151
|
Abstract
Nucleotide excision repair is both a 'wide spectrum' DNA repair pathway and the sole system for repairing bulky damages such as UV lesions or benzo[a]pyrene adducts. The mechanisms of nucleotide excision repair are known in considerable detail in Escherichia coli. Similarly, in the past 5 years important advances have been made towards understanding the biochemical mechanisms of excision repair in humans. The overall strategy of the repair is the same in the two species: damage recognition through a multistep mechanism involving a molecular matchmaker and an ATP-dependent unwinding of the damaged duplex; dual incisions at both sides of the lesion by two different nucleases, the 3' incision being followed by the 5'; removal of the damaged oligomer; resynthesis of the repair patch, whose length matches the gap size. Despite these similarities, the two systems are biochemically different and do not even share structural homology. E. coli excinuclease employs three proteins in contrast to 16/17 polypeptides in man; the excised fragment is longer in man: the procaryotic excinuclease is not able by itself to remove the excised oligomer whereas the human enzyme does. Thus, the excinuclease mode of action is well conserved throughout evolution, but not the biochemical tools: this represents a case of evolutionary convergence.
Collapse
Affiliation(s)
- C Petit
- University of North Carolina at Chapel Hill, School of Medicine, Department of Biochemistry and Biophysics, 27599-7260, USA
| | | |
Collapse
|
152
|
Salles B, Rodrigo G, Li RY, Calsou P. DNA damage excision repair in microplate wells with chemiluminescence detection: development and perspectives. Biochimie 1999; 81:53-8. [PMID: 10214910 DOI: 10.1016/s0300-9084(99)80038-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of in vitro repair assays with human cell-free extracts led to new insights on the mechanism of excision of DNA damage which consists of incision/excision and repair synthesis/ligation. We have adapted the repair synthesis reaction with cells extracts incubated with damaged plasmid DNA performed in liquid phase to solid phase by DNA adsorption into microplate wells. Since cells extracts are repair competent in base excision and nucleotide excision repair, all types of substrate DNA lesions were detected with chemiluminescence measurement after incorporation of biotin-deoxynucleotide during the repair synthesis step. Derivatives of our initial 3D-assay (DNA damage detection) have been set up to: i) screen antioxidative compounds and NER inhibitors; ii) capture genomic DNA (3D(Cell)-assay) that allows detection of alkylated base and consequently determines the kinetics of the cellular repair; and iii) immunodetect the repair proteins in an ELISA reaction (3D(Rec)-assay). The 3D derived assays are presented and discussed.
Collapse
Affiliation(s)
- B Salles
- Institut de Pharmacologie et de Biologie Structurale, CNRS UPR 9062, Toulouse, France
| | | | | | | |
Collapse
|
153
|
Klungland A, Höss M, Gunz D, Constantinou A, Clarkson SG, Doetsch PW, Bolton PH, Wood RD, Lindahl T. Base excision repair of oxidative DNA damage activated by XPG protein. Mol Cell 1999; 3:33-42. [PMID: 10024877 DOI: 10.1016/s1097-2765(00)80172-0] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Oxidized pyrimidines in DNA are removed by a distinct base excision repair pathway initiated by the DNA glycosylase--AP lyase hNth1 in human cells. We have reconstituted this single-residue replacement pathway with recombinant proteins, including the AP endonuclease HAP1/APE, DNA polymerase beta, and DNA ligase III-XRCC1 heterodimer. With these proteins, the nucleotide excision repair enzyme XPG serves as a cofactor for the efficient function of hNth1. XPG protein promotes binding of hNth1 to damaged DNA. The stimulation of hNth1 activity is retained in XPG catalytic site mutants inactive in nucleotide excision repair. The data support the model that development of Cockayne syndrome in XP-G patients is related to inefficient excision of endogenous oxidative DNA damage.
Collapse
Affiliation(s)
- A Klungland
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Abstract
For the bulk of mammalian DNA, the core protein factors needed for damage recognition and incision during nucleotide excision repair (NER) are the XPA protein, the heterotrimeric RPA protein, the 6 to 9-subunit TFIIH, the XPC-hHR23B complex, the XPG nuclease, and the ERCC1-XPF nuclease. With varying efficiencies, NER can repair a very wide range of DNA adducts, from bulky helical distortions to subtle modifications on sugar residues. Several of the NER factors have an affinity for damaged DNA. The strongest binding factor appears to be XPC-hHR23B but preferential binding to damage is also a property of XPA, RPA, and components of TFIIH. It appears that in order to be repaired by NER, an adduct in DNA must have two features: it must create a helical distortion, and there must be a change in DNA chemistry. Initial recognition of the distortion is the most likely function for XPC-hHR23B and perhaps XPA and RPA, whereas TFIIH is well-suited to locate the damaged DNA strand by locating altered DNA chemistry that blocks translocation of the XPB and XPD components.
Collapse
Affiliation(s)
- R D Wood
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts, UK
| |
Collapse
|
155
|
Tsodikov OV, Craig ML, Saecker RM, Record MT. Quantitative analysis of multiple-hit footprinting studies to characterize DNA conformational changes in protein-DNA complexes: application to DNA opening by Esigma70 RNA polymerase. J Mol Biol 1998; 283:757-69. [PMID: 9790838 DOI: 10.1006/jmbi.1998.2130] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Formation of many site-specific protein-nucleic acid complexes involves sequential conformational changes subsequent to initial binding which create functionally active assemblies. Characterization of population distributions and structural characteristics of intermediate and product conformations is necessary to understand both the mechanisms and the thermodynamics of these processes. For these purposes, here we develop the quantitative method of multiple hit footprinting (MHF), where chemical or enzymatic probing is performed as a function of either concentrations of the footprinting agent and/or time of exposure to it, in the multiple hit regime where many of the population or subpopulation of reactive DNA molecules are modified at more than one site. Properly controlled MHF experiments yield both the population distribution of different conformers and reactivity rate constants of the footprinting agent at all reactive positions in each conformer, which may be interpreted in terms of the accessibility of the site or the local concentration of the reagent. MHF experiments are particularly well-suited for dissecting effects at sites where unbound DNA is non-reactive and bound DNA is reactive with base-specific probes (e.g. KMnO4, DMS). We suggest that this method will also be applicable to analysis of enhancements in reactivity of other footprinting agents (e.g. DNase I, HO.). To demonstrate the utility of the MHF analysis, we quantify fragment distributions and individual site reactivities from multiple-hit KMnO4 footprinting of the non-template strand of Esigma70 RNA polymerase-lambdaPR promoter DNA complexes populated at binding equilibrium at 37 degreesC and transiently populated at a fixed time after a temperature downshift from 37 degreesC to 0 degreesC. For this system, a MHF analysis directly addresses the following questions: (i) what fraction of the population of promoter DNA molecules is open in the vicinity of the transcription start site (RPo) both at 37 degreesC and (transiently) after a downshift to 0 degreesC; (ii) does opening of the start site region in RPo occur entirely in one mechanistic step at the lambdaPR promoter and (iii) does the structure of RPo vary with temperature? In addition, we use the MHF-determined population distribution of KMnO4-reactive (RPo) and non-reactive promoter DNA to normalize the biphasic kinetics of decay of RPo to free promoter DNA after a 37 degrees to 0 degreesC temperature downshift, and thereby characterize the kinetics of the conformational changes involved in forming RPo.
Collapse
Affiliation(s)
- O V Tsodikov
- Program in Biophysics, University of Wisconsin, Madison, USA
| | | | | | | |
Collapse
|
156
|
Tantin D. RNA polymerase II elongation complexes containing the Cockayne syndrome group B protein interact with a molecular complex containing the transcription factor IIH components xeroderma pigmentosum B and p62. J Biol Chem 1998; 273:27794-9. [PMID: 9774388 DOI: 10.1074/jbc.273.43.27794] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factor IIH (TFIIH) is involved both in transcription initiation by RNA polymerase II and in nucleotide excision-repair. Nucleotide excision-repair occurs at higher rates in transcriptionally active regions of the genome. Genetic studies indicate that this transcription-coupled repair is dependent on the Cockayne syndrome group A and B proteins, as well as TFIIH subunits. Previous work indicated that Cockayne syndrome group B interacts with RNA polymerase II molecules engaged in ternary complexes containing DNA and RNA. Evidence presented here indicates that this complex can interact with a factor containing the TFIIH core subunits p62 and xeroderma pigmentosum subunit B/excision repair cross-complementing 3. The targeting of TFIIH or a TFIIH-like repair factor to transcriptionally active DNA indicates a potential mechanism for transcription-coupled repair in human cells.
Collapse
Affiliation(s)
- D Tantin
- UCLA Molecular Biology Institute, Los Angeles, California 90095-1570, USA.
| |
Collapse
|
157
|
de Laat WL, Sijbers AM, Odijk H, Jaspers NG, Hoeijmakers JH. Mapping of interaction domains between human repair proteins ERCC1 and XPF. Nucleic Acids Res 1998; 26:4146-52. [PMID: 9722633 PMCID: PMC147836 DOI: 10.1093/nar/26.18.4146] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
ERCC1-XPF is a heterodimeric protein complexinvolved in nucleotide excision repair and recombinational processes. Like its homologous complex in Saccharomyces cerevisiae , Rad10-Rad1, it acts as a structure-specific DNA endonuclease, cleaving at duplex-single-stranded DNA junctions. In repair, ERCC1-XPF and Rad10-Rad1 make an incision on the the 5'-side of the lesion. No humans with a defect in the ERCC1 subunit of this protein complex have been identified and ERCC1-deficient mice suffer from severe developmental problems and signs of premature aging on top of a repair-deficient phenotype. Xeroderma pigmentosum group F patients carry mutations in the XPF subunit and generally show the clinical symptoms of mild DNA repair deficiency. All XP-F patients examined demonstrate reduced levels of XPF and ERCC1 protein, suggesting that proper complex formation is required for stability of the two proteins. To better understand the molecular and clinical consequences of mutations in the ERCC1-XPF complex, we decided to map the interaction domains between the two subunits. The XPF-binding domain comprises C-terminal residues 224-297 of ERCC1. Intriguingly, this domain resides outside the region of homology with its yeast Rad10 counterpart. The ERCC1-binding domain in XPF maps to C-terminal residues 814-905. ERCC1-XPF complex formation is established by a direct interaction between these two binding domains. A mutation from an XP-F patient that alters the ERCC1-binding domain in XPF indeed affects complex formation with ERCC1.
Collapse
Affiliation(s)
- W L de Laat
- Department of Cell Biology and Genetics, Medical Genetics Centre, Erasmus University, PO Box 1738,3000 DR Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
158
|
Huang W, Feaver WJ, Tomkinson AE, Friedberg EC. The N-degron protein degradation strategy for investigating the function of essential genes: requirement for replication protein A and proliferating cell nuclear antigen proteins for nucleotide excision repair in yeast extracts. Mutat Res 1998; 408:183-94. [PMID: 9806417 DOI: 10.1016/s0921-8777(98)00031-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Nucleotide excision repair (NER) of DNA in the yeast Saccharomyces cerevisiae and in human cells has been shown to be a biochemically complex process involving multiple gene products. In yeast, the involvement of the DNA replication accessory proteins, replication protein A (RPA1) and proliferating cell nuclear antigen (PCNA) in NER has not been demonstrated genetically. In this study we have generated temperature-degradable rfa1 and pcna mutants and show that these mutants are defective in NER in vitro under conditions that promote degradation of the RFA1 and PCNA gene products. We also demonstrate a physical interaction between RPA1 protein and subunits of the RNA polymerase II basal transcription factor IIH (TFIIH).
Collapse
Affiliation(s)
- W Huang
- Department of Pathology, University of Texas, Southwestern Medical Center, Dallas 75235-9072, USA
| | | | | | | |
Collapse
|
159
|
de Laat WL, Appeldoorn E, Sugasawa K, Weterings E, Jaspers NG, Hoeijmakers JH. DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev 1998; 12:2598-609. [PMID: 9716411 PMCID: PMC317078 DOI: 10.1101/gad.12.16.2598] [Citation(s) in RCA: 239] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The human single-stranded DNA-binding replication A protein (RPA) is involved in various DNA-processing events. By comparing the affinity of hRPA for artificial DNA hairpin structures with 3'- or 5'-protruding single-stranded arms, we found that hRPA binds ssDNA with a defined polarity; a strong ssDNA interaction domain of hRPA is positioned at the 5' side of its binding region, a weak ssDNA-binding domain resides at the 3' side. Polarity appears crucial for positioning of the excision repair nucleases XPG and ERCC1-XPF on the DNA. With the 3'-oriented side of hRPA facing a duplex ssDNA junction, hRPA interacts with and stimulates ERCC1-XPF, whereas the 5'-oriented side of hRPA at a DNA junction allows stable binding of XPG to hRPA. Our data pinpoint hRPA to the undamaged strand during nucleotide excision repair. Polarity of hRPA on ssDNA is likely to contribute to the directionality of other hRPA-dependent processes as well.
Collapse
Affiliation(s)
- W L de Laat
- Department of Cell Biology and Genetics, Medical Genetics Centre, Erasmus University, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
160
|
Li RY, Calsou P, Jones CJ, Salles B. Interactions of the transcription/DNA repair factor TFIIH and XP repair proteins with DNA lesions in a cell-free repair assay. J Mol Biol 1998; 281:211-8. [PMID: 9698541 DOI: 10.1006/jmbi.1998.1949] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have studied the interactions between DNA damage and human proteins involved in the early steps of nucleotide excision repair (NER) reaction under in vitro conditions with human protein extracts. By using a new assay, we have detected a long-lived DNA/protein complex involving XPA and TFIIH in the course of the NER process. The formation of this complex is exclusively limited to DNA lesions that are substrates of the human excinuclease. We show that, while XPA binding to damaged DNA is ATP-independent, stable association of TFIIH with DNA lesions is promoted by ATP hydrolysis and is dependent on the integrity of XPA and XPC proteins in the cell extract. In addition, XPC is necessary to promote a stable binding of XPA to UV-irradiated DNA. Finally, the co-binding of XPA and TFIIH to DNA damage is correlated to a dose-dependent titration of TFIIH and not XPA from the free protein fraction.
Collapse
Affiliation(s)
- R Y Li
- Société Française de Recherches et d'Investissements (SFRI), Berganton, Saint Jean d'Illac, 33127, France
| | | | | | | |
Collapse
|
161
|
Wakasugi M, Sancar A. Assembly, subunit composition, and footprint of human DNA repair excision nuclease. Proc Natl Acad Sci U S A 1998; 95:6669-74. [PMID: 9618470 PMCID: PMC22593 DOI: 10.1073/pnas.95.12.6669] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The assembly and composition of human excision nuclease were investigated by electrophoretic mobility shift assay and DNase I footprinting. Individual repair factors or any combination of up to four repair factors failed to form DNA-protein complexes of high specificity and stability. A stable complex of high specificity can be detected only when XPA/RPA, transcription factor IIH, XPC.HHR23B, and XPG and ATP are present in the reaction mixture. The XPF.ERCC1 heterodimer changes the electrophoretic mobility of the DNA-protein complex formed with the other five repair factors, but it does not confer additional specificity. By using proteins with peptide tags or antibodies to the repair factors in electrophoretic mobility shift assays, it was found that XPA, replication protein A, transcription factor IIH, XPG, and XPF.excision repair cross-complementing 1 but not XPC.HHR23B were present in the penultimate and ultimate dual incision complexes. Thus, it appears that XPC.HHR23B is a molecular matchmaker that participates in the assembly of the excision nuclease but is not present in the ultimate dual incision complex. The excision nuclease makes an assymmetric DNase I footprint of approximately 30 bp around the damage and increases the DNase I sensitivity of the DNA on both sides of the footprint.
Collapse
Affiliation(s)
- M Wakasugi
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
162
|
Rapić Otrin V, Kuraoka I, Nardo T, McLenigan M, Eker AP, Stefanini M, Levine AS, Wood RD. Relationship of the xeroderma pigmentosum group E DNA repair defect to the chromatin and DNA binding proteins UV-DDB and replication protein A. Mol Cell Biol 1998; 18:3182-90. [PMID: 9584159 PMCID: PMC108900 DOI: 10.1128/mcb.18.6.3182] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cells from complementation groups A through G of the heritable sun-sensitive disorder xeroderma pigmentosum (XP) show defects in nucleotide excision repair of damaged DNA. Proteins representing groups A, B, C, D, F, and G are subunits of the core recognition and incision machinery of repair. XP group E (XP-E) is the mildest form of the disorder, and cells generally show about 50% of the normal repair level. We investigated two protein factors previously implicated in the XP-E defect, UV-damaged DNA binding protein (UV-DDB) and replication protein A (RPA). Three newly identified XP-E cell lines (XP23PV, XP25PV, and a line formerly classified as an XP variant) were defective in UV-DDB binding activity but had levels of RPA in the normal range. The XP-E cell extracts did not display a significant nucleotide excision repair defect in vitro, with either UV-irradiated DNA or a uniquely placed cisplatin lesion used as a substrate. Purified UV-DDB protein did not stimulate repair of naked DNA by DDB- XP-E cell extracts, but microinjection of the protein into DDB- XP-E cells could partially correct the repair defect. RPA stimulated repair in normal, XP-E, or complemented extracts from other XP groups, and so the effect of RPA was not specific for XP-E cell extracts. These data strengthen the connection between XP-E and UV-DDB. Coupled with previous results, the findings suggest that UV-DDB has a role in the repair of DNA in chromatin.
Collapse
Affiliation(s)
- V Rapić Otrin
- Section on DNA Replication, Repair, and Mutagenesis, National Institute of Child Health and Human Development, Bethesda, Maryland 20892-2725, USA
| | | | | | | | | | | | | | | |
Collapse
|
163
|
de Laat WL, Appeldoorn E, Jaspers NG, Hoeijmakers JH. DNA structural elements required for ERCC1-XPF endonuclease activity. J Biol Chem 1998; 273:7835-42. [PMID: 9525876 DOI: 10.1074/jbc.273.14.7835] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heterodimeric complex ERCC1-XPF is a structure-specific endonuclease responsible for the 5' incision during mammalian nucleotide excision repair (NER). Additionally, ERCC1-XPF is thought to function in the repair of interstrand DNA cross-links and, by analogy to the homologous Rad1-Rad10 complex in Saccharomyces cerevisiae, in recombination between direct repeated DNA sequences. To gain insight into the role of ERCC1-XPF in such recombinational processes and in the NER reaction, we studied in detail the DNA structural elements required for ERCC1-XPF endonucleolytic activity. Recombinant ERCC1-XPF, purified from insect cells, was found to cleave stem-loop substrates at the DNA junction in the absence of other proteins like replication protein A, showing that the structure-specific endonuclease activity is intrinsic to the complex. Cleavage depended on the presence of divalent cations and was optimal in low Mn2+ concentrations (0.2 mM). A minimum of 4-8 unpaired nucleotides was required for incisions by ERCC1-XPF. Splayed arm and flap substrates were also cut by ERCC1-XPF, resulting in the removal of 3' protruding single-stranded arms. All incisions occurred in one strand of duplex DNA at the 5' side of a junction with single-stranded DNA. The exact cleavage position varied from 2 to 8 nucleotides away from the junction. One single-stranded arm, protruding either in the 3' or 5' direction, was necessary and sufficient for correct positioning of incisions by ERCC1-XPF. Our data specify the engagement of ERCC1-XPF in NER and allow a more direct search for its specific role in recombination.
Collapse
Affiliation(s)
- W L de Laat
- Department of Cell Biology and Genetics, Medical Genetics Centre, Erasmus University, P. O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
164
|
Abstract
Proliferating cell nuclear antigen (PCNA) has recently been identified as a target for the binding of several proteins. The cell cycle regulatory protein, p21, and the replication endonuclease, Fen1, have already been described as competing for PCNA binding. Two recent reports have identified DNA (cytosine-5)methyltransferase (MCMT) and the DNA repair endonuclease XPG as binding to PCNA. The remarkable thing about these interactions is that they all seem to occur through a conserved motif that is likely to contact the same site on PCNA. This has fascinating implications for a regulatory network linking these diverse protein functions.
Collapse
Affiliation(s)
- E Warbrick
- Department of Biochemistry, University of Dundee, Scotland.
| |
Collapse
|
165
|
Abstract
Specific cutting of undamaged DNA by UvrABC nuclease is observed. It occurs seven nucleotides (nt) from the 3' terminus of oligonucleotides annealed to single-stranded M13 DNA circles. Although the location of the UvrABC cut on undamaged DNA is similar to that of the cut on the 5' side of a damaged DNA site during the dual incision reaction, the cut of undamaged DNA is not an intermediate in the dual incision step. On DNA duplexes with a single AAF adduct, the anticipated cut at the eighth phosphodiester bond 5' of the lesion is present, but extra cuts at 7-nt increments are observed at the 15th and 22nd phosphodiester bonds. We suggest that these additional cuts are made by the UvrABC activity observed on undamaged DNA; such activity is referred to as ABC 3' exonuclease and may play a significant role by providing a suitable gap for RecA-mediated recombinational exchanges during repair of interstrand crosslinks and closely opposed lesions. This ABC 3' exonuclease activity depends on higher concentrations of Uvr proteins as compared with dual incision and may be relevant to reactions that occur when UvrA and UvrB are increased during SOS induction.
Collapse
Affiliation(s)
- I Gordienko
- Yale University School of Medicine, Department of Therapeutic Radiology, New Haven, CT 06520-8040, USA
| | | |
Collapse
|
166
|
Winkler GS, Vermeulen W, Coin F, Egly JM, Hoeijmakers JH, Weeda G. Affinity purification of human DNA repair/transcription factor TFIIH using epitope-tagged xeroderma pigmentosum B protein. J Biol Chem 1998; 273:1092-8. [PMID: 9422774 DOI: 10.1074/jbc.273.2.1092] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
TFIIH is a high molecular weight complex with a remarkable dual function in nucleotide excision repair and initiation of RNA polymerase II transcription. Mutations in the largest subunits, the XPB and XPD helicases, are associated with three inherited disorders: xeroderma pigmentosum, Cockayne's syndrome, and trichothiodystrophy. To facilitate the purification and biochemical characterization of this intricate complex, we generated a cell line stably expressing tagged XPB, allowing the immunopurification of the XPB protein and associated factors. Addition of two tags, a N-terminal hexameric histidine stretch and a C-terminal hemagglutinin epitope, to this highly conserved protein did not interfere with its functioning in repair and transcription. The hemagglutinin epitope allowed efficient TFIIH immunopurification to homogeneity from a fractionated whole cell extract in essentially one step. We conclude that the predominant active form of TFIIH is composed of nine subunits and that there is one molecule of XPB per TFIIH complex. The affinity-purified complex exhibits all expected TFIIH activities: DNA-dependent ATPase, helicase, C-terminal domain kinase, and participation in in vitro and in vivo nucleotide excision repair and in vitro transcription. The affinity purification procedure described here is fast and simple, does not require extensive chromatographic procedures, and yields highly purified, active TFIIH.
Collapse
Affiliation(s)
- G S Winkler
- Department of Cell Biology and Genetics, Medical Genetics Center, Erasmus University, P. O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
167
|
Nucleotide Excision Repair in Yeast: Recent Progress and Implications. DNA Repair (Amst) 1998. [DOI: 10.1007/978-3-642-48770-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
168
|
Bessho T, Mu D, Sancar A. Initiation of DNA interstrand cross-link repair in humans: the nucleotide excision repair system makes dual incisions 5' to the cross-linked base and removes a 22- to 28-nucleotide-long damage-free strand. Mol Cell Biol 1997; 17:6822-30. [PMID: 9372913 PMCID: PMC232538 DOI: 10.1128/mcb.17.12.6822] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Most DNA repair mechanisms rely on the redundant information inherent to the duplex to remove damaged nucleotides and replace them with normal ones, using the complementary strand as a template. Interstrand cross-links pose a unique challenge to the DNA repair machinery because both strands are damaged. To study the repair of interstrand cross-links by mammalian cells, we tested the activities of cell extracts of wild-type or excision repair-defective rodent cell lines and of purified human excision nuclease on a duplex with a site-specific cross-link. We found that in contrast to monoadducts, which are removed by dual incisions bracketing the lesion, the cross-link causes dual incisions, both 5' to the cross-link in one of the two strands. The net result is the generation of a 22- to 28-nucleotide-long gap immediately 5' to the cross-link. This gap may act as a recombinogenic signal to initiate cross-link removal.
Collapse
Affiliation(s)
- T Bessho
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599, USA
| | | | | |
Collapse
|
169
|
Mu D, Wakasugi M, Hsu DS, Sancar A. Characterization of reaction intermediates of human excision repair nuclease. J Biol Chem 1997; 272:28971-9. [PMID: 9360969 DOI: 10.1074/jbc.272.46.28971] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nucleotide excision repair in humans is a complex reaction involving 14 polypeptides in six repair factors for dual incisions on either sides of a DNA lesion. To identify the reaction intermediates that form by the human excision repair nuclease, we adopted three approaches: purification of functional DNA.protein complexes, permanganate footprinting, and the employment as substrate of presumptive DNA reaction intermediates containing unwound sequences 5' to, 3' to, or encompassing the DNA lesion. The first detectable reaction intermediate was formed by substrate binding of XPA, RPA, XPC.HHR23B plus TFIIH (preincision complex 1, PIC1). In this complex the DNA was unwound on either side of the lesion by no more than 10 bases. Independent of the XPG nuclease function, the XPG protein stabilized this complex, forming a long lived preincision complex 2 (PIC2). The XPF.ERCC1 complex bound to PIC2, forming PIC3, which led to dual incisions and the release of the excised oligomer. With partially unwound DNAs, thymine cyclobutane dimer was excised at a fast rate independent of XPC.HHR23B, indicating that a major function of this protein is to stabilize the unwound DNA or to aid lesion unwinding in preincision complexes.
Collapse
Affiliation(s)
- D Mu
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | |
Collapse
|
170
|
Evans E, Moggs JG, Hwang JR, Egly JM, Wood RD. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J 1997; 16:6559-73. [PMID: 9351836 PMCID: PMC1170260 DOI: 10.1093/emboj/16.21.6559] [Citation(s) in RCA: 382] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During nucleotide excision repair in human cells, a damaged DNA strand is cleaved by two endonucleases, XPG on the 3' side of the lesion and ERCC1-XPF on the 5' side. These structure-specific enzymes act at junctions between duplex and single-stranded DNA. ATP-dependent formation of an open DNA structure of approximately 25 nt around the adduct precedes this dual incision. We investigated the mechanism of open complex formation and find that mutations in XPB or XPD, the DNA helicase subunits of the transcription and repair factor TFIIH, can completely prevent opening and dual incision in cell-free extracts. A deficiency in XPC protein also prevents opening. The absence of RPA, XPA or XPG activities leads to an intermediate level of strand separation. In contrast, XPF or ERCC1-defective extracts open normally and generate a 3' incision, but fail to form the 5' incision. This same repair defect was observed in extracts from human xeroderma pigmentosum cells with an alteration in the C-terminal domain of XPB, suggesting that XPB has an additional role in facilitating 5' incision by ERCC1-XPF nuclease. These data support a mechanism in which TFIIH-associated helicase activity and XPC protein catalyze initial formation of the key open intermediate, with full extension to the cleavage sites promoted by the other core nucleotide excision repair factors. Opening is followed by dual incision, with the 3' cleavage made first.
Collapse
Affiliation(s)
- E Evans
- Imperial Cancer Research Fund, Clare Hall Laboratories, Hertfordshire, UK
| | | | | | | | | |
Collapse
|
171
|
Gaillard PHL, Moggs JG, Roche DM, Quivy JP, Becker PB, Wood RD, Almouzni G. Initiation and bidirectional propagation of chromatin assembly from a target site for nucleotide excision repair. EMBO J 1997; 16:6281-9. [PMID: 9321407 PMCID: PMC1326312 DOI: 10.1093/emboj/16.20.6281] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To restore full genomic integrity in a eukaryotic cell, DNA repair processes have to be coordinated with the resetting of nucleosomal organization. We have established a cell-free system using Drosophila embryo extracts to investigate the mechanism linking de novo nucleosome formation to nucleotide excision repair (NER). Closed-circular DNA containing a uniquely placed cisplatin-DNA adduct was used to follow chromatin assembly specifically from a site of NER. Nucleosome formation was initiated from a target site for NER. The assembly of nucleosomes propagated bidirectionally, creating a regular nucleosomal array extending beyond the initiation site. Furthermore, this chromatin assembly was still effective when the repair synthesis step in the NER process was inhibited.
Collapse
|
172
|
Affiliation(s)
- R D Wood
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| |
Collapse
|
173
|
Nocentini S, Coin F, Saijo M, Tanaka K, Egly JM. DNA damage recognition by XPA protein promotes efficient recruitment of transcription factor II H. J Biol Chem 1997; 272:22991-4. [PMID: 9287294 DOI: 10.1074/jbc.272.37.22991] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The human basal transcription factor IIH (TFIIH) is an essential component of the nucleotide excision repair machinery. TFIIH is required for reaction steps concomitant with or prior to the formation of dual incisions in the damaged DNA strand. To understand the mechanism underlying the recruitment of TFIIH to DNA damage sites we have analyzed i) the direct affinity of TFIIH for damaged or undamaged DNA and ii) the interaction of TFIIH with XPA.DNA complexes, formed using unirradiated or UV-irradiated DNA. Filter binding assays showed that TFIIH has some affinity for the DNA, but in contrast to XPA, does not show any preference for UV-irradiated DNA. Pull-down experiments demonstrated that TFIIH binds to XPA.DNA complexes in an UV damage-dependent manner by a direct protein-protein interaction with XPA. We propose that an enhancement of the affinity of XPA protein for TFIIH could arise from conformational changes of XPA when it binds to UV lesions on the DNA.
Collapse
Affiliation(s)
- S Nocentini
- CNRS UMR 218 et LRC no. 1 du CEA, Institut Curie, Section de Recherche, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
174
|
Klungland A, Lindahl T. Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J 1997; 16:3341-8. [PMID: 9214649 PMCID: PMC1169950 DOI: 10.1093/emboj/16.11.3341] [Citation(s) in RCA: 581] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two forms of DNA base excision-repair (BER) have been observed: a 'short-patch' BER pathway involving replacement of one nucleotide and a 'long-patch' BER pathway with gap-filling of several nucleotides. The latter mode of repair has been investigated using human cell-free extracts or purified proteins. Correction of a regular abasic site in DNA mainly involves incorporation of a single nucleotide, whereas repair patches of two to six nucleotides in length were found after repair of a reduced or oxidized abasic site. Human AP endonuclease, DNA polymerase beta and a DNA ligase (either III or I) were sufficient for the repair of a regular AP site. In contrast, the structure-specific nuclease DNase IV (FEN1) was essential for repair of a reduced AP site, which occurred through the long-patch BER pathway. DNase IV was required for cleavage of a reaction intermediate generated by template strand displacement during gap-filling. XPG, a related nuclease, could not substitute for DNase IV. The long-patch BER pathway was largely dependent on DNA polymerase beta in cell extracts, but the reaction could be reconstituted with either DNA polymerase beta or delta. Efficient repair of gamma-ray-induced oxidized AP sites in plasmid DNA also required DNase IV. PCNA could promote the Pol beta-dependent long-patch pathway by stimulation of DNase IV.
Collapse
Affiliation(s)
- A Klungland
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire, UK
| | | |
Collapse
|
175
|
Abstract
The major DNA excision repair pathways of base excision repair for endogenous DNA lesions and nucleotide excision repair for DNA damage inflicted by ultraviolet light have been reconstructed with purified mammalian proteins and details of these repair mechanisms are emerging. Similar data are becoming available with regard to mismatch repair for correction of replication errors. Deletion of individual DNA repair proteins in knockout mice provides information on the roles of such factors in vivo and recent three-dimensional structures of several repair enzymes explain their detailed modes of action.
Collapse
Affiliation(s)
- T Lindahl
- Imperial Cancer Research Fund, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire, EN6 3LD, UK
| | | | | |
Collapse
|