151
|
Thaysen-Andersen M, Larsen MR, Packer NH, Palmisano G. Structural analysis of glycoprotein sialylation – Part I: pre-LC-MS analytical strategies. RSC Adv 2013. [DOI: 10.1039/c3ra42960a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
152
|
Abstract
Extracellular glycoproteins frequently carry terminal sialic acids on their N-linked and/or O-linked glycan structures. In this chapter a sialic acid specific capture-and-release protocol for the enrichment of N- and O-glycopeptides originating from glycoproteins in complex biological samples is described. The enriched glycopeptides are subjected to reversed phase liquid chromatography (LC) interfaced with electrospray ionization and multistage tandem mass spectrometry (MS(n)). The glycopeptide precursor ions are fragmented by collision-induced dissociation (CID) for analysis of the glycan parts in the MS(2) spectra. Further fragmentation (i.e., MS(3)) of deglycosylated peptide ions results in peptide backbone fragmentation, which is used in protein database searches to identify protein sequences. For O-glycopeptides the use of both CID and electron capture dissociation (ECD) fragmentation of the peptide backbone with intact glycans still attached are used to pinpoint the glycosylation sites of glycopeptides containing several Ser/Thr residues. The step-by-step protocols for fragmentation analyses of O- and N-glycopeptides enriched from human cerebrospinal fluid are described.
Collapse
Affiliation(s)
- Jonas Nilsson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | | |
Collapse
|
153
|
Kolter T. Ganglioside biochemistry. ISRN BIOCHEMISTRY 2012; 2012:506160. [PMID: 25969757 PMCID: PMC4393008 DOI: 10.5402/2012/506160] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/09/2012] [Indexed: 01/21/2023]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids. They occur especially on the cellular surfaces of neuronal cells, where they form a complex pattern, but are also found in many other cell types. The paper provides a general overview on their structures, occurrence, and metabolism. Key functional, biochemical, and pathobiochemical aspects are summarized.
Collapse
Affiliation(s)
- Thomas Kolter
- Program Unit Membrane Biology & Lipid Biochemistry, LiMES, University of Bonn, Gerhard-Domagk Straße 1, 53121 Bonn, Germany
| |
Collapse
|
154
|
Cohen M, Varki NM, Jankowski MD, Gagneux P. Using unfixed, frozen tissues to study natural mucin distribution. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE 2012. [PMID: 23023050 DOI: 10.3791/3928.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 09/26/2022]
Abstract
Mucins are complex and heavily glycosylated O-linked glycoproteins, which contain more than 70% carbohydrate by weight(1-3). Secreted mucins, produced by goblet cells and the gastric mucosa, provide the scaffold for a micrometers-thick mucus layer that lines the epithelia of the gut and respiratory tract(3,4). In addition to mucins, mucus layers also contain antimicrobial peptides, cytokines, and immunoglobulins(5-9). The mucus layer is an important part of host innate immunity, and forms the first line of defense against invading microorganisms(8,10-12). As such, the mucus is subject to numerous interactions with microbes, both pathogens and symbionts, and secreted mucins form an important interface for these interactions. The study of such biological interactions usually involves histological methods for tissue collection and staining. The two most commonly used histological methods for tissue collection and preservation in the clinic and in research laboratories are: formalin fixation followed by paraffin embedding, and tissue freezing, followed by embedding in cryo-protectant media. Paraffin-embedded tissue samples produce sections with optimal qualities for histological visualization including clarity and well-defined morphology. However, during the paraffin embedding process a number of epitopes become altered and in order to study these epitopes, tissue sections have to be further processed with one of many epitope retrieval methods(13). Secreted mucins and lipids are extracted from the tissue during the paraffin-embedding clearing step, which requires prolong incubation with organic solvents (xylene or Citrisolv). Therefore this approach is sub-optimal for studies focusing on the nature and distribution of mucins and mucus in vivo. In contrast, freezing tissues in Optimal Cutting Temperature (OCT) embedding medium avoids dehydration and clearing of the sample, and maintains the sample hydration. This allows for better preservation of the hydrated mucus layer, and thus permits the study of the numerous roles of mucins in epithelial biology. As this method requires minimal processing of the tissue, the tissue is preserved in a more natural state. Therefore frozen tissues sections do not require any additional processing prior to staining and can be readily analyzed using immunohistochemistry methods. We demonstrate the preservation of micrometers-thick secreted mucus layer in frozen colon samples. This layer is drastically reduced when the same tissues are embedded in paraffin. We also demonstrate immunofluorescence staining of glycan epitopes presented on mucins using plant lectins. The advantage of this approach is that it does not require the use of special fixatives and allows utilizing frozen tissues that may already be preserved in the laboratory.
Collapse
Affiliation(s)
- Miriam Cohen
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | | | | | | |
Collapse
|
155
|
Cohen M, Varki NM, Jankowski MD, Gagneux P. Using unfixed, frozen tissues to study natural mucin distribution. J Vis Exp 2012:e3928. [PMID: 23023050 PMCID: PMC3490269 DOI: 10.3791/3928] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mucins are complex and heavily glycosylated O-linked glycoproteins, which contain more than 70% carbohydrate by weight(1-3). Secreted mucins, produced by goblet cells and the gastric mucosa, provide the scaffold for a micrometers-thick mucus layer that lines the epithelia of the gut and respiratory tract(3,4). In addition to mucins, mucus layers also contain antimicrobial peptides, cytokines, and immunoglobulins(5-9). The mucus layer is an important part of host innate immunity, and forms the first line of defense against invading microorganisms(8,10-12). As such, the mucus is subject to numerous interactions with microbes, both pathogens and symbionts, and secreted mucins form an important interface for these interactions. The study of such biological interactions usually involves histological methods for tissue collection and staining. The two most commonly used histological methods for tissue collection and preservation in the clinic and in research laboratories are: formalin fixation followed by paraffin embedding, and tissue freezing, followed by embedding in cryo-protectant media. Paraffin-embedded tissue samples produce sections with optimal qualities for histological visualization including clarity and well-defined morphology. However, during the paraffin embedding process a number of epitopes become altered and in order to study these epitopes, tissue sections have to be further processed with one of many epitope retrieval methods(13). Secreted mucins and lipids are extracted from the tissue during the paraffin-embedding clearing step, which requires prolong incubation with organic solvents (xylene or Citrisolv). Therefore this approach is sub-optimal for studies focusing on the nature and distribution of mucins and mucus in vivo. In contrast, freezing tissues in Optimal Cutting Temperature (OCT) embedding medium avoids dehydration and clearing of the sample, and maintains the sample hydration. This allows for better preservation of the hydrated mucus layer, and thus permits the study of the numerous roles of mucins in epithelial biology. As this method requires minimal processing of the tissue, the tissue is preserved in a more natural state. Therefore frozen tissues sections do not require any additional processing prior to staining and can be readily analyzed using immunohistochemistry methods. We demonstrate the preservation of micrometers-thick secreted mucus layer in frozen colon samples. This layer is drastically reduced when the same tissues are embedded in paraffin. We also demonstrate immunofluorescence staining of glycan epitopes presented on mucins using plant lectins. The advantage of this approach is that it does not require the use of special fixatives and allows utilizing frozen tissues that may already be preserved in the laboratory.
Collapse
Affiliation(s)
- Miriam Cohen
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | | | | | | |
Collapse
|
156
|
Bergfeld AK, Pearce OMT, Diaz SL, Pham T, Varki A. Metabolism of vertebrate amino sugars with N-glycolyl groups: elucidating the intracellular fate of the non-human sialic acid N-glycolylneuraminic acid. J Biol Chem 2012; 287:28865-81. [PMID: 22692205 DOI: 10.1074/jbc.m112.363549] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two major mammalian sialic acids are N-acetylneuraminic acid and N-glycolylneuraminic acid (Neu5Gc). The only known biosynthetic pathway generating Neu5Gc is the conversion of CMP-N-acetylneuraminic acid into CMP-Neu5Gc, which is catalyzed by the CMP-Neu5Ac hydroxylase enzyme. Given the irreversible nature of this reaction, there must be pathways for elimination or degradation of Neu5Gc, which would allow animal cells to adjust Neu5Gc levels to their needs. Although humans are incapable of synthesizing Neu5Gc due to an inactivated CMAH gene, exogenous Neu5Gc from dietary sources can be metabolically incorporated into tissues in the face of an anti-Neu5Gc antibody response. However, the metabolic turnover of Neu5Gc, which apparently prevents human cells from continued accumulation of this immunoreactive sialic acid, has not yet been elucidated. In this study, we show that pre-loaded Neu5Gc is eliminated from human cells over time, and we propose a conceivable Neu5Gc-degrading pathway based on the well studied metabolism of N-acetylhexosamines. We demonstrate that murine tissue cytosolic extracts harbor the enzymatic machinery to sequentially convert Neu5Gc into N-glycolylmannosamine, N-glycolylglucosamine, and N-glycolylglucosamine 6-phosphate, whereupon irreversible de-N-glycolylation of the latter results in the ubiquitous metabolites glycolate and glucosamine 6-phosphate. We substantiate this finding by demonstrating activity of recombinant human enzymes in vitro and by studying the fate of radiolabeled pathway intermediates in cultured human cells, suggesting that this pathway likely occurs in vivo. Finally, we demonstrate that the proposed degradative pathway is partially reversible, showing that N-glycolylmannosamine and N-glycolylglucosamine (but not glycolate) can serve as precursors for biosynthesis of endogenous Neu5Gc.
Collapse
Affiliation(s)
- Anne K Bergfeld
- Department of Medicine, Glycobiology Research and Training Center, University of California San Diego, La Jolla, California 92093-0687, USA
| | | | | | | | | |
Collapse
|
157
|
Bergfeld AK, Pearce OMT, Diaz SL, Lawrence R, Vocadlo DJ, Choudhury B, Esko JD, Varki A. Metabolism of vertebrate amino sugars with N-glycolyl groups: incorporation of N-glycolylhexosamines into mammalian glycans by feeding N-glycolylgalactosamine. J Biol Chem 2012; 287:28898-916. [PMID: 22692203 DOI: 10.1074/jbc.m112.363499] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The outermost positions of mammalian cell-surface glycans are predominantly occupied by the sialic acids N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). To date, hydroxylation of CMP-Neu5Ac resulting in the conversion into CMP-Neu5Gc is the only known enzymatic reaction in mammals to synthesize a monosaccharide carrying an N-glycolyl group. In our accompanying paper (Bergfeld, A. K., Pearce, O. M., Diaz, S. L., Pham, T., and Varki, A. (2012) J. Biol. Chem. 287, jbc.M112.363549), we report a metabolic pathway for degradation of Neu5Gc, demonstrating that N-acetylhexosamine pathways are tolerant toward the N-glycolyl substituent of Neu5Gc breakdown products. In this study, we show that exogenously added N-glycolylgalactosamine (GalNGc) serves as a precursor for Neu5Gc de novo biosynthesis, potentially involving seven distinct mammalian enzymes. Following the GalNAc salvage pathway, UDP-GalNGc is epimerized to UDP-GlcNGc, which might compete with the endogenous UDP-GlcNAc for the sialic acid biosynthetic pathway. Using UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase-deficient cells, we confirm that conversion of GalNGc into Neu5Gc depends on this key enzyme of sialic acid biosynthesis. Furthermore, we demonstrate by mass spectrometry that the metabolic intermediates UDP-GalNGc and UDP-GlcNGc serve as substrates for assembly of most major classes of cellular glycans. We show for the first time incorporation of GalNGc and GlcNGc into chondroitin/dermatan sulfates and heparan sulfates, respectively. As demonstrated by structural analysis, N-glycolylated hexosamines were found in cellular gangliosides and incorporated into Chinese hamster ovary cell O-glycans. Remarkably, GalNAc derivatives altered the overall O-glycosylation pattern as indicated by the occurrence of novel O-glycan structures. This study demonstrates that mammalian N-acetylhexosamine pathways and glycan assembly are surprisingly tolerant toward the N-glycolyl substituent.
Collapse
Affiliation(s)
- Anne K Bergfeld
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093-0687, USA
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Abstract
Early postnatal development encounters milk as a key environmental variable and yet the sole nutrient source. One evolutionary conserved constituent of milk is sialic acid, which is generally displayed on glycoconjugates and free glycans. During early postnatal development, high sialic acid need was proposed to be unmet by the endogenous sialic acid synthetic capacity. Hence, milk sialic acid was proposed to serve as a conditional nutrient for the newborn. In the elderly, at the other end of ontogeny, decreased sialylation in the brain, saliva, and immune system is observed. Analogous to the neonatal situation, the endogenous synthetic capacity may be unable to keep up with the need in this age group. The data discussed here propose a functional dietary role of sialic acid as a building block for sialylation and beyond.
Collapse
|
159
|
Padler-Karavani V, Song X, Yu H, Hurtado-Ziola N, Huang S, Muthana S, Chokhawala HA, Cheng J, Verhagen A, Langereis MA, Kleene R, Schachner M, de Groot RJ, Lasanajak Y, Matsuda H, Schwab R, Chen X, Smith DF, Cummings RD, Varki A. Cross-comparison of protein recognition of sialic acid diversity on two novel sialoglycan microarrays. J Biol Chem 2012; 287:22593-608. [PMID: 22549775 DOI: 10.1074/jbc.m112.359323] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA and protein arrays are commonly accepted as powerful exploratory tools in research. This has mainly been achieved by the establishment of proper guidelines for quality control, allowing cross-comparison between different array platforms. As a natural extension, glycan microarrays were subsequently developed, and recent advances using such arrays have greatly enhanced our understanding of protein-glycan recognition in nature. However, although it is assumed that biologically significant protein-glycan binding is robustly detected by glycan microarrays, there are wide variations in the methods used to produce, present, couple, and detect glycans, and systematic cross-comparisons are lacking. We address these issues by comparing two arrays that together represent the marked diversity of sialic acid modifications, linkages, and underlying glycans in nature, including some identical motifs. We compare and contrast binding interactions with various known and novel plant, vertebrate, and viral sialic acid-recognizing proteins and present a technical advance for assessing specificity using mild periodate oxidation of the sialic acid chain. These data demonstrate both the diversity of sialic acids and the analytical power of glycan arrays, showing that different presentations in different formats provide useful and complementary interpretations of glycan-binding protein specificity. They also highlight important challenges and questions for the future of glycan array technology and suggest that glycan arrays with similar glycan structures cannot be simply assumed to give similar results.
Collapse
Affiliation(s)
- Vered Padler-Karavani
- Department of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Fucanomics and galactanomics: marine distribution, medicinal impact, conceptions, and challenges. Mar Drugs 2012; 10:793-811. [PMID: 22690144 PMCID: PMC3366676 DOI: 10.3390/md10040793] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 01/26/2023] Open
Abstract
Glycomics turned out to be a very extensive project where its subdivision is consequently emerging. This is seen by the growing number of terminologies used to define subprojects concerning particular classes of bioactive carbohydrates. Sulfated fucans (SFs) and sulfated galactans (SGs) are relatively new classes of sulfated polysaccharides (SPs) that occur mostly in marine organisms, and exhibit a broad range of medicinal effects. Their structures are taxonomically dependent, and their therapeutic actions include benefits in inflammation, coagulation, thrombosis, angiogenesis, cancer, oxidation, and infections. Some red algae, marine angiosperm and invertebrates express SPs of unique structures composed of regular repeating oligomeric units of well-defined sulfation patterns. This fine pattern of structural regularity is quite rare among any naturally occurring long SPs, and enables accurate structure-biofunction correlations. Seeing that, fucanomics and galactanomics may comprise distinguished glycomics subprojects. We hereby discuss the relevance that justifies the international recognition of these subprojects in the current glycomics age associated with the beneficial outcomes that these glycans may offer in drug development.
Collapse
|
161
|
Robinson LN, Artpradit C, Raman R, Shriver ZH, Ruchirawat M, Sasisekharan R. Harnessing glycomics technologies: integrating structure with function for glycan characterization. Electrophoresis 2012; 33:797-814. [PMID: 22522536 PMCID: PMC3743516 DOI: 10.1002/elps.201100231] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glycans, or complex carbohydrates, are a ubiquitous class of biological molecule which impinge on a variety of physiological processes ranging from signal transduction to tissue development and microbial pathogenesis. In comparison to DNA and proteins, glycans present unique challenges to the study of their structure and function owing to their complex and heterogeneous structures and the dominant role played by multivalency in their sequence-specific biological interactions. Arising from these challenges, there is a need to integrate information from multiple complementary methods to decode structure-function relationships. Focusing on acidic glycans, we describe here key glycomics technologies for characterizing their structural attributes, including linkage, modifications, and topology, as well as for elucidating their role in biological processes. Two cases studies, one involving sialylated branched glycans and the other sulfated glycosaminoglycans, are used to highlight how integration of orthogonal information from diverse datasets enables rapid convergence of glycan characterization for development of robust structure-function relationships.
Collapse
Affiliation(s)
- Luke N. Robinson
- Department of Biological Engineering, Harvard-MIT Division of Health Sciences & Technology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
| | - Charlermchai Artpradit
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Rahul Raman
- Department of Biological Engineering, Harvard-MIT Division of Health Sciences & Technology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
| | - Zachary H. Shriver
- Department of Biological Engineering, Harvard-MIT Division of Health Sciences & Technology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
| | - Mathuros Ruchirawat
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Bangkok, Thailand
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Ram Sasisekharan
- Department of Biological Engineering, Harvard-MIT Division of Health Sciences & Technology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
162
|
Schaper W, Bentrop J, Ustinova J, Blume L, Kats E, Tiralongo J, Weinhold B, Bastmeyer M, Münster-Kühnel AK. Identification and biochemical characterization of two functional CMP-sialic acid synthetases in Danio rerio. J Biol Chem 2012; 287:13239-48. [PMID: 22351762 DOI: 10.1074/jbc.m111.327544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sialic acids (Sia) form the nonreducing end of the bulk of cell surface-expressed glycoconjugates. They are, therefore, major elements in intercellular communication processes. The addition of Sia to glycoconjugates requires metabolic activation to CMP-Sia, catalyzed by CMP-Sia synthetase (CMAS). This highly conserved enzyme is located in the cell nucleus in all vertebrates investigated to date, but its nuclear function remains elusive. Here, we describe the identification and characterization of two Cmas enzymes in Danio rerio (dreCmas), one of which is exclusively localized in the cytosol. We show that the two cmas genes most likely originated from the third whole genome duplication, which occurred at the base of teleost radiation. cmas paralogues were maintained in fishes of the Otocephala clade, whereas one copy got subsequently lost in Euteleostei (e.g. rainbow trout). In zebrafish, the two genes exhibited a distinct spatial expression pattern. The products of these genes (dreCmas1 and dreCmas2) diverged not only with respect to subcellular localization but also in substrate specificity. Nuclear dreCmas1 favored N-acetylneuraminic acid, whereas the cytosolic dreCmas2 showed highest affinity for 5-deamino-neuraminic acid. The subcellular localization was confirmed for the endogenous enzymes in fractionated zebrafish lysates. Nuclear entry of dreCmas1 was mediated by a bipartite nuclear localization signal, which seemed irrelevant for other enzymatic functions. With the current demonstration that in zebrafish two subfunctionalized cmas paralogues co-exist, we introduce a novel and unique model to detail the roles that CMAS has in the nucleus and in the sialylation pathways of animal cells.
Collapse
Affiliation(s)
- Wiebke Schaper
- Institute of Cellular Chemistry, Hannover Medical School (MHH), Carl-Neuberg-Strasse1, D-30625 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Dehnert KW, Baskin JM, Laughlin ST, Beahm BJ, Naidu NN, Amacher SL, Bertozzi CR. Imaging the sialome during zebrafish development with copper-free click chemistry. Chembiochem 2012; 13:353-7. [PMID: 22262667 PMCID: PMC3385855 DOI: 10.1002/cbic.201100649] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Indexed: 11/28/2022]
Affiliation(s)
- Karen W Dehnert
- Department of Chemistry, University of California, B84 Hildebrand Hall 1460, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
164
|
Glycomics: An Overview of the Complex Glycocode. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 749:1-13. [DOI: 10.1007/978-1-4614-3381-1_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
165
|
Watanabe Y, Ibrahim MS, Suzuki Y, Ikuta K. The changing nature of avian influenza A virus (H5N1). Trends Microbiol 2011; 20:11-20. [PMID: 22153752 DOI: 10.1016/j.tim.2011.10.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/16/2011] [Accepted: 10/25/2011] [Indexed: 12/28/2022]
Abstract
Highly pathogenic avian influenza A virus subtype H5N1 has been endemic in some bird species since its emergence in 1996 and its ecology, genetics and antigenic properties have continued to evolve. This has allowed diverse virus strains to emerge in endemic areas with altered receptor specificity, including a new H5 sublineage with enhanced binding affinity to the human-type receptor. The pandemic potential of H5N1 viruses is alarming and may be increasing. We review here the complex dynamics and changing nature of the H5N1 virus that may contribute to the emergence of pandemic strains.
Collapse
Affiliation(s)
- Yohei Watanabe
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Osaka, Japan.
| | | | | | | |
Collapse
|
166
|
Wallace R. Extending Tlusty's rate distortion index theorem method to the glycome: do even 'low level' biochemical phenomena require sophisticated cognitive paradigms? Biosystems 2011; 107:145-52. [PMID: 22122974 DOI: 10.1016/j.biosystems.2011.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/06/2011] [Indexed: 11/19/2022]
Abstract
Unlike the universal genetic code and ordered protein folding, direct application of Tlusty's method to the glycome produces a reducto ad absurdum: From the beginning a complicated system of chemical cognition is needed so that external information constrains and tunes what would otherwise be a monstrously large 'glycan code error network'. Further, the glycan manufacture machinery itself must be regulated by yet other levels of chemical cognition to ensure that what is produced matches what was chosen for production. Application of a rate distortion index theorem/operator method at this second stage appears possible, permitting analytic characterization of the complicated 'glycan spectra' associated with cellular interactions and their dynamics. The regulation of 'low level' biochemical processes, ranging from gene expression and protein folding through the production of flexible glycan surface signalling fronds, appears to require systems of chemical cognition whose sophistication may rival that of high order neural process.
Collapse
Affiliation(s)
- Rodrick Wallace
- Division of Epidemiology, The New York State Psychiatric Institute, New York, NY 10032, USA.
| |
Collapse
|
167
|
Where catabolism meets signalling: neuraminidase 1 as a modulator of cell receptors. Glycoconj J 2011; 28:441-52. [PMID: 21928149 DOI: 10.1007/s10719-011-9350-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/24/2011] [Accepted: 03/08/2011] [Indexed: 12/19/2022]
Abstract
Terminal sialic acid residues are found in abundance in glycan chains of glycoproteins and glycolipids on the surface of all live cells forming an outer layer of the cell originally known as glycocalyx. Their presence affects the molecular properties and structure of glycoconjugates, modifying their function and interactions with other molecules. Consequently, the sialylation state of glycoproteins and glycolipids has been recognized as a critical factor modulating molecular recognitions inside the cell, between the cells, between the cells and the extracellular matrix, and between the cells and certain exogenous pathogens. Sialyltransferases that attach sialic acid residues to the glycan chains in the process of their initial synthesis were thought to be mainly responsible for the creation and maintenance of a temporal and spatial diversity of sialylated moieties. However, the growing evidence also suggests that in mammalian cells, at least equally important roles belong to sialidases/neuraminidases, which are located on the cell surface and in intracellular compartments, and may either initiate the catabolism of sialoglycoconjugates or just cleave their sialic acid residues, and thereby contribute to temporal changes in their structure and functions. The current review summarizes emerging data demonstrating that neuraminidase 1 (NEU1), well known for its lysosomal catabolic function, can be also targeted to the cell surface and assume the previously unrecognized role as a structural and functional modulator of cellular receptors.
Collapse
|
168
|
Hu H, Eggers K, Chen W, Garshasbi M, Motazacker MM, Wrogemann K, Kahrizi K, Tzschach A, Hosseini M, Bahman I, Hucho T, Mühlenhoff M, Gerardy-Schahn R, Najmabadi H, Ropers HH, Kuss AW. ST3GAL3 mutations impair the development of higher cognitive functions. Am J Hum Genet 2011; 89:407-14. [PMID: 21907012 DOI: 10.1016/j.ajhg.2011.08.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/02/2011] [Accepted: 08/17/2011] [Indexed: 12/17/2022] Open
Abstract
The genetic variants leading to impairment of intellectual performance are highly diverse and are still poorly understood. ST3GAL3 encodes the Golgi enzyme β-galactoside-α2,3-sialyltransferase-III that in humans predominantly forms the sialyl Lewis a epitope on proteins. ST3GAL3 resides on chromosome 1 within the MRT4 locus previously identified to associate with nonsyndromic autosomal recessive intellectual disability. We searched for the disease-causing mutations in the MRT4 family and a second independent consanguineous Iranian family by using a combination of chromosome sorting and next-generation sequencing. Two different missense changes in ST3GAL3 cosegregate with the disease but were absent in more than 1000 control chromosomes. In cellular and biochemical test systems, these mutations were shown to cause ER retention of the Golgi enzyme and drastically impair ST3Gal-III functionality. Our data provide conclusive evidence that glycotopes formed by ST3Gal-III are prerequisite for attaining and/or maintaining higher cognitive functions.
Collapse
Affiliation(s)
- Hao Hu
- Department for Human Molecular Genetics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Padler-Karavani V, Varki A. Potential impact of the non-human sialic acid N-glycolylneuraminic acid on transplant rejection risk. Xenotransplantation 2011; 18:1-5. [PMID: 21342282 DOI: 10.1111/j.1399-3089.2011.00622.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Vered Padler-Karavani
- Glycobiology Research and Training Center, Department of Medicine, University of California at San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
170
|
Varki A. Evolutionary forces shaping the Golgi glycosylation machinery: why cell surface glycans are universal to living cells. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a005462. [PMID: 21525513 DOI: 10.1101/cshperspect.a005462] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite more than 3 billion years since the origin of life on earth, the powerful forces of biological evolution seem to have failed to generate any living cell that is devoid of a dense and complex array of cell surface glycans. Thus, cell surface glycans seem to be as essential for life as having a DNA genetic code, diverse RNAs, structural/functional proteins, lipid-based membranes, and metabolites that mediate energy flux and signaling. The likely reasons for this apparently universal law of biology are considered here, and include the fact that glycans have the greatest potential for generating diversity, and thus evading recognition by pathogens. This may also explain why in striking contrast to the genetic code, glycans show widely divergent patterns between taxa. On the other hand, glycans have also been coopted for myriad intrinsic functions, which can vary in their importance for organismal survival. In keeping with these considerations, a significant percentage of the genes in the typical genome are dedicated to the generation and/or turnover of glycans. Among eukaryotes, the Golgi is the subcellular organelle that serves to generate much of the diversity of cell surface glycans, carrying out various glycan modifications of glycoconjugates that transit through the Golgi, en route to the cell surface or extracellular destinations. Here I present an overview of general considerations regarding the selective forces shaping evolution of the Golgi glycosylation machinery, and then briefly discuss the common types of variations seen in each major class of glycans, finally focusing on sialic acids as an extreme example of evolutionary glycan diversity generated by the Golgi. Future studies need to address both the phylogenetic diversity the Golgi and the molecular mechanisms for its rapid responses to intrinsic and environmental stimuli.
Collapse
Affiliation(s)
- Ajit Varki
- Glycobiology Research and Training Center, University of California at San Diego, La Jolla, 92093, USA.
| |
Collapse
|
171
|
Targeting siglecs--a novel pharmacological strategy for immuno- and glycotherapy. Biochem Pharmacol 2011; 82:323-32. [PMID: 21658374 DOI: 10.1016/j.bcp.2011.05.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 05/17/2011] [Indexed: 01/13/2023]
Abstract
The immune system must be tightly held in check to avoid bystander tissue damage as well as autoreactivity caused by overwhelming immune reactions. A novel family of immunoregulatory, carbohydrate-binding receptors, the Siglecs (sialic acid binding immunoglobulin-like lectins), has received particular attention in light of their capacity to mediate cell death, anti-proliferative effects and to regulate a variety of cellular activities. Siglec receptors are mainly expressed on leukocytes in a cell type-specific and differentiation-dependent manner. Siglecs might potentially be exploited as targets of novel immune- and glycotherapeutics for cell-directed therapies in autoimmune and allergic diseases, as well as in haematologic malignancies. Here we present novel insights on structural and functional characteristics, expression patterns and evolutionary aspects of Siglecs and their ligands. Pharmacological strategies using Siglec agonistic cross-linking therapeutics, such as monoclonal or engineered antibodies, intravenous immunoglobulin (IVIG), or glycomimetics are discussed. Modulation of immune responses by targeting Siglecs using agonistic or antagonistic therapeutics may have important clinical implications and may pave the way for novel pharmacological avenues for the treatment of autoimmune and allergic diseases or for tumor immunotherapy.
Collapse
|
172
|
Shen S, Bryant KD, Brown SM, Randell SH, Asokan A. Terminal N-linked galactose is the primary receptor for adeno-associated virus 9. J Biol Chem 2011; 286:13532-40. [PMID: 21330365 DOI: 10.1074/jbc.m110.210922] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sialylated glycans serve as cell surface attachment factors for a broad range of pathogens. We report an atypical example, where desialylation increases cell surface binding and infectivity of adeno-associated virus (AAV) serotype 9, a human parvovirus isolate. Enzymatic removal of sialic acid, but not heparan sulfate or chondroitin sulfate, increased AAV9 transduction regardless of cell type. Viral binding and transduction assays on mutant Chinese hamster ovary (CHO) cell lines defective in various stages of glycan chain synthesis revealed a potential role for core glycan residues under sialic acid in AAV9 transduction. Treatment with chemical inhibitors of glycosylation and competitive inhibition studies with different lectins suggest that N-linked glycans with terminal galactosyl residues facilitate cell surface binding and transduction by AAV9. In corollary, resialylation of galactosylated glycans on the sialic acid-deficient CHO Lec2 cell line with different sialyltransferases partially blocked AAV9 transduction. Quantitative analysis of AAV9 binding to parental, sialidase-treated or sialic acid-deficient mutant CHO cells revealed a 3-15-fold increase in relative binding potential of AAV9 particles upon desialylation. Finally, pretreatment of well differentiated human airway epithelial cultures and intranasal instillation of recombinant sialidase in murine airways enhanced transduction efficiency of AAV9 by >1 order of magnitude. Taken together, the studies described herein provide a molecular basis for low infectivity of AAV9 in vitro and a biochemical strategy to enhance gene transfer by AAV9 vectors in general.
Collapse
Affiliation(s)
- Shen Shen
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
173
|
Hart GW, Copeland RJ. Glycomics hits the big time. Cell 2010; 143:672-6. [PMID: 21111227 DOI: 10.1016/j.cell.2010.11.008] [Citation(s) in RCA: 499] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 10/27/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
Cells run on carbohydrates. Glycans, sequences of carbohydrates conjugated to proteins and lipids, are arguably the most abundant and structurally diverse class of molecules in nature. Recent advances in glycomics reveal the scope and scale of their functional roles and their impact on human disease.
Collapse
Affiliation(s)
- Gerald W Hart
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD 21205-2185, USA.
| | | |
Collapse
|