151
|
Wu Y, Xiao H, Pi J, Zhang H, Pan A, Pu Y, Liang Z, Shen J, Du J. EGFR promotes the proliferation of quail follicular granulosa cells through the MAPK/extracellular signal-regulated kinase (ERK) signaling pathway. Cell Cycle 2019; 18:2742-2756. [PMID: 31465245 DOI: 10.1080/15384101.2019.1656952] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Follicles develop into preovulatory follicles during folliculogenesis and the majority of small yellow follicles become atretic and gets reabsorbed. In this study, based the RNA-seq results of duck ovary, epidermal growth factor receptor (EGFR) was selected as a candidate gene in follicular development and the role was explored. The results demonstrated that EGFR-P8 was the quail EGFR core promoter. It had an E2F4 binding site within EGFR core promoter. E2F4 overexpression significantly increased EGFR expression in quail granulosa cells (GCs). However, the effect was abolished when the GCs were treated with corynoxeine, an inhibitor of the mitogen-activated protein kinase/extracellular regulated protein kinase (MAPK/ERK) signaling pathway. Moreover, luciferase reporter assay and chromatin immunoprecipitation experiments showed that E2F4 upregulated the expression of EGFR expression, which increased E2 and P4 production. In addition, EGFR regulated GCs proliferation and affected follicular development. Taken together, our findings suggested that EGFR, which was regulated by E2F4, enhanced the expression of MAPK/ERK pathway components and follicular development. These results provided an important basis for an improved understanding of the MAPK/ERK pathway and new insight into the development of quail follicles.
Collapse
Affiliation(s)
- Yan Wu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science , Wuhan , China.,Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province , Wuhan , China
| | - Hongwei Xiao
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science , Wuhan , China
| | - Jinsong Pi
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science , Wuhan , China
| | - Hao Zhang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science , Wuhan , China
| | - Ailuan Pan
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science , Wuhan , China
| | - Yuejin Pu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science , Wuhan , China
| | - Zhenhua Liang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science , Wuhan , China
| | - Jie Shen
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science , Wuhan , China
| | - Jinping Du
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science , Wuhan , China
| |
Collapse
|
152
|
Zhang T, Chen L, Han K, Zhang X, Zhang G, Dai G, Wang J, Xie K. Transcriptome analysis of ovary in relatively greater and lesser egg producing Jinghai Yellow Chicken. Anim Reprod Sci 2019; 208:106114. [PMID: 31405454 DOI: 10.1016/j.anireprosci.2019.106114] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 12/11/2022]
Abstract
Egg production is determined by the function of ovary and is regulated by the hypothalamic-pituitary-ovary axis. The mechanism by which the ovary regulates egg production, however, is still poorly understood. The purpose of this study is to compare the transcriptome difference in ovary of relatively greater and lesser egg producing chickens, and to screen candidate genes related to egg production. A RNA sequencing was performed to analyze and compare the mRNA in ovarian tissues of relatively greater and lesser egg producing chickens. A total of 4 431 new genes expressed in the chicken ovary were mined. There were 305 differentially expressed genes (DEGs) identified between the relatively greater and lesser egg producing hens. Gene ontology analysis identified five candidate genes related to egg production, including ZP2, WNT4, AMH, IGF1, and CYP17A1 genes. Tissue expression profiles indicated these five candidate genes were highly expressed in chicken ovarian tissues, indicating a potential role in regulating chicken ovarian function and egg production. The KEGG analysis indicated the neuroactive ligand-receptor interaction pathway might have an important function in regulation of egg production. In addition, four known pathways related to reproduction were detected, including the calcium signaling, wnt signaling pathway, focal adhesion, and cytokine-cytokine receptor interaction pathways. Results of the present study indicate gene expression differences in the ovarian tissues of relatively greater and lesser egg producing chickens, and identified five important candidate genes related to egg production, which provided a theoretical basis for improving egg production of Jinghai Yellow Chickens.
Collapse
Affiliation(s)
- Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, Yangzhou 225009, China; Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Jiangsu, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Eduction of China, Yangzhou University, China.
| | - Lan Chen
- College of Animal Science and Technology, Yangzhou University, Jiangsu, Yangzhou 225009, China; Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Jiangsu, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Eduction of China, Yangzhou University, China.
| | - Kunpeng Han
- College of Animal Science and Technology, Yangzhou University, Jiangsu, Yangzhou 225009, China; Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Jiangsu, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Eduction of China, Yangzhou University, China.
| | - Xiangqian Zhang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, Yangzhou 225009, China; Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Jiangsu, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Eduction of China, Yangzhou University, China.
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, Yangzhou 225009, China; Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Jiangsu, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Eduction of China, Yangzhou University, China.
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Jiangsu, Yangzhou 225009, China; Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Jiangsu, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Eduction of China, Yangzhou University, China.
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, Yangzhou 225009, China; Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Jiangsu, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Eduction of China, Yangzhou University, China.
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Jiangsu, Yangzhou 225009, China; Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Jiangsu, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Eduction of China, Yangzhou University, China.
| |
Collapse
|
153
|
Lv X, He C, Huang C, Wang H, Hua G, Wang Z, Zhou J, Chen X, Ma B, Timm BK, Maclin V, Dong J, Rueda BR, Davis JS, Wang C. Timely expression and activation of YAP1 in granulosa cells is essential for ovarian follicle development. FASEB J 2019; 33:10049-10064. [PMID: 31199671 DOI: 10.1096/fj.201900179rr] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although the role of the Hippo signaling pathway in development and tumorigenesis has been extensively studied in multiple organs, its role in ovarian follicle development remains largely unknown. Here, we report that Yes-Associated Protein 1 (YAP1), the major effector of Hippo signaling, is spatiotemporally expressed in ovarian granulosa cells and plays a critical role in the regulation of follicle development. We found that the active form of YAP1 (nuclear YAP1) was predominantly expressed in proliferative granulosa cells, whereas the inactive form of YAP1 (cytoplasmic YAP1) was mainly detected in luteal cells (terminally differentiated granulosa cells). Pharmacological inhibition of YAP1 activity disrupted mouse ovarian follicle development in vitro and in vivo. Foxl2 promoter-driven knockout of Yap1 in ovarian granulosa cells resulted in increased apoptosis of granulosa cells, decreased number of corpora lutea, reduced ovarian size, and subfertility in transgenic mice. However, Cyp19a1 promoter-driven knockout of Yap1 in differentiated granulosa cells of preovulatory follicles and luteal cells of corpora lutea had no effect on ovarian morphology and fertility. Mechanistic studies demonstrated that YAP1 interacted with epidermal growth factor receptor and TGF-β signaling pathways to regulate granulosa cell proliferation, differentiation, and survival. Results from this study identify YAP1 as a critical regulator of granulosa cell proliferation and differentiation. Balanced expression and activation of YAP1 is essential for follicle development and successful reproduction. YAP1 is a promising target for treatment of subfertility associated with abnormal granulosa cell function.-Lv, X., He, C., Huang, C., Wang, H., Hua, G., Wang, Z., Zhou, J., Chen, X., Ma, B., Timm, B. K., Maclin, V., Dong, J., Rueda, B. R., Davis, J. S., Wang, C. Timely expression and activation of YAP1 in granulosa cells is essential for ovarian follicle development.
Collapse
Affiliation(s)
- Xiangmin Lv
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital-Harvard Medical School, Boston, Massachusetts, USA.,Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Chunbo He
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital-Harvard Medical School, Boston, Massachusetts, USA.,Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska, USA.,College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Cong Huang
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital-Harvard Medical School, Boston, Massachusetts, USA
| | - Hongbo Wang
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital-Harvard Medical School, Boston, Massachusetts, USA.,Guangdong Province Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guohua Hua
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska, USA.,College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhengfeng Wang
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jin Zhou
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Obstetrics and Gynecology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Xingcheng Chen
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Bowen Ma
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Barbara K Timm
- Heartland Center for Reproductive Medicine, PC, Omaha, Nebraska, USA
| | - Victoria Maclin
- Heartland Center for Reproductive Medicine, PC, Omaha, Nebraska, USA
| | - Jixin Dong
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital-Harvard Medical School, Boston, Massachusetts, USA
| | - John S Davis
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Cheng Wang
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital-Harvard Medical School, Boston, Massachusetts, USA.,Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
154
|
Role of Major Endocannabinoid-Binding Receptors during Mouse Oocyte Maturation. Int J Mol Sci 2019; 20:ijms20122866. [PMID: 31212770 PMCID: PMC6627642 DOI: 10.3390/ijms20122866] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 01/02/2023] Open
Abstract
Endocannabinoids are key-players of female fertility and potential biomarkers of reproductive dysfunctions. Here, we investigated localization and expression of cannabinoid receptor type-1 and -2 (CB1R and CB2R), G-protein coupled receptor 55 (GPR55), and transient receptor potential vanilloid type 1 channel (TRPV1) in mouse oocytes collected at different stages of in vivo meiotic maturation (germinal vesicle, GV; metaphase I, MI; metaphase II, MII) through qPCR, confocal imaging, and western blot. Despite the significant decrease in CB1R, CB2R, and GPR55 mRNAs occurring from GV to MII, CB2R and GPR55 protein contents increased during the same period. At GV, only CB1R was localized in oolemma, but it completely disappeared at MI. TRPV1 was always undetectable. When oocytes were in vitro matured with CB1R and CB2R but not GPR55 antagonists, a significant delay of GV breakdown occurred, sustained by elevated intraoocyte cAMP concentration. Although CBRs antagonists did not affect polar body I emission or chromosome alignment, GPR55 antagonist impaired in ~75% of oocytes the formation of normal-sized MI and MII spindles. These findings open a new avenue to interrogate oocyte pathophysiology and offer potentially new targets for the therapy of reproductive alterations.
Collapse
|
155
|
Poulsen LLC, Englund ALM, Wissing MLM, Yding Andersen C, Borup R, Grøndahl ML. Human granulosa cells function as innate immune cells executing an inflammatory reaction during ovulation: a microarray analysis. Mol Cell Endocrinol 2019; 486:34-46. [PMID: 30802528 DOI: 10.1016/j.mce.2019.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/16/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
Abstract
Ovulation has been compared to a local inflammatory reaction. We performed an in silico study on a unique, PCR validated, transcriptome microarray study to evaluate if known inflammatory mechanisms operate during ovulation. The granulosa cells were obtained in paired samples at two different time points during ovulation (just before and 36 hours after ovulation induction) from nine women receiving fertility treatment. A total of 259 genes related to inflammation became significantly upregulated during ovulation (2-80 fold, p<0.05), while specific leukocyte markers were absent. The genes and pathway analysis indicated NF-KB-, MAPK- and JAK/STAT signalling (p<1.0E-10) as the major pathways involved in danger recognition and cytokine signalling to initiate inflammation. Upregulated genes further encoded enzymes in eicosanoid production, chemo-attractants, coagulation factors, cell proliferation factors involved in tissue repair, and anti-inflammatory factors to resolve the inflammation again. We conclude that granulosa cells, without involvement from the innate immune system, can orchestrate ovulation as a complete sterile inflammatory reaction.
Collapse
Affiliation(s)
- Liv la Cour Poulsen
- Zealand Fertility Clinic, Zealand University Hospital, Lykkebækvej 14, 4600, Køge, Denmark.
| | | | | | - Claus Yding Andersen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Rehannah Borup
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Marie Louise Grøndahl
- Herlev Fertility Clinic, University Hospital of Copenhagen, Herlev and Gentofte Hospital, Herlev Ringvej 75, 2730, Herlev, Denmark
| |
Collapse
|
156
|
Temporal expression pattern of steroid-metabolizing enzymes in bovine COC during in vitro maturation employing different gonadotropin concentrations. Theriogenology 2019; 131:182-192. [PMID: 30981973 DOI: 10.1016/j.theriogenology.2019.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/10/2019] [Accepted: 03/30/2019] [Indexed: 01/17/2023]
Abstract
Steroid hormones are regulators in the fine-tuned process of follicular development. During final maturation in vivo a switch from oestradiol (E2) to progesterone (P4) dominance within the follicle is well-described. This change is accompanied by the resumption of meiosis and results in the maturation of the oocyte. It also suggests the important role of these hormones. However, present in vitro maturation (IVM) systems do not completely mimic the in vivo situation, resulting in oocytes of reduced quality. Aim of the study was to determine the temporal pattern of steroid hormone concentrations in the IVM medium of bovine cumulus-oocyte-complexes (COC) at defined time points. The influence of different gonadotropin supplementations during IVM on oocyte maturation, as well as the molecular quality of the oocytes and their corresponding cumulus cells was investigated. COCs were obtained from abattoir-derived ovaries and matured in medium added with different compounds of gonadotropins (eCG/hCG; FSH/LH, each at 0.05 IU or 0.01 IU; only FSH; without gonadotropins) employing a standard protocol without oil overlay. In experiment 1, medium, oocytes and cumulus cells were collected at different time points (0 h [control], 4 h, 8 h, 12 h, 16 h, 20 h, 24 h) after IVM in just eCG/hCG-supplemented medium. In experiment 2, medium, oocytes and cumulus cells were collected at 0 h (control) and after 24 h of IVM with all above-named supplements. The E2 concentration remained similar during IVM whereas P4 concentration increased during experiment 1. No significant changes could be determined after the addition of different gonadotropins (experiment 2). These results suggest that during IVM the temporal pattern of E2 and P4 did not correspond with the pattern during final maturation in vivo. RT-qPCR was used to assess the relative abundance of developmentally important genes in oocytes (BMP15; GDF9; ZAR1; PGR; PGRMC1/2; G6PD; StAR; ESR1/2; SULT1E1; STS; SOAT) and cumulus cells (ESR1/2; FSHR; LHCGR; CYP19A1; HSD3B1; PGR; PGRMC1/2; SULT1E1; STS; SOAT) at all collection points in both experiments. Most transcripts follow a time-regulated mRNA expression pattern during the entire in vitro maturation period. In addition, the expression of the analyzed transcripts was not influenced by the different gonadotropin supplementations during the IVM period. In all, this underlines that present conditions of IVM do not reflect the in vivo situation and require further optimisation.
Collapse
|
157
|
Abstract
Neuregulin-1 (NRG1) has been shown to be associated with the regulation of inflammation and ovulation. The aim of this study was to investigate the relationship between serum NRG1 levels and various clinical and metabolic parameters in women with polycystic ovary syndrome (PCOS). This case-controlled study included 38 women with PCOS and 46 age and body mass index (BMI)-matched controls without PCOS. The serum NRG1 levels of the women with PCOS were found to be significantly lower compared to the control group. The high sensitivity C-reactive protein (hs-CRP) levels of the PCOS subjects were significantly higher than in the control group. The circulating NRG1 levels were negatively correlated with a homeostasis model assessment of insulin resistance (HOMA-IR) and the hs-CRP in the PCOS group. There is no significant correlation between the circulating NRG1 levels and the serum insulin in the PCOS group. There was a trend toward high NRG1 levels in the PCOS subjects with high BMI, but the difference failed to reach a statistical significance. Decreased NRG1 levels in PCOS subjects may be associated with insulin resistance and a low-grade chronic inflammation. Impact statement What is already known on this subject? Although there have been many studies related to NRG1, we could not find any study explaining the relationship between NRG1 and PCOS. This study provides first and novel insights into the relationship between serum NRG1 levels and the insulin resistance in women with PCOS. What do the results of this study add? A decline in the NRG1 levels in PCOS may be associated with insulin resistance and a low-grade chronic inflammation. What are the implications of these findings for clinical practice and/or further research? Decreased NRG1 levels may play an important role in the reproductive and endocrine properties of PCOS. We think that NRG1 research may be contribute to the clarification of PCOS pathophysiology. Future research investigating NRG1 levels in obese and non-obese cases, as well as in ovulatory and anovulatory PCOS patients, will make a significant contribution to the resolution of the mystery under PCOS aetiology.
Collapse
Affiliation(s)
- Haldun Arpacı
- a Department of Obstetrics and Gynecology, School of Medicine , Kafkas University , Kars , Turkey
| |
Collapse
|
158
|
Broekmans FJ. Individualization of FSH Doses in Assisted Reproduction: Facts and Fiction. Front Endocrinol (Lausanne) 2019; 10:181. [PMID: 31080437 PMCID: PMC6497745 DOI: 10.3389/fendo.2019.00181] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/04/2019] [Indexed: 11/30/2022] Open
Abstract
The art of ovarian stimulation for IVF/ICSI treatment using exogenous FSH should be balanced against the relative contribution of other steps of the ART process such as the IVF-lab-phase and the Embryo-Transfer. The aim of ovarian stimulation is to obtain a certain number of oocytes, that will enable the best probability of achieving a live birth. It has been suggested that more oocytes will create a better prospect for pregnancy, but studies on the question whether the retrieval of a few oocytes less or more will make the difference are not clearly supportive for this mantra. Personalization strategies have been the subject of many studies over the past 20 years. Creating the optimal response in a patient in terms of live birth prognosis as well as OHSS risks may be based on information from the Ovarian Reserve testing using the Antral Follicle Count or Anti-Mullerian Hormone, the patient's bodyweight, the ovarian response in a previous cycle, and the dosage level of FSH. Taken together, steering the ovarian response into a supposed optimal range may appear difficult as the interrelation for each of these factors with the egg number is weak. Using OR testing for choosing FSH dosage, compared to a standard normal dosage of 150 IU, has been studied in several trials. Dosage individualization, in general, does not appear to improve the prospects for live birth, but the reduction in OHSS risk may be substantial. This implies that the use of high dosages of FSH in predicted LOW responders lacks any cost-benefit for the patient and may be abandoned, while in predicted HIGH responders, reduction of the usual dosage level of 150 IU may create better safety, provided that in case of an unexpected LOW response cancelation of the cycle is refrained from. In view of recent developments in using GnRH agonist triggering of final oocyte maturation, the trend could be that with the Antagonist co-medication system and a standard dosage of 150 IU of FSH, prior ovarian reserve testing may become futile, as safety can be managed well in actual HIGH responders by replacing the high dose hCG trigger.
Collapse
|
159
|
Son WY, Henderson S, Cohen Y, Dahan M, Buckett W. Immature Oocyte for Fertility Preservation. Front Endocrinol (Lausanne) 2019; 10:464. [PMID: 31379739 PMCID: PMC6650526 DOI: 10.3389/fendo.2019.00464] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022] Open
Abstract
In vitro maturation (IVM) of human immature oocytes has been offered to women who are at risk of developing ovarian hyperstimulation syndrome (OHSS) caused by gonadotropin stimulation, such as PCO(S) patients or who have poor ovarian reserve. Cryopreservation of oocytes matured in vivo obtained in IVF cycles has improved after implementing the vitrification method and many successful results have been reported. Now, this procedure can be successfully offered to fertility preservation programs for patients who are in danger of losing their ovarian function due to medical or social reasons, and to oocyte donation programs. This vitrification technique has also been applied to cryopreserve oocytes obtained from IVM program. Some advantages of oocytes vitrification related with IVM are: (1) eliminating costly drugs and frequent monitoring; (2) completing treatment within 2 to 10 days (3) avoiding the use of hormones in cancer patients with hormone-sensitive tumors; and (4) retrieving oocytes at any point in menstrual cycle, even in the luteal phase. In addition, immature oocytes can also be collected from extracorporeal ovarian biopsy specimens or ovaries during caesarian section. Theoretically, there are two possible approaches for preserving immature oocytes: oocyte cryopreservation at the mature stage (after IVM) and oocyte cryopreservation at the Germinal Vesicle (GV)-stage (before IVM). Both vitrification of immature oocyte before/after IVM is not currently satisfactory. Nevertheless, many IVF centers worldwide are doing IVM oocyte cryopreservation as one of the options to preserve fertility for female cancer. Therefore, more studies are urgently required to improve IVM- and vitrification method to successfully preserve oocytes collected from cancer patients. In this review, present oocyte maturation mechanisms and recent progress of human IVM cycles will be discussed first, followed by some studies of the vitrification of human IVM oocyte.
Collapse
|
160
|
Eichenlaub-Ritter U. Weibliche Keimzellentwicklung. GYNAKOLOGISCHE ENDOKRINOLOGIE 2018. [DOI: 10.1007/s10304-018-0210-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
161
|
Jafarzadeh H, Nazarian H, Ghaffari Novin M, Shams Mofarahe Z, Eini F, Piryaei A. Improvement of oocyte in vitro maturation from mice with polycystic ovary syndrome by human mesenchymal stromal cell-conditioned media. J Cell Biochem 2018; 119:10365-10375. [PMID: 30171726 DOI: 10.1002/jcb.27380] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/03/2018] [Indexed: 12/15/2022]
Abstract
The outcome of in vitro maturation (IVM) in the patients with polycystic ovary syndrome (PCOS) is poor. Abnormal intraovarian paracrine interplay alters microenvironment for oocyte development through folliculogenesis and decreases developmental competence of oocytes in patients with PCOS. Mesenchymal stromal cells (MSCs) secrete a variety of cytokines and growth factors that could promote oocyte maturation in vitro. Thus, in the current study we aimed to evaluate the effect of human bone marrow MSC-conditioned media (hBM-MSC-CM), as a supplement, to enrich IVM medium for PCOS germinal vesicles (GVs). For this purpose, oocytes at GV and metaphase II (MII) stages were harvested from PCOS mice. The GVs were randomly divided into four groups and incubated for 24 hours in an IVM medium (TCM199, as the control group) or TCM199 supplemented by 25%, 50%, and 75% of hBM-MSC-CM (PCOS-CM25, PCOS-CM50, and PCOS-CM75 groups, respectively) so as to evaluate which dose(s) could enhance maturation rate of the GVs and their subsequent in vitro fertilization (IVF) outcome. Furthermore, MII oocytes and their subsequent IVF outcome were considered as the in vivo matured (PCOS-IVO) group. The data showed that supplementation of IVM medium with 50% hBM-MSC-CM significantly increased cytoplasmic and nuclear maturation of the GVs (P < 0.001), and also fertilization and two-cell rate (P < 0.001) and blastocyst formation (P < 0.01) of in vitro matured oocytes from mice with PCOS. Overall, higher oocyte maturation and fertilization outcome in PCOS-CM50 group proposed that enrichment of IVM medium with hBM-MSC-CM could be considered as a promising approach to improve IVM of PCOS oocytes.
Collapse
Affiliation(s)
- Hamideh Jafarzadeh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Infertility and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shams Mofarahe
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Eini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Fertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
162
|
Nuttinck F. Oocyte related factors impacting on embryo quality: relevance for in vitro embryo production. Anim Reprod 2018; 15:271-277. [PMID: 34178150 PMCID: PMC8202467 DOI: 10.21451/1984-3143-ar2018-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The outcome of pregnancy is closely linked to early events that occur during the onset of embryogenesis.
The first stages in embryonic development are mainly governed by the storage of maternal factors
present in the oocyte at the time of fertilisation. In this review, we outline the different
classes of oocyte transcripts that may be involved in activation of the embryonic genome as
well as those associated with epigenetic reprogramming, imprinting maintenance or the control
of transposon mobilisation during preimplantation development. We also report the influence
of cumulus-oocyte crosstalk during the maturation process on the oocyte transcriptome and
how in vitro procedures can affect these interactions.
Collapse
|
163
|
Xie Y, Wu B, Jin Y, Zhang A, Sun X, Zhang X, Gao X, Dong R, Li H, Gao J. Oocyte-specific deletion of G sα induces oxidative stress and deteriorates oocyte quality in mice. Exp Cell Res 2018; 370:579-590. [PMID: 30026030 DOI: 10.1016/j.yexcr.2018.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/29/2022]
Abstract
The stimulatory heterotrimeric Gs protein alpha subunit (Gsα) is a ubiquitous guanine nucleotide-binding protein that regulates the intracellular cAMP signaling pathway and consequently participates in a wide range of biological events. In the reproductive system, despite Gsα being associated with oocyte meiotic arrest in vitro, the exact role of Gsα in female fertility in vivo remains largely unknown. Here, we generated oocyte-specific Gsα knockout mice by using the Cre/LoxP system. We observed that the deletion of Gsα caused complete female infertility. Exclusion of post-implantation abnormalities, oogenesis, fertilization, and early embryo development was subsequently monitored; meiosis in Gsα-deficient oocytes precociously resumed in only 43% of antral follicles from mutant mice, indicating that alteration of meiotic pause was not the key factor in infertility. Ovulation process and number were normal, but the rate of morphological abnormal oocytes was apparently increased; spindle organization, fertilization, and early embryo development were impaired. Furthermore, the level of ROS (reactive oxygen species) and the mitochondrial aggregation increased, and antioxidant glutathione (GSH) content, ATP level, mtDNA copy number, and mitochondrial membrane potential decreased in Gsα-deficient oocytes. GV oocytes from mutant mice showed early-stage apoptosis. Meanwhile, the Gsα knockout-induced decline in oocyte quality and low developmental potential was partially rescued by antioxidant supplementation. To sum up, our results are the first to reveal that the profile of Gsα oocyte-specific deletion caused female infertility in vivo, and oxidative stress plays an important role in this event.
Collapse
Affiliation(s)
- Yue Xie
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China
| | - Bin Wu
- Reproductive Medicine Department, Jinan Central Hospital Affiliated to Shandong University, Jinan 250100, PR China
| | - Yecheng Jin
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China
| | - Aizhen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China
| | - Xiaoyang Sun
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China
| | - Xinyan Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China
| | - Xiaotong Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China
| | - Ran Dong
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China
| | - Huashun Li
- SARITEX Center for Stem Cell, Engineering Translational Medicine, Shanghai East Hospital, Advanced Institute of Translational Medicine, Tongji University School of Medicine, Shanghai 200123, PR China; Center for Stem Cell&Nano-Medicine, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 200123, PR China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
164
|
Castillo J, Jodar M, Oliva R. The contribution of human sperm proteins to the development and epigenome of the preimplantation embryo. Hum Reprod Update 2018; 24:535-555. [DOI: 10.1093/humupd/dmy017] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/25/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Judit Castillo
- Molecular Biology of Reproduction and Development Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Faculty of Medicine, University of Barcelona, Casanova, Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Faculty of Medicine, University of Barcelona, Casanova, Barcelona, Spain
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Faculty of Medicine, University of Barcelona, Casanova, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic, Villarroel, Barcelona, Spain
| |
Collapse
|
165
|
Sugimura S, Yamanouchi T, Palmerini MG, Hashiyada Y, Imai K, Gilchrist RB. Effect of pre-in vitro maturation with cAMP modulators on the acquisition of oocyte developmental competence in cattle. J Reprod Dev 2018; 64:233-241. [PMID: 29503399 PMCID: PMC6021610 DOI: 10.1262/jrd.2018-009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The administration of follicle-stimulating hormone (FSH) prior to oocyte retrieval improves oocyte developmental competence. During bovine embryo production in vitro,
however, oocytes are typically derived from FSH-unprimed animals. In the current study, we examined the effect of pre-in vitro maturation (IVM) with cAMP modulators, also
known as the second messengers of FSH, on the developmental competence of oocytes derived from small antral follicles (2–4 mm) of FSH-unprimed animals. Pre-IVM with
N6,2ʹ-O-dibutyryladenosine 3′,5′-cyclicmonophosphate (dbcAMP) and 3-isobutyl-1-methylxanthine (IBMX) for 2 h improved the blastocyst formation in oocytes stimulated by FSH or amphiregulin
(AREG). Furthermore, pre-IVM enhanced the expression of the FSH- or AREG-stimulated extracellular matrix-related genes HAS2, TNFAIP6, and
PTGS2, and epidermal growth factor (EGF)-like peptide-related genes AREG and EREG. Additionally, pre-IVM with dbcAMP and IBMX enhanced
the expression of EGFR, and also increased and prolonged cumulus cell-oocyte gap junctional communication. The improved oocyte development observed using the pre-IVM
protocol was ablated by an EGF receptor phosphorylation inhibitor. These results indicate that pre-IVM with cAMP modulators could contribute to the acquisition of developmental competence by
bovine oocytes from small antral follicles through the modulation of EGF receptor signaling and oocyte-cumulus/cumulus-cumulus gap junctional communication.
Collapse
Affiliation(s)
- Satoshi Sugimura
- Department of Biological Production, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | | | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | | | - Kei Imai
- Department of Sustainable Agriculture, Rakuno Gakuen University, Hokkaido 069-8501, Japan
| | - Robert B Gilchrist
- Discipline of Obstetrics & Gynaecology, School of Women's & Children's Health, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|