151
|
Giguère V. Canonical signaling and nuclear activity of mTOR-a teamwork effort to regulate metabolism and cell growth. FEBS J 2018; 285:1572-1588. [PMID: 29337437 DOI: 10.1111/febs.14384] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/21/2017] [Accepted: 01/10/2018] [Indexed: 01/07/2023]
Abstract
Mechanistic (or mammalian) target of rapamycin (mTOR) is a kinase that regulates almost all functions related to cell growth and metabolism in response to extra- and intracellular stimuli, such as availability of nutrients, the presence of growth factors, or the energy status of the cell. As part of two distinct protein complexes, mTORC1 and mTORC2, the kinase has been shown to influence cell growth and proliferation by controlling ribosome biogenesis, mRNA translation, carbohydrate and lipid metabolism, protein degradation, autophagy as well as microtubule and actin dynamics. In addition to these well-characterized functions, mTOR can also influence gene transcription. While most studies focused on investigating how canonical mTOR signaling regulates the activity of transcription factors outside the nucleus, recent findings point to a more direct role for mTOR as a transcription factor operating on chromatin in the nucleus. In particular, recent genome-wide identification of mTOR targets on chromatin reveals that its activities in the nucleus and cytoplasm are functionally and biologically linked, thus uncovering a novel paradigm in mTOR function.
Collapse
Affiliation(s)
- Vincent Giguère
- Departments of Biochemistry, Medicine and Oncology, Faculty of Medicine, Goodman Cancer Research Centre, McGill University, Montréal, Canada
| |
Collapse
|
152
|
Chang KT, Guo J, di Ronza A, Sardiello M. Aminode: Identification of Evolutionary Constraints in the Human Proteome. Sci Rep 2018; 8:1357. [PMID: 29358731 PMCID: PMC5778061 DOI: 10.1038/s41598-018-19744-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Evolutionarily constrained regions (ECRs) are a hallmark for sites of critical importance for a protein's structure or function. ECRs can be inferred by comparing the amino acid sequences from multiple protein homologs in the context of the evolutionary relationships that link the analyzed proteins. The compilation and analysis of the datasets required to infer ECRs, however, are time consuming and require skills in coding and bioinformatics, which can limit the use of ECR analysis in the biomedical community. Here, we developed Aminode, a user-friendly webtool for the routine and rapid inference of ECRs. Aminode is pre-loaded with the results of the analysis of the whole human proteome compared with proteomes from 62 additional vertebrate species. Profiles of the relative rates of amino acid substitution and ECR maps of human proteins are available for immediate search and download on the Aminode website. Aminode can also be used for custom analyses of protein families of interest. Interestingly, mapping of known missense variants shows great enrichment of pathogenic variants and depletion of non-pathogenic variants in Aminode-generated ECRs, suggesting that ECR analysis may help evaluate the potential pathogenicity of variants of unknown significance. Aminode is freely available at http://www.aminode.org .
Collapse
Affiliation(s)
- Kevin T Chang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Junyan Guo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Microsoft Corporation, 1 Microsoft Way, Redmond, WA, 98052, USA
| | - Alberto di Ronza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
153
|
Paquette M, El-Houjeiri L, Pause A. mTOR Pathways in Cancer and Autophagy. Cancers (Basel) 2018; 10:cancers10010018. [PMID: 29329237 PMCID: PMC5789368 DOI: 10.3390/cancers10010018] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/22/2017] [Accepted: 01/09/2018] [Indexed: 12/11/2022] Open
Abstract
TOR (target of rapamycin), an evolutionarily-conserved serine/threonine kinase, acts as a central regulator of cell growth, proliferation and survival in response to nutritional status, growth factor, and stress signals. It plays a crucial role in coordinating the balance between cell growth and cell death, depending on cellular conditions and needs. As such, TOR has been identified as a key modulator of autophagy for more than a decade, and several deregulations of this pathway have been implicated in a variety of pathological disorders, including cancer. At the molecular level, autophagy regulates several survival or death signaling pathways that may decide the fate of cancer cells; however, the relationship between autophagy pathways and cancer are still nascent. In this review, we discuss the recent cellular signaling pathways regulated by TOR, their interconnections to autophagy, and the clinical implications of TOR inhibitors in cancer.
Collapse
Affiliation(s)
- Mathieu Paquette
- Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada.
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Leeanna El-Houjeiri
- Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada.
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada.
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|
154
|
Kuchitsu Y, Homma Y, Fujita N, Fukuda M. Rab7 knockout unveiled regulated autolysosome maturation induced by glutamine starvation. J Cell Sci 2018. [DOI: 10.1242/jcs.215442] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Macroautophagy (simply called autophagy hereafter) is an intracellular degradation mechanism that is activated by nutrient starvation. Although it is well-known that starvation induces autophagosome formation in an mTORC1-dependent manner, whether starvation also regulates autophagosome/autolysosome maturation was unclear. In the present study we succeeded in demonstrating that starvation activates autolysosome maturation in mammalian cells. We found that knockout (KO) of Rab7 caused accumulation of a massive number of LC3-positive autolysosomes under nutrient-rich conditions, indicating that Rab7 is dispensable for autophagosome-lysosome fusion. Intriguingly, the autolysosomes that had accumulated in Rab7-KO cells matured and disappeared by starvation for a brief period (∼10 min), and we identified glutamine as an essential nutrient for autolysosome maturation. In contrast, forced mTORC1 inactivation by Torin2 failed to induce autolysosome maturation, suggesting that the process is controlled by an mTORC1-independent mechanism. Since starvation-induced autolysosome maturation was also observed in wild-type cells, the nutrient-starvation-induced maturation of autolysosomes is likely to be a generalized mechanism, the same as starvation-induced autophagosome formation is. Such multistep regulatory mechanisms would enable efficient autophagic flux during starvation.
Collapse
Affiliation(s)
- Yoshihiko Kuchitsu
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuta Homma
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Naonobu Fujita
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
155
|
Hesketh GG, Wartosch L, Davis LJ, Bright NA, Luzio JP. The Lysosome and Intracellular Signalling. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2018; 57:151-180. [PMID: 30097775 DOI: 10.1007/978-3-319-96704-2_6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In addition to being the terminal degradative compartment of the cell's endocytic and autophagic pathways, the lysosome is a multifunctional signalling hub integrating the cell's response to nutrient status and growth factor/hormone signalling. The cytosolic surface of the limiting membrane of the lysosome is the site of activation of the multiprotein complex mammalian target of rapamycin complex 1 (mTORC1), which phosphorylates numerous cell growth-related substrates, including transcription factor EB (TFEB). Under conditions in which mTORC1 is inhibited including starvation, TFEB becomes dephosphorylated and translocates to the nucleus where it functions as a master regulator of lysosome biogenesis. The signalling role of lysosomes is not limited to this pathway. They act as an intracellular Ca2+ store, which can release Ca2+ into the cytosol for both local effects on membrane fusion and pleiotropic effects within the cell. The relationship and crosstalk between the lysosomal and endoplasmic reticulum (ER) Ca2+ stores play a role in shaping intracellular Ca2+ signalling. Lysosomes also perform other signalling functions, which are discussed. Current views of the lysosomal compartment recognize its dynamic nature. It includes endolysosomes, autolysosome and storage lysosomes that are constantly engaged in fusion/fission events and lysosome regeneration. How signalling is affected by individual lysosomal organelles being at different stages of these processes and/or at different sites within the cell is poorly understood, but is discussed.
Collapse
Affiliation(s)
- Geoffrey G Hesketh
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Lena Wartosch
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, School of Clinical Medicine, Wellcome Trust/MRC Building, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Luther J Davis
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, School of Clinical Medicine, Wellcome Trust/MRC Building, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Nicholas A Bright
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, School of Clinical Medicine, Wellcome Trust/MRC Building, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - J Paul Luzio
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, School of Clinical Medicine, Wellcome Trust/MRC Building, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
156
|
Di Fazio P, Matrood S. Targeting autophagy in liver cancer. Transl Gastroenterol Hepatol 2018; 3:39. [PMID: 30148224 PMCID: PMC6088143 DOI: 10.21037/tgh.2018.06.09] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/27/2018] [Indexed: 02/05/2023] Open
Abstract
Autophagy is a catabolic cellular process conserved in animals. It is characterized by the main role of recycling all the non-functional products of the cells. Once, autophagy players detect non-functioning sub-cellular organelles and proteins, they start the so-called nucleation process. The organelles will be surrounded by a double membrane vesicle mainly constituted by endoplasmic reticulum (ER) membrane and autophagy proteins, e.g., MAP1LC3B, Beclin-1, VPS34, Unc-51 like autophagy activating kinase (ULK1) and ubiquitination-related proteins. Then the autophagic membrane will go through an elongation phase involving additional autophagy players. Once the autophagic vesicle is complete, the sub-cellular organelles will be isolated from the rest of the cytosol and driven to the final fusion with lysosomes. Here, the digestion process will end. Alteration and or impairment of autophagy have been shown to be correlated with development of diseases affecting the central nervous system, e.g., Alzheimer and other neurodegenerative diseases. Nonetheless, autophagy defect is responsible for tumorigenesis in blood and solid malignancies, in particular liver cancer. Malignancies of the liver are determined by several genetics and epigenetics mechanisms triggering the up-regulation of survival mechanisms and resistance to cell death. Furthermore, liver cancer could result from pathologic conditions like cirrhosis and fibrosis related to virus infection, aflatoxin, alcohol consumption and high fat diet together with insulin resistance. The role exerted by autophagy in the pathogenesis of the liver and tumor development has been evidenced in recent years. The alteration of autophagy assumes a fundamental role for liver tumorigenesis determining an accumulation of non-functional proteins and organelles that trigger oxidative stress leading to genotoxic stress and gene alterations. Furthermore, the absence of this degradation mechanism could prompt the cells to alter their metabolic status and turn into malignant cells. Interestingly, the heterozygous loss of function of Beclin-1 is able to trigger liver tumorigenesis or even the simple accumulation of proteins caused by the block of the final autolysosome fusion and degradation process is responsible for liver cancer development. This review highlights the importance of targeting the autophagy process in liver cancer in order to restore its function and to promote autophagy-mediated cell demise.
Collapse
Affiliation(s)
- Pietro Di Fazio
- Department of Visceral Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, Marburg, Germany
| | - Sami Matrood
- Department of Visceral Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, Marburg, Germany
| |
Collapse
|
157
|
Bartolomeo R, Cinque L, De Leonibus C, Forrester A, Salzano AC, Monfregola J, De Gennaro E, Nusco E, Azario I, Lanzara C, Serafini M, Levine B, Ballabio A, Settembre C. mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy. J Clin Invest 2017; 127:3717-3729. [PMID: 28872463 DOI: 10.1172/jci94130] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/18/2017] [Indexed: 11/17/2022] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) kinase promotes cell growth by activating biosynthetic pathways and suppressing catabolic pathways, particularly that of macroautophagy. A prerequisite for mTORC1 activation is its translocation to the lysosomal surface. Deregulation of mTORC1 has been associated with the pathogenesis of several diseases, but its role in skeletal disorders is largely unknown. Here, we show that enhanced mTORC1 signaling arrests bone growth in lysosomal storage disorders (LSDs). We found that lysosomal dysfunction induces a constitutive lysosomal association and consequent activation of mTORC1 in chondrocytes, the cells devoted to bone elongation. mTORC1 hyperphosphorylates the protein UV radiation resistance-associated gene (UVRAG), reducing the activity of the associated Beclin 1-Vps34 complex and thereby inhibiting phosphoinositide production. Limiting phosphoinositide production leads to a blockage of the autophagy flux in LSD chondrocytes. As a consequence, LSD chondrocytes fail to properly secrete collagens, the main components of the cartilage extracellular matrix. In mouse models of LSD, normalization of mTORC1 signaling or stimulation of the Beclin 1-Vps34-UVRAG complex rescued the autophagy flux, restored collagen levels in cartilage, and ameliorated the bone phenotype. Taken together, these data unveil a role for mTORC1 and autophagy in the pathogenesis of skeletal disorders and suggest potential therapeutic approaches for the treatment of LSDs.
Collapse
Affiliation(s)
- Rosa Bartolomeo
- Telethon Institute of Genetics and Medicine (TIGEM), and.,Dulbecco Telethon Institute, Pozzuoli, Naples, Italy
| | - Laura Cinque
- Telethon Institute of Genetics and Medicine (TIGEM), and.,Dulbecco Telethon Institute, Pozzuoli, Naples, Italy
| | - Chiara De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), and.,Dulbecco Telethon Institute, Pozzuoli, Naples, Italy
| | - Alison Forrester
- Telethon Institute of Genetics and Medicine (TIGEM), and.,Dulbecco Telethon Institute, Pozzuoli, Naples, Italy.,Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Anna Chiara Salzano
- Telethon Institute of Genetics and Medicine (TIGEM), and.,Dulbecco Telethon Institute, Pozzuoli, Naples, Italy
| | | | | | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine (TIGEM), and
| | - Isabella Azario
- Department of Pediatrics, Dulbecco Telethon Institute at Centro Ricerca Tettamanti, University of Milano-Bicocca, Monza, Italy
| | | | - Marta Serafini
- Department of Pediatrics, Dulbecco Telethon Institute at Centro Ricerca Tettamanti, University of Milano-Bicocca, Monza, Italy
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), and.,Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.,Department of Molecular and Human Genetics, Baylor College of Medicine, and.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), and.,Dulbecco Telethon Institute, Pozzuoli, Naples, Italy.,Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| |
Collapse
|
158
|
Brady OA, Martina JA, Puertollano R. Emerging roles for TFEB in the immune response and inflammation. Autophagy 2017; 14:181-189. [PMID: 28738171 DOI: 10.1080/15548627.2017.1313943] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a central feature of an effective immune response, which functions to eliminate pathogens and other foreign material, and promote recovery; however, dysregulation of the inflammatory response is associated with a wide variety of disease states. The autophagy-lysosome pathway is one of 2 major degradative pathways used by the cell and serves to eliminate long-lived and dysfunctional proteins and organelles to maintain homeostasis. Mounting evidence implicates the autophagy-lysosome pathway as a key player in regulating the inflammatory response; hence many inflammatory diseases may fundamentally be diseases of autophagy-lysosome pathway dysfunction. The recent identification of TFEB and TFE3 as master regulators of macroautophagy/autophagy and lysosome function raises the possibility that these transcription factors may be of central importance in linking autophagy and lysosome dysfunction with inflammatory disorders. Here, we review the current state of knowledge linking TFEB and TFE3 to the processes of autophagy and inflammation and highlight several conditions, which are linked by these factors.
Collapse
Affiliation(s)
- Owen A Brady
- a Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda , MD , USA
| | - José A Martina
- a Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda , MD , USA
| | - Rosa Puertollano
- a Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
159
|
Wang X, Cui T. Autophagy modulation: a potential therapeutic approach in cardiac hypertrophy. Am J Physiol Heart Circ Physiol 2017; 313:H304-H319. [PMID: 28576834 DOI: 10.1152/ajpheart.00145.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 12/12/2022]
Abstract
Autophagy is an evolutionarily conserved process used by the cell to degrade cytoplasmic contents for quality control, survival for temporal energy crisis, and catabolism and recycling. Rapidly increasing evidence has revealed an important pathogenic role of altered activity of the autophagosome-lysosome pathway (ALP) in cardiac hypertrophy and heart failure. Although an early study suggested that cardiac autophagy is increased and that this increase is maladaptive to the heart subject to pressure overload, more recent reports have overwhelmingly supported that myocardial ALP insufficiency results from chronic pressure overload and contributes to maladaptive cardiac remodeling and heart failure. This review examines multiple lines of preclinical evidence derived from recent studies regarding the role of autophagic dysfunction in pressure-overloaded hearts, attempts to reconcile the discrepancies, and proposes that resuming or improving ALP flux through coordinated enhancement of both the formation and the removal of autophagosomes would benefit the treatment of cardiac hypertrophy and heart failure resulting from chronic pressure overload.
Collapse
Affiliation(s)
- Xuejun Wang
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, South Dakota; and
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
160
|
Nabar NR, Kehrl JH. The Transcription Factor EB Links Cellular Stress to the Immune Response
. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:301-315. [PMID: 28656016 PMCID: PMC5482306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The transcription factor EB (TFEB) is the master transcriptional regulator of autophagy and lysosome biogenesis. Recent advances have led to a paradigm shift in our understanding of lysosomes from a housekeeping cellular waste bin to a dynamically regulated pathway that is efficiently turned up or down based on cellular needs. TFEB coordinates the cellular response to nutrient deprivation and other forms of cell stress through the lysosome system, and regulates a myriad of cellular processes associated with this system including endocytosis, phagocytosis, autophagy, and lysosomal exocytosis. Autophagy and the endolysosomal system are critical to both the innate and adaptive arms of the immune system, with functions in effector cell priming and direct pathogen clearance. Recent studies have linked TFEB to the regulation of the immune response through the endolysosmal pathway and by direct transcriptional activation of immune related genes. In this review, we discuss the current understanding of TFEB's function and the molecular mechanisms behind TFEB activation. Finally, we discuss recent advances linking TFEB to the immune response that positions lysosomal signaling as a potential target for immune modulation.
Collapse
Affiliation(s)
- Neel R. Nabar
- B cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infection Disease, National Institutes of Health, Bethesda, MD
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - John H. Kehrl
- B cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infection Disease, National Institutes of Health, Bethesda, MD
| |
Collapse
|