151
|
Abstract
Recently articles have been published disputing the main finding of the ENCODE project that the majority of the human genome exhibits biochemical indices of function, based primarily on low sequence conservation and the existence of larger genomes in some ostensibly simpler organisms (the C-value enigma), indicating the likely presence of significant amounts of junk. Here we challenge these arguments, showing that conservation is a relative measure based on circular assumptions of the non-functionality of transposon-derived sequences and uncertain comparison sets, and that regulatory sequence evolution is subject to different and much more plastic structure-function constraints than protein-coding sequences, as well as positive selection for adaptive radiation. We also show that polyploidy accounts for the higher than expected genome sizes in some eukaryotes, compounded by variable levels of repetitive sequences of unknown significance. We argue that the extent of precise dynamic and differential cell- and tissue-specific transcription and splicing observed from the majority of the human genome is a more reliable indicator of genetic function than conservation, although the unexpectedly large amount of regulatory RNA presents a conceptual challenge to the traditional protein-centric view of human genetic programming. Finally, we suggest that resistance to these findings is further motivated in some quarters by the use of the dubious concept of junk DNA as evidence against intelligent design.
Collapse
|
152
|
Zhao X, Li H, Bao T. Analysis on the interaction between post-spliced introns and corresponding protein coding sequences in ribosomal protein genes. J Theor Biol 2013; 328:33-42. [DOI: 10.1016/j.jtbi.2013.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 03/01/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
|
153
|
Cheetham SW, Gruhl F, Mattick JS, Dinger ME. Long noncoding RNAs and the genetics of cancer. Br J Cancer 2013; 108:2419-25. [PMID: 23660942 PMCID: PMC3694235 DOI: 10.1038/bjc.2013.233] [Citation(s) in RCA: 607] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/03/2013] [Accepted: 04/11/2013] [Indexed: 02/07/2023] Open
Abstract
Cancer is a disease of aberrant gene expression. While the genetic causes of cancer have been intensively studied, it is becoming evident that a large proportion of cancer susceptibility cannot be attributed to variation in protein-coding sequences. This is highlighted by genome-wide association studies in cancer that reveal that more than 80% of cancer-associated SNPs occur in noncoding regions of the genome. In this review, we posit that a significant fraction of the genetic aetiology of cancer is exacted by noncoding regulatory sequences, particularly by long noncoding RNAs (lncRNAs). Recent studies indicate that several cancer risk loci are transcribed into lncRNAs and these transcripts play key roles in tumorigenesis. We discuss the epigenetic and other mechanisms through which lncRNAs function and how they contribute to each stage of cancer progression, understanding of which will be crucial for realising new opportunities in cancer diagnosis and treatment. Long noncoding RNAs play important roles in almost every aspect of cell biology from nuclear organisation and epigenetic regulation to post-transcriptional regulation and splicing, and we link these processes to the hallmarks and genetics of cancer. Finally, we highlight recent progress and future potential in the application of lncRNAs as therapeutic targets and diagnostic markers.
Collapse
Affiliation(s)
- S W Cheetham
- University of Queensland Diamantina Institute, R-Wing, Princess Alexandra Hospital, Ipswich Road, Wolloongabba, QLD 4102, Australia
| | - F Gruhl
- University of Queensland Diamantina Institute, R-Wing, Princess Alexandra Hospital, Ipswich Road, Wolloongabba, QLD 4102, Australia
| | - J S Mattick
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - M E Dinger
- University of Queensland Diamantina Institute, R-Wing, Princess Alexandra Hospital, Ipswich Road, Wolloongabba, QLD 4102, Australia
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
154
|
Abstract
Neuroblastoma is, at once, the most common and deadly extracranial solid tumor of childhood. Efforts aimed at targeting the neural characteristics of these tumors have taught us much about neural crest cell biology, apoptosis induction in the nervous system, and neurotrophin receptor signaling and intracellular processing. But neuroblastoma remains a formidable enemy to the oncologist and an enigmatic target to the neuroscientist.
Collapse
Affiliation(s)
- Nina F Schor
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
155
|
Zhang L, Li X, Zhao R. Structural analyses of the pre-mRNA splicing machinery. Protein Sci 2013; 22:677-92. [PMID: 23592432 DOI: 10.1002/pro.2266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 01/03/2023]
Abstract
Pre-mRNA splicing is a critical event in the gene expression pathway of all eukaryotes. The splicing reaction is catalyzed by the spliceosome, a huge protein-RNA complex that contains five snRNAs and hundreds of different protein factors. Understanding the structure of this large molecular machinery is critical for understanding its function. Although the highly dynamic nature of the spliceosome, in both composition and conformation, posed daunting challenges to structural studies, there has been significant recent progress on structural analyses of the splicing machinery, using electron microscopy, crystallography, and nuclear magnetic resonance. This review discusses key recent findings in the structural analyses of the spliceosome and its components and how these findings advance our understanding of the function of the splicing machinery.
Collapse
Affiliation(s)
- Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
156
|
Zhang K, Zhou B, Shi S, Song Y, Zhang L. Variations in the PDCD6 gene are associated with increased uterine leiomyoma risk in the Chinese. Genet Test Mol Biomarkers 2013; 17:524-8. [PMID: 23551056 DOI: 10.1089/gtmb.2012.0461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Programmed cell death 6 (PDCD6) participates in T cell receptor, Fas, and glucocorticoid-induced programmed cell death. To test the relationship between PDCD6 polymorphisms and uterine leiomyomas (UL) risk, we investigated the association of two SNPs (rs4957014 and rs3756712) in PDCD6 with UL risk in a case-control study of 295 unrelated premenopausal UL patients and 436 healthy postmenopausal control subjects in a population of China. Genotypes of the two SNPs were determined with the use of PCR-restriction fragment length polymorphism assay. Significantly increased UL risks were found to be associated with the T allele of rs4957014 and the T allele of rs3756712 (p=0.016, odds ratio [OR]=1.325, 95% confidence intervals [CI]=1.053-1.668 for rs4957014; p<0.0001, OR=1.898, 95% CI=1.457-2.474 for rs3756712, respectively). Increased UL risks were associated with them in different genetic models. The present study provided evidence that rs4957014 and rs3756712 are associated with UL risk, the results indicated that genetic polymorphisms in PDCD6 may contribute to the development of UL.
Collapse
Affiliation(s)
- Kui Zhang
- Department of Forensic Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | |
Collapse
|
157
|
Singh M. Dysregulated A to I RNA editing and non-coding RNAs in neurodegeneration. Front Genet 2013; 3:326. [PMID: 23346095 PMCID: PMC3551214 DOI: 10.3389/fgene.2012.00326] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 12/28/2012] [Indexed: 12/14/2022] Open
Abstract
RNA editing is an alteration in the primary nucleotide sequences resulting from a chemical change in the base. RNA editing is observed in eukaryotic mRNA, transfer RNA, ribosomal RNA, and non-coding RNAs (ncRNA). The most common RNA editing in the mammalian central nervous system is a base modification, where the adenosine residue is base-modified to inosine (A to I). Studies from ADAR (adenosine deaminase that act on RNA) mutants in Caenorhabditis elegans, Drosophila, and mice clearly show that the RNA editing process is an absolute requirement for nervous system homeostasis and normal physiology of the animal. Understanding the mechanisms of editing and findings of edited substrates has provided a better knowledge of the phenotype due to defective and hyperactive RNA editing. A to I RNA editing is catalyzed by a family of enzymes knows as ADARs. ADARs modify duplex RNAs and editing of duplex RNAs formed by ncRNAs can impact RNA functions, leading to an altered regulatory gene network. Such altered functions by A to I editing is observed in mRNAs, microRNAs (miRNA) but other editing of small and long ncRNAs (lncRNAs) has yet to be identified. Thus, ncRNA and RNA editing may provide key links between neural development, nervous system function, and neurological diseases. This review includes a summary of seminal findings regarding the impact of ncRNAs on biological and pathological processes, which may be further modified by RNA editing. NcRNAs are non-translated RNAs classified by size and function. Known ncRNAs like miRNAs, smallRNAs (smRNAs), PIWI-interacting RNAs (piRNAs), and lncRNAs play important roles in splicing, DNA methylation, imprinting, and RNA interference. Of note, miRNAs are involved in development and function of the nervous system that is heavily dependent on both RNA editing and the intricate spatiotemporal expression of ncRNAs. This review focuses on the impact of dysregulated A to I editing and ncRNAs in neurodegeneration.
Collapse
Affiliation(s)
- Minati Singh
- Department of Internal Medicine, University of Iowa Iowa City, IA, USA
| |
Collapse
|
158
|
Nunes FMF, Ihle KE, Mutti NS, Simões ZLP, Amdam GV. The gene vitellogenin affects microRNA regulation in honey bee (Apis mellifera) fat body and brain. J Exp Biol 2013; 216:3724-32. [DOI: 10.1242/jeb.089243] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Summary
In honey bees, Vitellogenin (Vg) is hypothesized to be a major factor affecting hormone signaling, food-related behavior, immunity, stress resistance and lifespan. Likewise microRNAs play important roles in posttranscriptional gene regulation and affect many biological processes. The action of microRNAs and Vg are known to intersect in the context of reproduction; however, the role of these associations on social behavior is unknown. The phenotypic effects of Vg knockdown are best established and studied in the forager stage of workers. Thus, we exploited the well-established RNA interference (RNAi) protocol for Vg knockdown to investigate its downstream effects on microRNA population in honey bee foragers' brain and fat body tissue. To identify microRNAs that are differentially expressed between tissues in control and knockdown foragers, we used µParaflo® microfluidic oligonucleotide microRNA microarrays. Our results show 76 and 74 microRNAs were expressed in the brain of control and knockdown foragers whereas 66 and 69 microRNAs were expressed in the fat body of control and knockdown foragers respectively. Target prediction identified potential seed matches for a differentially expressed subset of microRNAs affected by Vg knockdown. These candidate genes are involved in a broad range of biological processes including insulin signaling, juvenile hormone (JH) and ecdysteroid signaling previously shown to affect foraging behavior. Thus, here we demonstrate a causal link between the Vg knockdown forager phenotype and variation in the abundance of microRNAs in different tissues with possible consequences for regulation of foraging behavior.
Collapse
|
159
|
Castonguay Y, Dubé MP, Cloutier J, Bertrand A, Michaud R, Laberge S. Molecular physiology and breeding at the crossroads of cold hardiness improvement. PHYSIOLOGIA PLANTARUM 2013; 147:64-74. [PMID: 22452626 DOI: 10.1111/j.1399-3054.2012.01624.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Alfalfa (Medicago sativa L.) is a major forage legume grown extensively worldwide with important agronomic and environmental attributes. Insufficient cold hardiness is a major impediment to its reliable production in northern climates. Improvement of freezing tolerance using conventional breeding approaches is slowed by the quantitative nature of inheritance and strong interactions with the environment. The development of gene-based markers would facilitate the identification of genotypes with superior stress tolerance. Successive cycles of recurrent selection were applied using an indoor screening method to develop populations with significantly higher tolerance to freezing (TF). Bulk segregant analysis of heterogeneous TF populations identified DNA variations that are progressively enriched in frequency in response to selection. Polymorphisms resulting from intragenic variations within a dehydrin gene were identified and could potentially lead to the development of robust selection tools. Our results illustrate the benefits of feedback interactions between germplasm development programs and molecular physiology for a deeper understanding of the molecular and genetic bases of cold hardiness.
Collapse
Affiliation(s)
- Yves Castonguay
- Soils and Crops Research Development Center, Agriculture and Agri-Food Canada, 2560 Hochelaga Boulevard, Sainte-Foy, Québec G1V 2J3, Canada.
| | | | | | | | | | | |
Collapse
|
160
|
Hoeppner MP, Gardner PP, Poole AM. Comparative analysis of RNA families reveals distinct repertoires for each domain of life. PLoS Comput Biol 2012; 8:e1002752. [PMID: 23133357 PMCID: PMC3486863 DOI: 10.1371/journal.pcbi.1002752] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 09/07/2012] [Indexed: 02/02/2023] Open
Abstract
The RNA world hypothesis, that RNA genomes and catalysts preceded DNA genomes and genetically-encoded protein catalysts, has been central to models for the early evolution of life on Earth. A key part of such models is continuity between the earliest stages in the evolution of life and the RNA repertoires of extant lineages. Some assessments seem consistent with a diverse RNA world, yet direct continuity between modern RNAs and an RNA world has not been demonstrated for the majority of RNA families, and, anecdotally, many RNA functions appear restricted in their distribution. Despite much discussion of the possible antiquity of RNA families, no systematic analyses of RNA family distribution have been performed. To chart the broad evolutionary history of known RNA families, we performed comparative genomic analysis of over 3 million RNA annotations spanning 1446 families from the Rfam 10 database. We report that 99% of known RNA families are restricted to a single domain of life, revealing discrete repertoires for each domain. For the 1% of RNA families/clans present in more than one domain, over half show evidence of horizontal gene transfer (HGT), and the rest show a vertical trace, indicating the presence of a complex protein synthesis machinery in the Last Universal Common Ancestor (LUCA) and consistent with the evolutionary history of the most ancient protein-coding genes. However, with limited interdomain transfer and few RNA families exhibiting demonstrable antiquity as predicted under RNA world continuity, our results indicate that the majority of modern cellular RNA repertoires have primarily evolved in a domain-specific manner. In cells, DNA carries recipes for making proteins, and proteins perform chemical reactions, including replication of DNA. This interdependency raises questions for early evolution, since one molecule seemingly cannot exist without the other. A resolution to this problem is the RNA world, where RNA is postulated to have been both genetic material and primary catalyst. While artificially selected catalytic RNAs strengthen the chemical plausibility of an RNA world, a biological prediction is that some RNAs should date back to this period. In this study, we ask to what degree RNAs in extant organisms trace back to the common ancestor of cellular life. Using the Rfam RNA families database, we systematically screened genomes spanning the three domains of life (Archaea, Bacteria, Eukarya) for RNA genes, and examined how far back in evolution known RNA families can be traced. We find that 99% of RNA families are restricted to a single domain. Limited conservation within domains implies ongoing emergence of RNA functions during evolution. Of the remaining 1%, half show evidence of horizontal transfer (movement of genes between organisms), and half show an evolutionary history consistent with an RNA world. The oldest RNAs are primarily associated with protein synthesis and export.
Collapse
Affiliation(s)
- Marc P. Hoeppner
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail: (MPH); (PPG); (AMP)
| | - Paul P. Gardner
- Biomolecular Interaction Centre & School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- * E-mail: (MPH); (PPG); (AMP)
| | - Anthony M. Poole
- Biomolecular Interaction Centre & School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- * E-mail: (MPH); (PPG); (AMP)
| |
Collapse
|
161
|
Abstract
Heart function requires sophisticated regulatory networks to orchestrate organ development, physiological responses, and environmental adaptation. Until recently, it was thought that these regulatory networks are composed solely of protein-mediated transcriptional control and signaling systems; consequently, it was thought that cardiac disease involves perturbation of these systems. However, it is becoming evident that RNA, long considered to function primarily as the platform for protein production, may in fact play a major role in most, if not all, aspects of gene regulation, especially the epigenetic processes that underpin organogenesis. These include not only well-validated classes of regulatory RNAs, such as microRNAs, but also tens of thousands of long noncoding RNAs that are differentially expressed across the entire genome of humans and other animals. Here, we review this emerging landscape, summarizing what is known about their functions and their role in cardiac biology, and provide a toolkit to assist in exploring this previously hidden layer of gene regulation that may underpin heart adaptation and complex heart diseases.
Collapse
Affiliation(s)
- Nicole Schonrock
- From the Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia (N.S., R.R.H.); St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia (N.S., R.P.H., J.S.M.); and Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia (J.S.M.)
| | - Richard P. Harvey
- From the Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia (N.S., R.R.H.); St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia (N.S., R.P.H., J.S.M.); and Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia (J.S.M.)
| | - John S. Mattick
- From the Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia (N.S., R.R.H.); St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia (N.S., R.P.H., J.S.M.); and Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia (J.S.M.)
| |
Collapse
|
162
|
The TLR4 gene polymorphisms and susceptibility to cancer: a systematic review and meta-analysis. Eur J Cancer 2012; 49:946-54. [PMID: 23084080 DOI: 10.1016/j.ejca.2012.09.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 08/28/2012] [Accepted: 09/15/2012] [Indexed: 01/12/2023]
Abstract
Growing studies revealed the association between polymorphisms in Toll-like receptor 4 (TLR4) and susceptibility to cancer, however, the results remained inconsistent. To assess the effect of six selected SNPs (rs1927914, rs4986790, rs4986791, rs11536889, rs1927911 and rs2149356) in TLR4 on cancer, we conducted a meta-analysis, up to February 2012, 22 case-control studies were available. Summary odds ratios (OR) and corresponding 95% confidence intervals (CIs) for polymorphisms in TLR4 and cancer risk were estimated. Our meta-analysis identified that two SNPs (rs4986790 and rs4986791) in TLR4 were associated with increased cancer risk (for rs4986790: OR=1.24, 95% CI=1.01-1.52 in dominant model; OR=1.24, 95% CI=1.02-1.52 in overdominant model; for rs4986791: OR=1.81, 95% CI=1.18-2.77 in allele comparison; OR=1.79, 95% CI=1.15-2.80 in dominant model; OR=1.70, 95% CI=1.09-2.67 in overdominant model) and one SNP (rs1927911) in TLR4 was associated with decreased cancer risk (for rs1927911: OR=0.63, 95% CI=0.41-0.99 in allele comparison; OR=0.57, 95% CI=0.35-0.95 in dominant model; OR=0.67, 95% CI=0.46-0.97 in codominant model). Moreover, in terms of stratified analyses by cancer type for SNP rs4986790, significantly elevated risk was observed to be associated with G allele in gastric cancer and 'other cancers'. These findings indicate that polymorphisms in TLR4 may play a role, although modest, in cancer development.
Collapse
|
163
|
Qu Z, Adelson DL. Evolutionary conservation and functional roles of ncRNA. Front Genet 2012; 3:205. [PMID: 23087702 PMCID: PMC3466565 DOI: 10.3389/fgene.2012.00205] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 09/24/2012] [Indexed: 11/24/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are a class of transcribed RNA molecules without protein-coding potential. They were regarded as transcriptional noise, or the byproduct of genetic information flow from DNA to protein for a long time. However, in recent years, a number of studies have shown that ncRNAs are pervasively transcribed, and most of them show evidence of evolutionary conservation, although less conserved than protein-coding genes. More importantly, many ncRNAs have been confirmed as playing crucial regulatory roles in diverse biological processes and tumorigenesis. Here we summarize the functional significance of this class of “dark matter” in terms its genomic organization, evolutionary conservation, and broad functional classes.
Collapse
Affiliation(s)
- Zhipeng Qu
- School of Molecular and Biomedical Science, The University of Adelaide Adelaide, SA, Australia
| | | |
Collapse
|
164
|
Bovolenta M, Erriquez D, Valli E, Brioschi S, Scotton C, Neri M, Falzarano MS, Gherardi S, Fabris M, Rimessi P, Gualandi F, Perini G, Ferlini A. The DMD locus harbours multiple long non-coding RNAs which orchestrate and control transcription of muscle dystrophin mRNA isoforms. PLoS One 2012; 7:e45328. [PMID: 23028937 PMCID: PMC3448672 DOI: 10.1371/journal.pone.0045328] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 08/20/2012] [Indexed: 11/18/2022] Open
Abstract
The 2.2 Mb long dystrophin (DMD) gene, the largest gene in the human genome, corresponds to roughly 0.1% of the entire human DNA sequence. Mutations in this gene cause Duchenne muscular dystrophy and other milder X-linked, recessive dystrophinopathies. Using a custom-made tiling array, specifically designed for the DMD locus, we identified a variety of novel long non-coding RNAs (lncRNAs), both sense and antisense oriented, whose expression profiles mirror that of DMD gene. Importantly, these transcripts are intronic in origin and specifically localized to the nucleus and are transcribed contextually with dystrophin isoforms or primed by MyoD-induced myogenic differentiation. Furthermore, their forced ectopic expression in both human muscle and neuronal cells causes a specific and negative regulation of endogenous dystrophin full length isoforms and significantly down-regulate the activity of a luciferase reporter construct carrying the minimal promoter regions of the muscle dystrophin isoform. Consistent with this apparently repressive role, we found that, in muscle samples of dystrophinopathic female carriers, lncRNAs expression levels inversely correlate with those of muscle full length DMD isoforms. Overall these findings unveil an unprecedented complexity of the transcriptional pattern of the DMD locus and reveal that DMD lncRNAs may contribute to the orchestration and homeostasis of the muscle dystrophin expression pattern by either selective targeting and down-modulating the dystrophin promoter transcriptional activity.
Collapse
Affiliation(s)
- Matteo Bovolenta
- Department of Medical Science, Section of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Daniela Erriquez
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Emanuele Valli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Simona Brioschi
- Department of Medical Science, Section of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Chiara Scotton
- Department of Medical Science, Section of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Marcella Neri
- Department of Medical Science, Section of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Maria Sofia Falzarano
- Department of Medical Science, Section of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Samuele Gherardi
- Department of Pharmacy and Biotechnology, Health Sciences and Technologies – Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy
| | - Marina Fabris
- Department of Medical Science, Section of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Paola Rimessi
- Department of Medical Science, Section of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Francesca Gualandi
- Department of Medical Science, Section of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, Health Sciences and Technologies – Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy
| | - Alessandra Ferlini
- Department of Medical Science, Section of Medical Genetics, University of Ferrara, Ferrara, Italy
| |
Collapse
|
165
|
ACE2 gene polymorphism and essential hypertension: an updated meta-analysis involving 11,051 subjects. Mol Biol Rep 2012; 39:6581-9. [PMID: 22297693 DOI: 10.1007/s11033-012-1487-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/24/2012] [Indexed: 12/20/2022]
Abstract
The polymorphisms of angiotensin-converting enzyme 2 (ACE2) gene have been suggested to be linked to increase risk of essential hypertension in multiple populations. However, the results are still debatable. To assess the association between ACE2 G8970A genetic polymorphism and essential hypertension, we conducted a meta-analysis of case-control studies across different ethnicity. PubMed, Embase, CBM, Wanfang and VIP databases were searched, and a total of 11 separate studies in females and nine separate studies in males met the inclusion criteria. Because ACE2 is on the X chromosome, data for each sex were analyzed separately. The selected studies contained 7,251 (4,472 females/2,779 males) hypertensive patients and 3,800 (2,161 females/1,639 males) normotensive controls. A statistically significant association was observed between the G8970A gene polymorphism and essential hypertension risk in female hypertensive group in the recessive genetic model (AA vs. GG+GA: P = 0.03, OR = 1.15, 95% CI = 1.02-1.30, P(heterogeneity) = 0.40, I(2) = 5%, fixed-effects model). Although no association was shown between the frequency of the A allele and the genetic susceptibility to essential hypertension in all male patients (A Allele: P = 0.38, OR = 1.10, 95% CI = 0.89-1.38, P(heterogeneity) = 0.02, I(2) = 56%, random-effects model), we found that the relationship between carrier of A allele and the essential hypertension risk in Han-Chinese male patients subgroup (A Allele: P = 0.006, OR = 1.21, 95% CI = 1.06–1.38, P(heterogeneity) = 0.10, I(2) = 44%, fixed-effects model). The current meta-analysis provided solid evidence suggesting that ACE2 gene polymorphism G8790A was probably a genetic risk factor for essential hypertension across different ethnic populations in female subjects and in Han-Chinese male subjects.
Collapse
|
166
|
Salvucci E. Selfishness, warfare, and economics; or integration, cooperation, and biology. Front Cell Infect Microbiol 2012; 2:54. [PMID: 22919645 PMCID: PMC3417387 DOI: 10.3389/fcimb.2012.00054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 04/06/2012] [Indexed: 12/11/2022] Open
Abstract
The acceptance of Darwin's theory of evolution by natural selection is not complete and it has been pointed out its limitation to explain the complex processes that constitute the transformation of species. It is necessary to discuss the explaining power of the dominant paradigm. It is common that new discoveries bring about contradictions that are intended to be overcome by adjusting results to the dominant reductionist paradigm using all sorts of gradations and combinations that are admitted for each case. In addition to the discussion on the validity of natural selection, modern findings represent a challenge to the interpretation of the observations with the Darwinian view of competition and struggle for life as theoretical basis. New holistic interpretations are emerging related to the Net of Life, in which the interconnection of ecosystems constitutes a dynamic and self-regulating biosphere: viruses are recognized as a macroorganism with a huge collection of genes, most unknown that constitute the major planet's gene pool. They play a fundamental role in evolution since their sequences are capable of integrating into the genomes in an “infective” way and become an essential part of multicellular organisms. They have content with “biological sense” i.e., they appear as part of normal life processes and have a serious role as carrier elements of complex genetic information. Antibiotics are cell signals with main effects on general metabolism and transcription on bacterial cells and communities. The hologenome theory considers an organism and all of its associated symbiotic microbes (parasites, mutualists, synergists, amensalists) as a result of symbiopoiesis. Microbes, helmints, that are normally understood as parasites are cohabitants and they have cohabited with their host and drive the evolution and existence of the partners. Each organism is the result of integration of complex systems. The eukaryotic organism is the result of combination of bacterial, virus, and eukaryotic DNA and it is the result of the interaction of its own genome with the genome of its microbiota, and their metabolism are intertwined (as a “superorganism”) along evolution. The darwinian paradigm had its origin in the free market theories and concepts of Malthus and Spencer. Then, nature was explained on the basis of market theories moving away from an accurate explanation of natural phenomena. It is necessary to acknowledge the limitations of the dominant dogma. These new interpretations about biological processes, molecules, roles of viruses in nature, and microbial interactions are remarkable points to be considered in order to construct a solid theory adjusted to the facts and with less speculations and tortuous semantic traps.
Collapse
Affiliation(s)
- Emiliano Salvucci
- Consejo Nacional de Investigaciones Cientificas y Técnicas Argentina.
| |
Collapse
|
167
|
Abstract
The intron–exon architecture of many eukaryotic genes raises the intriguing question of whether this unique organization serves any function, or is it simply a result of the spread of functionless introns in eukaryotic genomes. In this review, we show that introns in contemporary species fulfill a broad spectrum of functions, and are involved in virtually every step of mRNA processing. We propose that this great diversity of intronic functions supports the notion that introns were indeed selfish elements in early eukaryotes, but then independently gained numerous functions in different eukaryotic lineages. We suggest a novel criterion of evolutionary conservation, dubbed intron positional conservation, which can identify functional introns.
Collapse
Affiliation(s)
- Michal Chorev
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem Jerusalem, Israel
| | | |
Collapse
|
168
|
Puritz JB, Addison JA, Toonen RJ. Next-generation phylogeography: a targeted approach for multilocus sequencing of non-model organisms. PLoS One 2012; 7:e34241. [PMID: 22470543 PMCID: PMC3314618 DOI: 10.1371/journal.pone.0034241] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 02/24/2012] [Indexed: 11/18/2022] Open
Abstract
The field of phylogeography has long since realized the need and utility of incorporating nuclear DNA (nDNA) sequences into analyses. However, the use of nDNA sequence data, at the population level, has been hindered by technical laboratory difficulty, sequencing costs, and problematic analytical methods dealing with genotypic sequence data, especially in non-model organisms. Here, we present a method utilizing the 454 GS-FLX Titanium pyrosequencing platform with the capacity to simultaneously sequence two species of sea star (Meridiastra calcar and Parvulastra exigua) at five different nDNA loci across 16 different populations of 20 individuals each per species. We compare results from 3 populations with traditional Sanger sequencing based methods, and demonstrate that this next-generation sequencing platform is more time and cost effective and more sensitive to rare variants than Sanger based sequencing. A crucial advantage is that the high coverage of clonally amplified sequences simplifies haplotype determination, even in highly polymorphic species. This targeted next-generation approach can greatly increase the use of nDNA sequence loci in phylogeographic and population genetic studies by mitigating many of the time, cost, and analytical issues associated with highly polymorphic, diploid sequence markers.
Collapse
Affiliation(s)
- Jonathan B Puritz
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, United States of America.
| | | | | |
Collapse
|
169
|
Krueger F, Parasuraman R, Iyengar V, Thornburg M, Weel J, Lin M, Clarke E, McCabe K, Lipsky RH. Oxytocin receptor genetic variation promotes human trust behavior. Front Hum Neurosci 2012; 6:4. [PMID: 22347177 PMCID: PMC3270329 DOI: 10.3389/fnhum.2012.00004] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 01/16/2012] [Indexed: 11/13/2022] Open
Abstract
Given that human trust behavior is heritable and intranasal administration of oxytocin enhances trust, the oxytocin receptor (OXTR) gene is an excellent candidate to investigate genetic contributions to individual variations in trust behavior. Although a single-nucleotide polymorphism involving an adenine (A)/guanine (G) transition (rs53576) has been associated with socio-emotional phenotypes, its link to trust behavior is unclear. We combined genotyping of healthy male students (n = 108) with the administration of a trust game experiment. Our results show that a common occurring genetic variation (rs53576) in the OXTR gene is reliably associated with trust behavior rather than a general increase in trustworthy or risk behaviors. Individuals homozygous for the G allele (GG) showed higher trust behavior than individuals with A allele carriers (AA/AG). Although the molecular functionality of this polymorphism is still unknown, future research should clarify how the OXTR gene interacts with other genes and the environment in promoting socio-emotional behaviors.
Collapse
Affiliation(s)
- Frank Krueger
- Department of Molecular Neuroscience, George Mason University Fairfax, VA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Affiliation(s)
- John S Mattick
- Institute for Molecular Bioscience, University of Queensland, St Lucia QLD 4072, Australia.
| |
Collapse
|
171
|
Yang F, Yi F, Zheng Z, Ling Z, Ding J, Guo J, Mao W, Wang X, Wang X, Ding X, Liang Z, Du Q. Characterization of a carcinogenesis-associated long non-coding RNA. RNA Biol 2012; 9:110-6. [PMID: 22258142 DOI: 10.4161/rna.9.1.18332] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A negative selection strategy was used in the present study to isolate long polyA-minus RNAs from the total transcriptome and a long non-coding RNA named Yiya was identified. Yiya is a 1.9 kb long intergenic ncRNA gene mapped to chromosome 1q41, a well-established cancer susceptibility locus. Expression profiling revealed a general and regulated expression pattern of Yiya in major tissues, and more interestingly, identified elevated mRNA levels in different cancers. Quantitative analysis further demonstrated a dynamic regulation of Yiya expression in cell cycle progression, suggesting that it was involved in cell cycle regulation. Supporting this, overexpression of Yiya promotes cell cycle progression at the G1/S transition, therefore identifying Yiya as a cell-cycle-associated long non-coding RNA.
Collapse
Affiliation(s)
- Feng Yang
- Institute of Molecular Medicine, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Wolf C, Linden DEJ. Biological pathways to adaptability - interactions between genome, epigenome, nervous system and environment for adaptive behavior. GENES BRAIN AND BEHAVIOR 2011; 11:3-28. [DOI: 10.1111/j.1601-183x.2011.00752.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
173
|
Tomikawa J, Shimokawa H, Uesaka M, Yamamoto N, Mori Y, Tsukamura H, Maeda KI, Imamura T. Single-stranded noncoding RNAs mediate local epigenetic alterations at gene promoters in rat cell lines. J Biol Chem 2011; 286:34788-99. [PMID: 21844201 PMCID: PMC3186369 DOI: 10.1074/jbc.m111.275750] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/21/2011] [Indexed: 01/26/2023] Open
Abstract
A growing number of noncoding RNAs (ncRNAs) are thought to be involved in sequence-specific alterations of epigenetic processes, mostly causing gene repression. In this study, promoter-associated ncRNAs (pancRNAs >200 nucleotides in size) that were endogenously generated from the sense strand at Map2b, antisense strand at Nefl, and both strands at Vim were investigated regarding their epigenetic potential as positive or negative regulators in rat pheochromocytoma (PC12) and fibroblast (normal rat kidney) cell lines. The respective antisense pancRNAs were associated with several active chromatin marks at the Nefl and Vim promoters. Forced expression of fragments expressing the antisense pancRNAs caused sequence-specific DNA demethylation, whereas a decrease of expression induced methylation of the same sequences. In contrast, perturbing the expression of the two sense pancRNAs did not change the DNA methylation status. These results suggest that a fraction of naturally occurring ncRNAs acts in cis as a single-stranded form and that the transcriptional orientation of pancRNA is important for the establishment of sequence-specific epigenetic modifications consistent with open chromatin structure.
Collapse
Affiliation(s)
- Junko Tomikawa
- From the Division of Behavioral Biology, National Institute for Basic Biology, Nishigonaka 38, Okazaki 444-8585
- the Laboratory of Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601
| | - Hiroko Shimokawa
- From the Division of Behavioral Biology, National Institute for Basic Biology, Nishigonaka 38, Okazaki 444-8585
- the Laboratory of Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601
| | - Masahiro Uesaka
- the Laboratory for Biodiversity, Global COE Program, Division of Biological Science, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, and
| | - Naoki Yamamoto
- the Laboratory for Biodiversity, Global COE Program, Division of Biological Science, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, and
| | - Yuji Mori
- From the Division of Behavioral Biology, National Institute for Basic Biology, Nishigonaka 38, Okazaki 444-8585
- the Laboratory of Veterinary Ethology, Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroko Tsukamura
- From the Division of Behavioral Biology, National Institute for Basic Biology, Nishigonaka 38, Okazaki 444-8585
- the Laboratory of Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601
| | - Kei-ichiro Maeda
- the Laboratory of Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601
| | - Takuya Imamura
- From the Division of Behavioral Biology, National Institute for Basic Biology, Nishigonaka 38, Okazaki 444-8585
- the Laboratory for Biodiversity, Global COE Program, Division of Biological Science, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, and
| |
Collapse
|
174
|
Seoighe C, Korir PK. Evidence for intron length conservation in a set of mammalian genes associated with embryonic development. BMC Bioinformatics 2011; 12 Suppl 9:S16. [PMID: 22151910 PMCID: PMC3283306 DOI: 10.1186/1471-2105-12-s9-s16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background We carried out an analysis of intron length conservation across a diverse group of nineteen mammalian species. Motivated by recent research suggesting a role for time delays associated with intron transcription in gene expression oscillations required for early embryonic patterning, we searched for examples of genes that showed the most extreme conservation of total intron content in mammals. Results Gene sets annotated as being involved in pattern specification in the early embryo or containing the homeobox DNA-binding domain, were significantly enriched among genes with highly conserved intron content. We used ancestral sequences reconstructed with probabilistic models that account for insertion and deletion mutations to distinguish insertion and deletion events on lineages leading to human and mouse from their last common ancestor. Using a randomization procedure, we show that genes containing the homeobox domain show less change in intron content than expected, given the number of insertion and deletion events within their introns. Conclusions Our results suggest selection for gene expression precision or the existence of additional development-associated genes for which transcriptional delay is functionally significant.
Collapse
Affiliation(s)
- Cathal Seoighe
- National University of Ireland, Galway, University Road, Galway, Republic of Ireland.
| | | |
Collapse
|
175
|
Wu Y, Yuan H, Tan S, Chen JQ, Tian D, Yang H. Increased complexity of gene structure and base composition in vertebrates. J Genet Genomics 2011; 38:297-305. [PMID: 21777854 DOI: 10.1016/j.jgg.2011.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/01/2011] [Accepted: 06/12/2011] [Indexed: 11/16/2022]
Abstract
How the structure and base composition of genes changed with the evolution of vertebrates remains a puzzling question. Here we analyzed 895 orthologous protein-coding genes in six multicellular animals: human, chicken, zebrafish, sea squirt, fruit fly, and worm. Our analyses reveal that many gene regions, particularly intron and 3' UTR, gradually expanded throughout the evolution of vertebrates from their invertebrate ancestors, and that the number of exons per gene increased. Studies based on all protein-coding genes in each genome provide consistent results. We also find that GC-content increased in many gene regions (especially 5' UTR) in the evolution of endotherms, except in coding-exons. Analysis of individual genomes shows that 3' UTR demonstrated stronger length and GC-content correlation with intron than 5' UTR, and gene with large intron in all six species demonstrated relatively similar GC-content. Our data indicates a great increase in complexity in vertebrate genes and we propose that the requirement for morphological and functional changes is probably the driving force behind the evolution of structure and base composition complexity in multicellular animal genes.
Collapse
Affiliation(s)
- Ying Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biology, Nanjing University, China
| | | | | | | | | | | |
Collapse
|
176
|
Chavali S, Morais DADL, Gough J, Babu MM. Evolution of eukaryotic genome architecture: Insights from the study of a rapidly evolving metazoan, Oikopleura dioica. Bioessays 2011; 33:592-601. [DOI: 10.1002/bies.201100034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
177
|
Zhao G, Li J, Chen F, Zou F, Yang J, Sugiyama H, Xu M, Lin Q, Lin R, Zhu X. Variability in intron sequences of housekeeping and antigen-coding genes among Schistosoma japonicum isolates in mainland China. Parasitol Int 2011; 60:170-4. [DOI: 10.1016/j.parint.2011.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 01/11/2011] [Accepted: 01/26/2011] [Indexed: 10/18/2022]
|
178
|
|
179
|
Kvon EZ, Demakov SA, Zhimulev IF. Chromatin decompaction in the interbands of Drosophila polytene chromosomes does not correlate with high transcription level. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411060135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
180
|
Mattick JS. The central role of RNA in human development and cognition. FEBS Lett 2011; 585:1600-16. [DOI: 10.1016/j.febslet.2011.05.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 05/03/2011] [Indexed: 12/22/2022]
|
181
|
Andou T, Endoh T, Mie M, Kobatake E. Direct detection of RNAs in living cells using peptide-inserted Renilla luciferase. Analyst 2011; 136:2446-9. [PMID: 21541389 DOI: 10.1039/c1an15130d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this study, non-engineered RNAs were detected in living cells using bioluminescence. Two types of probe were utilized: a peptide inserted RLuc (PI-RLuc) probe and a split-RNA probe. Incorporation of the PI-RLuc and split-RNA probes enabled the direct detection of RNA introduced into living cells.
Collapse
Affiliation(s)
- Takashi Andou
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
| | | | | | | |
Collapse
|
182
|
Chu DF, Zabet NR, Hone AN. Optimal parameter settings for information processing in gene regulatory networks. Biosystems 2011; 104:99-108. [DOI: 10.1016/j.biosystems.2011.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 12/31/2010] [Accepted: 01/13/2011] [Indexed: 11/26/2022]
|
183
|
Wang X, Song X, Glass CK, Rosenfeld MG. The long arm of long noncoding RNAs: roles as sensors regulating gene transcriptional programs. Cold Spring Harb Perspect Biol 2011; 3:a003756. [PMID: 20573714 DOI: 10.1101/cshperspect.a003756] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A major surprise arising from genome-wide analyses has been the observation that the majority of the genome is transcribed, generating noncoding RNAs (ncRNAs). It is still an open question whether some or all of these ncRNAs constitute functional networks regulating gene transcriptional programs. However, in light of recent discoveries and given the diversity and flexibility of long ncRNAs and their abilities to nucleate molecular complexes and to form spatially compact arrays of complexes, it becomes likely that many or most ncRNAs act as sensors and integrators of a wide variety of regulated transcriptional responses and probably epigenetic events. Because many RNA-binding proteins, on binding RNAs, show distinct allosteric conformational alterations, we suggest that a ncRNA/RNA-binding protein-based strategy, perhaps in concert with several other mechanistic strategies, serves to integrate transcriptional, as well as RNA processing, regulatory programs.
Collapse
Affiliation(s)
- Xiangting Wang
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego School of Medicine, La Jolla, California 92093-0651, USA
| | | | | | | |
Collapse
|
184
|
Mattick JS. The central role of RNA in the genetic programming of complex organisms. AN ACAD BRAS CIENC 2010; 82:933-9. [DOI: 10.1590/s0001-37652010000400016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 10/15/2010] [Indexed: 12/24/2022] Open
Abstract
Notwithstanding lineage-specific variations, the number and type of protein-coding genes remain relatively static across the animal kingdom. By contrast there has been a massive expansion in the extent of genomic non-proteincoding sequences with increasing developmental complexity. These non-coding sequences are, in fact, transcribed in a regulated manner to produce large numbers of large and small non-protein-coding RNAs that control gene expression at many levels including chromatin architecture, post-transcriptional processing and translation. Moreover, many RNAs are edited, especially in the nervous system, which may be the basis of epigenome-environment interactions and the function of the brain.
Collapse
|
185
|
|
186
|
Witzany G. Biocommunication and natural genome editing. World J Biol Chem 2010; 1:348-52. [PMID: 21537469 PMCID: PMC3083936 DOI: 10.4331/wjbc.v1.i11.348] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/08/2010] [Accepted: 07/15/2010] [Indexed: 02/05/2023] Open
Abstract
The biocommunicative approach investigates communication processes within and among cells, tissues, organs and organisms as sign-mediated interactions, and nucleotide sequences as code, i.e. language-like text, which follows in parallel three kinds of rules: combinatorial (syntactic), context-sensitive (pragmatic), and content-specific (semantic). Natural genome editing from a biocommunicative perspective is competent agent-driven generation and integration of meaningful nucleotide sequences into pre-existing genomic content arrangements and the ability to (re-)combine and (re-)regulate them according to context-dependent (i.e. adaptational) purposes of the host organism.
Collapse
Affiliation(s)
- Guenther Witzany
- Guenther Witzany, Telos-Philosophische Praxis, Vogelsangstrasse 18c, A-5111-Buermoos, Austria
| |
Collapse
|
187
|
|
188
|
Pyle AM. The tertiary structure of group II introns: implications for biological function and evolution. Crit Rev Biochem Mol Biol 2010; 45:215-32. [PMID: 20446804 DOI: 10.3109/10409231003796523] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Group II introns are some of the largest ribozymes in nature, and they are a major source of information about RNA assembly and tertiary structural organization. These introns are of biological significance because they are self-splicing mobile elements that have migrated into diverse genomes and played a major role in the genomic organization and metabolism of most life forms. The tertiary structure of group II introns has been the subject of many phylogenetic, genetic, biochemical and biophysical investigations, all of which are consistent with the recent crystal structure of an intact group IIC intron from the alkaliphilic eubacterium Oceanobacillus iheyensis. The crystal structure reveals that catalytic intron domain V is enfolded within the other intronic domains through an elaborate network of diverse tertiary interactions. Within the folded core, DV adopts an activated conformation that readily binds catalytic metal ions and positions them in a manner appropriate for reaction with nucleic acid targets. The tertiary structure of the group II intron reveals new information on motifs for RNA architectural organization, mechanisms of group II intron catalysis, and the evolutionary relationships among RNA processing systems. Guided by the structure and the wealth of previous genetic and biochemical work, it is now possible to deduce the probable location of DVI and the site of additional domains that contribute to the function of the highly derived group IIB and IIA introns.
Collapse
Affiliation(s)
- Anna Marie Pyle
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute and Yale University, New Haven, CT, USA.
| |
Collapse
|
189
|
Adaptive Evolution Hotspots at the GC-Extremes of the Human Genome: Evidence for Two Functionally Distinct Pathways of Positive Selection. Adv Bioinformatics 2010:856825. [PMID: 20454629 PMCID: PMC2862947 DOI: 10.1155/2010/856825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 12/31/2009] [Accepted: 02/10/2010] [Indexed: 11/21/2022] Open
Abstract
We recently reported that the human genome is ‘‘splitting” into two gene subgroups characterised by polarised GC content (Tang et al, 2007), and that such evolutionary change may be accelerated by programmed genetic instability (Zhao et al, 2008). Here we extend this work by mapping the presence of two separate high-evolutionary-rate (Ka/Ks) hotspots in the human genome—one characterized by low GC content, high intron length, and low gene expression, and the other by high GC content, high exon number, and high gene expression. This finding suggests that at least two different mechanisms mediate adaptive genetic evolution in higher organisms: (1) intron lengthening and reduced repair in hypermethylated lowly-transcribed genes, and (2) duplication and/or insertion events affecting highly-transcribed genes, creating low-essentiality satellite daughter genes in nearby regions of active chromatin. Since the latter mechanism is expected to be far more efficient than the former in generating variant genes that increase fitnesss, these results also provide a potential explanation for the controversial value of sequence analysis in defining positively selected genes.
Collapse
|
190
|
Molecular differentiation of cryptic stage of Echinococcus granulosus and Taenia species from faecal and environmental samples. ASIAN PAC J TROP MED 2010. [DOI: 10.1016/s1995-7645(10)60061-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
191
|
Granovskaia MV, Jensen LJ, Ritchie ME, Toedling J, Ning Y, Bork P, Huber W, Steinmetz LM. High-resolution transcription atlas of the mitotic cell cycle in budding yeast. Genome Biol 2010; 11:R24. [PMID: 20193063 PMCID: PMC2864564 DOI: 10.1186/gb-2010-11-3-r24] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/21/2009] [Accepted: 03/01/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extensive transcription of non-coding RNAs has been detected in eukaryotic genomes and is thought to constitute an additional layer in the regulation of gene expression. Despite this role, their transcription through the cell cycle has not been studied; genome-wide approaches have only focused on protein-coding genes. To explore the complex transcriptome architecture underlying the budding yeast cell cycle, we used 8 bp tiling arrays to generate a 5 minute-resolution, strand-specific expression atlas of the whole genome. RESULTS We discovered 523 antisense transcripts, of which 80 cycle or are located opposite periodically expressed mRNAs, 135 unannotated intergenic non-coding RNAs, of which 11 cycle, and 109 cell-cycle-regulated protein-coding genes that had not previously been shown to cycle. We detected periodic expression coupling of sense and antisense transcript pairs, including antisense transcripts opposite of key cell-cycle regulators, like FAR1 and TAF2. CONCLUSIONS Our dataset presents the most comprehensive resource to date on gene expression during the budding yeast cell cycle. It reveals periodic expression of both protein-coding and non-coding RNA and profiles the expression of non-annotated RNAs throughout the cell cycle for the first time. This data enables hypothesis-driven mechanistic studies concerning the functions of non-coding RNAs.
Collapse
Affiliation(s)
- Marina V Granovskaia
- EMBL - European Molecular Biology Laboratory, Department of Genome Biology, Meyerhofstr, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Tourasse NJ, Stabell FB, Kolstø AB. Structural and functional evolution of group II intron ribozymes: insights from unusual elements carrying a 3' extension. N Biotechnol 2010; 27:204-11. [PMID: 20219707 DOI: 10.1016/j.nbt.2010.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Group II introns are large RNA elements that interrupt genes. They are self-splicing ribozymes that catalyze their own excision and mobile retroelements that can invade new genomic DNA sites. While group II introns typically consist of six structural domains, a number of elements containing an unusual 3' extension of 53-56 nucleotides have recently been identified. Bioinformatic and functional analyses of these introns have revealed that they belong to two evolutionary subgroups and that the 3' extension has a differential effect on the splicing reactions for introns of the two subgroups, a functional difference that may be related to structural differences between the introns. In addition, there is phylogenetic evidence that some introns are mobile with their extension. The unusual introns have provided dramatic examples of the structural and functional evolution of group II ribozymes that have been able to accommodate an extra segment into their compact structure while maintaining functionality.
Collapse
Affiliation(s)
- Nicolas J Tourasse
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway.
| | | | | |
Collapse
|
193
|
Mukhopadhyay P, Ghosh TC. Relationship between gene compactness and base composition in rice and human genome. J Biomol Struct Dyn 2010; 27:477-88. [PMID: 19916569 DOI: 10.1080/07391102.2010.10507332] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In human, highly expressed genes contain shorter and fewer introns and these have been attributed to selection for economy in transcription and translation. On the other hand, in plants, it has been shown that highly expressed genes tend to be longer than lowly expressed genes. Here, in this study, we analyzed compositional influence on genome organization in both rice and human. We demonstrated that, in GC rich rice genes, highly expressed genes are less compact than lowly expressed genes. In GC-poor class, there is no difference in gene compactness between highly and lowly expressed genes. However, the scenario is different for human as there is no influence of GC composition on gene compactness due to their expression levels. We also reported that, highly expressed rice GC-rich pre-mRNA tend to form less stable secondary structure than that of lowly expressed genes. However, on removing intronic sequences, highly expressed mRNA form a stable secondary structure as compared to lowly expressed GC-rich genes. We suggest that in GC-rich rice genes long introns are under selection for enhancing transcriptional efficiency by modulating pre-mRNA secondary structural stability. Thus evolutionary mechanisms behind genome organization are different between these two genomes (human and rice).
Collapse
Affiliation(s)
- Pamela Mukhopadhyay
- Bioinformatics Centre, Bose Institute P 1/12, C.I.T. Scheme VII M - Kolkata 700054- India.
| | | |
Collapse
|
194
|
Keating KS, Toor N, Perlman PS, Pyle AM. A structural analysis of the group II intron active site and implications for the spliceosome. RNA (NEW YORK, N.Y.) 2010; 16:1-9. [PMID: 19948765 PMCID: PMC2802019 DOI: 10.1261/rna.1791310] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 08/12/2009] [Indexed: 05/20/2023]
Abstract
Group II introns are self-splicing, mobile genetic elements that have fundamentally influenced the organization of terrestrial genomes. These large ribozymes remain important for gene expression in almost all forms of bacteria and eukaryotes and they are believed to share a common ancestry with the eukaryotic spliceosome that is required for processing all nuclear pre-mRNAs. The three-dimensional structure of a group IIC intron was recently determined by X-ray crystallography, making it possible to visualize the active site and the elaborate network of tertiary interactions that stabilize the molecule. Here we describe the molecular features of the active site in detail and evaluate their correspondence with prior biochemical, genetic, and phylogenetic analyses on group II introns. In addition, we evaluate the structural significance of RNA motifs within the intron core, such as the major-groove triple helix and the domain 5 bulge. Having combined what is known about the group II intron core, we then compare it with known structural features of U6 snRNA in the eukaryotic spliceosome. This analysis leads to a set of predictions for the molecular structure of the spliceosomal active site.
Collapse
Affiliation(s)
- Kevin S Keating
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
195
|
Mattick JS. Deconstructing the dogma: a new view of the evolution and genetic programming of complex organisms. Ann N Y Acad Sci 2009; 1178:29-46. [PMID: 19845626 DOI: 10.1111/j.1749-6632.2009.04991.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since the birth of molecular biology it has been generally assumed that most genetic information is transacted by proteins, and that RNA plays an intermediary role. This led to the subsidiary assumption that the vast tracts of noncoding sequences in the genomes of higher organisms are largely nonfunctional, despite the fact that they are transcribed. These assumptions have since become articles of faith, but they are not necessarily correct. I propose an alternative evolutionary history whereby developmental and cognitive complexity has arisen by constructing sophisticated RNA-based regulatory networks that interact with generic effector complexes to control gene expression patterns and the epigenetic trajectories of differentiation and development. Environmental information can also be conveyed into this regulatory system via RNA editing, especially in the brain. Moreover, the observations that RNA-directed epigenetic changes can be inherited raises the intriguing question: has evolution learnt how to learn?
Collapse
Affiliation(s)
- John S Mattick
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia.
| |
Collapse
|
196
|
Witzany G. Noncoding RNAs: persistent viral agents as modular tools for cellular needs. Ann N Y Acad Sci 2009; 1178:244-67. [PMID: 19845641 DOI: 10.1111/j.1749-6632.2009.04989.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It appears that all the detailed steps of evolution stored in DNA that are read, transcribed, and translated in every developmental and growth process of each individual cell depend on RNA-mediated processes, in most cases interconnected with other RNAs and their associated protein complexes and functions in a strict hierarchy of temporal and spatial steps. Life could not function without the key agents of DNA replication, namely mRNA, tRNA, and rRNA. Not only rRNA, but also tRNA and the processing of the primary transcript into the pre-mRNA and the mature mRNA are clearly descended from retro-"elements" with obvious retroviral ancestry. They seem to be remnants of viral infection events that did not kill their host but transferred phenotypic competences to their host and changed both the genetic identity of the host organism and the identity of the former infectious viral swarms. In this respect, noncoding RNAs may represent a great variety of modular tools for cellular needs that are derived from persistent nonlytic viral settlers.
Collapse
|
197
|
Costa JH, de Melo DF, Gouveia Z, Cardoso HG, Peixe A, Arnholdt-Schmitt B. The alternative oxidase family of Vitis vinifera reveals an attractive model to study the importance of genomic design. PHYSIOLOGIA PLANTARUM 2009; 137:553-65. [PMID: 19682279 DOI: 10.1111/j.1399-3054.2009.01267.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
'Genomic design' refers to the structural organization of gene sequences. Recently, the role of intron sequences for gene regulation is being better understood. Further, introns possess high rates of polymorphism that are considered as the major source for speciation. In molecular breeding, the length of gene-specific introns is recognized as a tool to discriminate genotypes with diverse traits of agronomic interest. 'Economy selection' and 'time-economy selection' have been proposed as models for explaining why highly expressed genes typically contain small introns. However, in contrast to these theories, plant-specific selection reveals that highly expressed genes contain introns that are large. In the presented research, 'wet'Aox gene identification from grapevine is advanced by a bioinformatics approach to study the species-specific organization of Aox gene structures in relation to available expressed sequence tag (EST) data. Two Aox1 and one Aox2 gene sequences have been identified in Vitis vinifera using grapevine cultivars from Portugal and Germany. Searching the complete genome sequence data of two grapevine cultivars confirmed that V. vinifera alternative oxidase (Aox) is encoded by a small multigene family composed of Aox1a, Aox1b and Aox2. An analysis of EST distribution revealed high expression of the VvAox2 gene. A relationship between the atypical long primary transcript of VvAox2 (in comparison to other plant Aox genes) and its expression level is suggested. V. vinifera Aox genes contain four exons interrupted by three introns except for Aox1a which contains an additional intron in the 3'-UTR. The lengths of primary Aox transcripts were estimated for each gene in two V. vinifera varieties: PN40024 and Pinot Noir. In both varieties, Aox1a and Aox1b contained small introns that corresponded to primary transcript lengths ranging from 1501 to 1810 bp. The Aox2 of PN40024 (12 329 bp) was longer than that from Pinot Noir (7279 bp) because of selection against a transposable-element insertion that is 5028 bp in size. An EST database basic local alignment search tool (BLAST) search of GenBank revealed the following ESTs percentages for each gene: Aox1a (26.2%), Aox1b (11.9%) and Aox2 (61.9%). Aox1a was expressed in fruits and roots, Aox1b expression was confined to flowers and Aox2 was ubiquitously expressed. These data for V. vinifera show that atypically long Aox intron lengths are related to high levels of gene expression. Furthermore, it is shown for the first time that two grapevine cultivars can be distinguished by Aox intron length polymorphism.
Collapse
Affiliation(s)
- José Hélio Costa
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, PO Box 6029, 60455-900, Fortaleza, Ceará, Brazil
| | | | | | | | | | | |
Collapse
|
198
|
Mattick JS, Taft RJ, Faulkner GJ. A global view of genomic information--moving beyond the gene and the master regulator. Trends Genet 2009; 26:21-8. [PMID: 19944475 DOI: 10.1016/j.tig.2009.11.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 12/20/2022]
Abstract
The current view of gene regulation in complex organisms holds that gene expression is largely controlled by the combinatoric actions of transcription factors and other regulatory proteins, some of which powerfully influence cell type. Recent large-scale studies have confirmed that cellular differentiation involves many different regulatory factors. However, other studies indicate that the genome is pervasively transcribed to produce a variety of short and long non-protein-coding RNAs, including those derived from retrotransposed sequences, which also play important roles in the epigenetic regulation of gene expression. The evidence suggests that ontogenesis requires interplay between state-specific regulatory proteins, multitasked effector complexes and target-specific RNAs that recruit these complexes to their sites of action. Moreover, the semi-continuous nature of the transcriptome prompts the reassessment of 'genes' as discrete entities and indicates that the mammalian genome might be more accurately viewed as islands of protein-coding information in a sea of cis- and trans-acting regulatory sequences.
Collapse
Affiliation(s)
- John S Mattick
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072 QLD, Australia.
| | | | | |
Collapse
|
199
|
Villarreal LP, Witzany G. Viruses are essential agents within the roots and stem of the tree of life. J Theor Biol 2009; 262:698-710. [PMID: 19833132 DOI: 10.1016/j.jtbi.2009.10.014] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 09/28/2009] [Accepted: 10/08/2009] [Indexed: 02/06/2023]
Abstract
In contrast with former definitions of life limited to membrane-bound cellular life forms which feed, grow, metabolise and replicate (i) a role of viruses as genetic symbionts, (ii) along with peripheral phenomena such as cryptobiosis and (iii) the horizontal nature of genetic information acquisition and processing broaden our view of the tree of life. Some researchers insist on the traditional textbook conviction of what is part of the community of life. In a recent review [Moreira, D., Lopez-Garcia, P., 2009. Ten reasons to exclude viruses from the tree of life. Nat. Rev. Microbiol. 7, 306-311.] they assemble four main arguments which should exclude viruses from the tree of life because of their inability to self-sustain and self-replicate, their polyphyly, the cellular origin of their cell-like genes and the volatility of their genomes. In this article we will show that these features are not coherent with current knowledge about viruses but that viral agents play key roles within the roots and stem of the tree of life.
Collapse
Affiliation(s)
- Luis P Villarreal
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
200
|
Nordström KJV, Mirza MAI, Almén MS, Gloriam DE, Fredriksson R, Schiöth HB. Critical evaluation of the FANTOM3 non-coding RNA transcripts. Genomics 2009; 94:169-76. [PMID: 19505569 DOI: 10.1016/j.ygeno.2009.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 05/25/2009] [Accepted: 05/26/2009] [Indexed: 01/15/2023]
Abstract
We studied the genomic positions of 38,129 putative ncRNAs from the RIKEN dataset in relation to protein-coding genes. We found that the dataset has 41% sense, 6% antisense, 24% intronic and 29% intergenic transcripts. Interestingly, 17,678 (47%) of the FANTOM3 transcripts were found to potentially be internally primed from longer transcripts. The highest fraction of these transcripts was found among the intronic transcripts and as many as 77% or 6929 intronic transcripts were both internally primed and unspliced. We defined a filtered subset of 8535 transcripts that did not overlap with protein-coding genes, did not contain ORFs longer than 100 residues and were not internally primed. This dataset contains 53% of the FANTOM3 transcripts associated to known ncRNA in RNAdb and expands previous similar efforts with 6523 novel transcripts. This bioinformatic filtering of the FANTOM3 non-coding dataset has generated a lead dataset of transcripts without signs of being artefacts, providing a suitable dataset for investigation with hybridization-based techniques.
Collapse
|