151
|
Petrokilidou C, Pavlou E, Gaitanis G, Bassukas ID, Saridomichelakis MN, Velegraki A, Kourkoumelis N. The lipid profile of three Malassezia species assessed by Raman spectroscopy and discriminant analysis. Mol Cell Probes 2019; 46:101416. [PMID: 31247316 DOI: 10.1016/j.mcp.2019.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 11/27/2022]
Abstract
Malassezia yeasts constitute the major eukaryotic cutaneous flora of homoeothermic vertebrates. These lipophilic yeasts are able to cause, trigger, or aggravate common skin diseases under favorable conditions. Species identification and subspecies differentiation is currently based on morphological characteristics, lipid assimilation profile, and molecular tests. Mass spectrometry has been also reported as a reliable, yet costly and labor-intensive, method to classify Malassezia yeasts. Here, we introduce Raman spectroscopy as a new molecular technique able to differentiate three phylogenetically close Malassezia species (M.globosa, M.pachydermatis, and M.sympodialis) by examining their lipid metabolic profile. Using Raman spectroscopy, lipid fingerprints of Malassezia cultures on Leeming-Notman agar, were analyzed by spectral bands assignment and partial least squares discriminant analysis. Our results demonstrate differential utilization of lipid supplements among these three species and the ability of Raman spectroscopy to rapidly and accurately discriminate them by predictive modelling.
Collapse
Affiliation(s)
- Chrysoula Petrokilidou
- Faculty of Medicine, Department Medical Physics, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Eleftherios Pavlou
- Faculty of Medicine, Department Medical Physics, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Georgios Gaitanis
- Faculty of Medicine, Department of Skin and Venereal Diseases, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Ioannis D Bassukas
- Faculty of Medicine, Department of Skin and Venereal Diseases, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Manolis N Saridomichelakis
- Clinic of Medicine, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - Aristea Velegraki
- Microbiology Department, Mycology Research Laboratory & UOA/HCPF Culture Collection, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kourkoumelis
- Faculty of Medicine, Department Medical Physics, School of Health Sciences, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
152
|
Mycoses in northeastern Brazil: epidemiology and prevalence of fungal species in 8 years of retrospective analysis in Alagoas. Braz J Microbiol 2019; 50:969-978. [PMID: 31140098 DOI: 10.1007/s42770-019-00096-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Superficial and cutaneous mycoses are common in tropical countries, caused by dermatophytes, yeast, and non-dermatophyte molds in different clinical specimens. In order to define the epidemiology of mycoses and the profile of their etiological agents in Alagoas (northeastern Brazil) between 2009 and 2016, we obtained data of patients from the main laboratories of Alagoas, by examining clinical samples with direct microscopy and culture on Sabouraud dextrose agar and Chromagar®Candida. A total of 3316 patients were confirmed with mycoses (595 men/2716 women) and 40.25 of average age. Positive samples totaled 3776, mainly vaginal secretion (1593/42.2%), toenails (876/23.2%), and fingernails (589/15.6%). Yeasts were the most isolated (3129/82.9%), including 3012 Candida spp. (79.8%), 57 Malassezia spp. (1.5%), 42 Trichosporon sp. (1.1%), 10 Geotrichum spp. (0.3%), and 8 Rhodotorula spp. (0.2%). Candida albicans was the most frequent species (715/18.9%), followed by C. krusei (194/5.1%), C. tropicalis (24/0.6%), and 2079 unspecified species (55.1%). Among 17.1% filamentous fungi, 14.8% dermatophytes were distributed as 211 Trichophyton sp. (5.6%), 125 T. rubrum (3.3%), 106 T. tonsurans (2.8%), 72 T. mentagrophytes (1.9%), 2 Microsporum sp. (0.1%), 15 M. canis (0.4%), and 26 Epidermophyton sp. (0.7%). Other fungi represented the minority: Fusarium sp. and Aspergillus sp. These are the first clinical data on the Alagoas population affected by fungi pathogens, confirming a higher incidence of candidiasis (mainly vulvovaginal and onychomycosis) and dermatophytes, providing a better understanding of different mycoses in northeastern Brazil.
Collapse
|
153
|
Kellermayer R. Fecal microbiota transplantation: great potential with many challenges. Transl Gastroenterol Hepatol 2019; 4:40. [PMID: 31231707 DOI: 10.21037/tgh.2019.05.10] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/17/2022] Open
Abstract
In January of 2019, Samuel P. Costello and colleagues published a wonderfully executed, double blind placebo-controlled trial on fecal microbiota transplantation (FMT) versus autologous stool as placebo in mild to moderately active adult ulcerative colitis [UC: one type of inflammatory bowel disease (IBD)] patients. This review-commentary examines the current state of knowledge on human gut microbiome (live microbiota + their products and surrounding environment, i.e., fecal matter) and microbial therapeutics from a gastrointestinal (GI) clinician's standpoint. The varied forms of dysbiosis as the target of FMT, recipient donor and placebo considerations are also discussed in respect to randomized control trials in IBD [and the lack thereof in Crohn's disease (CD)] with this unconventional treatment modality.
Collapse
Affiliation(s)
- Richard Kellermayer
- Section of Pediatric Gastroenterology, Texas Children's Hospital Baylor College of Medicine, Houston, TX, USA.,USDA/ARS Children's Nutrition Research Center, Houston, TX, USA
| |
Collapse
|
154
|
Jones EBG, Pang KL, Abdel-Wahab MA, Scholz B, Hyde KD, Boekhout T, Ebel R, Rateb ME, Henderson L, Sakayaroj J, Suetrong S, Dayarathne MC, Kumar V, Raghukumar S, Sridhar KR, Bahkali AHA, Gleason FH, Norphanphoun C. An online resource for marine fungi. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00426-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
155
|
Gaitanis G, Magiatis P, Mexia N, Melliou E, Efstratiou MA, Bassukas ID, Velegraki A. Antifungal activity of selected
Malassezia
indolic compounds detected in culture. Mycoses 2019; 62:597-603. [DOI: 10.1111/myc.12893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/28/2018] [Accepted: 01/06/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Georgios Gaitanis
- Faculty of MedicineDepartment of Skin and Venereal DiseasesSchool of Health SciencesUniversity of Ioannina Ioannina Greece
| | - Prokopios Magiatis
- Faculty of PharmacyDepartment of Pharmacognosy and Natural Products ChemistryNational and Kapodistrian University of Athens Athens Greece
| | - Nikitia Mexia
- Faculty of PharmacyDepartment of Pharmacognosy and Natural Products ChemistryNational and Kapodistrian University of Athens Athens Greece
| | - Eleni Melliou
- Faculty of PharmacyDepartment of Pharmacognosy and Natural Products ChemistryNational and Kapodistrian University of Athens Athens Greece
| | | | - Ioannis D. Bassukas
- Faculty of MedicineDepartment of Skin and Venereal DiseasesSchool of Health SciencesUniversity of Ioannina Ioannina Greece
| | - Aristea Velegraki
- Mycology Research Laboratory and UOA/HCPF Culture CollectionDepartment of MicrobiologyMedical SchoolNational and Kapodistrian University of Athens Athens Greece
- Bioiatriki SA Athens Greece
| |
Collapse
|
156
|
Interleukin-17 in Antifungal Immunity. Pathogens 2019; 8:pathogens8020054. [PMID: 31013616 PMCID: PMC6630750 DOI: 10.3390/pathogens8020054] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 11/17/2022] Open
Abstract
The field of IL-17 biology has received much attention over the last decade owing to the pathogenic role of this cytokine in psoriasis and other autoinflammatory disorders and the successful implementation of IL-17-targeting therapies in patients suffering from these diseases. IL-17-mediated pathologies are contrasted by the important host beneficial effects of this cytokine. IL-17 is essential for regulating microbial colonization in barrier tissues. Rare congenital defects in the IL-17 pathway exemplify the relevance of IL-17 in protective immunity against the opportunistic fungal pathogen C. albicans. However, more recently, evidence is accumulating that IL-17 can also provide protection against fungi other than C. albicans. Importantly, protective IL-17 responses directed against commensal fungi can, under certain conditions, promote inflammation with detrimental consequences for the host, thereby assigning fungi a new role as disease-promoting factors apart from their role as potential infectious agents.
Collapse
|
157
|
Neutral Processes Drive Seasonal Assembly of the Skin Mycobiome. mSystems 2019; 4:mSystems00004-19. [PMID: 30944878 PMCID: PMC6435813 DOI: 10.1128/msystems.00004-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/06/2019] [Indexed: 11/20/2022] Open
Abstract
The importance of microorganisms to human skin health has led to a growing interest in the temporal stability of skin microbiota. Here we investigated the dynamics and assembly of skin fungal communities (mycobiomes) with amplicon sequencing of samples collected from multiple sites on 24 healthy Chinese individuals across four seasons (in the order of winter, spring, summer, and autumn in a calendar year). We found a significant difference in community compositions between individuals, and intrapersonal community variation increased over time at all body sites. Within each season, the frequency of occurrence of most operational taxonomic units (OTUs) was well fitted by a neutral model, highlighting the importance of stochastic forces such as passive dispersal and ecological drift in skin community assembly. Despite the significant richness contributed by neutrally distributed OTUs, skin coassociation networks were dominated by taxa well-adapted to multiple body sites (forehead, forearm, and palm), although hub species were disproportionately rare. Taken together, these results suggest that while skin mycobiome assembly is a predominantly neutral process, taxa that could be under the influence of selective forces (e.g., host selection) are potentially key to the structure of a community network. IMPORTANCE Fungi are well recognized members of the human skin microbiota and are crucial to cutaneous health. Common cutaneous diseases such as seborrheic dermatitis and dermatophytes are linked to fungal species. Most studies related to skin microbial community dynamics have focused on Western subjects, while non-Western individuals are understudied. In this study, we explore the seasonal changes of the skin mycobiome in a healthy Chinese cohort and identify ecological processes that could possibly give rise to such variations. Our work reveals the dynamic nature of host skin fungal community, highlighting the dominant roles neutral forces play in the seasonal assembly of skin mycobiome. This study provides insight into the microbial ecology of the human skin microbiome and fills a knowledge gap in the literature regarding the dynamics of skin fungal community.
Collapse
|
158
|
Complete Genome Sequence of Malassezia restricta CBS 7877, an Opportunist Pathogen Involved in Dandruff and Seborrheic Dermatitis. Microbiol Resour Announc 2019; 8:MRA01543-18. [PMID: 30746521 PMCID: PMC6368656 DOI: 10.1128/mra.01543-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
Malassezia restricta, one of the predominant basidiomycetous yeasts present on human skin, is involved in scalp disorders. Here, we report the complete genome sequence of the lipophilic Malassezia restricta CBS 7877 strain, which will facilitate the study of the mechanisms underlying its commensal and pathogenic roles within the skin microbiome.
Collapse
|
159
|
|
160
|
Gaitanis G, Magiatis P, Velegraki A, Bassukas ID. A traditional Chinese remedy points to a natural skin habitat: indirubin (indigo naturalis) for psoriasis and the Malassezia metabolome. Br J Dermatol 2018; 179:800. [PMID: 29791716 DOI: 10.1111/bjd.16807] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- G Gaitanis
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45100, Greece
| | - P Magiatis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Athens, 11527, Greece
| | - A Velegraki
- Mycology Research Laboratory and UOA/HCPF, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece.,Biomedicine SA, Athens, 11526, Greece
| | - I D Bassukas
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45100, Greece
| |
Collapse
|