151
|
Fabre E, Hurt E. Yeast genetics to dissect the nuclear pore complex and nucleocytoplasmic trafficking. Annu Rev Genet 1998; 31:277-313. [PMID: 9442897 DOI: 10.1146/annurev.genet.31.1.277] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Eukaryotic cells evolved when their genetic information was packed into the cell nucleus. DNA replication and RNA biogenesis occur inside the nucleus while protein synthesis takes place in the cytoplasm. Bi-directional trafficking between these two compartments is mediated by a single supramolecular assembly, the nuclear pore complex. Nucleocytoplasmic transport is signal mediated, energy dependent, and requires, besides nuclear pore proteins (nucleoporins), a number of soluble transport factors. We review here our current knowledge on the role of nucleoporins, and on the mechanism of nucleocytoplasmic transport, with emphasis on the yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- E Fabre
- Institut Pasteur, Département des Biotechnologies, Paris, France.
| | | |
Collapse
|
152
|
Kiseleva E, Goldberg MW, Allen TD, Akey CW. Active nuclear pore complexes in Chironomus: visualization of transporter configurations related to mRNP export. J Cell Sci 1998; 111 ( Pt 2):223-36. [PMID: 9405308 DOI: 10.1242/jcs.111.2.223] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Nuclear Pore Complex (NPC) regulates nucleocytoplasmic transport by providing small channels for passive diffusion and multiple docking surfaces that lead to a central translocation channel for active transport. In this study we have investigated by high resolution scanning and transmission electron microscopy the dynamics of NPC structure in salivary gland nuclei from Chironomus during Balbiani ring (BR) mRNP translocation, and present evidence of rearrangement of the transporter related to mRNP export. Analysis of the individual NPC components verified a strong evolutionary conservation of NPC structure between vertebrates and invertebrates. The transporter is an integral part of the NPC and is composed of a central short double cylinder that is retained within the inner spoke ring, and two peripheral globular assemblies which are tethered to the cytoplasmic and nucleoplasmic coaxial rings by eight conserved internal ring filaments. Distinct stages of BR mRNP nuclear export through the individual NPC components were directly visualized and placed in a linear transport sequence. The BR mRNP first binds to the NPC basket, which forms an expanded distal basket ring. In this communication we present stages of BR mRNP transport through the nucleoplasmic, central and cytoplasmic transporter subunits, which change their conformation during mRNP translocation, and the emergence of mRNP into the cytoplasm. We propose that the reorganization of the basket may be driven, in part, by an active translocation process at the transporter. Furthermore, the images provide dramatic evidence that the transporter functions as a central translocation channel with transiently open discrete gates in its globular assemblies. A model of NPC transporter reorganization accompanied with mRNP translocation is discussed.
Collapse
Affiliation(s)
- E Kiseleva
- CRC Department of Structural Cell Biology, Paterson Institute for Cancer Research, Cristie Hospital National Health Service Trust, Manchester, M20 9BX, UK
| | | | | | | |
Collapse
|
153
|
Pasquinelli AE, Powers MA, Lund E, Forbes D, Dahlberg JE. Inhibition of mRNA export in vertebrate cells by nuclear export signal conjugates. Proc Natl Acad Sci U S A 1997; 94:14394-9. [PMID: 9405623 PMCID: PMC24994 DOI: 10.1073/pnas.94.26.14394] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/1997] [Indexed: 02/05/2023] Open
Abstract
Leucine-rich nuclear export signals (NESs) are recognized by the NES receptor exportin 1 and are central to the export of multiple shuttling proteins and RNAs. The export of messenger RNA in vertebrates was, however, thought to occur by a different pathway, because inhibition by injection of a synthetic Rev NES conjugate could not be demonstrated. Here we find that peptide conjugates composed of the NES of either protein kinase A inhibitor protein (PKI) or the HIV-1 Rev protein, when coupled to human serum albumin, are potent inhibitors of mRNA and small nuclear RNA export. These results provide direct evidence that mRNA export in vertebrates depends on interactions between an NES and its cognate NES receptors. PKI NES conjugates are significantly more efficient at inhibiting RNA export than are REV NES conjugates, indicating that different NESs may have different abilities to promote protein and RNA export. Surprisingly, an expected control conjugate containing the mutant Rev NES sequence M10 strongly inhibited the export of intronless dihydrofolate reductase mRNA. Nuclear injection of NES peptide conjugates led to mislocalization to the nucleus of 10-20% of the cytoplasmic Ran GTPase-binding protein (RanBP1) indicating that RanBP1 shuttles between the nucleus and the cytoplasm via an NES pathway. These results demonstrate that in vertebrates the export of mRNA, like that of small nuclear RNA, 5S rRNA, and transport factors such as RanBP1, employs NES-mediated molecular machinery.
Collapse
Affiliation(s)
- A E Pasquinelli
- Department of Biomolecular Chemistry, 1300 University Avenue, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
154
|
Pasquinelli AE, Ernst RK, Lund E, Grimm C, Zapp ML, Rekosh D, Hammarskjöld ML, Dahlberg JE. The constitutive transport element (CTE) of Mason-Pfizer monkey virus (MPMV) accesses a cellular mRNA export pathway. EMBO J 1997; 16:7500-10. [PMID: 9405378 PMCID: PMC1170349 DOI: 10.1093/emboj/16.24.7500] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The constitutive transport elements (CTEs) of type D retroviruses are cis-acting elements that promote nuclear export of incompletely spliced mRNAs. Unlike the Rev response element (RRE) of human immunodeficiency virus type 1 (HIV-1), CTEs depend entirely on factors encoded by the host cell genome. We show that an RNA comprised almost entirely of the CTE of Mason-Pfizer monkey virus (CTE RNA) is exported efficiently from Xenopus oocyte nuclei. The CTE RNA and an RNA containing the RRE of HIV-1 (plus Rev) have little effect on export of one another, demonstrating differences in host cell requirements of these two viral mRNA export pathways. Surprisingly, even very low amounts of CTE RNA block export of normal mRNAs, apparently through the sequestration of cellular mRNA export factors. Export of a CTE-containing lariat occurs when wild-type CTE, but not a mutant form, is inserted into the pre-mRNA. The CTE has two symmetric structures, either of which supports export and the titration of mRNA export factors, but both of which are required for maximal inhibition of mRNA export. Two host proteins bind specifically to the CTE but not to non-functional variants, making these proteins candidates for the sequestered mRNA export factors.
Collapse
Affiliation(s)
- A E Pasquinelli
- Department of Biomolecular Chemistry, 1300 University Avenue, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Söderqvist H, Imreh G, Kihlmark M, Linnman C, Ringertz N, Hallberg E. Intracellular distribution of an integral nuclear pore membrane protein fused to green fluorescent protein--localization of a targeting domain. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 250:808-13. [PMID: 9461306 DOI: 10.1111/j.1432-1033.1997.00808.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The 121-kDa pore membrane protein (POM121) is a bitopic integral membrane protein specifically located in the pore membrane domain of the nuclear envelope with its short N-terminal tail exposed on the luminal side and its major C-terminal portion adjoining the nuclear pore complex. In order to locate a signal for targeting of POM121 to the nuclear pores, we overexpressed selected regions of POM121 alone or fused to the green fluorescent protein (GFP) in transiently transfected COS-1 cells or in a stably transfected neuroblastoma cell line. Microscopic analysis of the GFP fluorescence or immunostaining was used to determine the intracellular distribution of the overexpressed proteins. The endofluorescent GFP tag had no effect on the distribution of POM121, since the chimerical POM121-GFP fusion protein was correctly targeted to the nuclear pores of both COS-1 cells and neuroblastoma cells. Based on the differentiated intracellular sorting of the POM121 variants, we conclude that the first 128 amino acids of POM121 contains signals for targeting to the continuous endoplasmic reticulum/nuclear envelope membrane system but not specifically to the nuclear pores and that a specific nuclear pore targeting signal is located between amino acids 129 and 618 in the endoplasmically exposed portion of POM121.
Collapse
Affiliation(s)
- H Söderqvist
- Department of Biochemistry, Stockholm University, Sweden
| | | | | | | | | | | |
Collapse
|
156
|
Moroianu J, Blobel G, Radu A. RanGTP-mediated nuclear export of karyopherin alpha involves its interaction with the nucleoporin Nup153. Proc Natl Acad Sci U S A 1997; 94:9699-704. [PMID: 9275187 PMCID: PMC23253 DOI: 10.1073/pnas.94.18.9699] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/1997] [Indexed: 02/05/2023] Open
Abstract
Using binding assays, we discovered an interaction between karyopherin alpha2 and the nucleoporin Nup153 and mapped their interacting domains. We also isolated a 15-kDa tryptic fragment of karyopherin beta1, termed beta1*, that contains a determinant for binding to the peptide repeat containing nucleoporin Nup98. In an in vitro assay in which export of endogenous nuclear karyopherin alpha from nuclei of digitonin-permeabilized cells was quantitatively monitored by indirect immunofluorescence with anti-karyopherin alpha antibodies, we found that karyopherin alpha export was stimulated by added GTPase Ran, required GTP hydrolysis, and was inhibited by wheat germ agglutinin. RanGTP-mediated export of karyopherin alpha was inhibited by peptides representing the interacting domains of Nup153 and karyopherin alpha2, indicating that the binding reactions detected in vitro are physiologically relevant and verifying our mapping data. Moreover, beta1*, although it inhibited import, did not inhibit export of karyopherin alpha. Hence, karyopherin alpha import into and export from nuclei are asymmetric processes.
Collapse
Affiliation(s)
- J Moroianu
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
157
|
Bastos R, Ribas de Pouplana L, Enarson M, Bodoor K, Burke B. Nup84, a novel nucleoporin that is associated with CAN/Nup214 on the cytoplasmic face of the nuclear pore complex. J Biophys Biochem Cytol 1997; 137:989-1000. [PMID: 9166401 PMCID: PMC2136229 DOI: 10.1083/jcb.137.5.989] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The short filaments extending from the cytoplasmic face of nuclear pore complexes are thought to contain docking sites for nuclear import substrates. One component of these filaments is the large O-linked glycoprotein CAN/Nup214. Immunoprecipitation studies carried out under nondenaturing conditions, and using a variety of antibodies, reveal a novel nonglycosylated nucleoporin, Nup84, that is tightly associated with CAN/Nup214. Consistent with such an association, Nup84 is found to be exposed on the cytoplasmic face of the nuclear pore complex. cDNA sequence analyses indicate that Nup84 contains neither the GLFG nor the XFXFG repeats that are a characteristic of a number of other nuclear pore complex proteins. Secondary structure predictions, however, suggest that Nup84 contains a coiled-coil COOH-terminal domain, a conclusion supported by the observation of significant sequence similarity between this region of the molecule and various members of the tropomyosin family. Mutagenesis and expression studies indicate that the putative coiled-coil domain is required for association with the cytoplasmic face of the nuclear pore complex, whereas it is the NH2-terminal region of Nup84 that contains the site of interaction with CAN/Nup214. These findings suggest a model in which Nup84 may function in the attachment of CAN/Nup214 to the central framework of the nuclear pore complex. In this way, Nup84 could play a central role in the organization of the interface between the pore complex and the cytoplasm.
Collapse
Affiliation(s)
- R Bastos
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
158
|
Abstract
One of the largest supramolecular assemblies in the eukaryotic cell, the nuclear pore complex, is now being dissected into its numerous molecular constituents. The combined use of biochemistry and genetics in yeast has made this rapid development possible. Although less is known about vertebrate nucleoporins, the first clues are now emerging about their in vivo function also. Much remains to be learned about nuclear pore complex assembly and function, however.
Collapse
Affiliation(s)
- V Doye
- Institut Curie, Section Recherche CNRS, UMR144, 26 Rue d'Ulm, 75248, Paris, Cedex 05, France.
| | | |
Collapse
|
159
|
Abstract
Our understanding of protein export from the nucleus to the cytoplasm has been advanced recently by the discovery of active, signal-mediated export pathways. Nuclear export signals have been identified in several proteins, the majority of which are RNA-binding proteins. Nuclear export of RNA molecules is likely to be driven by protein-based nuclear export signals.
Collapse
Affiliation(s)
- S Nakielny
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA
| | | |
Collapse
|
160
|
Belgareh N, Doye V. Dynamics of nuclear pore distribution in nucleoporin mutant yeast cells. J Biophys Biochem Cytol 1997; 136:747-59. [PMID: 9049242 PMCID: PMC2132498 DOI: 10.1083/jcb.136.4.747] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To follow the dynamics of nuclear pore distribution in living yeast cells, we have generated fusion proteins between the green fluorescent protein (GFP) and the yeast nucleoporins Nup49p and Nup133p. In nup133- dividing cells that display a constitutive nuclear pore clustering, in vivo analysis of GFP-Nup49p localization revealed changes in the distribution of nuclear pore complex (NPC) clusters. Furthermore, upon induction of Nup133p expression in a GAL-nup133 strain, a progressive fragmentation of the NPC aggregates was observed that in turn led to a wild-type nuclear pore distribution. To try to uncouple Nup133p-induced NPC redistribution from successive nuclear divisions and nuclear pore biogenesis, we devised an assay based on the formation of heterokaryons between nup133- mutants and cells either expressing or overexpressing Nup133p. Under these conditions, the use of GFP-Nup133p and GFP-Nup49p fusion proteins revealed that Nup133p can be rapidly targeted to the clustered nuclear pores, where its amino-terminal domain is required to promote the redistribution of preexisting NPCs.
Collapse
Affiliation(s)
- N Belgareh
- Centre National de la Recherche Scientifique (CNRS) UMR144, Institut Curie, Paris, France
| | | |
Collapse
|
161
|
Powers MA, Forbes DJ, Dahlberg JE, Lund E. The vertebrate GLFG nucleoporin, Nup98, is an essential component of multiple RNA export pathways. J Cell Biol 1997; 136:241-50. [PMID: 9015297 PMCID: PMC2134807 DOI: 10.1083/jcb.136.2.241] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/1996] [Revised: 11/21/1996] [Indexed: 02/03/2023] Open
Abstract
The 97-kD O-linked glycoprotein, Nup98, is a component of the Xenopus laevis nuclear pore complex and the only vertebrate GLFG nucleoporin identified (Powers, M.A., C. Macauley, F. Masiarz, and D.J. Forbes. 1995. J. Cell Biol. 128:721-736). We have investigated possible roles of xNup98 in the nucleocytoplasmic transport of proteins and RNAs by analyzing the consequences of injecting monospecific polyclonal antibodies to xNup98 into X. laevis oocytes. We show here that nuclear injection of anti-xNup98 inhibited the export of multiple classes of RNAs, including snRNAs, 5S RNA, large ribosomal RNAs, and mRNA. In contrast, the export of tRNA was unaffected. Injection of anti-xNup98 into the oocyte cytoplasm had no effect on export of any of the RNAs. Significantly, nuclear injection of anti-xNup98 antibodies did not inhibit import of either karyophilic proteins or snRNPs. This latter result is in agreement with our previous finding that Nup98 is not an essential element of the protein import pathway. Thus, Nup98 plays a role specifically in RNA export from the nucleus, and it appears to be an essential component of multiple RNA export pathways.
Collapse
Affiliation(s)
- M A Powers
- Department of Biology, University of California at San Diego, La Jolla 92093-0347, USA
| | | | | | | |
Collapse
|