151
|
Piattoni CV, Ferrero DML, Dellaferrera I, Vegetti A, Iglesias AÁ. Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase Is Phosphorylated during Seed Development. FRONTIERS IN PLANT SCIENCE 2017; 8:522. [PMID: 28443115 PMCID: PMC5387080 DOI: 10.3389/fpls.2017.00522] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/23/2017] [Indexed: 05/06/2023]
Abstract
Cytosolic glyceraldehyde-3-phosphate dehydrogenase (NAD-GAPDH) is involved in a critical energetic step of glycolysis and also has many important functions besides its enzymatic activity. The recombinant wheat NAD-GAPDH was phosphorylated in vitro at Ser205 by a SNF1-Related protein kinase 1 (SnRK1) from wheat heterotrophic (but not from photosynthetic) tissues. The S205D mutant enzyme (mimicking the phosphorylated form) exhibited a significant decrease in activity but similar affinity toward substrates. Immunodetection and activity assays showed that NAD-GAPDH is phosphorylated in vivo, the enzyme depicting different activity, abundance and phosphorylation profiles during development of seeds that mainly accumulate starch (wheat) or lipids (castor oil seed). NAD-GAPDH activity gradually increases along wheat seed development, but protein levels and phosphorylation status exhibited slight changes. Conversely, in castor oil seed, the activity slightly increased and total protein levels do not significantly change in the first half of seed development but both abruptly decreased in the second part of development, when triacylglycerol synthesis and storage begin. Interestingly, phospho-NAD-GAPDH levels reached a maximum when the seed switch their metabolism to mainly support synthesis and accumulation of carbon reserves. After this point the castor oil seed NAD-GAPDH protein levels and activity highly decreased, and the protein stability assays showed that the protein would be degraded by the proteasome. The results presented herein suggest that phosphorylation of NAD-GAPDH during seed development would have impact on the partitioning of triose-phosphate between different metabolic pathways and cell compartments to support the specific carbon, energy and reducing equivalent demands during synthesis of storage products.
Collapse
Affiliation(s)
- Claudia V. Piattoni
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (Consejo Nacional de Investigaciones Científicas y Técnicas – Universidad Nacional del Litoral) and Facultad de Bioquímica y Ciencias Biológicas (Universidad Nacional del Litoral), Centro Científico Tecnológico, Consejo Nacional de Investigaciones Científicas y Técnicas Santa FeSanta Fe, Argentina
- *Correspondence: Alberto Á. Iglesias, Claudia V. Piattoni,
| | - Danisa M. L. Ferrero
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (Consejo Nacional de Investigaciones Científicas y Técnicas – Universidad Nacional del Litoral) and Facultad de Bioquímica y Ciencias Biológicas (Universidad Nacional del Litoral), Centro Científico Tecnológico, Consejo Nacional de Investigaciones Científicas y Técnicas Santa FeSanta Fe, Argentina
| | - Ignacio Dellaferrera
- Cultivos Extensivos, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, EsperanzaArgentina
| | - Abelardo Vegetti
- Morfología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, EsperanzaArgentina
| | - Alberto Á. Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (Consejo Nacional de Investigaciones Científicas y Técnicas – Universidad Nacional del Litoral) and Facultad de Bioquímica y Ciencias Biológicas (Universidad Nacional del Litoral), Centro Científico Tecnológico, Consejo Nacional de Investigaciones Científicas y Técnicas Santa FeSanta Fe, Argentina
- *Correspondence: Alberto Á. Iglesias, Claudia V. Piattoni,
| |
Collapse
|
152
|
Henry M, Coleman O, Clynes M, Meleady P. Phosphopeptide Enrichment and LC-MS/MS Analysis to Study the Phosphoproteome of Recombinant Chinese Hamster Ovary Cells. Methods Mol Biol 2017; 1603:195-208. [PMID: 28493132 DOI: 10.1007/978-1-4939-6972-2_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The reversible phosphorylation of proteins on serine, threonine, and tyrosine residues is one of the most important post-translational modifications that regulates many biological processes. The phosphoproteome has not been studied in any great detail in recombinant Chinese hamster ovary (CHO) cells to date despite phosphorylation playing a crucial role in regulating many molecular and cellular processes relevant to bioprocess phenotypes including, for example, transcription, translation, growth, apoptosis, and signal transduction. In this chapter, we provide a protocol for the phosphoproteomic analysis of Chinese hamster ovary cells using phosphopeptide enrichment with metal oxide affinity chromatography (MOAC) and immobilized metal affinity chromatography (IMAC) techniques, followed by site-specific identification of phosphorylated residues using LC-MS (MS2 and MS3) strategies.
Collapse
Affiliation(s)
- Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Orla Coleman
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
153
|
Marx H, Minogue CE, Jayaraman D, Richards AL, Kwiecien NW, Siahpirani AF, Rajasekar S, Maeda J, Garcia K, Del Valle-Echevarria AR, Volkening JD, Westphall MS, Roy S, Sussman MR, Ané JM, Coon JJ. A proteomic atlas of the legume Medicago truncatula and its nitrogen-fixing endosymbiont Sinorhizobium meliloti. Nat Biotechnol 2016; 34:1198-1205. [DOI: 10.1038/nbt.3681] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/23/2016] [Indexed: 11/09/2022]
|
154
|
Vu LD, Stes E, Van Bel M, Nelissen H, Maddelein D, Inzé D, Coppens F, Martens L, Gevaert K, De Smet I. Up-to-Date Workflow for Plant (Phospho)proteomics Identifies Differential Drought-Responsive Phosphorylation Events in Maize Leaves. J Proteome Res 2016; 15:4304-4317. [DOI: 10.1021/acs.jproteome.6b00348] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lam Dai Vu
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Medical
Biotechnology Center, VIB, 9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Elisabeth Stes
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Medical
Biotechnology Center, VIB, 9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Michiel Van Bel
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Hilde Nelissen
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Davy Maddelein
- Medical
Biotechnology Center, VIB, 9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Dirk Inzé
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Frederik Coppens
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lennart Martens
- Medical
Biotechnology Center, VIB, 9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Kris Gevaert
- Medical
Biotechnology Center, VIB, 9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Ive De Smet
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
155
|
Ishii K, Kazama Y, Morita R, Hirano T, Ikeda T, Usuda S, Hayashi Y, Ohbu S, Motoyama R, Nagamura Y, Abe T. Linear Energy Transfer-Dependent Change in Rice Gene Expression Profile after Heavy-Ion Beam Irradiation. PLoS One 2016; 11:e0160061. [PMID: 27462908 PMCID: PMC4962992 DOI: 10.1371/journal.pone.0160061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/13/2016] [Indexed: 12/14/2022] Open
Abstract
A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET). LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation) revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET-dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO) analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice.
Collapse
Affiliation(s)
| | | | | | - Tomonari Hirano
- RIKEN Nishina Center, Wako, Saitama, Japan
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | | | | | | | - Sumie Ohbu
- RIKEN Nishina Center, Wako, Saitama, Japan
| | - Ritsuko Motoyama
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Nagamura
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Tomoko Abe
- RIKEN Nishina Center, Wako, Saitama, Japan
| |
Collapse
|
156
|
Maruta T, Sawa Y, Shigeoka S, Ishikawa T. Diversity and Evolution of Ascorbate Peroxidase Functions in Chloroplasts: More Than Just a Classical Antioxidant Enzyme? PLANT & CELL PHYSIOLOGY 2016; 57:1377-1386. [PMID: 26738546 DOI: 10.1093/pcp/pcv203] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/15/2015] [Indexed: 05/26/2023]
Abstract
Reactive oxygen species (ROS) have dual functions in plant cells as cytotoxic molecules and emergency signals. The balance between the production and scavenging of these molecules in chloroplasts, major sites for the production of ROS, is one of the key determinants for plant acclimation to stress conditions. The water-water cycle is a crucial regulator of ROS levels in chloroplasts. In this cycle, the stromal and thylakoid membrane-attached isoforms of ascorbate peroxidase (sAPX and tAPX, respectively) are involved in the metabolism of H2O2 Current genome and phylogenetic analyses suggest that the first monofunctional APX was generated as sAPX in unicellular green algae, and that tAPX occurred in multicellular charophytes during plant evolution. Chloroplastic APXs, especially tAPX, have been considered to be the source of a bottleneck in the water-water cycle, at least in higher plants, because of their high susceptibility to H2O2 A number of studies have succeeded in improving plant stress resistance by reinforcing the fragile characteristics of the enzymes. However, researchers have unexpectedly failed to find a 'stress-sensitive phenotype' among loss-of-function mutants, at least in laboratory conditions. Interestingly, the susceptibility of enzymes to H2O2 may have been acquired during plant evolution, thereby allowing for the flexible use of H2O2 as a signaling molecule in plants, and this is supported by growing lines of evidence for the physiological significance of chloroplastic H2O2 as a retrograde signal in plant stress responses. By overviewing historical, biochemical, physiological and genetic studies, we herein discuss the diverse functions of chloroplastic APXs as antioxidant enzymes and signaling modulators.
Collapse
Affiliation(s)
- Takanori Maruta
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504 Japan
- T.M. currently holds an additional post at the Department of Plant Systems Biology, VIB/Ghent University (Technologiepark 927, 9052 Ghent, Belgium)
| | - Yoshihiro Sawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504 Japan
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara, 631-8505 Japan
| | - Takahiro Ishikawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504 Japan
| |
Collapse
|
157
|
Grieco M, Jain A, Ebersberger I, Teige M. An evolutionary view on thylakoid protein phosphorylation uncovers novel phosphorylation hotspots with potential functional implications. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3883-96. [PMID: 27117338 DOI: 10.1093/jxb/erw164] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The regulation of photosynthetic light reactions by reversible protein phosphorylation is well established today, but functional studies have so far mostly been restricted to processes affecting light-harvesting complex II and the core proteins of photosystem II. Virtually no functional data are available on regulatory effects at the other photosynthetic complexes despite the identification of multiple phosphorylation sites. Therefore we summarize the available data from 50 published phospho-proteomics studies covering the main complexes involved in photosynthetic light reactions in the 'green lineage' (i.e. green algae and land plants) as well as its cyanobacterial counterparts. In addition, we performed an extensive orthologue search for the major photosynthetic thylakoid proteins in 41 sequenced genomes and generated sequence alignments to survey the phylogenetic distribution of phosphorylation sites and their evolutionary conservation from green algae to higher plants. We observed a number of uncharacterized phosphorylation hotspots at photosystem I and the ATP synthase with potential functional relevance as well as an unexpected divergence of phosphosites. Although technical limitations might account for a number of those differences, we think that many of these phosphosites have important functions. This is particularly important for mono- and dicot plants, where these sites might be involved in regulatory processes such as stress acclimation.
Collapse
Affiliation(s)
- Michele Grieco
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| | - Arpit Jain
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe University, Max-von-Laue Str. 13, D-60438 Frankfurt, Germany
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe University, Max-von-Laue Str. 13, D-60438 Frankfurt, Germany Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Anlage 25, D-60325 Frankfurt, Germany
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| |
Collapse
|
158
|
Baginsky S. Protein phosphorylation in chloroplasts - a survey of phosphorylation targets. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3873-82. [PMID: 26969742 DOI: 10.1093/jxb/erw098] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The development of new software tools, improved mass spectrometry equipment, a suite of optimized scan types, and better-quality phosphopeptide affinity capture have paved the way for an explosion of mass spectrometry data on phosphopeptides. Because phosphoproteomics achieves good sensitivity, most studies use complete cell extracts for phosphopeptide enrichment and identification without prior enrichment of proteins or subcellular compartments. As a consequence, the phosphoproteome of cell organelles often comes as a by-product from large-scale studies and is commonly assembled from these in meta-analyses. This review aims at providing some guidance on the limitations of meta-analyses that combine data from analyses with different scopes, reports on the current status of knowledge on chloroplast phosphorylation targets, provides initial insights into phosphorylation site conservation in different plant species, and highlights emerging information on the integration of gene expression with metabolism and photosynthesis by means of protein phosphorylation.
Collapse
Affiliation(s)
- Sacha Baginsky
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
| |
Collapse
|
159
|
Chen S, Jia H, Zhao H, Liu D, Liu Y, Liu B, Bauer S, Somerville CR. Anisotropic Cell Expansion Is Affected through the Bidirectional Mobility of Cellulose Synthase Complexes and Phosphorylation at Two Critical Residues on CESA3. PLANT PHYSIOLOGY 2016; 171:242-50. [PMID: 26969722 PMCID: PMC4854686 DOI: 10.1104/pp.15.01874] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/04/2016] [Indexed: 05/17/2023]
Abstract
Here we report that phosphorylation status of S211 and T212 of the CESA3 component of Arabidopsis (Arabidopsis thaliana) cellulose synthase impacts the regulation of anisotropic cell expansion as well as cellulose synthesis and deposition and microtubule-dependent bidirectional mobility of CESA complexes. Mutation of S211 to Ala caused a significant decrease in the length of etiolated hypocotyls and primary roots, while root hairs were not significantly affected. By contrast, the S211E mutation stunted the growth of root hairs, but primary roots were not significantly affected. Similarly, T212E caused a decrease in the length of root hairs but not root length. However, T212E stunted the growth of etiolated hypocotyls. Live-cell imaging of fluorescently labeled CESA showed that the rate of movement of CESA particles was directionally asymmetric in etiolated hypocotyls of S211A and T212E mutants, while similar bidirectional velocities were observed with the wild-type control and S211E and T212A mutant lines. Analysis of cell wall composition and the innermost layer of cell wall suggests a role for phosphorylation of CESA3 S211 and T212 in cellulose aggregation into fibrillar bundles. These results suggest that microtubule-guided bidirectional mobility of CESA complexes is fine-tuned by phosphorylation of CESA3 S211 and T212, which may, in turn, modulate cellulose synthesis and organization, resulting in or contributing to the observed defects of anisotropic cell expansion.
Collapse
Affiliation(s)
- Shaolin Chen
- Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, Shaanxi, China (S.C., H.J., H.Z., D.L., Y.L., B.L.);College of Life Sciences, Northwest A&F University, Shaanxi, China (S.C., H.J.);Energy Biosciences Institute (S.B., C.R.S.), andDepartment of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA (C.R.S.)
| | - Honglei Jia
- Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, Shaanxi, China (S.C., H.J., H.Z., D.L., Y.L., B.L.);College of Life Sciences, Northwest A&F University, Shaanxi, China (S.C., H.J.);Energy Biosciences Institute (S.B., C.R.S.), andDepartment of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA (C.R.S.)
| | - Heyu Zhao
- Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, Shaanxi, China (S.C., H.J., H.Z., D.L., Y.L., B.L.);College of Life Sciences, Northwest A&F University, Shaanxi, China (S.C., H.J.);Energy Biosciences Institute (S.B., C.R.S.), andDepartment of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA (C.R.S.)
| | - Dan Liu
- Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, Shaanxi, China (S.C., H.J., H.Z., D.L., Y.L., B.L.);College of Life Sciences, Northwest A&F University, Shaanxi, China (S.C., H.J.);Energy Biosciences Institute (S.B., C.R.S.), andDepartment of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA (C.R.S.)
| | - Yanmei Liu
- Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, Shaanxi, China (S.C., H.J., H.Z., D.L., Y.L., B.L.);College of Life Sciences, Northwest A&F University, Shaanxi, China (S.C., H.J.);Energy Biosciences Institute (S.B., C.R.S.), andDepartment of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA (C.R.S.)
| | - Boyang Liu
- Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, Shaanxi, China (S.C., H.J., H.Z., D.L., Y.L., B.L.);College of Life Sciences, Northwest A&F University, Shaanxi, China (S.C., H.J.);Energy Biosciences Institute (S.B., C.R.S.), andDepartment of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA (C.R.S.)
| | - Stefan Bauer
- Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, Shaanxi, China (S.C., H.J., H.Z., D.L., Y.L., B.L.);College of Life Sciences, Northwest A&F University, Shaanxi, China (S.C., H.J.);Energy Biosciences Institute (S.B., C.R.S.), andDepartment of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA (C.R.S.)
| | - Chris R Somerville
- Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, Shaanxi, China (S.C., H.J., H.Z., D.L., Y.L., B.L.);College of Life Sciences, Northwest A&F University, Shaanxi, China (S.C., H.J.);Energy Biosciences Institute (S.B., C.R.S.), andDepartment of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA (C.R.S.)
| |
Collapse
|
160
|
Liu B, Berr A, Chang C, Liu C, Shen WH, Ruan Y. Interplay of the histone methyltransferases SDG8 and SDG26 in the regulation of transcription and plant flowering and development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:581-90. [DOI: 10.1016/j.bbagrm.2016.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/28/2016] [Accepted: 02/03/2016] [Indexed: 12/27/2022]
|
161
|
Fang Y, Zhang Q, Wang X, Yang X, Wang X, Huang Z, Jiao Y, Wang J. Quantitative phosphoproteomics reveals genistein as a modulator of cell cycle and DNA damage response pathways in triple-negative breast cancer cells. Int J Oncol 2016; 48:1016-28. [PMID: 26783066 PMCID: PMC4750531 DOI: 10.3892/ijo.2016.3327] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/15/2015] [Indexed: 12/14/2022] Open
Abstract
Around one sixth of breast cancer cases are classified as triple-negative breast cancer (TNBC), named after the absence of the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2); however, patients with TNBC suffer from poor clinical outcome and shortage of targeted therapy. Genistein, an estrogenic soy isoflavone, shows anticancer effects in TNBC cells such as inducing G2/M cell cycle arrest and apoptosis. However, the underlying mechanism of its anticancer effects is poorly understood and its elucidation can help the development of novel therapeutic strategies for TNBC. In this study, by combining isobaric tag-based TMT labeling with titanium dioxide-based phosphopeptide enrichment, we quantitated 5,445 phosphorylation sites on 2,008 phosphoproteins in the TNBC cell line MDA-MB-231, upon genistein treatment. Our analysis revealed 332 genistein-regulated phosphorylation sites on 226 proteins. Our data show that genistein can regulate several biological processes during the cell cycle, including DNA replication, cohesin complex cleavage, and kinetochore formation. Furthermore, genistein can also activate DNA damage response, including activation of ATR and BRCA1 complex. Overall, our study presents evidence at a phosphoproteomic level that genistein is able to inhibit TNBC cell growth by regulating the cell cycle and DNA damage response in a more complex manner. Our findings help elucidate the mechanisms through which genistein exerts its anticancer effects in TNBC cells.
Collapse
Affiliation(s)
- Yi Fang
- Department of Breast Surgical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Qian Zhang
- Department of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing, P.R. China
| | - Xin Wang
- Department of Breast Surgical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Xue Yang
- Department of Breast Surgical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Zhen Huang
- Department of Abdominal Surgical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Yuchen Jiao
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Jing Wang
- Department of Breast Surgical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
162
|
Affiliation(s)
- Nicholas M. Riley
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
163
|
Dautel R, Wu XN, Heunemann M, Schulze WX, Harter K. The Sensor Histidine Kinases AHK2 and AHK3 Proceed into Multiple Serine/Threonine/Tyrosine Phosphorylation Pathways in Arabidopsis thaliana. MOLECULAR PLANT 2016; 9:182-186. [PMID: 26485051 DOI: 10.1016/j.molp.2015.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/03/2015] [Accepted: 10/09/2015] [Indexed: 05/07/2023]
Affiliation(s)
- Rebecca Dautel
- Department of Plant Physiology, Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Xu Na Wu
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Michael Heunemann
- Department of Plant Physiology, Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Klaus Harter
- Department of Plant Physiology, Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| |
Collapse
|
164
|
Brumbarova T, Ivanov R. Differential Gene Expression and Protein Phosphorylation as Factors Regulating the State of the Arabidopsis SNX1 Protein Complexes in Response to Environmental Stimuli. FRONTIERS IN PLANT SCIENCE 2016; 7:1456. [PMID: 27725825 PMCID: PMC5035748 DOI: 10.3389/fpls.2016.01456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/12/2016] [Indexed: 05/19/2023]
Abstract
Endosomal recycling of plasma membrane proteins contributes significantly to the regulation of cellular transport and signaling processes. Members of the Arabidopsis (Arabidopsis thaliana) SORTING NEXIN (SNX) protein family were shown to mediate the endosomal retrieval of transporter proteins in response to external challenges. Our aim is to understand the possible ways through which external stimuli influence the activity of SNX1 in the root. Several proteins are known to contribute to the function of SNX1 through direct protein-protein interaction. We, therefore, compiled a list of all Arabidopsis proteins known to physically interact with SNX1 and employed available gene expression and proteomic data for a comprehensive analysis of the transcriptional and post-transcriptional regulation of this interactome. The genes encoding SNX1-interaction partners showed distinct expression patterns with some, like FAB1A, being uniformly expressed, while others, like MC9 and BLOS1, were expressed in specific root zones and cell types. Under stress conditions known to induce SNX1-dependent responses, two genes encoding SNX1-interacting proteins, MC9 and NHX6, showed major gene-expression variations. We could also observe zone-specific transcriptional changes of SNX1 under iron deficiency, which are consistent with the described role of the SNX1 protein. This suggests that the composition of potential SNX1-containing protein complexes in roots is cell-specific and may be readjusted in response to external stimuli. On the level of post-transcriptional modifications, we observed stress-dependent changes in the phosphorylation status of SNX1, FAB1A, and CLASP. Interestingly, the phosphorylation events affecting SNX1 interactors occur in a pattern which is largely complementary to transcriptional regulation. Our analysis shows that transcriptional and post-transcriptional regulation play distinct roles in SNX1-mediated endosomal recycling under external stress.
Collapse
|
165
|
Donà M, Mittelsten Scheid O. DNA Damage Repair in the Context of Plant Chromatin. PLANT PHYSIOLOGY 2015; 168:1206-18. [PMID: 26089404 PMCID: PMC4528755 DOI: 10.1104/pp.15.00538] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/17/2015] [Indexed: 05/03/2023]
Abstract
The integrity of DNA molecules is constantly challenged. All organisms have developed mechanisms to detect and repair multiple types of DNA lesions. The basic principles of DNA damage repair (DDR) in prokaryotes and unicellular and multicellular eukaryotes are similar, but the association of DNA with nucleosomes in eukaryotic chromatin requires mechanisms that allow access of repair enzymes to the lesions. This is achieved by chromatin-remodeling factors, and their necessity for efficient DDR has recently been demonstrated for several organisms and repair pathways. Plants share many features of chromatin organization and DNA repair with fungi and animals, but they differ in other, important details, which are both interesting and relevant for our understanding of genome stability and genetic diversity. In this Update, we compare the knowledge of the role of chromatin and chromatin-modifying factors during DDR in plants with equivalent systems in yeast and humans. We emphasize plant-specific elements and discuss possible implications.
Collapse
Affiliation(s)
- Mattia Donà
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
166
|
Choi K, Henderson IR. Meiotic recombination hotspots - a comparative view. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:52-61. [PMID: 25925869 DOI: 10.1111/tpj.12870] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 05/18/2023]
Abstract
During meiosis homologous chromosomes pair and undergo reciprocal genetic exchange, termed crossover. Meiotic recombination has a profound effect on patterns of genetic variation and is an important tool during crop breeding. Crossovers initiate from programmed DNA double-stranded breaks that are processed to form single-stranded DNA, which can invade a homologous chromosome. Strand invasion events mature into double Holliday junctions that can be resolved as crossovers. Extensive variation in the frequency of meiotic recombination occurs along chromosomes and is typically focused in narrow hotspots, observed both at the level of DNA breaks and final crossovers. We review methodologies to profile hotspots at different steps of the meiotic recombination pathway that have been used in different eukaryote species. We then discuss what these studies have revealed concerning specification of hotspot locations and activity and the contributions of both genetic and epigenetic factors. Understanding hotspots is important for interpreting patterns of genetic variation in populations and how eukaryotic genomes evolve. In addition, manipulation of hotspots will allow us to accelerate crop breeding, where meiotic recombination distributions can be limiting.
Collapse
Affiliation(s)
- Kyuha Choi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|