151
|
Voet T, Vanneste E, Vermeesch JR. The human cleavage stage embryo is a cradle of chromosomal rearrangements. Cytogenet Genome Res 2011; 133:160-8. [PMID: 21311182 DOI: 10.1159/000324235] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The first cell cycles following in vitro fertilization (IVF) of human gametes are prone to chromosome instability. Many, but often not all, blastomeres of an embryo acquire a genetic makeup during cleavage that is not representative of the original zygotic genome. Whole chromosomes are missegregated, but also structural rearrangements of chromosomes do occur in human cleavage stage embryogenesis following IVF. Analysis of pre- and postnatal DNA samples indicates that the in vivo human conceptions also endure instability of chromosome number and structure during cleavage of the fertilized oocyte. This embryonic chromosome instability not necessarily undermines normal human development, but may lead to a spectrum of conditions, including loss of conception, genetic disease and genetic variation development. In this review, the structural instability of chromosomes during human cleavage stage embryogenesis is catalogued, channeled into etiologic models and linked to genomic profiles of healthy and diseased newborns.
Collapse
Affiliation(s)
- T Voet
- Center for Human Genetics, Katholieke Universiteit Leuven-UZ Gasthuisberg, Leuven, Belgium
| | | | | |
Collapse
|
152
|
Vanneste E, Melotte C, Voet T, Robberecht C, Debrock S, Pexsters A, Staessen C, Tomassetti C, Legius E, D'Hooghe T, Vermeesch JR. PGD for a complex chromosomal rearrangement by array comparative genomic hybridization. Hum Reprod 2011; 26:941-9. [PMID: 21292638 DOI: 10.1093/humrep/der004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Patients carrying a chromosomal rearrangement (CR) have an increased risk for chromosomally unbalanced conceptions. Preimplantation genetic diagnosis (PGD) may avoid the transfer of embryos carrying unbalanced rearrangements, therefore increasing the chance of pregnancy. Only 7-12 loci can be screened by fluorescence in situ hybridization whereas microarray technology can detect genome-wide imbalances at the single cell level. We performed PGD for a CR carrier with karyotype 46,XY,ins(3;2)(p23;q23q14.2),t(6;14)(p12.2;q13) using array comparative genomic hybridization. Selection of embryos for transfer was only based on copy number status of the chromosomes involved in both rearrangements. In two ICSI-PGD cycles, nine and seven embryos were analysed by array, leaving three and one embryo(s) suitable for transfer, respectively. The sensitivity and specificity of single cell arrays was 100 and 88.8%, respectively. In both cycles a single embryo was transferred, resulting in pregnancy following the second cycle. The embryo giving rise to the pregnancy was normal/balanced for the insertion and translocation but carried a trisomy 8 and nullisomy 9 in one of the two biopsied blastomeres. After 7 weeks of pregnancy the couple miscarried. Genetic analysis following hystero-embryoscopy showed a diploid (90%)/tetraploid (10%) mosaic chorion, while the gestational sac was empty. No chromosome 8 aneuploidy was detected in the chorion, while 8% of the cells carried a monosomy for chromosome 9. In summary, we demonstrate the feasibility and determine the accuracy of single cell array technology to test against transmission of the unbalanced meiotic products that can derive from CRs. Our findings also demonstrate that the genomic constitution of extra-embryonic tissue cannot necessarily be predicted from the copy number status of a single blastomere.
Collapse
Affiliation(s)
- E Vanneste
- Center for Human Genetics, UZ Gasthuisberg, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
First successful application of preimplantation genetic diagnosis and haplotyping for congenital hyperinsulinism. Reprod Biomed Online 2011; 22:72-9. [DOI: 10.1016/j.rbmo.2010.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 09/20/2010] [Accepted: 09/22/2010] [Indexed: 11/18/2022]
|
154
|
Gutiérrez-Mateo C, Colls P, Sánchez-García J, Escudero T, Prates R, Ketterson K, Wells D, Munné S. Validation of microarray comparative genomic hybridization for comprehensive chromosome analysis of embryos. Fertil Steril 2010; 95:953-8. [PMID: 20971462 DOI: 10.1016/j.fertnstert.2010.09.010] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/25/2010] [Accepted: 09/09/2010] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To validate and determine the best array-comparative genomic hybridization (aCGH; array-CGH) protocols for preimplantation genetic screening (PGS). DESIGN Embryos had one cell removed as a biopsy specimen and analyzed by one of two array-CGH protocols. Abnormal embryos were reanalyzed by fluorescence in situ hybridization (FISH). SETTING Reference laboratory. PATIENT(S) Patients donating embryos or undergoing PGS. INTERVENTION(S) Embryo biopsy, array-CGH, FISH reanalysis. MAIN OUTCOME MEASURE(S) Diagnosis, no result rate and error rate. RESULT(S) Method one produced 11.2% of embryos with no results and a 9.1% error rate compared with 3% and 1.9% for method two, respectively. Thereafter, only method two was used clinically. The aneuploidy rate for cleavage-stage embryos was 63.2%, significantly increasing with maternal age. The chromosomes most involved in aneuploidy were 16, 22, 21, and 15. We report the first live births after array-CGH combined with single blastomere biopsy. CONCLUSION(S) Array-CGH is proved to be highly robust (2.9% no results) and specific (1.9% error rate) when applied to rapid (24-hour) analysis of single cells biopsied from cleavage-stage embryos. This comprehensive chromosome analysis technique is the first to be validated by reanalyzing the same embryos with another technique (e.g., FISH). Unlike some alternative techniques for comprehensive chromosome screening, array-CGH does not require prior testing of parental DNA and thus advance planning and careful scheduling are unnecessary.
Collapse
|
155
|
Abstract
Preimplantation genetic diagnosis (PGD) involves testing of single cells biopsied from oocytes and/or embryos generated in vitro. As only embryos unaffected for a given genetic condition are transferred to the uterus, it avoids prenatal diagnosis and termination of pregnancy. Follow-up data from PGD pregnancies, deliveries and children show an acceptable live birth rate and, so far, no detrimental effects of the procedure have been observed. Of course, the long-term health outcome is currently unknown. PGD was first performed in 1990 and remained an experimental procedure for a number of years. Now, two decades later, it is regarded as an established alternative to prenatal diagnosis: its use has expanded, the range of applications has broadened, and continuous technical progress in single-cell testing has led to high levels of efficiency and accuracy. The current gold standard methods (single-cell multiplex-PCR for monogenic diseases and interphase fluorescence in situ hybridization for chromosomal aberrations) are being replaced by single-cell whole genome amplification and array technology. These generalized methods substantially reduce the pre-PGD workload and allow more automated genome-wide analysis. The implementation of laboratory accreditation schemes brings the field at the same level of routine diagnostics. This article reviews the state of the art and considers indications, accuracy and current technical changes in the field of PGD.
Collapse
Affiliation(s)
- Martine De Rycke
- Centre for Medical Genetics, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, Brussels, Belgium.
| |
Collapse
|
156
|
Srinivasan BS, Evans EA, Flannick J, Patterson AS, Chang CC, Pham T, Young S, Kaushal A, Lee J, Jacobson JL, Patrizio P. A universal carrier test for the long tail of Mendelian disease. Reprod Biomed Online 2010; 21:537-51. [PMID: 20729146 DOI: 10.1016/j.rbmo.2010.05.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/22/2010] [Accepted: 05/24/2010] [Indexed: 01/03/2023]
Abstract
Mendelian disorders are individually rare but collectively common, forming a 'long tail' of genetic disease. A single highly accurate assay for this long tail would allow the scaling up of the Jewish community's successful campaign of population screening for Tay-Sachs disease to the general population, thereby improving millions of lives, greatly benefiting minority health and saving billions of dollars. This need has been addressed by designing a universal carrier test: a non-invasive, saliva-based assay for more than 100 Mendelian diseases across all major population groups. The test has been exhaustively validated with a median of 147 positive and 525 negative samples per variant, demonstrating a multiplex assay whose performance compares favourably with the previous standard of care, namely blood-based single-gene carrier tests. Because the test represents a dramatic reduction in the cost and complexity of large-scale population screening, an end to many preventable genetic diseases is now in sight. Moreover, given that the assay is inexpensive and requires only a saliva sample, it is now increasingly feasible to make carrier testing a routine part of preconception care.
Collapse
|
157
|
Abstract
Preimplantation genetic diagnosis (PGD) should not be an option only for the few couples at risk of serious genetic conditions who can afford it. We appear to have lost sight of the original driving force behind the development of PGD, which is that most couples who carry a serious genetic disorder find it more acceptable to choose to conceive with healthy embryos tested in-vitro at preimplantation stages of development within the first week following fertilization, even if that means discarding those diagnosed as affected. It has been shown using cystic fibrosis as an example, that the cost savings to the US healthcare system of providing free IVF-PGD to all carrier couples compared to the lifetime costs of medical treatment for patients affected by this disease, run to dozens of billions of dollars. With the increasing emphasis in medicine on early diagnosis and prevention of disease together with the availability of new molecular genetic diagnostic tools, a national IVF-PGD programme seems to be the next step in modern health care.
Collapse
|
158
|
Johnson DS, Cinnioglu C, Ross R, Filby A, Gemelos G, Hill M, Ryan A, Smotrich D, Rabinowitz M, Murray MJ. Comprehensive analysis of karyotypic mosaicism between trophectoderm and inner cell mass. Mol Hum Reprod 2010; 16:944-9. [PMID: 20643877 PMCID: PMC2989828 DOI: 10.1093/molehr/gaq062] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aneuploidy has been well-documented in blastocyst embryos, but prior studies have been limited in scale and/or lack mechanistic data. We previously reported preclinical validation of microarray 24-chromosome preimplantation genetic screening in a 24-h protocol. The method diagnoses chromosome copy number, structural chromosome aberrations, parental source of aneuploidy and distinguishes certain meiotic from mitotic errors. In this study, our objective was to examine aneuploidy in human blastocysts and determine correspondence of karyotypes between trophectoderm (TE) and inner cell mass (ICM). We disaggregated 51 blastocysts from 17 couples into ICM and one or two TE fractions. The average maternal age was 31. Next, we ran 24-chromosome microarray molecular karyotyping on all of the samples, and then performed a retrospective analysis of the data. The average per-chromosome confidence was 99.95%. Approximately 80% of blastocysts were euploid. The majority of aneuploid embryos were simple aneuploid, i.e. one or two whole-chromosome imbalances. Structural chromosome aberrations, which are common in cleavage stage embryos, occurred in only three blastocysts (5.8%). All TE biopsies derived from the same embryos were concordant. Forty-nine of 51 (96.1%) ICM samples were concordant with TE biopsies derived from the same embryos. Discordance between TE and ICM occurred only in the two embryos with structural chromosome aberration. We conclude that TE karyotype is an excellent predictor of ICM karyotype. Discordance between TE and ICM occurred only in embryos with structural chromosome aberrations.
Collapse
Affiliation(s)
- D S Johnson
- Gene Security Network, Inc., 2686 Middlefield Road, Suite C, Redwood City, CA 94063, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Rubio C, Mercader A, Alama P, Lizan C, Rodrigo L, Labarta E, Melo M, Pellicer A, Remohi J. Prospective cohort study in high responder oocyte donors using two hormonal stimulation protocols: impact on embryo aneuploidy and development. Hum Reprod 2010; 25:2290-7. [DOI: 10.1093/humrep/deq174] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
160
|
Seli E, Robert C, Sirard MA. OMICS in assisted reproduction: possibilities and pitfalls. Mol Hum Reprod 2010; 16:513-30. [DOI: 10.1093/molehr/gaq041] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
161
|
Treff NR, Levy B, Su J, Northrop LE, Tao X, Scott RT. SNP microarray-based 24 chromosome aneuploidy screening is significantly more consistent than FISH. Mol Hum Reprod 2010; 16:583-9. [PMID: 20484246 PMCID: PMC2907219 DOI: 10.1093/molehr/gaq039] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Many studies estimate that chromosomal mosaicism within the cleavage-stage human embryo is high. However, comparison of two unique methods of aneuploidy screening of blastomeres within the same embryo has not been conducted and may indicate whether mosaicism has been overestimated due to technical inconsistency rather than the biological phenomena. The present study investigates the prevalence of chromosomal abnormality and mosaicism found with two different single cell aneuploidy screening techniques. Thirteen arrested cleavage-stage embryos were studied. Each was biopsied into individual cells (n = 160). The cells from each embryo were randomized into two groups. Those destined for FISH-based aneuploidy screening (n = 75) were fixed, one cell per slide. Cells for SNP microarray-based aneuploidy screening (n = 85) were put into individual tubes. Microarray was significantly more reliable (96%) than FISH (83%) for providing an interpretable result (P = 0.004). Markedly different results were obtained when comparing microarray and FISH results from individual embryos. Mosaicism was significantly less commonly observed by microarray (31%) than by FISH (100%) (P = 0.0005). Although FISH evaluated fewer chromosomes per cell and fewer cells per embryo, FISH still displayed significantly more unique genetic diagnoses per embryo (3.2 ± 0.2) than microarray (1.3 ± 0.2) (P < 0.0001). This is the first prospective, randomized, blinded and paired comparison between microarray and FISH-based aneuploidy screening. SNP microarray-based 24 chromosome aneuploidy screening provides more complete and consistent results than FISH. These results also suggest that FISH technology may overestimate the contribution of mitotic error to the origin of aneuploidy at the cleavage stage of human embryogenesis.
Collapse
Affiliation(s)
- Nathan R Treff
- Reproductive Medicine Associates of New Jersey, Morristown, NJ 07960, USA.
| | | | | | | | | | | |
Collapse
|
162
|
Northrop LE, Treff NR, Levy B, Scott RT. SNP microarray-based 24 chromosome aneuploidy screening demonstrates that cleavage-stage FISH poorly predicts aneuploidy in embryos that develop to morphologically normal blastocysts. Mol Hum Reprod 2010; 16:590-600. [PMID: 20479065 PMCID: PMC2907218 DOI: 10.1093/molehr/gaq037] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although selection of chromosomally normal embryos has the potential to improve outcomes for patients undergoing IVF, the clinical impact of aneuploidy screening by fluorescence in situ hybridization (FISH) has been controversial. There are many putative explanations including sampling error due to mosaicism, negative impact of biopsy, a lack of comprehensive chromosome screening, the possibility of embryo self-correction and poor predictive value of the technology itself. Direct analysis of the negative predictive value of FISH-based aneuploidy screening for an embryo's reproductive potential has not been performed. Although previous studies have found that cleavage-stage FISH is poorly predictive of aneuploidy in morphologically normal blastocysts, putative explanations have not been investigated. The present study used a single nucleotide polymorphism (SNP) microarray-based 24 chromosome aneuploidy screening technology to re-evaluate morphologically normal blastocysts that were diagnosed as aneuploid by FISH at the cleavage stage. Mosaicism and preferential segregation of aneuploidy to the trophectoderm (TE) were evaluated by characterization of multiple sections of the blastocyst. SNP microarray technology also provided the first opportunity to evaluate self-correction mechanisms involving extrusion or duplication of aneuploid chromosomes resulting in uniparental disomy (UPD). Of all blastocysts evaluated (n = 50), 58% were euploid in all sections despite an aneuploid FISH result. Aneuploid blastocysts displayed no evidence of preferential segregation of abnormalities to the TE. In addition, extrusion or duplication of aneuploid chromosomes resulting in UPD did not occur. These findings support the conclusion that cleavage-stage FISH technology is poorly predictive of aneuploidy in morphologically normal blastocysts.
Collapse
Affiliation(s)
- L E Northrop
- Reproductive Medicine Associates of New Jersey, Morristown, NJ 07960, USA
| | | | | | | |
Collapse
|
163
|
Tempest HG, Simpson JL. Role of Preimplantation Genetic Diagnosis (PGD) in Current Infertility Practice. ACTA ACUST UNITED AC 2010. [DOI: 10.5005/jp-journals-10016-1001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ABSTRACT
Chromosome imbalances are the leading cause of pregnancy loss in humans and play major roles in male and female infertility. Within the past two decades, the development and application of preimplantation genetic diagnosis (PGD) has played an important role in infertility practices worldwide. The purpose of this review is to discuss, how PGD may be applied in combating numerical chromosomal abnormalities and in Robertsonian and reciprocal chromosome translocations. We shall consider prevalence and risk of each aberration, interchromosomal effects and rationale behind use of PGD in each case. Numerical chromosome abnormalities (aneuploidy and polyploidy) in particular affect a very high proportion of preimplantation embryos (~ 50%). Given that a majority of preimplantation embryos are aneuploid, PGD can be used to screen embryos and transfer euploid embryos to improve pregnancy rates and reduce spontaneous abortions. The rationale of utilize PGD to transfer only euploid embryos would seem sound, but controversies exist surrounding application of PGD for aneuploidy detection. To this end, we will discuss the dichotomy between favorable descriptive reports and less favorable randomized clinical trial data. This review will discuss the trend towards differing sources of embryonic DNA (e.g. polar body vs blastomere vs blastocyst) as well as development of novel technologies for 24 chromosomes analysis.
Collapse
|