151
|
Zhang B, Xiao Y, Hsieh A, Thavandiran N, Radisic M. Micro- and nanotechnology in cardiovascular tissue engineering. NANOTECHNOLOGY 2011; 22:494003. [PMID: 22101261 DOI: 10.1088/0957-4484/22/49/494003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.
Collapse
Affiliation(s)
- Boyang Zhang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 164 College Street, Rm 407, Toronto, ON M5S 3G9, Canada
| | | | | | | | | |
Collapse
|
152
|
Dai X, Xu Q. Nanostructured substrate fabricated by sectioning tendon using a microtome for tissue engineering. NANOTECHNOLOGY 2011; 22:494008. [PMID: 22101489 DOI: 10.1088/0957-4484/22/49/494008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This paper describes an efficient and versatile method for the fabrication of nanostructured substrates from a piece of tendon which comprises aligned collagen nanofibers. We used a microtome to generate the tendon slices (10-50 µm thick), which were used as a scaffold for guiding directional cell growth. Highly aligned and uniform monolayer cells sheets were obtained. The tendon slices were used as a master, and the nanostructures outlined by the bundles of collagen nanofibers were successfully transferred onto a polystyrene film using standard soft lithography. The cell growing on the nanostructured polystyrene substrate showed good adhesion and alignment. The technique developed here enables one to fabricate nanostructured substrates without using any traditional micro/nanofabrication tools. The nanostructured substrate, e.g. a slice of tendon, has excellent biocompatibility and relatively good mechanical stability, which makes this technique useful in constructing complicated 3D tissues.
Collapse
Affiliation(s)
- Xiaoshu Dai
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | | |
Collapse
|
153
|
Moreno MR, Biswas S, Harrison LD, Pernelle G, Miller MW, Fossum TW, Nelson DA, Criscione JC. Development of a Non-Blood Contacting Cardiac Assist and Support Device: An In Vivo Proof of Concept Study. J Med Device 2011. [DOI: 10.1115/1.4005281] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
One of the maladaptive changes following a heart attack is an initial decline in pumping capacity, which leads to activation of compensatory mechanisms, and subsequently, a phenomenon known as cardiac or left ventricular remodeling. Evidence suggests that mechanical cues are critical in the progression of congestive heart failure. In order to mediate two important mechanical parameters, cardiac size and cardiac output, we have developed a direct cardiac contact device capable of two actions: (1) adjustable cardiac support to modulate cardiac size and (2) synchronous active assist to modulate cardiac output. In addition, the device was designed to (1) remain in place about the heart without tethering, (2) allow free normal motion of the heart, and (3) provide assist via direct cardiac compression without abnormally inverting the curvature of the heart. The actions and features described above were mapped to particular design solutions and assessed in an acute implantation in an ovine model of acute heart failure (esmolol overdose). A balloon catheter was inflated in the vena cava to reduce preload and determine the end-diastolic pressure-volume relationship with and without passive support. A Millar PV Loop catheter was inserted in the left ventricle to acquire pressure-volume data throughout the experiments. Fluoroscopic imaging was used to investigate effects on cardiac motion. Implementation of the adjustable passive support function of the device successfully modulated the end-diastolic pressure-volume relationship toward normal. The active assist function successfully restored cardiac output and stroke work to healthy baseline levels in the esmolol induced failure model. The device remained in place throughout the experiment and when de-activated, did not inhibit cardiac motion. In this in vivo proof of concept study, we have demonstrated that a single device can be used to provide both passive constraint/support and active assist. Such a device may allow for controlled, disease specific, flexible intervention. Ultimately, it is hypothesized that the combination of support and assist could be used to facilitate cardiac rehabilitation therapy. The principles guiding this approach involve simply creating the conditions under which natural growth and remodeling processes are guided in a therapeutic manner. For example, the passive support function could be incrementally adjusted to gradually reduce the size of the dilated myocardium, while the active assist function can be implemented as necessary to maintain cardiac output and decompress the heart.
Collapse
Affiliation(s)
- Michael R. Moreno
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120; CorInnova Incorporated, College Station, TX 77845
| | - Saurabh Biswas
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120
| | | | | | - Matthew W. Miller
- Texas A&M Institute for Preclinical Studies, Texas A&M University, College Station, TX 77843; Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4474
| | - Theresa W. Fossum
- Texas A&M Institute for Preclinical Studies, Texas A&M University, College Station, TX 77843; Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4474
| | - David A. Nelson
- Texas A&M Institute for Preclinical Studies, Texas A&M University, College Station, TX 77843
| | - John C. Criscione
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120; CorInnova Incorporated, College Station, TX 77845
| |
Collapse
|
154
|
Saha N, Dubey AK, Basu B. Cellular proliferation, cellular viability, and biocompatibility of HA-ZnO composites. J Biomed Mater Res B Appl Biomater 2011; 100:256-64. [DOI: 10.1002/jbm.b.31948] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 06/11/2011] [Accepted: 06/16/2011] [Indexed: 11/11/2022]
|
155
|
Hoffecker IT, Guo WH, Wang YL. Assessing the spatial resolution of cellular rigidity sensing using a micropatterned hydrogel-photoresist composite. LAB ON A CHIP 2011; 11:3538-3544. [PMID: 21897978 DOI: 10.1039/c1lc20504h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The biophysical machinery that permits a cell to sense substrate rigidity is poorly understood. Rigidity sensing of adherent cells likely involves traction forces applied through focal adhesions and measurement of resulting deformation. However, it is unclear if this measurement takes place underneath single focal adhesions, over local clusters of focal adhesions, or across the length of the entire cell. To address this question, we developed a composite, chip-based material containing many arrays of 6.5 μm × 6.5 μm rigid adhesive islands, with an edge-edge distance of 8 μm, grafted onto the surface of a non-adhesive polyacrylamide hydrogel. This material is thus rigid within single islands while long-range rigidity is determined by the hydrogel. On soft gels, most NIH 3T3 cells spread only across two islands in a given dimension forming small stress fibers and focal adhesions. On stiff gels, cell spreading, stress fibers, and focal adhesions were indistinguishable from those on regular culture surfaces. We conclude that rigidity sensing is dictated by material compliance across the cell length and that responses to rigidity may be inhibited at any point when large substrate strain is encountered during spreading. Our finding may serve as a guideline for the design of biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Ian T Hoffecker
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15219, USA
| | | | | |
Collapse
|
156
|
Sugita S, Adachi T, Ueki Y, Sato M. A novel method for measuring tension generated in stress fibers by applying external forces. Biophys J 2011; 101:53-60. [PMID: 21723814 DOI: 10.1016/j.bpj.2011.05.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 05/17/2011] [Accepted: 05/24/2011] [Indexed: 02/07/2023] Open
Abstract
The distribution of contractile forces generated in cytoskeletal stress fibers (SFs) contributes to cellular dynamic functions such as migration and mechanotransduction. Here we describe a novel (to our knowledge) method for measuring local tensions in SFs based on the following procedure: 1), known forces of different magnitudes are applied to an SF in the direction perpendicular to its longitudinal axis; 2), force balance equations are used to calculate the resulting tensions in the SF from changes in the SF angle; and 3), the relationship between tension and applied force thus established is extrapolated to an applied force of zero to determine the preexisting tension in the SF. In this study, we measured tensions in SFs by attaching magnetic particles to them and applying known forces with an electromagnetic needle. Fluorescence microscopy was used to capture images of SFs fluorescently labeled with myosin II antibodies, and analysis of these images allowed the tension in the SFs to be measured. The average tension measured in this study was comparable to previous reports, which indicates that this method may become a powerful tool for elucidating the mechanisms by which cytoskeletal tensions affect cellular functions.
Collapse
Affiliation(s)
- Shukei Sugita
- Computational Cell Biomechanics Team, VCAD System Research Program, RIKEN, Wako, Japan.
| | | | | | | |
Collapse
|
157
|
Wu J, Lee KC, Dickinson RB, Lele TP. How dynein and microtubules rotate the nucleus. J Cell Physiol 2011; 226:2666-74. [PMID: 21792925 DOI: 10.1002/jcp.22616] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In living cells, a fluctuating torque is exerted on the nuclear surface but the origin of the torque is unclear. In this study, we found that the nuclear rotation angle is directionally persistent on a time scale of tens of minutes, but rotationally diffusive on longer time scales. Rotation required the activity of the microtubule motor dynein. We formulated a model based on microtubules undergoing dynamic instability, with tensional forces between a stationary centrosome and the nuclear surface mediated by dynein. Model simulations suggest that the persistence in rotation angle is due to the transient asymmetric configuration of microtubules exerting a net torque in one direction until the configuration is again randomized by dynamic instability. The model predicts that the rotational magnitude must depend on the distance between the nucleus and the centrosome. To test this prediction, rotation was quantified in patterned cells in which the cell's centrosome was close to the projected nuclear centroid. Consistent with the prediction, the angular displacement was found to decrease in these cells relative to unpatterned cells. This work provides the first mechanistic explanation for how nuclear dynein interactions with discrete microtubules emanating from a stationary centrosome cause rotational torque on the nucleus.
Collapse
Affiliation(s)
- Jun Wu
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | |
Collapse
|
158
|
Alford PW, Nesmith AP, Seywerd JN, Grosberg A, Parker KK. Vascular smooth muscle contractility depends on cell shape. Integr Biol (Camb) 2011; 3:1063-70. [PMID: 21993765 DOI: 10.1039/c1ib00061f] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The physiologic role of smooth muscle structure in defining arterial function is poorly understood. We aimed to elucidate the relationship between vascular smooth muscle architecture and functional contractile output. Using microcontact printing and muscular thin film technology, we engineered in vitro vascular tissues with strictly defined geometries and tested their contractile function. In all tissues, vascular smooth muscle cells (VSMCs) were highly aligned with in vivo-like spindle architecture, and contracted physiologically in response to stimulation with endothelin-1. However, tissues wherein the VSMCs were forced into exaggerated spindle elongation exerted significantly greater contraction force per unit cross-sectional area than those with smaller aspect ratios. Moreover, this increased contraction did not occur in conjunction with an increase in traditionally measured contractile phenotype markers. These results suggest that cellular architecture within vascular tissues plays a significant role in conferring tissue function and that, in some systems, traditional phenotype characterization is not sufficient to define a functionally contractile population of VSMCs.
Collapse
Affiliation(s)
- Patrick W Alford
- Disease Biophysics Group, Harvard Stem Cell Institute, Wyss Institute of Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
159
|
Consequences of Neutralization on the Proliferation and Cytoskeletal Organization of Chondrocytes on Chitosan-Based Matrices. ACTA ACUST UNITED AC 2011. [DOI: 10.1155/2011/809743] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In tissue engineering strategies that seek to repair or regenerate native tissues, adhesion of cells to scaffolds or matrices is essential and has the potential to influence subsequent cellular events. Our focus in this paper is to better understand the impact of cellular seeding and adhesion in the context of cartilage tissue engineering. When scaffolds or surfaces are constructed from chitosan, the scaffolds must be first neutralized with sodium hydroxide and then washed copiously to render the surface, cell compatible. We seek to better understand the effect of surface pretreatment regimen on the cellular response to chitosan-based surfaces. In the present paper, sodium hydroxide concentration was varied between 0.1 M and 0.5 M and two different contacting times were studied: 10 minutes and 30 minutes. The different pretreatment conditions were noted to affect cell proliferation, morphology, and cytoskeletal distribution. An optimal set of experimental parameters were noted for improving cell growth on scaffolds.
Collapse
|
160
|
Moraes C, Sun Y, Simmons CA. (Micro)managing the mechanical microenvironment. Integr Biol (Camb) 2011; 3:959-71. [PMID: 21931883 DOI: 10.1039/c1ib00056j] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanical forces are critical components of the cellular microenvironment and play a pivotal role in driving cellular processes in vivo. Dissecting cellular responses to mechanical forces is challenging, as even "simple" mechanical stimulation in vitro can cause multiple interdependent changes in the cellular microenvironment. These stimuli include solid deformation, fluid flows, altered physical and chemical surface features, and a complex transfer of loads between the various interacting components of a biological culture system. The active mechanical and biochemical responses of cells to these stimuli in generating internal forces, reorganizing cellular structures, and initiating intracellular signals that specify cell fate and remodel the surrounding environment further complicates cellular response to mechanical forces. Moreover, cells present a non-linear response to combinations of mechanical forces, materials, chemicals, surface features, matrix properties and other effectors. Microtechnology-based approaches to these challenges can yield key insights into the mechanical nature of cellular behaviour, by decoupling stimulation parameters; enabling multimodal control over combinations of stimuli; and increasing experimental throughput to systematically probe cellular response. In this critical review, we briefly discuss the complexities inherent in the mechanical stimulation of cells; survey and critically assess the applications of present microtechnologies in the field of experimental mechanobiology; and explore opportunities and possibilities to use these tools to obtain a deeper understanding of mechanical interactions between cells and their environment.
Collapse
Affiliation(s)
- Christopher Moraes
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | | | | |
Collapse
|
161
|
Bordeleau F, Bessard J, Marceau N, Sheng Y. Measuring integrated cellular mechanical stress response at focal adhesions by optical tweezers. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:095005. [PMID: 21950914 DOI: 10.1117/1.3626864] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The ability of cells to sustain mechanical stress is largely modulated by the cytoskeleton. We present a new application of optical tweezers to study cell's mechanical properties. We trap a fibronectin-coated bead attached to an adherent H4II-EC3 rat hepatoma cell in order to apply the force to the cell surface membrane. The bead position corresponding to the cell's local mechanical response at focal adhesions is measured with a quadrant detector. We assessed the cell response by tracking the evolution of the equilibrium force for 40 cells selected at random and selected a temporal window to assess the cell initial force expression at focal adhesions. The mean value of the force within this time window over 40 randomly selected bead∕cell bounds was 52.3 pN. Then, we assessed the responses of the cells with modulation of the cytoskeletons, namely the ubiquitous actin-microfilaments and microtubules, plus the differentiation-dependent keratin intermediate filaments. Notably, a destabilization of the first two networks led to around 50 and 30% reductions in the mean equilibrium forces, respectively, relative to untreated cells, whereas a loss of the third one yielded a 25% increase. The differences in the forces from untreated and treated cells are resolved by the optical tweezers experiment.
Collapse
Affiliation(s)
- François Bordeleau
- Laval University, Center for Optics, Photonics and Lasers, Quebec, G1K 7P4, Canada
| | | | | | | |
Collapse
|
162
|
Ng SS, Li C, Chan V. Experimental and numerical determination of cellular traction force on polymeric hydrogels. Interface Focus 2011; 1:777-91. [PMID: 23050082 DOI: 10.1098/rsfs.2011.0036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 07/11/2011] [Indexed: 12/30/2022] Open
Abstract
Anchorage-dependent cells such as smooth muscle cells (SMCs) rely on the transmission of actomyosin-generated traction forces to adhere and migrate on the extracellular matrix. The cellular traction forces exerted by SMCs on substrate can be measured from the deformation of substrate with embedded fluorescent markers. With the synchronous use of phase-contrast and fluorescent microscopy, the deformation of polyacrylamide (PAM) gel substrate can be quantitatively determined using particle image velocimetry. This displacement map is then input as boundary conditions for the stress analysis on PAM gel by the finite-element method. In addition to optical microscopy, atomic force microscopy was also used to characterize the PAM substrate using the contact mode, from which the elasticity of PAM can be quantified using Hertzian theory. This provides baseline information for the stress analysis of PAM gel deformation. The material model introduced for the computational part is the Mooney-Rivlin constitutive law because of its long proven usefulness in predicting polymers' mechanical behaviour. Numerical results showed that adhesive stresses are high around the cell edges, which is in accordance with the general phenomena of cellular focal adhesion. Further calculations on the total traction forces indicate a slightly contact-dominated regime for a broad range of Mooney-Rivlin stiffnesses.
Collapse
Affiliation(s)
- Soon Seng Ng
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637459 , Republic of Singapore
| | | | | |
Collapse
|
163
|
Spatial organization of mesenchymal stem cells in vitro--results from a new individual cell-based model with podia. PLoS One 2011; 6:e21960. [PMID: 21760935 PMCID: PMC3132757 DOI: 10.1371/journal.pone.0021960] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 06/15/2011] [Indexed: 11/19/2022] Open
Abstract
Therapeutic application of mesenchymal stem cells (MSC) requires their extensive in vitro expansion. MSC in culture typically grow to confluence within a few weeks. They show spindle-shaped fibroblastoid morphology and align to each other in characteristic spatial patterns at high cell density. We present an individual cell-based model (IBM) that is able to quantitatively describe the spatio-temporal organization of MSC in culture. Our model substantially improves on previous models by explicitly representing cell podia and their dynamics. It employs podia-generated forces for cell movement and adjusts cell behavior in response to cell density. At the same time, it is simple enough to simulate thousands of cells with reasonable computational effort. Experimental sheep MSC cultures were monitored under standard conditions. Automated image analysis was used to determine the location and orientation of individual cells. Our simulations quantitatively reproduced the observed growth dynamics and cell-cell alignment assuming cell density-dependent proliferation, migration, and morphology. In addition to cell growth on plain substrates our model captured cell alignment on micro-structured surfaces. We propose a specific surface micro-structure that according to our simulations can substantially enlarge cell culture harvest. The 'tool box' of cell migratory behavior newly introduced in this study significantly enhances the bandwidth of IBM. Our approach is capable of accommodating individual cell behavior and collective cell dynamics of a variety of cell types and tissues in computational systems biology.
Collapse
|
164
|
Tseng Q, Wang I, Duchemin-Pelletier E, Azioune A, Carpi N, Gao J, Filhol O, Piel M, Théry M, Balland M. A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels. LAB ON A CHIP 2011; 11:2231-40. [PMID: 21523273 DOI: 10.1039/c0lc00641f] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In tissues, cell microenvironment geometry and mechanics strongly impact on cell physiology. Surface micropatterning allows the control of geometry while deformable substrates of tunable stiffness are well suited for the control of the mechanics. We developed a new method to micropattern extracellular matrix proteins on poly-acrylamide gels in order to simultaneously control cell geometry and mechanics. Microenvironment geometry and mechanics impinge on cell functions by regulating the development of intra-cellular forces. We measured these forces in micropatterned cells. Micropattern geometry was streamlined to orient forces and place cells in comparable conditions. Thereby force measurement method could be simplified and applied to large-scale experiment on chip. We applied this method to mammary epithelial cells with traction force measurements in various conditions to mimic tumoral transformation. We found that, contrary to the current view, all transformation phenotypes were not always associated to an increased level of cell contractility.
Collapse
Affiliation(s)
- Qingzong Tseng
- Laboratoire de Physiologie Cellulaire et Végétale, iRTSV, CEA/CNRS/UJF/INRA, 17 rue des martyrs, 38054 Grenoble, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Schultz GS, Davidson JM, Kirsner RS, Bornstein P, Herman IM. Dynamic reciprocity in the wound microenvironment. Wound Repair Regen 2011; 19:134-48. [PMID: 21362080 DOI: 10.1111/j.1524-475x.2011.00673.x] [Citation(s) in RCA: 328] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here, we define dynamic reciprocity (DR) as an ongoing, bidirectional interaction among cells and their surrounding microenvironment. In this review, we posit that DR is especially meaningful during wound healing as the DR-driven biochemical, biophysical, and cellular responses to injury play pivotal roles in regulating tissue regenerative responses. Such cell-extracellular matrix interactions not only guide and regulate cellular morphology, but also cellular differentiation, migration, proliferation, and survival during tissue development, including, e.g., embryogenesis, angiogenesis, as well as during pathologic processes including cancer, diabetes, hypertension, and chronic wound healing. Herein, we examine DR within the wound microenvironment while considering specific examples across acute and chronic wound healing. This review also considers how a number of hypotheses that attempt to explain chronic wound pathophysiology may be understood within the DR framework. The implications of applying the principles of DR to optimize wound care practice and future development of innovative wound healing therapeutics are also briefly considered.
Collapse
Affiliation(s)
- Gregory S Schultz
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, Florida, USA
| | | | | | | | | |
Collapse
|
166
|
Tay CY, Irvine SA, Boey FYC, Tan LP, Venkatraman S. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:1361-1378. [PMID: 21538867 DOI: 10.1002/smll.201100046] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 03/19/2011] [Indexed: 05/30/2023]
Abstract
The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the cell-biomaterial interface. Systematic studies conducted on these 2D engineered surfaces have unraveled numerous novel findings that can potentially be integrated as part of the design consideration for future 2D and 3D biomaterials and will no doubt greatly benefit tissue engineering. In this review, recent developments detailing the use of micro-/nano-engineering techniques to direct cellular orientation and function pertinent to soft tissue engineering will be highlighted. Particularly, this article aims to provide valuable insights into distinctive cell interactions and reactions to controlled surfaces, which can be exploited to understand the mechanisms of cell growth on micro-/nano-engineered interfaces, and to harness this knowledge to optimize the performance of 3D artificial soft tissue grafts and biomedical applications.
Collapse
Affiliation(s)
- Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore
| | | | | | | | | |
Collapse
|
167
|
Noriega SE, Hasanova GI, Schneider MJ, Larsen GF, Subramanian A. Effect of fiber diameter on the spreading, proliferation and differentiation of chondrocytes on electrospun chitosan matrices. Cells Tissues Organs 2011; 195:207-21. [PMID: 21540560 PMCID: PMC3697793 DOI: 10.1159/000325144] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2011] [Indexed: 01/15/2023] Open
Abstract
Tissue-engineered neocartilage with appropriate biomechanical properties holds promise not only for graft applications but also as a model system for controlled studies of chondrogenesis. Our objective in the present research study is to better understand the impact of fiber diameter on the cellular activity of chondrocytes cultured on nanofibrous matrices. By using the electrospinning process, fibrous scaffolds with fiber diameters ranging from 300 nm to 1 μm were prepared and the physicomechanical properties of the scaffolds were characterized. Bovine articular chondrocytes were then seeded and maintained on the scaffolds for 7 and 14 days in culture. An upregulation in the gene expression of collagen II was noted with decreasing fiber diameters. For cells that were cultured on scaffolds with a mean fiber diameter of 300 nm, a 2-fold higher ratio of collagen II/collagen I was noted when compared to cells cultured on sponge-like scaffolds prepared by freeze drying and lyophilization. Integrin (α(5), αv, β(1)) gene expression was also observed to be influenced by matrix morphology. Our combined results suggest that matrix geometry can regulate and promote the retention of the chondrocyte genotype.
Collapse
Affiliation(s)
| | | | | | | | - Anuradha Subramanian
- Department of Chemical and Biomolecular Engineering, University of Nebraska – Lincoln, Lincoln, Nebr., USA
| |
Collapse
|
168
|
Desai RA, Khan MK, Gopal SB, Chen CS. Subcellular spatial segregation of integrin subtypes by patterned multicomponent surfaces. Integr Biol (Camb) 2011; 3:560-7. [PMID: 21298148 PMCID: PMC3586560 DOI: 10.1039/c0ib00129e] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While it is well known that individual integrins are critical mediators of cell behavior, recent work has shown that when multiple types of integrins simultaneously engage the ECM, cell functions are enhanced. However, it is not known how integrins spatially coordinate to regulate cell adhesion because no reliable method exists to segregate integrins on the cell membrane. Here, we use a microcontact printing-based strategy to pattern multiple ECMs that bind distinct integrins in order to study how integrins might interact. In our technique, proteins are first adsorbed uniformly to a poly(dimethyl siloxane) stamp, and then selectively "de-inked." Our strategy overcomes several inherent limitations of conventional microcontact printing, including stamp collapse and limited functionality of the surface patterns. We show that integrins spatially segregate on surfaces patterned with multiple ECMs, as expected. Interestingly, despite spatial segregation of distinct integrins, cells could form adhesions and migrate across multicomponent surfaces as well as they do on single component surfaces. Together, our data indicate that although cells can segregate individual integrins on the cell surface to mediate ECM-specific binding, integrins function cooperatively to guide cell adhesion and migration.
Collapse
Affiliation(s)
- Ravi A. Desai
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, Philadelphia, PA 19104
| | - Mohammed K. Khan
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, Philadelphia, PA 19104
| | - Smitha B. Gopal
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, Philadelphia, PA 19104
| | - Christopher S. Chen
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, Philadelphia, PA 19104
| |
Collapse
|
169
|
Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Pflugers Arch 2011; 462:89-104. [PMID: 21499986 DOI: 10.1007/s00424-011-0951-4] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 02/27/2011] [Indexed: 12/16/2022]
Abstract
Mechanotransduction refers to the conversion of mechanical forces into biochemical or electrical signals that initiate structural and functional remodeling in cells and tissues. The heart is a kinetic organ whose form changes considerably during development and disease, requiring cardiac myocytes to be mechanically durable and capable of fusing a variety of environmental signals on different time scales. During physiological growth, myocytes adaptively remodel to mechanical loads. Pathological stimuli can induce maladaptive remodeling. In both of these conditions, the cytoskeleton plays a pivotal role in both sensing mechanical stress and mediating structural remodeling and functional responses within the myocyte.
Collapse
|
170
|
Kumar G, Co CC, Ho CC. Steering cell migration using microarray amplification of natural directional persistence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:3803-7. [PMID: 21355564 PMCID: PMC3068213 DOI: 10.1021/la2000206] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cell locomotion plays a key role in embryonic morphogenesis, wound healing, and cancer metastasis. Here we show that intermittent control of cell shape using microarrays can be used to amplify the natural directional persistence of cells and guide their continuous migration along preset paths and directions. The key to this geometry-based, gradient-free approach for directing cell migration is the finding that cell polarization, induced by the asymmetric shape of individual microarray islands, is retained as cells traverse between islands. Altering the intracellular signals involved in lamellipodia extension (Rac1), contractility (RhoA), and cell polarity (Cdc42) alters the speed of fibroblast migration on these micropatterns but does not affect their directional bias significantly. These results provide insights into the role of cell morphology in directional movement and the design of micropatterned materials for steering cellular traffic.
Collapse
Affiliation(s)
- Girish Kumar
- Chemical & Materials Engineering Department, University of Cincinnati, Cincinnati, Ohio 45221-0012, United States
| | | | | |
Collapse
|
171
|
Rape A, Guo WH, Wang YL. The regulation of traction force in relation to cell shape and focal adhesions. Biomaterials 2011; 32:2043-51. [PMID: 21163521 PMCID: PMC3029020 DOI: 10.1016/j.biomaterials.2010.11.044] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 11/18/2010] [Indexed: 01/13/2023]
Abstract
Mechanical forces provide critical inputs for proper cellular functions. The interplay between the generation of, and response to, mechanical forces regulate such cellular processes as differentiation, proliferation, and migration. We postulate that adherent cells respond to a number of physical and topographical factors, including cell size and shape, by detecting the magnitude and/or distribution of traction forces under different conditions. To address this possibility we introduce a new simple method for precise micropatterning of hydrogels, and then apply the technique to systematically investigate the relationship between cell geometry, focal adhesions, and traction forces in cells with a series of spread areas and aspect ratios. Contrary to previous findings, we find that traction force is not determined primarily by the cell spreading area but by the distance from cell center to the perimeter. This distance in turn controls traction forces by regulating the size of focal adhesions, such that constraining the size of focal adhesions by micropatterning can override the effect of geometry. We propose that the responses of traction forces to center-periphery distance, possibly through a positive feedback mechanism that regulates focal adhesions, provide the cell with the information on its own shape and size. A similar positive feedback control may allow cells to respond to a variety of physical or topographical signals via a unified mechanism.
Collapse
Affiliation(s)
- Andrew Rape
- Department of Biomedical Engineering, Carnegie Mellon University 700 Technology Drive Pittsburgh, Pa 15219
| | - Wei-hui Guo
- Department of Biomedical Engineering, Carnegie Mellon University 700 Technology Drive Pittsburgh, Pa 15219
| | - Yu-li Wang
- Department of Biomedical Engineering, Carnegie Mellon University 700 Technology Drive Pittsburgh, Pa 15219
| |
Collapse
|
172
|
Grosberg A, Kuo PL, Guo CL, Geisse NA, Bray MA, Adams WJ, Sheehy SP, Parker KK. Self-organization of muscle cell structure and function. PLoS Comput Biol 2011; 7:e1001088. [PMID: 21390276 PMCID: PMC3044763 DOI: 10.1371/journal.pcbi.1001088] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 01/19/2011] [Indexed: 11/22/2022] Open
Abstract
The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton. How muscle is organized impacts its function. However, understanding how muscle organizes is challenging, as the process occurs over several length scales. We approach this multiscale coupling problem by constraining the overall shapes of muscle cells to indirectly control the organization of their intracellular space. We hypothesized the cellular boundary conditions direct the organization of cytoskeletal scaffolds. We developed a model of how the cytoskeleton of cardiomyocytes organizes with respect to boundary cues. Our computational and experimental results to control myocyte shape indicated that distinct muscle architectures arise from two main organizational mechanisms: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of more mature myofibrils. We show that a hierarchy of processes regulate the self-organization of cardiomyocytes. Our results suggest that a symmetry break, due to the boundary conditions imposed on the cell, is responsible for polarization of the contractile cytoskeletal organization.
Collapse
Affiliation(s)
- Anna Grosberg
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Po-Ling Kuo
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Chin-Lin Guo
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Nicholas A. Geisse
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Mark-Anthony Bray
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - William J. Adams
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Sean P. Sheehy
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
173
|
Pong T, Adams WJ, Bray MA, Feinberg AW, Sheehy SP, Werdich AA, Parker KK. Hierarchical architecture influences calcium dynamics in engineered cardiac muscle. Exp Biol Med (Maywood) 2011; 236:366-73. [PMID: 21330361 DOI: 10.1258/ebm.2010.010239] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Changes in myocyte cell shape and tissue structure are concurrent with changes in electromechanical function in both the developing and diseased heart. While the anisotropic architecture of cardiac tissue is known to influence the propagation of the action potential, the influence of tissue architecture and its potential role in regulating excitation-contraction coupling (ECC) are less well defined. We hypothesized that changes in the shape and the orientation of cardiac myocytes induced by spatial arrangement of the extracellular matrix (ECM) affects ECC. To test this hypothesis, we isolated and cultured neonatal rat ventricular cardiac myocytes on various micropatterns of fibronectin where they self-organized into tissues with varying degrees of anisotropy. We then measured the morphological features of these engineered myocardial tissues across several hierarchical dimensions by measuring cellular aspect ratio, myocyte area, nuclear density and the degree of cytoskeletal F-actin alignment. We found that when compared with isotropic tissues, anisotropic tissues have increased cellular aspect ratios, increased nuclear densities, decreased myocyte cell areas and smaller variances in actin alignment. To understand how tissue architecture influences cardiac function, we studied the role of anisotropy on intracellular calcium ([Ca(2+)](i)) dynamics by characterizing the [Ca(2+)](i)-frequency relationship of electrically paced tissues. When compared with isotropic tissues, anisotropic tissues displayed significant differences in [Ca(2+)](i) transients, decreased diastolic baseline [Ca(2+)](i) levels and greater [Ca(2+)](i) influx per cardiac cycle. These results suggest that ECM cues influence tissue structure at cellular and subcellular levels and regulate ECC.
Collapse
Affiliation(s)
- Terrence Pong
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | |
Collapse
|
174
|
Dinicola S, D'Anselmi F, Pasqualato A, Proietti S, Lisi E, Cucina A, Bizzarri M. A systems biology approach to cancer: fractals, attractors, and nonlinear dynamics. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:93-104. [PMID: 21319994 DOI: 10.1089/omi.2010.0091] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer begins to be recognized as a highly complex disease, and advanced knowledge of the carcinogenic process claims to be acquired by means of supragenomic strategies. Experimental data evidence that tumor emerges from disruption of tissue architecture, and it is therefore consequential that the tissue level should be considered the proper level of observation for carcinogenic studies. This paradigm shift imposes to move from a reductionistic to a systems biology approach. Indeed, cell phenotypes are emergent modes arising through collective nonlinear interactions among different cellular and microenvironmental components, generally described by a phase space diagram, where stable states (attractors) are embedded into a landscape model. Within this framework cell states and cell transitions are generally conceived as mainly specified by the gene-regulatory network. However, the system's dynamics cannot be reduced to only the integrated functioning of the genome-proteome network, and the cell-stroma interacting system must be taken into consideration in order to give a more reliable picture. As cell form represents the spatial geometric configuration shaped by an integrated set of cellular and environmental cues participating in biological functions control, it is conceivable that fractal-shape parameters could be considered as "omics" descriptors of the cell-stroma system. Within this framework it seems that function follows form, and not the other way around.
Collapse
Affiliation(s)
- Simona Dinicola
- Department of Experimental Medicine, Sapienza University, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
175
|
Russell RJ, Grubbs AY, Mangroo SP, Nakasone SE, Dickinson RB, Lele TP. Sarcomere length fluctuations and flow in capillary endothelial cells. Cytoskeleton (Hoboken) 2011; 68:150-6. [DOI: 10.1002/cm.20501] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/23/2010] [Indexed: 11/09/2022]
|
176
|
A predictive model of cell traction forces based on cell geometry. Biophys J 2011; 99:L78-80. [PMID: 21044567 DOI: 10.1016/j.bpj.2010.09.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 12/12/2022] Open
Abstract
Recent work has indicated that the shape and size of a cell can influence how a cell spreads, develops focal adhesions, and exerts forces on the substrate. However, it is unclear how cell shape regulates these events. Here we present a computational model that uses cell shape to predict the magnitude and direction of forces generated by cells. The predicted results are compared to experimentally measured traction forces, and show that the model can predict traction force direction, relative magnitude, and force distribution within the cell using only cell shape as an input. Analysis of the model shows that the magnitude and direction of the traction force at a given point is proportional to the first moment of area about that point in the cell, suggesting that contractile forces within the cell act on the entire cytoskeletal network as a single cohesive unit. Through this model, we demonstrate that intrinsic properties of cell shape can facilitate changes in traction force patterns, independently of heterogeneous mechanical properties or signaling events within the cell.
Collapse
|
177
|
Dissecting regional variations in stress fiber mechanics in living cells with laser nanosurgery. Biophys J 2011; 99:2775-83. [PMID: 21044574 DOI: 10.1016/j.bpj.2010.08.071] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 08/19/2010] [Accepted: 08/20/2010] [Indexed: 11/21/2022] Open
Abstract
The ability of a cell to distribute contractile stresses across the extracellular matrix in a spatially heterogeneous fashion underlies many cellular behaviors, including motility and tissue assembly. Here we investigate the biophysical basis of this phenomenon by using femtosecond laser nanosurgery to measure the viscoelastic recoil and cell-shape contributions of contractile stress fibers (SFs) located in specific compartments of living cells. Upon photodisruption and recoil, myosin light chain kinase-dependent SFs located along the cell periphery display much lower effective elasticities and higher plateau retraction distances than Rho-associated kinase-dependent SFs located in the cell center, with severing of peripheral fibers uniquely triggering a dramatic contraction of the entire cell within minutes of fiber irradiation. Image correlation spectroscopy reveals that when one population of SFs is pharmacologically dissipated, actin density flows toward the other population. Furthermore, dissipation of peripheral fibers reduces the elasticity and increases the plateau retraction distance of central fibers, and severing central fibers under these conditions triggers cellular contraction. Together, these findings show that SFs regulated by different myosin activators exhibit different mechanical properties and cell shape contributions. They also suggest that some fibers can absorb components and assume mechanical roles of other fibers to stabilize cell shape.
Collapse
|
178
|
Kasprowicz A, Smolarkiewicz M, Wierzchowiecka M, Michalak M, Wojtaszek P. Introduction: Tensegral World of Plants. MECHANICAL INTEGRATION OF PLANT CELLS AND PLANTS 2011. [DOI: 10.1007/978-3-642-19091-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
179
|
Baran ET, Tuzlakoğlu K, Salgado A, Reis RL. Microchannel-patterned and heparin micro-contact-printed biodegradable composite membranes for tissue-engineering applications. J Tissue Eng Regen Med 2010; 5:e108-14. [DOI: 10.1002/term.368] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 08/30/2010] [Indexed: 11/10/2022]
|
180
|
Théry M. Micropatterning as a tool to decipher cell morphogenesis and functions. J Cell Sci 2010; 123:4201-13. [DOI: 10.1242/jcs.075150] [Citation(s) in RCA: 530] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In situ, cells are highly sensitive to geometrical and mechanical constraints from their microenvironment. These parameters are, however, uncontrolled under classic culture conditions, which are thus highly artefactual. Micro-engineering techniques provide tools to modify the chemical properties of cell culture substrates at sub-cellular scales. These can be used to restrict the location and shape of the substrate regions, in which cells can attach, so-called micropatterns. Recent progress in micropatterning techniques has enabled the control of most of the crucial parameters of the cell microenvironment. Engineered micropatterns can provide a micrometer-scale, soft, 3-dimensional, complex and dynamic microenvironment for individual cells or for multi-cellular arrangements. Although artificial, micropatterned substrates allow the reconstitution of physiological in situ conditions for controlled in vitro cell culture and have been used to reveal fundamental cell morphogenetic processes as highlighted in this review. By manipulating micropattern shapes, cells were shown to precisely adapt their cytoskeleton architecture to the geometry of their microenvironment. Remodelling of actin and microtubule networks participates in the adaptation of the entire cell polarity with respect to external constraints. These modifications further impact cell migration, growth and differentiation.
Collapse
Affiliation(s)
- Manuel Théry
- Laboratoire de Physiologie Cellulaire et Végétale, iRTSV, CEA/CNRS/UJF/INRA, 17 Rue des Martyrs, 38054, Grenoble, France
| |
Collapse
|
181
|
Abstract
In the body, cells encounter a complex milieu of signals, including topographical cues, in the form of the physical features of their surrounding environment. Imposed topography can affect cells on surfaces by promoting adhesion, spreading, alignment, morphological changes, and changes in gene expression. Neural response to topography is complex, and it depends on the dimensions and shapes of physical features. Looking toward repair of nerve injuries, strategies are being explored to engineer guidance conduits with precise surface topographies. How neurons and other cell types sense and interpret topography remains to be fully elucidated. Studies reviewed here include those of topography on cellular organization and function as well as potential cellular mechanisms of response.
Collapse
Affiliation(s)
- Diane Hoffman-Kim
- Center for Biomedical Engineering and Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912, USA.
| | | | | |
Collapse
|
182
|
Choi CK, Breckenridge MT, Chen CS. Engineered materials and the cellular microenvironment: a strengthening interface between cell biology and bioengineering. Trends Cell Biol 2010; 20:705-14. [PMID: 20965727 DOI: 10.1016/j.tcb.2010.09.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 12/26/2022]
Abstract
Cells constantly probe and respond to a myriad of cues that are present in their local surroundings. The effects of soluble cues are relatively straightforward to manipulate, yet teasing apart how cells transduce signals from the extracellular matrix and neighboring cells has proven to be challenging due to the spatially and mechanically complex adhesive interactions. Over the years, advances in the engineering of biocompatible materials have enabled innovative ways to study adhesion-mediated cell functions, and numerous insights have elucidated the significance of the cellular microenvironment. Here, we highlight some of the major approaches and discuss the potential for future advancement.
Collapse
Affiliation(s)
- Colin K Choi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
183
|
Reymann AC, Martiel JL, Cambier T, Blanchoin L, Boujemaa-Paterski R, Théry M. Nucleation geometry governs ordered actin networks structures. NATURE MATERIALS 2010; 9:827-32. [PMID: 20852617 DOI: 10.1038/nmat2855] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 08/11/2010] [Indexed: 05/16/2023]
Abstract
Actin filaments constitute one of the main components of cell cytoskeleton. Assembled into bundles in filopodia or in stress fibres, they play a pivotal role in eukaryotes during cell morphogenesis, adhesion and motility. The bundle emergence has been extensively related to specific actin regulators in vivo. Such dynamic modulation was also highlighted by biochemical reconstitution of the actin-network assembly, in bulk solution or with biomimetic devices. However, the question of how geometrical boundaries, such as those encountered in cells, affect the dynamic formation of highly ordered actin structures remains poorly studied. Here we demonstrate that the nucleation geometry in itself can be the principal determinant of actin-network architecture. We developed a micropatterning method that enables the spatial control of actin nucleation sites for in vitro assays. Shape, orientation and distance between nucleation regions control filament orientation and length, filament-filament interactions and filopodium-like bundle formation. Modelling of filament growth and interactions demonstrates that basic mechanical and probabilistic laws govern actin assembly in higher-order structures.
Collapse
Affiliation(s)
- Anne-Cécile Reymann
- Institut de Recherches en Technologies et Sciences pour le Vivant, iRTSV, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/CEA/INRA/UJF, Grenoble, 38054, France
| | | | | | | | | | | |
Collapse
|
184
|
Guo A, Song B, Reid B, Gu Y, Forrester JV, Jahoda CA, Zhao M. Effects of physiological electric fields on migration of human dermal fibroblasts. J Invest Dermatol 2010; 130:2320-7. [PMID: 20410911 PMCID: PMC2952177 DOI: 10.1038/jid.2010.96] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Endogenous electric currents generated instantly at skin wounds direct migration of epithelial cells and are likely to be important in wound healing. Migration of fibroblasts is critical in wound healing. It remains unclear how wound electric fields guide migration of dermal fibroblasts. We report here that mouse skin wounds generated endogenous electric currents for many hours. Human dermal fibroblasts of both primary and cell-line cultures migrated directionally but slowly toward the anode in an electric field of 50-100 mV mm(-1). This is different from keratinocytes, which migrate quickly to the cathode. It took more than 1 hour for dermal fibroblasts to manifest detectable directional migration. Larger field strength (400 mV mm(-1)) was required to induce directional migration within 1 hour after onset of the field. Phosphatidylinositol-3-OH kinase (PI3 kinase) mediates cathode-directed migration of keratinocytes. We tested the role of PI3 kinase in anode-directed migration of fibroblasts. An applied electric field activated PI3 kinase/Akt in dermal fibroblasts. Dermal fibroblasts from p110gamma (a PI3 kinase catalytic subunit) null mice showed significantly decreased directional migration. These results suggest that physiological electric fields may regulate motility of dermal fibroblasts and keratinocytes differently, albeit using similar PI3 kinase-dependent mechanisms.
Collapse
Affiliation(s)
- Aihua Guo
- School of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
- Department of Biological and Biomedical Science, Durham University, Durham, England, UK
| | - Bing Song
- School of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
- Department of Dermatology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Brian Reid
- School of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
- Department of Dermatology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Yu Gu
- School of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
- Department of Dermatology, School of Medicine, University of California, Davis, Davis, California, USA
| | - John V. Forrester
- School of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Colin A.B. Jahoda
- Department of Biological and Biomedical Science, Durham University, Durham, England, UK
| | - Min Zhao
- School of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
- Department of Dermatology, School of Medicine, University of California, Davis, Davis, California, USA
- Department of Ophthalmology, School of Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
185
|
Miyoshi H, Ju J, Lee SM, Cho DJ, Ko JS, Yamagata Y, Adachi T. Control of highly migratory cells by microstructured surface based on transient change in cell behavior. Biomaterials 2010; 31:8539-45. [PMID: 20727586 DOI: 10.1016/j.biomaterials.2010.07.076] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 07/21/2010] [Indexed: 11/16/2022]
Abstract
Cell migration control techniques have been proposed for cells with relatively low migratory activity, based on static analyses performed with cells that attain a temporally homogenous state after being exposed to a cell guiding stimulus. To elucidate new functions of substrate topography, we investigated the transient change in the behavior of highly migratory cells coming from a flat surface to a grooved surface on a silicon substrate covered with SiO(2). A single line groove (1.5 μm in width, 20 μm in depth) and intersecting grooves (1.5 μm in width, 5 μm in spacing, 20 μm in depth) functioned as an effective cell repellent. In the case of wider grooves, a single line groove (4 μm in width; 20 μm in width) had no specified function. In contrast, intersecting grooves (4 μm in width, 5 μm in spacing) functioned as a trap for the cells. Our findings yield a new design concept of cell repelling and trapping surfaces which are applicable to cell guiding methods and single or multiple cell confinement on cell culture substrates, and thus may contribute to development of more advanced biomaterials.
Collapse
Affiliation(s)
- Hiromi Miyoshi
- VCAD System Research Program, RIKEN, The Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | | | | | | | |
Collapse
|
186
|
Abstract
The direction of migration of a cell invading a host population is assumed to be controlled by the magnitude of the strains in the host medium (cells plus extracellular matrix) that arise as the host medium deforms to accommodate the invader. The single assumption that invaders are cued by strains external to themselves is sufficient to generate network structures. The strain induced by a line of invaders is greatest at the extremity of the line and thus the strain field breaks symmetry, stabilizing branch formation. The strain cue also triggers sprouting from existing branches, with no further model assumption. Network characteristics depend primarily on the ratio of the rate of advance of the invaders to the rate of relaxation of the host cells after their initial deformation. Intra-cell mechanisms that govern these two rates control network morphology. The strain field that cues an individual invader is a collective response of the combined cell populations, involving the nearest 100 cells, to order of magnitude, to any invader. The mechanism does not rely on the pre-existence of the entire host medium prior to invasion; the host cells need only maintain a layer several cells thick around each invader. Consistent with recent experiments, networks result only from a strain cue that is based on strain magnitudes. Spatial strain gradients do not break symmetry and therefore cannot stabilize branch formation. The theory recreates most of the geometrical features of the nervous network in the mouse gut when the most influential adjustable parameter takes a value consistent with one inferred from human and mouse amelogenesis. Because of similarity in the guiding local strain fields, strain cues could also be a participating factor in the formation of vascular networks.
Collapse
Affiliation(s)
- Brian N Cox
- Teledyne Scientific Co. LLC, 1049 Camino Dos Rios, Thousand Oaks, CA 91360, USA.
| |
Collapse
|
187
|
Kandere-Grzybowska K, Soh S, Mahmud G, Komarova Y, Pilans D, Grzybowski BA. Short-term molecular polarization of cells on symmetric and asymmetric micropatterns. SOFT MATTER 2010; 6:3257-3268. [PMID: 23826026 PMCID: PMC3697907 DOI: 10.1039/b922647h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ability of cells to sense geometrical/physical constraints of local environment is important for cell movements during development, immune surveillance, and in cancer invasion. In this paper, we quantify "front-rear" polarization - the crucial step in initiating cell migration - based on cytoskeleton and substrate adhesion anisotropy in micropatterned cells of well-defined shapes. We then show that the general viewpoint that asymmetric cell shape is one of the defining characteristics of polarized cells is incomplete. Specifically, we demonstrate that cells on circular micropatterned islands can exhibit asymmetric distribution of both filamentous actin (f-actin) and focal adhesions (FAs) as well as directional, lamellipodial-like ruffling activity. This asymmetry, however, is transient and persists only for the period of several hours during which actin filaments and adhesion structures reorganize into symmetric peripheral arrangement. Cells on asymmetric tear-drop shape islands also display polarized f-actin and FAs, but polarization axes are oriented towards the wide end of the islands. Polarization of actin filaments on tear-drop islands is short-term, while focal adhesions remain asymmetrically distributed for long times. From a practical perspective, circular cells constitute a convenient experimental system, in which phenomena related to cell polarization are "decoupled" from the effects of cells' local curvature (constant along circular cell's perimeter), while asymmetric (tear-drop) micropatterned cells standardize the organization of motility machinery of polarized/ moving cells. Both systems may prove useful for the design of diagnostic tools with which to probe and quantify ex vivo the motility/invasiveness status of cells from cancer patients.
Collapse
Affiliation(s)
- Kristiana Kandere-Grzybowska
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - Siowling Soh
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - Goher Mahmud
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - Yulia Komarova
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - Didzis Pilans
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - Bartosz A. Grzybowski
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| |
Collapse
|
188
|
Gomez EW, Chen QK, Gjorevski N, Nelson CM. Tissue geometry patterns epithelial-mesenchymal transition via intercellular mechanotransduction. J Cell Biochem 2010; 110:44-51. [PMID: 20336666 DOI: 10.1002/jcb.22545] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a phenotypic change in which epithelial cells detach from their neighbors and become motile. Whereas soluble signals such as growth factors and cytokines are responsible for stimulating EMT, here we show that gradients of mechanical stress define the spatial locations at which EMT occurs. When treated with transforming growth factor (TGF)-beta, cells at the corners and edges of square mammary epithelial sheets expressed EMT markers, whereas those in the center did not. Changing the shape of the epithelial sheet altered the spatial pattern of EMT. Traction force microscopy and finite element modeling demonstrated that EMT-permissive regions experienced the highest mechanical stress. Myocardin-related transcription factor (MRTF)-A was localized to the nuclei of cells located in high-stress regions, and inhibiting cytoskeletal tension or MRTF-A expression abrogated the spatial patterning of EMT. These data suggest a causal role for tissue geometry and endogenous mechanical stresses in the spatial patterning of EMT.
Collapse
Affiliation(s)
- Esther W Gomez
- Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
189
|
Mijailovich SM, Kojic M, Tsuda A. Particle-induced indentation of the alveolar epithelium caused by surface tension forces. J Appl Physiol (1985) 2010; 109:1179-94. [PMID: 20634359 DOI: 10.1152/japplphysiol.00209.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Physical contact between an inhaled particle and alveolar epithelium at the moment of particle deposition must have substantial effects on subsequent cellular functions of neighboring cells, such as alveolar type-I, type-II pneumocytes, alveolar macrophage, as well as afferent sensory nerve cells, extending their dendrites toward the alveolar septal surface. The forces driving this physical insult are born at the surface of the alveolar air-liquid layer. The role of alveolar surfactant submerging a hydrophilic particle has been suggested by Gehr and Schürch's group (e.g., Respir Physiol 80: 17-32, 1990). In this paper, we extended their studies by developing a further comprehensive and mechanistic analysis. The analysis reveals that the mechanics operating in the particle-tissue interaction phenomena can be explained on the basis of a balance between surface tension force and tissue resistance force; the former tend to move a particle toward alveolar epithelial cell surface, the latter to resist the cell deformation. As a result, the submerged particle deforms the tissue and makes a noticeable indentation, which creates unphysiological stress and strain fields in tissue around the particle. This particle-induced microdeformation could likely trigger adverse mechanotransduction and mechanosensing pathways, as well as potentially enhancing particle uptake by the cells.
Collapse
Affiliation(s)
- S M Mijailovich
- Molecular and Integrative Physiological Sciences, Dept. of Environmental Health, Harvard School of Public Health, 665 Huntington Ave., Bldg. I, Rm. 1010D, Boston, MA 02115, USA.
| | | | | |
Collapse
|
190
|
Can common adhesion molecules and microtopography affect cellular elasticity? A combined atomic force microscopy and optical study. Med Biol Eng Comput 2010; 48:1043-53. [PMID: 20623199 DOI: 10.1007/s11517-010-0657-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Accepted: 06/03/2010] [Indexed: 10/24/2022]
Abstract
The phenomenon that cells respond to chemical and topographic cues in their surroundings has been widely examined and exploited in many fields ranging from basic life science research to biomedical therapeutics. Adhesion promoting molecules such as poly-L-lysine (PLL) and fibronectin (Fn) are commonly used for in vitro cell assays to promote cell spreading/proliferation on tissue culture plastic and to enhance the biocompatibility of biomedical devices. Likewise, engineered topography is often used to guide cell growth and differentiation. Little is known about how these cues affect the biomechanical properties of cells and subsequent cell function. In this study we have applied atomic force microscopy (AFM) to investigate these biomechanical properties. In the first stage of the study we formulated a rigorous approach to quantify cellular elasticity using AFM. Operational factors, including indentation depth and speed, and mathematical models for data fitting have been systematically evaluated. We then quantified how PLL, Fn and microtopography affected cellular elasticity and the organization of the cytoskeleton. Cellular elasticity after 1 day in culture was greater on a Fn-coated surface as compared to PLL or glass. These statistically significant differences disappeared after two more days in culture. In contrast, the significantly higher elasticity associated with cells grown on micrometric grooves remained for at least 3 days. This work sheds light on the apparently simple but debatable questions: "Are engineered chemical cues eventually masked by a cell's own matrix proteins and so only exert short-term influence? Does engineered topography as well as engineered chemistry affect cell elasticity?"
Collapse
|
191
|
Nakanishi J, Kikuchi Y, Tsujimura Y, Nakayama H, Kaneko S, Shimizu T, Yamaguchi K, Yokota H, Yoshida Y, Takarada T, Maeda M, Horiike Y. Precise patterning of photoactivatable glass coverslip for fluorescence observation of shape-controlled cells. Supramol Chem 2010. [DOI: 10.1080/10610278.2010.483735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
192
|
From cellular mechanotransduction to biologically inspired engineering: 2009 Pritzker Award Lecture, BMES Annual Meeting October 10, 2009. Ann Biomed Eng 2010; 38:1148-61. [PMID: 20140519 DOI: 10.1007/s10439-010-9946-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This article is based on a lecture I presented as the recipient of the 2009 Pritzker Distinguished Lecturer Award at the Biomedical Engineering Society annual meeting in October 2009. Here, I review more than thirty years of research from my laboratory, beginning with studies designed to test the theory that cells use tensegrity (tensional integrity) architecture to stabilize their shape and sense mechanical signals, which I believed to be critical for control of cell function and tissue development. Although I was trained as a cell biologist, I found that the tools I had at my disposal were insufficient to experimentally test these theories, and thus I ventured into engineering to find critical solutions. This path has been extremely fruitful as it has led to confirmation of the critical role that physical forces play in developmental control, as well as how cells sense and respond to mechanical signals at the molecular level through a process known as cellular mechanotransduction. Many of the predictions of the cellular tensegrity model relating to cell mechanical behaviors have been shown to be valid, and this vision of cell structure led to discovery of the central role that transmembrane adhesion receptors, such as integrins, and the cytoskeleton play in mechanosensing and mechanochemical conversion. In addition, these fundamental studies have led to significant unexpected technology fallout, including development of micromagnetic actuators for non-invasive control of cellular signaling, microfluidic systems as therapeutic extracorporeal devices for sepsis therapy, and new DNA-based nanobiotechnology approaches that permit construction of artificial tensegrities that mimic properties of living materials for applications in tissue engineering and regenerative medicine.
Collapse
|
193
|
Loosli Y, Luginbuehl R, Snedeker JG. Cytoskeleton reorganization of spreading cells on micro-patterned islands: a functional model. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:2629-2652. [PMID: 20439266 DOI: 10.1098/rsta.2010.0069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Predictive numerical models of cellular response to biophysical cues have emerged as a useful quantitative tool for cell biology research. Cellular experiments in silico can augment in vitro and in vivo investigations by filling gaps in what is possible to achieve through 'wet work'. Biophysics-based numerical models can be used to verify the plausibility of mechanisms regulating tissue homeostasis derived from experiments. They can also be used to explore potential targets for therapeutic intervention. In this perspective article we introduce a single cell model developed towards the design of novel biomaterials to elicit a regenerative cellular response for the repair of diseased tissues. The model is governed by basic mechanisms of cell spreading (lamellipodial and filopodial extension, formation of cell-matrix adhesions, actin reinforcement) and is developed in the context of cellular interaction with functionalized substrates that present defined points of potential adhesion. To provide adequate context, we first review the biophysical underpinnings of the model as well as reviewing existing cell spreading models. We then present preliminary benchmarking of the model against published experiments of cell spreading on micro-patterned substrates. Initial results indicate that our mechanistic model may represent a potentially useful approach in a better understanding of cell interactions with the extracellular matrix.
Collapse
Affiliation(s)
- Y Loosli
- Laboratory for Orthopedic Research, Department of Orthopedics, University of Zurich, Forchstrasse 340, 8008 Balgrist, Switzerland.
| | | | | |
Collapse
|
194
|
Feinberg AW, Parker KK. Surface-initiated assembly of protein nanofabrics. NANO LETTERS 2010; 10:2184-2191. [PMID: 20486679 DOI: 10.1021/nl100998p] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cells and tissues are self-organized within an extracellular matrix (ECM) composed of multifunctional, nano- to micrometer scale protein fibrils. We have developed a cell-free, surface-initiated assembly technique to rebuild this ECM structure in vitro. The matrix proteins fibronectin, laminin, fibrinogen, collagen type I, and collagen type IV are micropatterned onto thermosensitive surfaces as 1 to 10 nm thick, micrometer to centimeter wide networks, and released as flexible, free-standing nanofabrics. Independent control of microstructure and protein composition enables us to engineer the mechanical and chemical anisotropy. Fibronectin nanofabrics are highly extensible (>4-fold) and serve as scaffolds for engineering synchronously contracting, cardiac muscle; demonstrating biofunctionality comparable to cell-generated ECM.
Collapse
Affiliation(s)
- Adam W Feinberg
- Disease Biophysics Group, Wyss Institute for Biologically-Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
195
|
Liu Z, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, Nelson CM, Chen CS. Mechanical tugging force regulates the size of cell-cell junctions. Proc Natl Acad Sci U S A 2010; 107:9944-9. [PMID: 20463286 PMCID: PMC2890446 DOI: 10.1073/pnas.0914547107] [Citation(s) in RCA: 527] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Actomyosin contractility affects cellular organization within tissues in part through the generation of mechanical forces at sites of cell-matrix and cell-cell contact. While increased mechanical loading at cell-matrix adhesions results in focal adhesion growth, whether forces drive changes in the size of cell-cell adhesions remains an open question. To investigate the responsiveness of adherens junctions (AJ) to force, we adapted a system of microfabricated force sensors to quantitatively report cell-cell tugging force and AJ size. We observed that AJ size was modulated by endothelial cell-cell tugging forces: AJs and tugging force grew or decayed with myosin activation or inhibition, respectively. Myosin-dependent regulation of AJs operated in concert with a Rac1, and this coordinated regulation was illustrated by showing that the effects of vascular permeability agents (S1P, thrombin) on junctional stability were reversed by changing the extent to which these agents coupled to the Rac and myosin-dependent pathways. Furthermore, direct application of mechanical tugging force, rather than myosin activity per se, was sufficient to trigger AJ growth. These findings demonstrate that the dynamic coordination of mechanical forces and cell-cell adhesive interactions likely is critical to the maintenance of multicellular integrity and highlight the need for new approaches to study tugging forces.
Collapse
Affiliation(s)
- Zhijun Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104; and
| | - John L. Tan
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Daniel M. Cohen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Michael T. Yang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Nathan J. Sniadecki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Sami Alom Ruiz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Celeste M. Nelson
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Christopher S. Chen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104; and
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205
| |
Collapse
|
196
|
Abstract
Many genes and molecules that drive tissue patterning during organogenesis and tissue regeneration have been discovered. Yet, we still lack a full understanding of how these chemical cues induce the formation of living tissues with their unique shapes and material properties. Here, we review work based on the convergence of physics, engineering and biology that suggests that mechanical forces generated by living cells are as crucial as genes and chemical signals for the control of embryological development, morphogenesis and tissue patterning.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
197
|
Bray MAP, Adams WJ, Geisse NA, Feinberg AW, Sheehy SP, Parker KK. Nuclear morphology and deformation in engineered cardiac myocytes and tissues. Biomaterials 2010; 31:5143-50. [PMID: 20382423 DOI: 10.1016/j.biomaterials.2010.03.028] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 03/09/2010] [Indexed: 12/31/2022]
Abstract
Cardiac tissue engineering requires finely-tuned manipulation of the extracellular matrix (ECM) microenvironment to optimize internal myocardial organization. The myocyte nucleus is mechanically connected to the cell membrane via cytoskeletal elements, making it a target for the cellular response to perturbation of the ECM. However, the role of ECM spatial configuration and myocyte shape on nuclear location and morphology is unknown. In this study, printed ECM proteins were used to configure the geometry of cultured neonatal rat ventricular myocytes. Engineered one- and two-dimensional tissue constructs and single myocyte islands were assayed using live fluorescence imaging to examine nuclear position, morphology and motion as a function of the imposed ECM geometry during diastolic relaxation and systolic contraction. Image analysis showed that anisotropic tissue constructs cultured on microfabricated ECM lines possessed a high degree of nuclear alignment similar to that found in vivo; nuclei in isotropic tissues were polymorphic in shape with an apparently random orientation. Nuclear eccentricity was also increased for the anisotropic tissues, suggesting that intracellular forces deform the nucleus as the cell is spatially confined. During systole, nuclei experienced increasing spatial confinement in magnitude and direction of displacement as tissue anisotropy increased, yielding anisotropic deformation. Thus, the nature of nuclear displacement and deformation during systole appears to rely on a combination of the passive myofibril spatial organization and the active stress fields induced by contraction. Such findings have implications in understanding the genomic consequences and functional response of cardiac myocytes to their ECM surroundings under conditions of disease.
Collapse
Affiliation(s)
- Mark-Anthony P Bray
- Disease Biophysics Group, Harvard Stem Cell Institute, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, 29 Oxford St (Rm 322A), Cambridge, MA 02138, United States
| | | | | | | | | | | |
Collapse
|
198
|
Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A 2010; 107:4872-7. [PMID: 20194780 PMCID: PMC2841932 DOI: 10.1073/pnas.0903269107] [Citation(s) in RCA: 1355] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Significant efforts have been directed to understanding the factors that influence the lineage commitment of stem cells. This paper demonstrates that cell shape, independent of soluble factors, has a strong influence on the differentiation of human mesenchymal stem cells (MSCs) from bone marrow. When exposed to competing soluble differentiation signals, cells cultured in rectangles with increasing aspect ratio and in shapes with pentagonal symmetry but with different subcellular curvature-and with each occupying the same area-display different adipogenesis and osteogenesis profiles. The results reveal that geometric features that increase actomyosin contractility promote osteogenesis and are consistent with in vivo characteristics of the microenvironment of the differentiated cells. Cytoskeletal-disrupting pharmacological agents modulate shape-based trends in lineage commitment verifying the critical role of focal adhesion and myosin-generated contractility during differentiation. Microarray analysis and pathway inhibition studies suggest that contractile cells promote osteogenesis by enhancing c-Jun N-terminal kinase (JNK) and extracellular related kinase (ERK1/2) activation in conjunction with elevated wingless-type (Wnt) signaling. Taken together, this work points to the role that geometric shape cues can play in orchestrating the mechanochemical signals and paracrine/autocrine factors that can direct MSCs to appropriate fates.
Collapse
Affiliation(s)
- Kristopher A. Kilian
- Department of Chemistry
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637
| | - Branimir Bugarija
- Department of Human Genetics, and
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637
| | - Bruce T. Lahn
- Department of Human Genetics, and
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637
| | - Milan Mrksich
- Department of Chemistry
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
199
|
Park CY, Tambe D, Alencar AM, Trepat X, Zhou EH, Millet E, Butler JP, Fredberg JJ. Mapping the cytoskeletal prestress. Am J Physiol Cell Physiol 2010; 298:C1245-52. [PMID: 20164383 DOI: 10.1152/ajpcell.00417.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cell mechanical properties on a whole cell basis have been widely studied, whereas local intracellular variations have been less well characterized and are poorly understood. To fill this gap, here we provide detailed intracellular maps of regional cytoskeleton (CSK) stiffness, loss tangent, and rate of structural rearrangements, as well as their relationships to the underlying regional F-actin density and the local cytoskeletal prestress. In the human airway smooth muscle cell, we used micropatterning to minimize geometric variation. We measured the local cell stiffness and loss tangent with optical magnetic twisting cytometry and the local rate of CSK remodeling with spontaneous displacements of a CSK-bound bead. We also measured traction distributions with traction microscopy and cell geometry with atomic force microscopy. On the basis of these experimental observations, we used finite element methods to map for the first time the regional distribution of intracellular prestress. Compared with the cell center or edges, cell corners were systematically stiffer and more fluidlike and supported higher traction forces, and at the same time had slower remodeling dynamics. Local remodeling dynamics had a close inverse relationship with local cell stiffness. The principal finding, however, is that systematic regional variations of CSK stiffness correlated only poorly with regional F-actin density but strongly and linearly with the regional prestress. Taken together, these findings in the intact cell comprise the most comprehensive characterization to date of regional variations of cytoskeletal mechanical properties and their determinants.
Collapse
Affiliation(s)
- Chan Young Park
- Dept. of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Martinez-Rico C, Pincet F, Thiery JP, Dufour S. Integrins stimulate E-cadherin-mediated intercellular adhesion by regulating Src-kinase activation and actomyosin contractility. J Cell Sci 2010; 123:712-22. [PMID: 20144995 DOI: 10.1242/jcs.047878] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cadherins and integrins are major adhesion molecules regulating cell-cell and cell-matrix interactions. In vitro and in vivo studies have demonstrated the existence of crosstalk between integrins and cadherins in cell adhesion and motility. We used a dual pipette assay to measure the force required to separate E-cadherin-producing cell doublets and to investigate the role of integrin in regulating the strength of intercellular adhesion. A greater force was required to separate cell doublets bound to fibronectin or vitronectin-coated beads than for doublets bound to polylysine-coated beads. This effect depended on cell spreading and the duration of stimulation. Cells expressing type II cadherin-7 also responded to fibronectin stimulation to produce a higher intercellular adhesion. Establishment of cadherin-mediated adhesion needed ROCK, MLCK and myosin ATPase II activity. The regulation of intercellular adhesion strength by integrin stimulation required activation of Src family kinases, ROCK and actomyosin contractility. These findings highlight the importance and mechanisms of molecular crosstalk between cadherins and integrins in the control of cell plasticity during histogenesis and morphogenesis.
Collapse
|