalkanoate dehalogenase superfamily, AraL, from Bacillus subtilis. FEBS J 2011; 278:2511-24. [PMID: 21575135 PMCID: PMC3207120 DOI: 10.1111/j.1742-4658.2011.08177.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AraL from Bacillus subtilis is a member of the ubiquitous haloalkanoate dehalogenase superfamily. The araL gene has been cloned, over-expressed in Escherichia coli and its product purified to homogeneity. The enzyme displays phosphatase activity, which is optimal at neutral pH (7.0) and 65 °C. Substrate screening and kinetic analysis showed AraL to have low specificity and catalytic activity towards several sugar phosphates, which are metabolic intermediates of the glycolytic and pentose phosphate pathways. On the basis of substrate specificity and gene context within the arabinose metabolic operon, a putative physiological role of AraL in the detoxification of accidental accumulation of phosphorylated metabolites has been proposed. The ability of AraL to catabolize several related secondary metabolites requires regulation at the genetic level. In the present study, using site-directed mutagenesis, we show that the production of AraL is regulated by a structure in the translation initiation region of the mRNA, which most probably blocks access to the ribosome-binding site, preventing protein synthesis. Members of haloalkanoate dehalogenase subfamily IIA and IIB are characterized by a broad-range and overlapping specificity anticipating the need for regulation at the genetic level. We provide evidence for the existence of a genetic regulatory mechanism controlling the production of AraL.
Collapse
Affiliation(s)
- Lia M Godinho
- Centro de Recursos Microbiológicos, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, Caparica, Portugal
| | | |
Collapse
|
196
|
Shimada T, Fujita N, Yamamoto K, Ishihama A. Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. PLoS One 2011; 6:e20081. [PMID: 21673794 PMCID: PMC3105977 DOI: 10.1371/journal.pone.0020081] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/18/2011] [Indexed: 12/17/2022] Open
Abstract
CRP (cAMP receptor protein), the global regulator of genes for carbon source utilization in the absence of glucose, is the best-studied prokaryotic transcription factor. A total of 195 target promoters on the Escherichia coli genome have been proposed to be under the control of cAMP-bound CRP. Using the newly developed Genomic SELEX screening system of transcription factor-binding sequences, however, we have identified a total of at least 254 CRP-binding sites. Based on their location on the E. coli genome, we predict a total of at least 183 novel regulation target operons, altogether with the 195 hitherto known targets, reaching to the minimum of 378 promoters as the regulation targets of cAMP-CRP. All the promoters selected from the newly identified targets and examined by using the lacZ reporter assay were found to be under the control of CRP, indicating that the Genomic SELEX screening allowed to identify the CRP targets with high accuracy. Based on the functions of novel target genes, we conclude that CRP plays a key regulatory role in the whole processes from the selective transport of carbon sources, the glycolysis-gluconeogenesis switching to the metabolisms downstream of glycolysis, including tricarboxylic acid (TCA) cycle, pyruvate dehydrogenase (PDH) pathway and aerobic respiration. One unique regulation mode is that a single and the same CRP molecule bound within intergenic regions often regulates both of divergently transcribed operons.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | | | | | | |
Collapse
|
197
|
Wang L, Mavisakalyan V, Tillier ERM, Clark GW, Savchenko AV, Yakunin AF, Master ER. Mining bacterial genomes for novel arylesterase activity. Microb Biotechnol 2011; 3:677-90. [PMID: 21255363 PMCID: PMC3815341 DOI: 10.1111/j.1751-7915.2010.00185.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
One hundred and seventy-one genes encoding potential esterases from 11 bacterial genomes were cloned and overexpressed in Escherichia coli; 74 of the clones produced soluble proteins. All 74 soluble proteins were purified and screened for esterase activity; 36 proteins showed carboxyl esterase activity on short-chain esters, 17 demonstrated arylesterase activity, while 38 proteins did not exhibit any activity towards the test substrates. Esterases from Rhodopseudomonas palustris (RpEST-1, RpEST-2 and RpEST-3), Pseudomonas putida (PpEST-1, PpEST-2 and PpEST-3), Pseudomonas aeruginosa (PaEST-1) and Streptomyces avermitilis (SavEST-1) were selected for detailed biochemical characterization. All of the enzymes showed optimal activity at neutral or alkaline pH, and the half-life of each enzyme at 50°C ranged from < 5 min to over 5 h. PpEST-3, RpEST-1 and RpEST-2 demonstrated the highest specific activity with pNP-esters; these enzymes were also among the most stable at 50°C and in the presence of detergents, polar and non-polar organic solvents, and imidazolium ionic liquids. Accordingly, these enzymes are particularly interesting targets for subsequent application trials. Finally, biochemical and bioinformatic analyses were compared to reveal sequence features that could be correlated to enzymes with arylesterase activity, facilitating subsequent searches for new esterases in microbial genome sequences.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | | | | | | | | | | | | |
Collapse
|
198
|
Feng MJ, Fu TM, Liu X, Li LF. Purification, crystallization and preliminary crystallographic analysis of SMU.1108c protein from Streptococcus mutans. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:76-8. [PMID: 21206029 PMCID: PMC3079977 DOI: 10.1107/s174430911004457x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 11/02/2010] [Indexed: 11/10/2022]
Abstract
Streptococcus mutans SMU.1108c (KEGG database) encodes a functionally uncharacterized protein consisting of 270 amino-acid residues. This protein is predicted to have a haloacid dehalogenase hydrolase-like domain and is a homologue of haloacid dehalogenase phosphatases that catalyze phosphoryl-transfer reactions. In this work, SMU.1108c was cloned into the pET28a vector and overexpressed in Escherichia coli strain BL21 (DE3). The protein was purified to homogeneity and crystallized using the sitting-drop vapour-diffusion method. The best crystal diffracted to 2.0 Å resolution and belonged to space group C2, with unit-cell parameters a=77.1, b=80.2, c=47.9 Å, β=99.5°.
Collapse
Affiliation(s)
- Ming-Jing Feng
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Tian-Min Fu
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Xiang Liu
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Lan-Fen Li
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
199
|
Novel members of the Cra regulon involved in carbon metabolism in Escherichia coli. J Bacteriol 2010; 193:649-59. [PMID: 21115656 DOI: 10.1128/jb.01214-10] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cra (catabolite repressor activator) is a global regulator of the genes for carbon metabolism in Escherichia coli. To gain insights into the regulatory roles of Cra, attempts were made to identify the whole set of regulation targets using an improved genomic SELEX (systematic evolution of ligands by exponential enrichment) system. Surprisingly, a total of 164 binding sites were identified for Cra, 144 (88%) of which were newly identified. The majority of known targets were included in the SELEX chip pattern. The promoters examined by the lacZ reporter assay in vivo were all regulated by Cra. These two lines of evidence indicate that a total of as many as 178 promoters are under the control of Cra. The majority of Cra targets are the genes coding for the enzymes involved in central carbon metabolism, covering all the genes for the enzymes involved in glycolysis and metabolism downstream of glycolysis, including the tricarboxylic acid (TCA) cycle and aerobic respiration. Taken together, we propose that Cra plays a key role in balancing the levels of the enzymes for carbon metabolism.
Collapse
|
200
|
May A, Berger S, Hertel T, Köck M. The Arabidopsis thaliana phosphate starvation responsive gene AtPPsPase1 encodes a novel type of inorganic pyrophosphatase. Biochim Biophys Acta Gen Subj 2010; 1810:178-85. [PMID: 21122813 DOI: 10.1016/j.bbagen.2010.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/03/2010] [Accepted: 11/17/2010] [Indexed: 11/30/2022]
Abstract
BACKGROUND Low inorganic phosphate (Pi) availability triggers metabolic responses to maintain the intracellular phosphate homeostasis in plants. One crucial adaptive mechanism is the immediate cleavage of Pi from phosphorylated substrates; however, phosphohydrolases that function in the cytosol and putative substrates have not been characterized yet. One candidate gene is Arabidopsis thaliana At1g73010 encoding an uncharacterized enzyme with homology to the haloacid dehalogenase (HAD) superfamily. METHODS AND RESULTS This work reports the molecular cloning of At1g73010, its expression in Escherichia coli, and the enzymatic characterisation of the recombinant protein (33.5 kD). The Mg²(+)-dependent enzyme named AtPPsPase1 catalyzes the specific cleavage of pyrophosphate (K(m) 38.8 μM) with an alkaline catalytic pH optimum. Gel filtration revealed a tetrameric structure of the soluble cytoplasmic protein. Modelling of the active site and assay of the recombinant protein variant D19A demonstrated that the enzyme shares the catalytic mechanism of the HAD superfamily including a phosphorylated enzyme intermediate. CONCLUSIONS The tight control of AtPPsPase1 gene expression underlines its important role in the Pi starvation response and suggests that cleavage of pyrophosphate is an immediate metabolic adaptation reaction. GENERAL SIGNIFICANCE The novel enzyme, the first pyrophosphatase in the HAD superfamily, differs from classical pyrophosphatases with respect to structure and catalytic mechanism. The enzyme function could be used to discover unknown aspects of pyrophosphate metabolism in general.
Collapse
Affiliation(s)
- Anett May
- Biocenter of the University, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | | | | | | |
Collapse
|