151
|
Abstract
Dystonia has been defined as a syndrome of involuntary, sustained muscle contractions affecting one or more sites of the body, frequently causing twisting and repetitive movements or abnormal postures. Dystonia is also a clinical sign that can be the presenting or prominent manifestation of many neurodegenerative and neurometabolic disorders. Etiological categories include primary dystonia, secondary dystonia, heredodegenerative diseases with dystonia, and dystonia plus. Primary dystonia includes syndromes in which dystonia is the sole phenotypic manifestation with the exception that tremor can be present as well. Most primary dystonia begins in adults, and approximately 10% of probands report one or more affected family members. Many cases of childhood- and adolescent-onset dystonia are due to mutations in TOR1A and THAP1. Mutations in THAP1 and CIZ1 have been associated with sporadic and familial adult-onset dystonia. Although significant recent progress had been made in defining the genetic basis for most of the dystonia-plus and heredodegenerative diseases with dystonia, a major gap remains in understanding the genetic etiologies for most cases of adult-onset primary dystonia. Common themes in the cellular biology of dystonia include G1/S cell cycle control, monoaminergic neurotransmission, mitochondrial dysfunction, and the neuronal stress response.
Collapse
Affiliation(s)
- Mark S LeDoux
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
152
|
Herzfeld T, Nolte D, Grznarova M, Hofmann A, Schultze JL, Müller U. X-linked dystonia parkinsonism syndrome (XDP, lubag): disease-specific sequence change DSC3 in TAF1/DYT3 affects genes in vesicular transport and dopamine metabolism. Hum Mol Genet 2012. [PMID: 23184149 DOI: 10.1093/hmg/dds499] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
X-chromosomal dystonia parkinsonism syndrome (XDP, 'lubag') is associated with sequence changes within the TAF1/DYT3 multiple transcript system. Although most sequence changes are intronic, one, disease-specific single-nucleotide change 3 (DSC3), is located within an exon (d4). Transcribed exon d4 occurs as part of multiple splice variants. These variants include exons d3 and d4 spliced to exons of TAF1, and an independent transcript composed of exons d2-d4. Location of DSC3 in exon d4 and utilization of this exon in multiple splice variants suggest an important role of DSC3 in the XDP pathogenesis. To test this hypothesis, we transfected neuroblastoma cells with four expression constructs, including exons d2-d4 [d2-d4/wild-type (wt) and d2-d4/DSC3] and d3-d4 (d3-d4/wt and d3-d4/DSC3). Expression profiling revealed a dramatic effect of DSC3 on overall gene expression. Three hundred and sixty-two genes differed between cells containing d2-d4/wt and d2-d4/DSC3. Annotation clustering revealed enrichment of genes related to vesicular transport, dopamine metabolism, synapse function, Ca(2+) metabolism and oxidative stress. Two hundred and eleven genes were differentially expressed in d3-d4/wt versus d3-d4/DSC3. Annotation clustering highlighted genes in signal transduction and cell-cell interaction. The data show an important role of physiologically occurring transcript d2-d4 in normal brain function. Interference with this role by DSC3 is a likely pathological mechanism in XDP. Disturbance of dopamine function and of Ca(2+) metabolism can explain abnormal movement; loss of protection against reactive oxygen species may account for the neurodegenerative changes in XDP. Although d3-d4 also affect genes potentially related to neurodegenerative processes, their physiologic role as splice variants of TAF1 awaits further exploration.
Collapse
Affiliation(s)
- Thilo Herzfeld
- Institute of Human Genetics, University of Giessen, Giessen, Germany
| | | | | | | | | | | |
Collapse
|
153
|
Paudel R, Hardy J, Revesz T, Holton JL, Houlden H. Review: Genetics and neuropathology of primary pure dystonia. Neuropathol Appl Neurobiol 2012; 38:520-34. [PMID: 22897341 DOI: 10.1111/j.1365-2990.2012.01298.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R Paudel
- Department of Molecular Neuroscience Queen Square Brain Bank and UCL Institute of Neurology, London, UK
| | | | | | | | | |
Collapse
|
154
|
|
155
|
Camargos S, Cardoso F. New algorithm for the diagnosis of hereditary dystonia. ARQUIVOS DE NEURO-PSIQUIATRIA 2012; 70:715-7. [DOI: 10.1590/s0004-282x2012000900013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 05/30/2012] [Indexed: 11/22/2022]
Abstract
Taking into account the crescent interest in the field of dystonia genetics, we have organized a didactic and fast algorithm to diagnose the main forms of hereditary dystonias. The key branch of this algorithm is pointed to dystonia classification in primary, plus, or paroxysmal. The specific characteristics of each syndrome will reveal the diagnosis.
Collapse
|
156
|
Chung CW. Small molecule bromodomain inhibitors: extending the druggable genome. PROGRESS IN MEDICINAL CHEMISTRY 2012; 51:1-55. [PMID: 22520470 DOI: 10.1016/b978-0-12-396493-9.00001-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chun-Wa Chung
- Computational and Structural Sciences, GlaxoSmithKline R&D, Stevenage, SG1 2NY, UK
| |
Collapse
|
157
|
Sustained expression of a neuron-specific isoform of the Taf1 gene in development stages and aging in mice. Biochem Biophys Res Commun 2012; 425:273-7. [PMID: 22842574 DOI: 10.1016/j.bbrc.2012.07.081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 07/17/2012] [Indexed: 11/22/2022]
Abstract
TATA-box binding protein associated factor 1 (TAF1) protein is the largest and the essential component of the TFIID complex in the pathway of RNA polymerase II-mediated gene transcription, and it regulates transcription of a large number of genes related to cell division. The neuron-specific isoform of the TAF1 gene (N-TAF1), which we reported previously, may have an essential role in neurons through transcriptional regulation of many neuron-specific genes. In the present study, we cloned the full-length cDNA that encodes the mouse homologue of N-TAF1 (N-Taf1) protein. By carrying out of real time RT-PCR, we investigated the expression analysis of the N-Taf1 mRNA in mouse tissues and cell lines. As well as the human N-TAF1, the N-Taf1 showed limited expression in the brain and neuroblastoma, whereas Taf1 expressed elsewhere. Furthermore, in mouse embryo head or mouse brain, mRNA expression of TAF1 changes dramatically during development but N-Taf1 showed sustained expression. Our result suggests that the N-Taf1 gene has an important role in non-dividing neuronal cell rather than in cell division and proliferation during neurogenesis.
Collapse
|
158
|
Ganapathiraju MK, Mitchell AD, Thahir M, Motwani K, Ananthasubramanian S. Suite of tools for statistical N-gram language modeling for pattern mining in whole genome sequences. J Bioinform Comput Biol 2012; 10:1250016. [PMID: 22817111 DOI: 10.1142/s0219720012500163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Genome sequences contain a number of patterns that have biomedical significance. Repetitive sequences of various kinds are a primary component of most of the genomic sequence patterns. We extended the suffix-array based Biological Language Modeling Toolkit to compute n-gram frequencies as well as n-gram language-model based perplexity in windows over the whole genome sequence to find biologically relevant patterns. We present the suite of tools and their application for analysis on whole human genome sequence.
Collapse
Affiliation(s)
- Madhavi K Ganapathiraju
- Department of Biomedical Informatics, University of Pittsburgh, 5607 Baum Boulevard, Suite BAUM 423, Pittsburgh, PA 15206-3701, USA.
| | | | | | | | | |
Collapse
|
159
|
Xiao J, Uitti RJ, Zhao Y, Vemula SR, Perlmutter JS, Wszolek ZK, Maraganore DM, Auburger G, Leube B, Lehnhoff K, LeDoux MS. Mutations in CIZ1 cause adult onset primary cervical dystonia. Ann Neurol 2012; 71:458-69. [PMID: 22447717 DOI: 10.1002/ana.23547] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 01/17/2012] [Accepted: 01/27/2012] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Primary dystonia is usually of adult onset, can be familial, and frequently involves the cervical musculature. Our goal was to identify the causal mutation in a family with adult onset, primary cervical dystonia. METHODS Linkage and haplotype analyses were combined with solution-based whole-exome capture and massively parallel sequencing in a large Caucasian pedigree with adult onset, primary cervical dystonia to identify a cosegregating mutation. High-throughput screening and Sanger sequencing were completed in 308 Caucasians with familial or sporadic adult onset cervical dystonia and matching controls for sequence variants in this mutant gene. RESULTS Exome sequencing led to the identification of an exonic splicing enhancer mutation in exon 7 of CIZ1 (c.790A>G, p.S264G), which encodes CIZ1, Cip1-interacting zinc finger protein 1. CIZ1 is a p21(Cip1/Waf1) -interacting zinc finger protein expressed in brain and involved in DNA synthesis and cell-cycle control. Using a minigene assay, we showed that c.790A>G altered CIZ1 splicing patterns. The p.S264G mutation also altered the nuclear localization of CIZ1. Screening in subjects with adult-onset cervical dystonia identified 2 additional CIZ1 missense mutations (p.P47S and p.R672M). INTERPRETATION Mutations in CIZ1 may cause adult onset, primary cervical dystonia, possibly by precipitating neurodevelopmental abnormalities that manifest in adults and/or G1/S cell-cycle dysregulation in the mature central nervous system.
Collapse
Affiliation(s)
- Jianfeng Xiao
- Department of Neurology, University of Tennessee Health Science Center, Memphis, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Kuehnen P, Mischke M, Wiegand S, Sers C, Horsthemke B, Lau S, Keil T, Lee YA, Grueters A, Krude H. An Alu element-associated hypermethylation variant of the POMC gene is associated with childhood obesity. PLoS Genet 2012; 8:e1002543. [PMID: 22438814 PMCID: PMC3305357 DOI: 10.1371/journal.pgen.1002543] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 12/30/2011] [Indexed: 01/05/2023] Open
Abstract
The individual risk for common diseases not only depends on genetic but also on epigenetic polymorphisms. To assess the role of epigenetic variations in the individual risk for obesity, we have determined the methylation status of two CpG islands at the POMC locus in obese and normal-weight children. We found a hypermethylation variant targeting individual CpGs at the intron2–exon3 boundary of the POMC gene by bisulphite sequencing that was significantly associated with obesity. POMC exon3 hypermethylation interferes with binding of the transcription enhancer P300 and reduces expression of the POMC transcript. Since intron2 contains Alu elements that are known to influence methylation in their genomic vicinity, the exon3 methylation variant seems to result from an Alu element–triggered default state of methylation boundary definition. Exon3 hypermethylation in the POMC locus represents the first identified DNA methylation variant that is associated with the individual risk for obesity. Twin studies reveal a strong genetic background of body-weight regulation. However, gene mutations in early onset obesity patients are rare. Results from large genome-wide association studies explain less than 4% of body-weight variability. Therefore, other mechanisms like epigenetic alterations may play a role in body-weight regulation. We analysed the DNA methylation of the POMC gene, which plays a central role in body-weight regulation within the hypothalamus. We observed a significant increase in the methylation score in obese children as compared to normal-weight individuals. This DNA methylation variant affects POMC gene dosage regulation. Therefore we conclude that this DNA hypermethylation variant in obese patients leads by modification of POMC gene expression to an increased individual risk for the development of obesity. This result illustrates how DNA methylation alterations increase the susceptibility to a common disease like obesity.
Collapse
Affiliation(s)
- Peter Kuehnen
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Hara T, Hirai Y, Baicharoen S, Hayakawa T, Hirai H, Koga A. A novel composite retrotransposon derived from or generated independently of the SVA (SINE/VNTR/ Alu) transposon has undergone proliferation in gibbon genomes. Genes Genet Syst 2012; 87:181-90. [DOI: 10.1266/ggs.87.181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Toru Hara
- Primate Research Institute, Kyoto University
| | | | | | - Takashi Hayakawa
- Primate Research Institute, Kyoto University
- Japan Society for Promotion of Science
| | | | | |
Collapse
|
162
|
Pathogenic exon-trapping by SVA retrotransposon and rescue in Fukuyama muscular dystrophy. Nature 2011; 478:127-31. [PMID: 21979053 PMCID: PMC3412178 DOI: 10.1038/nature10456] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 08/12/2011] [Indexed: 12/23/2022]
Abstract
Fukuyama muscular dystrophy (FCMD; MIM253800), one of the most common autosomal recessive disorders in Japan, was the first human disease found to result from ancestral insertion of a SINE-VNTR-Alu (SVA) retrotransposon into a causative gene1-3. In FCMD, the SVA insertion occurs in the 3′-untranslated region (UTR) of the fukutin gene. The pathogenic mechanism for FCMD is unknown, and no effective clinical treatments exist. Here we show that aberrant mRNA splicing, induced by SVA exon-trapping, underlies the molecular pathogenesis of FCMD. Quantitative mRNA analysis pinpointed a region that was missing from transcripts in FCMD patients. This region spans part of the 3′ end of the fukutin coding region, proximal part of the 3′ UTR, and the SVA insertion. Correspondingly, fukutin mRNA transcripts in FCMD patients and SVA knock-in (KI) model mice were shorter than the expected length. Sequence analysis revealed an abnormal splicing event, provoked by a strong acceptor site in SVA and a rare alternative donor site in fukutin exon 10. The resulting product truncates the fukutin C-terminus and adds 129 amino acids encoded by the SVA. Introduction of antisense oligonucleotides (AONs) targeting the splice acceptor, the predicted exonic splicing enhancer, and the intronic splicing enhancer prevented pathogenic exon-trapping by SVA in FCMD patient cells and model mice, rescuing normal fukutin mRNA expression and protein production. AON treatment also restored fukutin functions, including O-glycosylation of α-dystroglycan (α-DG) and laminin binding by α-DG. Moreover, we observe exon-trapping in other SVA insertions associated with disease (hypercholesterolemia4, neutral lipid storage disease5) and human-specific SVA insertion in a novel gene. Thus, although splicing into SVA is known6-8, we have discovered in human disease a role for SVA-mediated exon-trapping and demonstrated the promise of splicing modulation therapy as the first radical clinical treatment for FCMD and other SVA-mediated diseases.
Collapse
|
163
|
Abstract
The last 25 years have seen remarkable advances in our understanding of the genetic etiologies of dystonia, new approaches into dissecting underlying pathophysiology, and independent progress in identifying effective treatments. In this review we highlight some of these advances, especially the genetic findings that have taken us from phenomenological to molecular-based diagnoses. Twenty DYT loci have been designated and 10 genes identified, all based on linkage analyses in families. Hand in hand with these genetic findings, neurophysiological and imaging techniques have been employed that have helped illuminate the similarities and differences among the various etiological dystonia subtypes. This knowledge is just beginning to yield new approaches to treatment including those based on DYT1 animal models. Despite the lag in identifying genetically based therapies, effective treatments, including impressive benefits from deep brain stimulation and botulinum toxin chemodenervation, have marked the last 25 years. The challenge ahead includes continued advancement into understanding dystonia's many underlying causes and associated pathology and using this knowledge to advance treatment including preventing genetic disease expression.
Collapse
Affiliation(s)
- Laurie J Ozelius
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, USA
| | | | | |
Collapse
|
164
|
Crittenden JR, Graybiel AM. Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat 2011; 5:59. [PMID: 21941467 PMCID: PMC3171104 DOI: 10.3389/fnana.2011.00059] [Citation(s) in RCA: 300] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/18/2011] [Indexed: 11/24/2022] Open
Abstract
The striatum is composed principally of GABAergic, medium spiny striatal projection neurons (MSNs) that can be categorized based on their gene expression, electrophysiological profiles, and input–output circuits. Major subdivisions of MSN populations include (1) those in ventromedial and dorsolateral striatal regions, (2) those giving rise to the direct and indirect pathways, and (3) those that lie in the striosome and matrix compartments. The first two classificatory schemes have enabled advances in understanding of how basal ganglia circuits contribute to disease. However, despite the large number of molecules that are differentially expressed in the striosomes or the extra-striosomal matrix, and the evidence that these compartments have different input–output connections, our understanding of how this compartmentalization contributes to striatal function is still not clear. A broad view is that the matrix contains the direct and indirect pathway MSNs that form parts of sensorimotor and associative circuits, whereas striosomes contain MSNs that receive input from parts of limbic cortex and project directly or indirectly to the dopamine-containing neurons of the substantia nigra, pars compacta. Striosomes are widely distributed within the striatum and are thought to exert global, as well as local, influences on striatal processing by exchanging information with the surrounding matrix, including through interneurons that send processes into both compartments. It has been suggested that striosomes exert and maintain limbic control over behaviors driven by surrounding sensorimotor and associative parts of the striatal matrix. Consistent with this possibility, imbalances between striosome and matrix functions have been reported in relation to neurological disorders, including Huntington’s disease, L-DOPA-induced dyskinesias, dystonia, and drug addiction. Here, we consider how signaling imbalances between the striosomes and matrix might relate to symptomatology in these disorders.
Collapse
Affiliation(s)
- Jill R Crittenden
- Brain and Cognitive Sciences Department and McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | | |
Collapse
|
165
|
Vanhaesebrouck AE, Shelton GD, Garosi L, Harcourt-Brown TR, Couturier J, Behr S, Harvey RJ, Jeffery ND, Matiasek K, Blakemore WF, Granger N. A novel movement disorder in related male Labrador Retrievers characterized by extreme generalized muscular stiffness. J Vet Intern Med 2011; 25:1089-96. [PMID: 21781161 DOI: 10.1111/j.1939-1676.2011.0757.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES To describe the clinical phenotype of a new motor disorder in Labrador Retrievers. ANIMALS AND METHODS Case series study. Seven young male Labrador Retrievers presented for evaluation of stiff gait. RESULTS All affected dogs had generalized muscular stiffness, persistent at rest and resulting in restricted joint movements. They showed a forward flexed posture, festinating gait, and bradykinesia. Signs developed between 2 and 16 months of age and tended to stabilize in adulthood. Needle electromyogram in the conscious state showed continuous motor unit activity in resting epaxial and proximal limb muscles. This activity was abolished by general anesthesia. Muscle and nerve histopathology was normal. In 2 dogs necropsied, astrocytosis was evident throughout the spinal cord gray matter, reticular formation and caudate nuclei. Decreased neuronal counts were selectively found in the spinal cord Rexed's lamina VII, but not in VIII and IX. Pedigree analysis showed that the affected dogs were from 5 related litters. CONCLUSIONS AND CLINICAL IMPORTANCE This new hypertonicity syndrome in Labrador Retrievers is unique because of the selective distribution of the histological lesions, the lack of progression in adulthood, and its exclusive occurrence in male dogs. Pedigree analysis suggests an X-linked hereditary disease, although other modes of inheritance cannot be ruled out with certainty. We hypothesize that altered output from basal nuclei and reticular formation together with motor neuron disinhibition caused by a decreased number of spinal cord interneurons leads to the muscular stiffness.
Collapse
Affiliation(s)
- A E Vanhaesebrouck
- Department of Veterinary Medicine, The Queen's Veterinary School Hospital, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Hancks DC, Goodier JL, Mandal PK, Cheung LE, Kazazian HH. Retrotransposition of marked SVA elements by human L1s in cultured cells. Hum Mol Genet 2011; 20:3386-400. [PMID: 21636526 DOI: 10.1093/hmg/ddr245] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human retrotransposons generate structural variation and genomic diversity through ongoing retrotransposition and non-allelic homologous recombination. Cell culture retrotransposition assays have provided great insight into the genomic impact of retrotransposons, in particular, LINE-1(L1) and Alu elements; however, no such assay exists for the youngest active human retrotransposon, SINE-VNTR-Alu (SVA). Here we report the development of an SVA cell culture retrotransposition assay. We marked several SVAs with either neomycin or EGFP retrotransposition indicator cassettes. Engineered SVAs retrotranspose using L1 proteins supplemented in trans in multiple cell lines, including U2OS osteosarcoma cells where SVA retrotransposition is equal to that of an engineered L1. Engineered SVAs retrotranspose at 1-54 times the frequency of a marked pseudogene in HeLa HA cells. Furthermore, our data suggest a variable requirement for L1 ORF1p for SVA retrotransposition. Recovered engineered SVA insertions display all the hallmarks of LINE-1 retrotransposition and some contain 5' and 3' transductions, which are common for genomic SVAs. Of particular interest is the fact that four out of five insertions recovered from one SVA are full-length, with the 5' end of these insertions beginning within 5 nt of the CMV promoter transcriptional start site. This assay demonstrates that SVA elements are indeed mobilized in trans by L1. Previously intractable questions regarding SVA biology can now be addressed.
Collapse
Affiliation(s)
- Dustin C Hancks
- Cell and Molecular Biology Graduate Group, The University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
167
|
Sako W, Morigaki R, Kaji R, Tooyama I, Okita S, Kitazato K, Nagahiro S, Graybiel AM, Goto S. Identification and localization of a neuron-specific isoform of TAF1 in rat brain: implications for neuropathology of DYT3 dystonia. Neuroscience 2011; 189:100-7. [PMID: 21616129 DOI: 10.1016/j.neuroscience.2011.05.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 05/10/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
Abstract
The neuron-specific isoform of the TAF1 gene (N-TAF1) is thought to be involved in the pathogenesis of DYT3 dystonia, which leads to progressive neurodegeneration in the striatum. To determine the expression pattern of N-TAF1 transcripts, we developed a specific monoclonal antibody against the N-TAF1 protein. Here we show that in the rat brain, N-TAF1 protein appears as a nuclear protein within subsets of neurons in multiple brain regions. Of particular interest is that in the striatum, the nuclei possessing N-TAF1 protein are largely within medium spiny neurons, and they are distributed preferentially, though not exclusively, in the striosome compartment. The compartmental preference and cell type-selective distribution of N-TAF1 protein in the striatum are strikingly similar to the patterns of neuronal loss in the striatum of DYT3 patients. Our findings suggest that the distribution of N-TAF1 protein could represent a key molecular characteristic contributing to the pattern of striatal degeneration in DYT3 dystonia.
Collapse
Affiliation(s)
- W Sako
- Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Department of Clinical Neuroscience, Institute of Health Biosciences, Graduate School of Medicine, University of Tokushima, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Aguilar JA, Vesagas TS, Jamora RD, Teleg RA, Ledesma L, Rosales RL, Fernandez HH, Lee LV. The Promise of Deep Brain Stimulation in X-Linked Dystonia Parkinsonism. Int J Neurosci 2011; 121 Suppl 1:57-63. [DOI: 10.3109/00207454.2010.541573] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
169
|
Abstract
The list of genetic causes of syndromes of dystonia parkinsonism grows constantly. As a consequence, the diagnosis becomes more and more challenging for the clinician. Here, we summarize the important causes of dystonia parkinsonism including autosomal-dominant, recessive, and x-linked forms. We cover dopa-responsive dystonia, Wilson's disease, Parkin-, PINK1-, and DJ-1-associated parkinsonism (PARK2, 6, and 7), x-linked dystonia-parkinsonism/Lubag (DYT3), rapid-onset dystonia-parkinsonism (DYT12) and DYT16 dystonia, the syndromes of Neurodegeneration with Brain Iron Accumulation (NBIA) including pantothenate kinase (PANK2)- and PLA2G6 (PARK14)-associated neurodegeneration, neuroferritinopathy, Kufor-Rakeb disease (PARK9) and the recently described SENDA syndrome; FBXO7-associated neurodegeneration (PARK15), autosomal-recessive spastic paraplegia with a thin corpus callosum (SPG11), and dystonia parkinsonism due to mutations in the SLC6A3 gene encoding the dopamine transporter. They have in common that in all these syndromes there may be a combination of dystonic and parkinsonian features, which may be complicated by pyramidal tract involvement. The aim of this review is to familiarize the clinician with the phenotypes of these disorders.
Collapse
Affiliation(s)
- Susanne A Schneider
- Sobell Department for Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK.
| | | |
Collapse
|
170
|
Genetics and Pharmacological Treatment of Dystonia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011. [DOI: 10.1016/b978-0-12-381328-2.00019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
171
|
Poorkaj P, Raskind WH, Leverenz JB, Matsushita M, Zabetian CP, Samii A, Kim S, Gazi N, Nutt JG, Wolff J, Yearout D, Greenup JL, Steinbart EJ, Bird TD. A novel X-linked four-repeat tauopathy with Parkinsonism and spasticity. Mov Disord 2010; 25:1409-17. [PMID: 20629132 DOI: 10.1002/mds.23085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The parkinsonian syndromes comprise a highly heterogeneous group of disorders. Although 15 loci are linked to predominantly familial Parkinson's disease (PD), additional PD loci are likely to exist. We recently identified a multigenerational family of Danish and German descent in which five males in three generations presented with a unique syndrome characterized by parkinsonian features and variably penetrant spasticity for which X-linked disease transmission was strongly suggested (XPDS). Autopsy in one individual failed to reveal synucleinopathy; however, there was a significant four-repeat tauopathy in the striatum. Our objective was to identify the locus responsible for this unique parkinsonian disorder. Members of the XPDS family were genotyped for markers spanning the X chromosome. Two-point and multipoint linkage analyses were performed and the candidate region refined by analyzing additional markers. A multipoint LOD(max) score of 2.068 was obtained between markers DXS991 and DXS993. Haplotype examination revealed an approximately 20 cM region bounded by markers DXS8042 and DXS1216 that segregated with disease in all affected males and obligate carrier females and was not carried by unaffected at-risk males. To reduce the possibility of a false-positive linkage result, multiple loci and genes associated with other parkinsonian or spasticity syndromes were excluded. In conclusion, we have identified a unique X-linked parkinsonian syndrome with variable spasticity and four-repeat tau pathology, and defined a novel candidate gene locus spanning approximately 28 Mb from Xp11.2-Xq13.3.
Collapse
Affiliation(s)
- Parvoneh Poorkaj
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Pasco PMD, Ison CV, Muňoz EL, Magpusao NS, Cheng AE, Tan KT, Lo RW, Teleg RA, Dantes MB, Borres R, Maranon E, Demaisip C, Reyes MVT, Lee LV. Understanding XDP through imaging, pathology, and genetics. Int J Neurosci 2010; 121 Suppl 1:12-7. [PMID: 21034368 DOI: 10.3109/00207454.2010.526729] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The X-linked dystonia-parkinsonism (XDP) is a severe, progressive, adult-onset, X-linked endemic disorder in Filipinos, which is characterized by dystonic movements that start in the third or fourth decade, and replaced by parkinsonism beyond the 10th year of illness. Understanding the pathophysiology of XDP and development of rational therapies will depend on observations from imaging, pathological, and genetic studies. In this paper we summarize the results of these studies on patients with XDP. The cranial magnetic resonance imaging shows hyperintense putaminal rim in both dystonic and parkinsonian stages, and atrophy of the caudate head or putamen in the parkinsonian stage. Neuropathological findings show atrophy of the caudate nucleus and putamen, with mild to severe neuronal loss and gliosis. In the neostriatum, the dystonic phase of XDP shows the involvement of striosomes and matrix sparing, while the later, i.e., parkinsonian phase, shows matrix involvement as well. In the dystonic phase, the loss of striosomal inhibitory projections lead to disinhibition of nigral dopaminergic neurons, perhaps resulting in a hyperkinetic state; while in the parkinsonian phase, severe and critical reduction of matrix-based projection may result in extranigral parkinsonism. Genetic sequencing of the XDP critical region in Xq13.1 has revealed an SVA retrotransposon insertion in an intron of TAF1. This may reduce neuron-specific expression of the TAF1 isoform in the caudate nucleus, and subsequently interfere with the transcription of many neuronal genes, including DRD2. Findings from imaging, pathology, and genetics studies are gradually shedding light on the pathophysiology of XDP, which hopefully will lead to more rational and directed therapies.
Collapse
Affiliation(s)
- Paul Matthew D Pasco
- Child Neurosciences Center, Philippine Children's Medical Center, Quezon City, Philippines.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Rosales RL. X-linked dystonia parkinsonism: clinical phenotype, genetics and therapeutics. J Mov Disord 2010; 3:32-8. [PMID: 24868378 PMCID: PMC4027667 DOI: 10.14802/jmd.10009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 09/17/2010] [Indexed: 11/24/2022] Open
Abstract
The clinical phenotype of X-Linked Dystonia Parkinsonism (XDP) is typically one that involves a Filipino adult male whose ancestry is mostly traced in the Philippine island of Panay. Dystonia usually starts focally in the lower limbs or oromandibular regions, then spreads to become generalized eventually. Parkinsonism sets in later into the disease and usually in combination with dystonia. /DYT3/ and /TAF1/ are the two genes associated with XDP. An SVA retrotransposon insertion in an intron of /TAF1/ may reduce neuron-specific expression of the /TAF1/ isoform in the caudate nucleus, and subsequently interfere with the transcription of many neuronal genes. Polypharmacy with oral benzodiazepines, anticholinergic agents and muscle relaxants leaves much to be desired in terms of efficacy. The medications to date that may appear beneficial, especially in disabling dystonias, are zolpidem, muscle afferent block with lidocaine-ethanol and botulinum toxin type A. Despite the few cases undergoing deep brain stimulation, this functional surgery has shown the greatest promise in XDP. An illustrative case of XDP in a family depicts the variable course of illness, including a bout of “status dystonicus,” challenges in therapy, reckoning with the social impact of the disease, and eventual patient demise. Indeed, there remains some gaps in understanding some phenomenological, genetic and treatment aspects of XDP, the areas upon which future research directions may be worthwhile.
Collapse
Affiliation(s)
- Raymond L Rosales
- Department of Neurology and Psychiatry, University of Santo Tomas, Manila, Philippines ; CNS-Center for Neurodiagnostic and Therapeutic Services, Metropolitan Medical Center, Manila, Philippines
| |
Collapse
|
174
|
Hancks DC, Kazazian H. SVA retrotransposons: Evolution and genetic instability. Semin Cancer Biol 2010; 20:234-45. [PMID: 20416380 PMCID: PMC2945828 DOI: 10.1016/j.semcancer.2010.04.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 04/01/2010] [Accepted: 04/14/2010] [Indexed: 01/21/2023]
Abstract
SINE-VNTR-Alus (SVA) are non-autonomous hominid specific retrotransposons that are associated with disease in humans. SVAs are evolutionarily young and presumably mobilized by the LINE-1 reverse transcriptase in trans. SVAs are currently active and may impact the host through a variety of mechanisms including insertional mutagenesis, exon shuffling, alternative splicing, and the generation of differentially methylated regions (DMR). Here we review SVA biology, including SVA insertions associated with known diseases. Further, we discuss a model describing the initial formation of SVA and the mechanisms by which SVA may impact the host.
Collapse
Affiliation(s)
- Dustin C. Hancks
- Department of Genetics, The University of Pennsylvania School of Medicine
| | - Haig Kazazian
- Department of Genetics, The University of Pennsylvania School of Medicine
| |
Collapse
|
175
|
[Monogenetic dystonia: revisiting the dopaminergic hypothesis]. Rev Neurol (Paris) 2010; 166:389-99. [PMID: 19836812 DOI: 10.1016/j.neurol.2009.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/10/2009] [Accepted: 09/16/2009] [Indexed: 11/20/2022]
Abstract
Dystonias are clinically and genetically heterogeneous neurological disorders that affect movement, and are the focus of much investigative work. The recent identification of mutations in the gene THAP1 in DYT6 dystonia reopens the very interesting question of the in fine involvement of dopamine in the different types of dystonia. In this review, we will go through the recent literature in order to evaluate the many contributions to this theory as well as to highlight the difficulties in identifying a global regulatory pathway for the different forms of this disease that we are just starting to decipher.
Collapse
|
176
|
Mazars R, Gonzalez-de-Peredo A, Cayrol C, Lavigne AC, Vogel JL, Ortega N, Lacroix C, Gautier V, Huet G, Ray A, Monsarrat B, Kristie TM, Girard JP. The THAP-zinc finger protein THAP1 associates with coactivator HCF-1 and O-GlcNAc transferase: a link between DYT6 and DYT3 dystonias. J Biol Chem 2010; 285:13364-71. [PMID: 20200153 DOI: 10.1074/jbc.m109.072579] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
THAP1 is a sequence-specific DNA binding factor that regulates cell proliferation through modulation of target genes such as the cell cycle-specific gene RRM1. Mutations in the THAP1 DNA binding domain, an atypical zinc finger (THAP-zf), have recently been found to cause DYT6 dystonia, a neurological disease characterized by twisting movements and abnormal postures. In this study, we report that THAP1 shares sequence characteristics, in vivo expression patterns and protein partners with THAP3, another THAP-zf protein. Proteomic analyses identified HCF-1, a potent transcriptional coactivator and cell cycle regulator, and O-GlcNAc transferase (OGT), the enzyme that catalyzes the addition of O-GlcNAc, as major cellular partners of THAP3. THAP3 interacts with HCF-1 through a consensus HCF-1-binding motif (HBM), a motif that is also present in THAP1. Accordingly, THAP1 was found to bind HCF-1 in vitro and to associate with HCF-1 and OGT in vivo. THAP1 and THAP3 belong to a large family of HCF-1 binding factors since seven other members of the human THAP-zf protein family were identified, which harbor evolutionary conserved HBMs and bind to HCF-1. Chromatin immunoprecipitation (ChIP) assays and RNA interference experiments showed that endogenous THAP1 mediates the recruitment of HCF-1 to the RRM1 promoter during endothelial cell proliferation and that HCF-1 is essential for transcriptional activation of RRM1. Together, our findings suggest HCF-1 is an important cofactor for THAP1. Interestingly, our results also provide an unexpected link between DYT6 and DYT3 (X-linked dystonia-parkinsonism) dystonias because the gene encoding the THAP1/DYT6 protein partner OGT maps within the DYT3 critical region on Xq13.1.
Collapse
Affiliation(s)
- Raoul Mazars
- CNRS, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, F-31077 Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Polymorphic SVA retrotransposons at four loci and their association with classical HLA class I alleles in Japanese, Caucasians and African Americans. Immunogenetics 2010; 62:211-30. [PMID: 20174920 DOI: 10.1007/s00251-010-0427-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 02/01/2010] [Indexed: 01/07/2023]
Abstract
Polymorphic insertion frequencies of the retrotransposons known as the "SVA" elements were investigated at four loci in the MHC class I genomic region to determine their allele and haplotype frequencies and associations with the HLA-A, -B or -C genes for 100 Japanese, 100 African Americans, 174 Australian Caucasians and 66 reference cell lines obtained from different ethnic groups. The SVA insertions representing different subfamily members varied in frequency between none for SVA-HF in Japanese and 65% for SVA-HB in Caucasians or African Americans with significant differences in frequencies between the three populations at least at three loci. The SVA loci were in Hardy-Weinberg equilibrium except for the SVA-HA locus which deviated significantly in African Americans and Caucasians possibly because of a genomic deletion of this locus in individuals with the HLA-A*24 allele. Strong linkage disequilibria and high percentage associations between the human leucocyte antigen (HLA) class I gene alleles and some of the SVA insertions were detected in all three populations in spite of significant frequency differences for the SVA and HLA class I alleles between the three populations. The highest percentage associations (>86%) were between SVA-HB and HLA-B*08, -B*27, -B*37 to -B*41, -B*52 and -B*53; SVA-HC and HLA-B*07; SVA-HA and HLA-A*03, -A*11 and -A*30; and SVA-HF and HLA-A*03 and HLA-B*47. From pairwise associations in the three populations and the homozygous cell line results, it was possible to deduce the SVA and HLA class I allelic combinations (haplotypes), population differences and the identity by descent of several common HLA-A allelic lineages.
Collapse
|
178
|
Affiliation(s)
- Sun Ju Chung
- Parkinson/Alzheimer Center, Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
179
|
Klein C, Schneider SA, Lang AE. Hereditary parkinsonism: Parkinson disease look-alikes-An algorithm for clinicians to “PARK
” genes and beyond. Mov Disord 2009; 24:2042-58. [DOI: 10.1002/mds.22675] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
180
|
Damert A, Raiz J, Horn AV, Löwer J, Wang H, Xing J, Batzer MA, Löwer R, Schumann GG. 5'-Transducing SVA retrotransposon groups spread efficiently throughout the human genome. Genome Res 2009; 19:1992-2008. [PMID: 19652014 DOI: 10.1101/gr.093435.109] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
SVA elements represent the youngest family of hominid non-LTR retrotransposons, which alter the human genome continuously. They stand out due to their organization as composite repetitive elements. To draw conclusions on the assembly process that led to the current organization of SVA elements and on their transcriptional regulation, we initiated our study by assessing differences in structures of the 116 SVA elements located on human chromosome 19. We classified SVA elements into seven structural variants, including novel variants like 3'-truncated elements and elements with 5'-flanking sequence transductions. We established a genome-wide inventory of 5'-transduced SVA elements encompassing approximately 8% of all human SVA elements. The diversity of 5' transduction events found indicates transcriptional control of their SVA source elements by a multitude of external cellular promoters in germ cells in the course of their evolution and suggests that SVA elements might be capable of acquiring 5' promoter sequences. Our data indicate that SVA-mediated 5' transduction events involve alternative RNA splicing at cryptic splice sites. We analyzed one remarkably successful human-specific SVA 5' transduction group in detail because it includes at least 32% of all SVA subfamily F members. An ancient retrotransposition event brought an SVA insertion under transcriptional control of the MAST2 gene promoter, giving rise to the primal source element of this group. Members of this group are currently transcribed. Here we show that SVA-mediated 5' transduction events lead to structural diversity of SVA elements and represent a novel source of genomic rearrangements contributing to genomic diversity.
Collapse
Affiliation(s)
- Annette Damert
- Fachgebiet PR2/Retroelemente, Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Hancks DC, Ewing AD, Chen JE, Tokunaga K, Kazazian HH. Exon-trapping mediated by the human retrotransposon SVA. Genome Res 2009; 19:1983-91. [PMID: 19635844 DOI: 10.1101/gr.093153.109] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although most human retrotransposons are inactive, both inactive and active retrotransposons drive genome evolution and may influence transcription through various mechanisms. In humans, three retrotransposon families are still active, but one of these, SVA, remains mysterious. Here we report the identification of a new subfamily of SVA, which apparently formed after an alternative splicing event where the first exon of the MAST2 gene spliced into an intronic SVA and subsequently retrotransposed. Additional examples of SVA retrotransposing upstream exons due to splicing into SVA were also identified in other primate genomes. After molecular and computational experiments, we found a number of functional 3' splice sites within many different transcribed SVAs across the human and chimpanzee genomes. Using a minigene splicing construct containing an SVA, we observed splicing in cell culture, along with SVA exonization events that introduced premature termination codons (PTCs). These data imply that an SVA residing within an intron in the same orientation as the gene may alter normal gene transcription either by gene-trapping or by introducing PTCs through exonization, possibly creating differences within and across species.
Collapse
Affiliation(s)
- Dustin C Hancks
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
182
|
|
183
|
LeDoux MS. Meige syndrome: what's in a name? Parkinsonism Relat Disord 2009; 15:483-9. [PMID: 19457699 DOI: 10.1016/j.parkreldis.2009.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 04/21/2009] [Accepted: 04/21/2009] [Indexed: 11/30/2022]
Abstract
Frequently, blepharospasm is associated with involuntary movements of the platysma, lower face and masticatory muscles. Similarly, masticatory dystonia may occur in isolation or in combination with dystonia of other cranial and cervical muscles. The non-possessive and possessive forms of Meige and Brueghel syndromes have been variably and imprecisely ascribed to various anatomical variations of craniocervical dystonia. Herein, the origin of eponymic terms as applied to craniocervical dystonia is reviewed as support for proposed elimination of these eponyms from clinical usage. Although the term "segmental craniocervical dystonia" more accurately captures the combination of blepharospasm and dystonia of other head and neck muscles, delineation of craniocervical subphenotypes is essential for etiological/genetic and treatment studies. To conclude, the clinical features, epidemiology, pathophysiology and therapeutic management of segmental craniocervical dystonia are examined with a particular focus on "blepharospasm-plus" subphenotypes.
Collapse
Affiliation(s)
- Mark S LeDoux
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
184
|
Harbo HF, Finsterer J, Baets J, Van Broeckhoven C, Di Donato S, Fontaine B, De Jonghe P, Lossos A, Lynch T, Mariotti C, Schöls L, Spinazzola A, Szolnoki Z, Tabrizi SJ, Tallaksen C, Zeviani M, Burgunder JM, Gasser T. EFNS guidelines on the molecular diagnosis of neurogenetic disorders: general issues, Huntington's disease, Parkinson's disease and dystonias. Eur J Neurol 2009; 16:777-85. [PMID: 19469830 DOI: 10.1111/j.1468-1331.2009.02646.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE These EFNS guidelines on the molecular diagnosis of neurogenetic disorders are designed to provide practical help for the general neurologist to make appropriate use of molecular genetics in diagnosing neurogenetic disorders. Since the publication of the first two EFNS-guideline papers on the molecular diagnosis of neurological diseases in 2001, rapid progress has been made in this field, necessitating an updated series of guidelines. METHODS Literature searches were performed before expert members of the task force wrote proposals, which were discussed in detail until final consensus had been reached among all task force members. RESULTS AND CONCLUSION This paper provides updated guidelines for molecular diagnosis of Huntington's disease, Parkinson's disease and dystonias as well as a general introduction to the topic. Possibilities and limitations of molecular genetic diagnosis of these disorders are evaluated and recommendations are provided.
Collapse
Affiliation(s)
- H F Harbo
- Department of Neurology, Ullevål, Oslo University Hospital, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
|
186
|
Bressman SB, Raymond D, Fuchs T, Heiman GA, Ozelius LJ, Saunders-Pullman R. Mutations in THAP1 (DYT6) in early-onset dystonia: a genetic screening study. Lancet Neurol 2009; 8:441-6. [PMID: 19345147 DOI: 10.1016/s1474-4422(09)70081-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Mutations in THAP1 were recently identified as the cause of DYT6 primary dystonia; a founder mutation was detected in Amish-Mennonite families, and a different mutation was identified in another family of European descent. To assess more broadly the role of this gene, we screened for mutations in families that included one family member who had early-onset, non-focal primary dystonia. METHODS We identified 36 non-DYT1 multiplex families in which at least one person had non-focal involvement at an age of onset that was younger than 22 years. All three coding exons of THAP1 were sequenced, and the clinical features of individuals with mutations were compared with those of individuals who were negative for mutations in THAP1. Genotype-phenotype differences were also assessed. FINDINGS Of 36 families, nine (25%) had members with mutations in THAP1, and most were of German, Irish, or Italian ancestry. One family had the Amish-Mennonite founder mutation, whereas the other eight families each had novel, potentially truncating or missense mutations. The clinical features of the families with mutations conformed to the previously described DYT6 phenotype; however, age at onset was extended from 38 years to 49 years. Compared with non-carriers, mutation carriers were younger at onset and their dystonia was more likely to begin in brachial, rather than cervical, muscles, become generalised, and include speech involvement. Genotype-phenotype differences were not found. INTERPRETATION Mutations in THAP1 underlie a substantial proportion of early-onset primary dystonia in non-DYT1 families. The clinical features that are characteristic of affected individuals who have mutations in THAP1 include limb and cranial muscle involvement, and speech is often affected. FUNDING Dystonia Medical Research Foundation; Bachmann-Strauss Dystonia and Parkinson Foundation; National Institute of Neurological Disorders and Stroke; Aaron Aronov Family Foundation.
Collapse
Affiliation(s)
- Susan B Bressman
- Department of Neurology, Beth Israel Medical Center, New York, NY 10003, USA.
| | | | | | | | | | | |
Collapse
|
187
|
Schneider SA, Bhatia KP, Hardy J. Complicated recessive dystonia parkinsonism syndromes. Mov Disord 2009; 24:490-9. [DOI: 10.1002/mds.22314] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
188
|
Kaji R, Sato K, Sako W, Goto S. [Diagnosis and treatment of dystonia]. Rinsho Shinkeigaku 2009; 48:844-7. [PMID: 19198096 DOI: 10.5692/clinicalneurol.48.844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Diagnosis of dystonia is not difficult by recognizing the pattern of clinical presentation. Dopa-responsive dystonia (DRD) and Wilson disease are important in differential diagnosis because of their specific treatment. The most common are the focal dystonias, including blepharospasm and spasmodic torticollis. Dystonia comprises mobile involuntary movements and abnormal postures, the latter is better described as hypokinetic disorder. The pathogenesis of dystonia is now being clarified, and includes abnormal neuroplasticity caused by the relative excess of dopamine in the matrix compartment of the striatum, the possible primary lesion being the striosome. In a dopa-responsive dystonia model, dopaminergic projection is more deficient to the striosome than to the matrix, which could produce imbalance between the direct versus. indirect pathway activities. The treatment options include trihexyphenidyl, minor tranquilizers, botulinum toxin injection, and deep brain stimulation.
Collapse
Affiliation(s)
- Ryuji Kaji
- Department of Neurology, Tokushima University
| | | | | | | |
Collapse
|
189
|
Wadelius C. Integrating the Genome and Epigenome in Human Disease. Epigenomics 2008. [DOI: 10.1007/978-1-4020-9187-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
190
|
Genetic study of an American family with DYT3 dystonia (lubag). Neurosci Lett 2008; 448:180-3. [PMID: 18952144 DOI: 10.1016/j.neulet.2008.10.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 10/15/2008] [Indexed: 11/22/2022]
Abstract
X-linked dystonia-parkinsonism (XDP, DYT3), endemic in the Philippine island of Panay, is characterized by the clinical onset with dystonia followed by parkinsonism. We found a 35-year-old American male patient, originally from Panay with typical XDP, has a 2-year history of parkinsonism, dystonia, and tremor. Ancestral DYT3 haplotype and disease-specific SVA (short interspersed nuclear element, variable number of tandem repeats, and Alu composite) retrotransposon insertion were identified in the DYT3 proband and two female unaffected family members. No mutation(s) and expression changes in peripheral blood lymphocytes were observed in the TATA-binding protein-associated factor 1 gene (TAF1) or the chemokine CXC motif receptor 3 gene (CXCR3) of the proband or other DYT3 carriers. These findings indicate blood DNA test has a diagnostic utility and implications for genetic counseling in families with DYT3. In contrast, TAF1 and CXCR3 gene expression in peripheral blood lymphocytes is not a suitable surrogate disease marker for DYT3.
Collapse
|
191
|
Breakefield XO, Blood AJ, Li Y, Hallett M, Hanson PI, Standaert DG. The pathophysiological basis of dystonias. Nat Rev Neurosci 2008; 9:222-34. [PMID: 18285800 DOI: 10.1038/nrn2337] [Citation(s) in RCA: 318] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dystonias comprise a group of movement disorders that are characterized by involuntary movements and postures. Insight into the nature of neuronal dysfunction has been provided by the identification of genes responsible for primary dystonias, the characterization of animal models and functional evaluations and in vivo brain imaging of patients with dystonia. The data suggest that alterations in neuronal development and communication within the brain create a susceptible substratum for dystonia. Although there is no overt neurodegeneration in most forms of dystonia, there are functional and microstructural brain alterations. Dystonia offers a window into the mechanisms whereby subtle changes in neuronal function, particularly in sensorimotor circuits that are associated with motor learning and memory, can corrupt normal coordination and lead to a disabling motor disorder.
Collapse
Affiliation(s)
- Xandra O Breakefield
- Department of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | |
Collapse
|
192
|
Herzfeld T, Nolte D, Müller U. Structural and functional analysis of the human TAF1/DYT3 multiple transcript system. Mamm Genome 2007; 18:787-95. [PMID: 17952504 DOI: 10.1007/s00335-007-9063-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 08/14/2007] [Indexed: 10/22/2022]
Abstract
We analyzed TAF1/DYT3, a complex transcript system that is composed of at least 43 exons. Thirty-eight exons code for TATA box binding protein associated factor I (TAF1). Five downstream exons (d1-d5) of yet unknown function can either form transcripts with TAF1 exons or be transcribed independently. Splice variants can include d (notably d3 and d4) plus at least 12 TAF1 exons (exons 26-37 but not exon 38). These splice variants are highly polymorphic and include alternative exons (e.g., exons 30b, 31b, 32', 34', 35'). The frequency of these splice variants differs greatly in human fetal brain. Data were obtained by both RT-PCR and construction of a plasmid cDNA library. Promoter assays performed in NT2/D1 and in U87 cells demonstrate that TAF1-independent transcription of exons d2-d4 is driven by a TATA box-less promoter that is regulated by transcription factor Ikaros. Antisense transcription of exon d4 is under the control of a LTR promoter. While the 38 exons encoding TAF1 have been highly conserved in eukaryotes, the downstream exons d1-d5 were added to the transcript system much later during evolution and first appear in primates. The study demonstrates the structural and functional evolution of a complex transcript system.
Collapse
Affiliation(s)
- Thilo Herzfeld
- Institut für Humangenetik, Justus-Liebig-Universität, Schlangenzahl 14, 35392 Giessen, Germany
| | | | | |
Collapse
|
193
|
Hansen T, Olsen L, Lindow M, Jakobsen KD, Ullum H, Jonsson E, Andreassen OA, Djurovic S, Melle I, Agartz I, Hall H, Timm S, Wang AG, Werge T. Brain expressed microRNAs implicated in schizophrenia etiology. PLoS One 2007; 2:e873. [PMID: 17849003 PMCID: PMC1964806 DOI: 10.1371/journal.pone.0000873] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 08/17/2007] [Indexed: 01/09/2023] Open
Abstract
Background Protein encoding genes have long been the major targets for research in schizophrenia genetics. However, with the identification of regulatory microRNAs (miRNAs) as important in brain development and function, miRNAs genes have emerged as candidates for schizophrenia-associated genetic factors. Indeed, the growing understanding of the regulatory properties and pleiotropic effects that miRNA have on molecular and cellular mechanisms, suggests that alterations in the interactions between miRNAs and their mRNA targets may contribute to phenotypic variation. Methodology/Principal Findings We have studied the association between schizophrenia and genetic variants of miRNA genes associated with brain-expression using a case-control study design on three Scandinavian samples. Eighteen known SNPs within or near brain-expressed miRNAs in three samples (Danish, Swedish and Norwegian: 420/163/257 schizophrenia patients and 1006/177/293 control subjects), were analyzed. Subsequently, joint analysis of the three samples was performed on SNPs showing marginal association. Two SNPs rs17578796 and rs1700 in hsa-mir-206 (mir-206) and hsa-mit-198 (mir-198) showed nominal significant allelic association to schizophrenia in the Danish and Norwegian sample respectively (P = 0.0021 & p = 0.038), of which only rs17578796 was significant in the joint sample. In-silico analysis revealed that 8 of the 15 genes predicted to be regulated by both mir-206 and mir-198, are transcriptional targets or interaction partners of the JUN, ATF2 and TAF1 connected in a tight network. JUN and two of the miRNA targets (CCND2 and PTPN1) in the network have previously been associated with schizophrenia. Conclusions/Significance We found nominal association between brain-expressed miRNAs and schizophrenia for rs17578796 and rs1700 located in mir-206 and mir-198 respectively. These two miRNAs have a surprising large number (15) of targets in common, eight of which are also connected by the same transcription factors.
Collapse
Affiliation(s)
- Thomas Hansen
- Research Institute of Biological Psychiatry, Sct. Hans Hospital, Roskilde, Denmark
- Centre for Pharmacogenomics, University of Copenhagen, Copenhagen, Denmark
| | - Line Olsen
- Research Institute of Biological Psychiatry, Sct. Hans Hospital, Roskilde, Denmark
| | - Morten Lindow
- Bioinformatics Centre, Institute of Molecular Biology, University of Copenhagen, Copenhagen, Denmark
| | - Klaus D. Jakobsen
- Research Institute of Biological Psychiatry, Sct. Hans Hospital, Roskilde, Denmark
| | - Henrik Ullum
- Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark
| | - Erik Jonsson
- Human Brain Informatics, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet and Hospital, Stockholm, Sweden
| | - Ole A. Andreassen
- TOP-project, Department of Psychiatry, Ullevål University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- TOP-project, Department of Psychiatry, Ullevål University Hospital, Oslo, Norway
| | - Ingrid Melle
- TOP-project, Department of Psychiatry, Ullevål University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Human Brain Informatics, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet and Hospital, Stockholm, Sweden
| | - Håkan Hall
- Human Brain Informatics, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet and Hospital, Stockholm, Sweden
| | - Sally Timm
- University Department of Psychiatry, Psychiatric Centre Frederiksberg, Frederiksberg, Denmark
| | - August G. Wang
- University Department of Psychiatry, Psychiatric Centre Amager, Copenhagen, Denmark
| | - Thomas Werge
- Research Institute of Biological Psychiatry, Sct. Hans Hospital, Roskilde, Denmark
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
194
|
Tamiya G, Makino S, Kaji R. TAF1 as the Most Plausible Disease Gene for XDP/DYT3. Am J Hum Genet 2007. [DOI: 10.1086/519531] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
195
|
Muller U, Herzfeld T, Nolte D. The TAF1/DYT3 multiple transcript system in X-linked dystonia-parkinsonism. Am J Hum Genet 2007; 81:415-7; author reply 417-8. [PMID: 17668393 PMCID: PMC1950800 DOI: 10.1086/519528] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
196
|
Tackenberg B, Metz A, Unger M, Schimke N, Passow S, Hoeffken H, Hoffmann GF, Müller U, Nolte D, Oertel WH, Eggert K, Möller JC. Nigrostriatal dysfunction in X-linked dystonia-parkinsonism (DYT3). Mov Disord 2007; 22:900-2. [PMID: 17377924 DOI: 10.1002/mds.21462] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|