151
|
Chakraverty RK, Kearsey JM, Oakley TJ, Grenon M, de La Torre Ruiz MA, Lowndes NF, Hickson ID. Topoisomerase III acts upstream of Rad53p in the S-phase DNA damage checkpoint. Mol Cell Biol 2001; 21:7150-62. [PMID: 11585898 PMCID: PMC99890 DOI: 10.1128/mcb.21.21.7150-7162.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deletion of the Saccharomyces cerevisiae TOP3 gene, encoding Top3p, leads to a slow-growth phenotype characterized by an accumulation of cells with a late S/G2 content of DNA (S. Gangloff, J. P. McDonald, C. Bendixen, L. Arthur, and R. Rothstein, Mol. Cell. Biol. 14:8391-8398, 1994). We have investigated the function of TOP3 during cell cycle progression and the molecular basis for the cell cycle delay seen in top3Delta strains. We show that top3Delta mutants exhibit a RAD24-dependent delay in the G2 phase, suggesting a possible role for Top3p in the resolution of abnormal DNA structures or DNA damage arising during S phase. Consistent with this notion, top3Delta strains are sensitive to killing by a variety of DNA-damaging agents, including UV light and the alkylating agent methyl methanesulfonate, and are partially defective in the intra-S-phase checkpoint that slows the rate of S-phase progression following exposure to DNA-damaging agents. This S-phase checkpoint defect is associated with a defect in phosphorylation of Rad53p, indicating that, in the absence of Top3p, the efficiency of sensing the existence of DNA damage or signaling to the Rad53 kinase is impaired. Consistent with a role for Top3p specifically during S phase, top3Delta mutants are sensitive to the replication inhibitor hydroxyurea, expression of the TOP3 mRNA is activated in late G1 phase, and DNA damage checkpoints operating outside of S phase are unaffected by deletion of TOP3. All of these phenotypic consequences of loss of Top3p function are at least partially suppressed by deletion of SGS1, the yeast homologue of the human Bloom's and Werner's syndrome genes. These data implicate Top3p and, by inference, Sgs1p in an S-phase-specific role in the cellular response to DNA damage. A model proposing a role for these proteins in S phase is presented.
Collapse
Affiliation(s)
- R K Chakraverty
- Imperial Cancer Research Fund Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
152
|
Leskov KS, Criswell T, Antonio S, Li J, Yang CR, Kinsella TJ, Boothman DA. When X-ray-inducible proteins meet DNA double strand break repair. Semin Radiat Oncol 2001; 11:352-72. [PMID: 11677660 DOI: 10.1053/srao.2001.26912] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cellular responses to ionizing radiation (IR) include (a) activation of signal transduction enzymes; (b) stimulation of DNA repair, most notably DNA double strand break (DSB) repair by homologous or nonhomologous recombinatorial pathways; (c) activation of transcription factors and subsequent IR-inducible transcript and protein changes; (d) cell cycle checkpoint delays in G(1), S, and G(2) required for repair or for programmed cell death of severely damaged cells; (e) activation of zymogens needed for programmed cell death (although IR is a poor inducer of such responses in epithelial cells); and (f) stimulation of IR-inducible proteins that may mediate bystander effects influencing signal transduction, DNA repair, angiogenesis, the immune response, late responses to IR, and possibly adaptive survival responses. The overall response to IR depends on the cell's inherent genetic background, as well as its ability to biochemically and genetically respond to IR-induced damage. To improve the anti-tumor efficacy of IR, our knowledge of these pleiotropic responses must improve. The most important process for the survival of a tumor cell following IR is the repair of DNA double strand breaks (DSBs). Using yeast two-hybrid analyses along with other molecular and cellular biology techniques, we cloned transcripts/proteins that are involved in, or presumably affect, nonhomologous DNA double strand break end-joining (NHEJ) repair mediated by the DNA-PK complex. Using Ku70 as bait, we isolated a number of Ku-binding proteins (KUBs). We identified the first X-ray-inducible transcript/protein (xip8, Clusterin (CLU)) that associates with DNA-PK. A nuclear form of CLU (nCLU) prevented DNA-PK-mediated end joining, and stimulated cell death in response to IR or when overexpressed in the absence of IR. Structure-function analyses using molecular and cellular (including green fluorescence-tagged protein trafficking) biology techniques showed that nCLU appears to be an inactive protein residing in the cytoplasm of epithelial cells. Following IR injury, nCLU levels increase and an as yet undefined posttranslational modification appears to alter the protein, exposing nuclear localization sequences (NLSs) and coiled-coil domains. The modified protein translocates to the nucleus and triggers cell death, presumably through its interaction specifically with Ku70. Understanding nCLU responses, as well as the functions of the KUBs, will be important for understanding DSB repair. Knowledge of DSB repair may be used to improve the antitumor efficacy of IR, as well as other chemotherapeutic agents.
Collapse
Affiliation(s)
- K S Leskov
- Department of Human Oncology, University of Wisconsin-Madison, 53792, USA
| | | | | | | | | | | | | |
Collapse
|
153
|
Grenon M, Gilbert C, Lowndes NF. Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex. Nat Cell Biol 2001; 3:844-7. [PMID: 11533665 DOI: 10.1038/ncb0901-844] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Studies of human Nijmegen breakage syndrome (NBS) cells have led to the proposal that the Mre11/Rad50/ NBS1 complex, which is involved in the repair of DNA double-strand breaks (DSBs), might also function in activating the DNA damage checkpoint pathways after DSBs occur. We have studied the role of the homologous budding yeast complex, Mre11/Rad50/Xrs2, in checkpoint activation in response to DSB-inducing agents. Here we show that this complex is required for phosphorylation and activation of the Rad53 and Chk1 checkpoint kinases specifically in response to DSBs. Consistent with defective Rad53 activation, we observed defective cell-cycle delays after induction of DSBs in the absence of Mre11. Furthermore, after gamma-irradiation phosphorylation of Rad9, which is an early event in checkpoint activation, is also dependent on Mre11. All three components of the Mre11/Rad50/Xrs2 complex are required for activation of Rad53, however, the Ku80, Rad51 or Rad52 proteins, which are also involved in DSB repair, are not. Thus, the integrity of the Mre11/Rad50/Xrs2 complex is specifically required for checkpoint activation after the formation of DSBs.
Collapse
Affiliation(s)
- M Grenon
- ICRF Clare Hall Laboratories, CDC Laboratory, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3LD, UK
| | | | | |
Collapse
|
154
|
Naiki T, Kondo T, Nakada D, Matsumoto K, Sugimoto K. Chl12 (Ctf18) forms a novel replication factor C-related complex and functions redundantly with Rad24 in the DNA replication checkpoint pathway. Mol Cell Biol 2001; 21:5838-45. [PMID: 11486023 PMCID: PMC87303 DOI: 10.1128/mcb.21.17.5838-5845.2001] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RAD24 has been identified as a gene essential for the DNA damage checkpoint in budding yeast. Rad24 is structurally related to subunits of the replication factor C (RFC) complex, and forms an RFC-related complex with Rfc2, Rfc3, Rfc4, and Rfc5. The rad24Delta mutation enhances the defect of rfc5-1 in the DNA replication block checkpoint, implicating RAD24 in this checkpoint. CHL12 (also called CTF18) encodes a protein that is structurally related to the Rad24 and RFC proteins. We show here that although neither chl12Delta nor rad24Delta single mutants are defective, chl12Delta rad24Delta double mutants become defective in the replication block checkpoint. We also show that Chl12 interacts physically with Rfc2, Rfc3, Rfc4, and Rfc5 and forms an RFC-related complex which is distinct from the RFC and RAD24 complexes. Our results suggest that Chl12 forms a novel RFC-related complex and functions redundantly with Rad24 in the DNA replication block checkpoint.
Collapse
Affiliation(s)
- T Naiki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-0814, Japan
| | | | | | | | | |
Collapse
|
155
|
Bennett CB, Snipe JR, Westmoreland JW, Resnick MA. SIR functions are required for the toleration of an unrepaired double-strand break in a dispensable yeast chromosome. Mol Cell Biol 2001; 21:5359-73. [PMID: 11463819 PMCID: PMC87259 DOI: 10.1128/mcb.21.16.5359-5373.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unrepaired DNA double-strand breaks (DSBs) typically result in G(2) arrest. Cell cycle progression can resume following repair of the DSBs or through adaptation to the checkpoint, even if the damage remains unrepaired. We developed a screen for factors in the yeast Saccharomyces cerevisiae that affect checkpoint control and/or viability in response to a single, unrepairable DSB that is induced by HO endonuclease in a dispensable yeast artificial chromosome containing human DNA. SIR2, -3, or -4 mutants exhibit a prolonged, RAD9-dependent G(2) arrest in response to the unrepairable DSB followed by a slow adaptation to the persistent break, leading to division and rearrest in the next G(2). There are a small number of additional cycles before permanent arrest as microcolonies. Thus, SIR genes, which repress silent mating type gene expression, are required for the adaptation and the prevention of indirect lethality resulting from an unrepairable DSB in nonessential DNA. Rapid adaptation to the G(2) checkpoint and high viability were restored in sir(-) strains containing additional deletions of the silent mating type loci HML and HMR, suggesting that genes under mating type control can reduce the toleration of a single DSB. However, coexpression of MATa1 and MATalpha2 in Sir(+) haploid cells did not lead to lethality from the HO-induced DSB, suggesting that toleration of an unrepaired DSB requires more than one Sir(+) function.
Collapse
Affiliation(s)
- C B Bennett
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
156
|
Krause SA, Loupart ML, Vass S, Schoenfelder S, Harrison S, Heck MM. Loss of cell cycle checkpoint control in Drosophila Rfc4 mutants. Mol Cell Biol 2001; 21:5156-68. [PMID: 11438670 PMCID: PMC87240 DOI: 10.1128/mcb.21.15.5156-5168.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two alleles of the Drosophila melanogaster Rfc4 (DmRfc4) gene, which encodes subunit 4 of the replication factor C (RFC) complex, cause striking defects in mitotic chromosome cohesion and condensation. These mutations produce larval phenotypes consistent with a role in DNA replication but also result in mitotic chromosomal defects appearing either as premature chromosome condensation-like or precocious sister chromatid separation figures. Though the DmRFC4 protein localizes to all replicating nuclei, it is dispersed from chromatin in mitosis. Thus the mitotic defects appear not to be the result of a direct role for RFC4 in chromosome structure. We also show that the mitotic defects in these two DmRfc4 alleles are the result of aberrant checkpoint control in response to DNA replication inhibition or damage to chromosomes. Not all surveillance function is compromised in these mutants, as the kinetochore attachment checkpoint is operative. Intriguingly, metaphase delay is frequently observed with the more severe of the two alleles, indicating that subsequent chromosome segregation may be inhibited. This is the first demonstration that subunit 4 of RFC functions in checkpoint control in any organism, and our findings additionally emphasize the conserved nature of RFC's involvement in checkpoint control in multicellular eukaryotes.
Collapse
Affiliation(s)
- S A Krause
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | | | | | | | | | | |
Collapse
|
157
|
Schramke V, Neecke H, Brevet V, Corda Y, Lucchini G, Longhese MP, Gilson E, Géli V. The set1Delta mutation unveils a novel signaling pathway relayed by the Rad53-dependent hyperphosphorylation of replication protein A that leads to transcriptional activation of repair genes. Genes Dev 2001; 15:1845-58. [PMID: 11459833 PMCID: PMC312739 DOI: 10.1101/gad.193901] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
SET domain proteins are present in chromosomal proteins involved in epigenetic control of transcription. The yeast SET domain protein Set1p regulates chromatin structure, DNA repair, and telomeric functions. We investigated the mechanism by which the absence of Set1p increases DNA repair capacities of checkpoint mutants. We show that deletion of SET1 induces a response relayed by the signaling kinase Rad53p that leads to the MEC1/TEL1-independent hyperphosphorylation of replication protein A middle subunit (Rfa2p). Consequently, the binding of Rfa2p to upstream repressing sequences (URS) of repair genes is decreased, thereby leading to their derepression. Our results correlate the set1Delta-dependent phosphorylation of Rfa2p with the transcriptional induction of repair genes. Moreover, we show that the deletion of the amino-terminal region of Rfa2p suppresses the sensitivity to ultraviolet radiation of a mec3Delta checkpoint mutant, abolishes the URS-mediated repression, and increases the expression of repair genes. This work provides an additional link for the role of Rfa2p in the regulation of the repair capacity of the cell and reveals a role for the phosphorylation of Rfa2p and unveils unsuspected connections between chromatin, signaling pathways, telomeres, and DNA repair.
Collapse
Affiliation(s)
- V Schramke
- Laboratoire D'Ingéniérie des Systèmes Macromoléculaires, Institut de Biologie Structurale et Microbiologie (IBSM), Centre National de la Recherche Scientifique (CNRS), 13402, Marseille, Cedex 20, France
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Lee SE, Pellicioli A, Malkova A, Foiani M, Haber JE. The Saccharomyces recombination protein Tid1p is required for adaptation from G2/M arrest induced by a double-strand break. Curr Biol 2001; 11:1053-7. [PMID: 11470411 DOI: 10.1016/s0960-9822(01)00296-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Saccharomyces cells with a single unrepaired double-strand break (DSB) will adapt to checkpoint-mediated G2/M arrest and resume cell cycle progression. The decision to adapt is finely regulated by the extent of single-stranded DNA generated from a DSB. We show that cells lacking the recombination protein Tid1p are unable to adapt, but that this defect is distinct from any role in recombination. As with the adaptation-defective mutations yku70Delta and cdc5-ad, permanent arrest in tid1Delta is bypassed by the deletion of the checkpoint gene RAD9. Permanent arrest of tid1Delta cells is suppressed by the rfa1-t11 mutation in the ssDNA binding complex RPA, similar to yku70Delta, whereas the defect in cdc5-ad is not suppressed. Unlike yku70Delta, tid1Delta does not affect 5'-to-3' degradation of DSB ends. The tid1Delta defect cannot be complemented by overexpressing the homolog Rad54p, nor is it affected in rad51Delta tid1Delta, rad54Delta tid1Delta, or rad52Delta tid1Delta double mutants that prevent essentially all homologous recombination. We suggest that Tid1p participates in monitoring the extent of single-stranded DNA produced by resection of DNA ends in a fashion that is distinct from its role in recombination.
Collapse
Affiliation(s)
- S E Lee
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | |
Collapse
|
159
|
Zhao X, Chabes A, Domkin V, Thelander L, Rothstein R. The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J 2001; 20:3544-53. [PMID: 11432841 PMCID: PMC125510 DOI: 10.1093/emboj/20.13.3544] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2001] [Revised: 05/08/2001] [Accepted: 05/09/2001] [Indexed: 01/08/2023] Open
Abstract
The evolutionarily conserved protein kinases Mec1 and Rad53 are required for checkpoint response and growth. Here we show that their role in growth is to remove the ribonucleotide reductase inhibitor Sml1 to ensure DNA replication. Sml1 protein levels fluctuate during the cell cycle, being lowest during S phase. The disappearance of Sml1 protein in S phase is due to post-transcriptional regulation and is associated with protein phosphorylation. Both phosphorylation and diminution of Sml1 require MEC1 and RAD53. More over, failure to remove Sml1 in mec1 and rad53 mutants results in incomplete DNA replication, defective mitochondrial DNA propagation, decreased dNTP levels and cell death. Interestingly, similar regulation of Sml1 also occurs after DNA damage. In this case, the regulation requires MEC1 and RAD53, as well as other checkpoint genes. Therefore, Sml1 is a new target of the DNA damage checkpoint and its removal is a conserved function of Mec1 and Rad53 during growth and after damage.
Collapse
Affiliation(s)
- Xiaolan Zhao
- Department of Genetics and Development, Columbia University, College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA and Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-90187, Sweden Present address: The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA Corresponding author e-mail:
| | - Andrei Chabes
- Department of Genetics and Development, Columbia University, College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA and Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-90187, Sweden Present address: The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA Corresponding author e-mail:
| | - Vladimir Domkin
- Department of Genetics and Development, Columbia University, College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA and Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-90187, Sweden Present address: The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA Corresponding author e-mail:
| | - Lars Thelander
- Department of Genetics and Development, Columbia University, College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA and Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-90187, Sweden Present address: The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA Corresponding author e-mail:
| | - Rodney Rothstein
- Department of Genetics and Development, Columbia University, College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA and Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-90187, Sweden Present address: The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA Corresponding author e-mail:
| |
Collapse
|
160
|
Paciotti V, Clerici M, Scotti M, Lucchini G, Longhese MP. Characterization of mec1 kinase-deficient mutants and of new hypomorphic mec1 alleles impairing subsets of the DNA damage response pathway. Mol Cell Biol 2001; 21:3913-25. [PMID: 11359899 PMCID: PMC87054 DOI: 10.1128/mcb.21.12.3913-3925.2001] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA damage checkpoints lead to the inhibition of cell cycle progression following DNA damage. The Saccharomyces cerevisiae Mec1 checkpoint protein, a phosphatidylinositol kinase-related protein, is required for transient cell cycle arrest in response to DNA damage or DNA replication defects. We show that mec1 kinase-deficient (mec1kd) mutants are indistinguishable from mec1Delta cells, indicating that the Mec1 conserved kinase domain is required for all known Mec1 functions, including cell viability and proper DNA damage response. Mec1kd variants maintain the ability to physically interact with both Ddc2 and wild-type Mec1 and cause dominant checkpoint defects when overproduced in MEC1 cells, impairing the ability of cells to slow down S phase entry and progression after DNA damage in G(1) or during S phase. Conversely, an excess of Mec1kd in MEC1 cells does not abrogate the G(2)/M checkpoint, suggesting that Mec1 functions required for response to aberrant DNA structures during specific cell cycle stages can be separable. In agreement with this hypothesis, we describe two new hypomorphic mec1 mutants that are completely defective in the G(1)/S and intra-S DNA damage checkpoints but properly delay nuclear division after UV irradiation in G(2). The finding that these mutants, although indistinguishable from mec1Delta cells with respect to the ability to replicate a damaged DNA template, do not lose viability after UV light and methyl methanesulfonate treatment suggests that checkpoint impairments do not necessarily result in hypersensitivity to DNA-damaging agents.
Collapse
Affiliation(s)
- V Paciotti
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milan, Italy
| | | | | | | | | |
Collapse
|
161
|
Abstract
We define a DNA damage checkpoint pathway in S. cerevisiae governed by the ATM homolog Tel1 and the Mre11 complex. In mitotic cells, the Tel1-Mre11 complex pathway triggers Rad53 activation and its interaction with Rad9, whereas in meiosis it acts via Rad9 and the Rad53 paralog Mre4/Mek1. Activation of the Tel1-Mre11 complex pathway checkpoint functions appears to depend upon the Mre11 complex as a damage sensor and, at least in meiotic cells, to depend on unprocessed DNA double-strand breaks (DSBs). The DSB repair functions of the Mre11 complex are enhanced by the pathway, suggesting that the complex both initiates and is regulated by the Tel1-dependent DSB signal. These findings demonstrate that the diverse functions of the Mre11 complex in the cellular DNA damage response are conserved in mammals and yeast.
Collapse
Affiliation(s)
- T Usui
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Osaka, Japan
| | | | | |
Collapse
|
162
|
Leroy C, Mann C, Marsolier MC. Silent repair accounts for cell cycle specificity in the signaling of oxidative DNA lesions. EMBO J 2001; 20:2896-906. [PMID: 11387222 PMCID: PMC125485 DOI: 10.1093/emboj/20.11.2896] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reactive oxygen species are the most important source of DNA lesions in aerobic organisms, but little is known about the activation of the DNA checkpoints in response to oxidative stress. We show that treatment of yeast cells with sublethal concentrations of hydrogen peroxide induces a Mec1-dependent phosphorylation of Rad53 and a Rad53-dependent cell cycle delay specifically during S phase. The lack of Rad53 phosphorylation after hydrogen peroxide treatment in the G1 and G2 phases is due to the silent repair of oxidative DNA lesions produced at these stages by the base excision repair (BER) pathway. Only the disruption of the BER pathway and the accumulation and/or treatment of DNA intermediates by alternative repair pathways reveal the existence of primary DNA lesions induced at all phases of the cell cycle by hydrogen peroxide. Our data illustrate both the concept of silent repair of DNA damage and the high sensitivity of S-phase cells to hydrogen peroxide.
Collapse
Affiliation(s)
| | | | - Marie-Claude Marsolier
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
Corresponding author e-mail:
| |
Collapse
|
163
|
Kim HS, Brill SJ. Rfc4 interacts with Rpa1 and is required for both DNA replication and DNA damage checkpoints in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:3725-37. [PMID: 11340166 PMCID: PMC87010 DOI: 10.1128/mcb.21.11.3725-3737.2001] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The large subunit of replication protein A (Rpa1) consists of three single-stranded DNA binding domains and an N-terminal domain (Rpa1N) of unknown function. To determine the essential role of this domain we searched for mutations that require wild-type Rpa1N for viability in yeast. A mutation in RFC4, encoding a small subunit of replication factor C (RFC), was found to display allele-specific interactions with mutations in the gene encoding Rpa1 (RFA1). Mutations that map to Rpa1N and confer sensitivity to the DNA synthesis inhibitor hydroxyurea, such as rfa1-t11, are lethal in combination with rfc4-2. The rfc4-2 mutant itself is sensitive to hydroxyurea, and like rfc2 and rfc5 strains, it exhibits defects in the DNA replication block and intra-S checkpoints. RFC4 and the DNA damage checkpoint gene RAD24 were found to be epistatic with respect to DNA damage sensitivity. We show that the rfc4-2 mutant is defective in the G(1)/S DNA damage checkpoint response and that both the rfc4-2 and rfa1-t11 strains are defective in the G(2)/M DNA damage checkpoint. Thus, in addition to its essential role as part of the clamp loader in DNA replication, Rfc4 plays a role as a sensor in multiple DNA checkpoint pathways. Our results suggest that a physical interaction between Rfc4 and Rpa1N is required for both roles.
Collapse
Affiliation(s)
- H S Kim
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
164
|
van Brabant AJ, Buchanan CD, Charboneau E, Fangman WL, Brewer BJ. An origin-deficient yeast artificial chromosome triggers a cell cycle checkpoint. Mol Cell 2001; 7:705-13. [PMID: 11336695 DOI: 10.1016/s1097-2765(01)00216-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Checkpoint controls coordinate entry into mitosis with the completion of DNA replication. Depletion of nucleotide precursors by treatment with the drug hydroxyurea triggers such a checkpoint response. However, it is not clear whether the signal for this hydroxyurea-induced checkpoint pathway is the presence of unreplicated DNA, or rather the persistence of single-stranded or damaged DNA. In a yeast artificial chromosome (YAC) we have engineered an approximately 170 kb region lacking efficient replication origins that allows us to explore the specific effects of unreplicated DNA on cell cycle progression. Replication of this YAC extends the length of S phase and causes cells to engage an S/M checkpoint. In the absence of Rad9 the YAC becomes unstable, undergoing deletions within the origin-free region.
Collapse
Affiliation(s)
- A J van Brabant
- University of Washington, Department of Genetics, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
165
|
Affiliation(s)
- R Scully
- Dana Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.
| |
Collapse
|
166
|
Abstract
The initiation of DNA replication in eukaryotic cells is tightly controlled to ensure that the genome is faithfully duplicated once each cell cycle. Genetic and biochemical studies in several model systems indicate that initiation is mediated by a common set of proteins, present in all eukaryotic species, and that the activities of these proteins are regulated during the cell cycle by specific protein kinases. Here we review the properties of the initiation proteins, their interactions with each other, and with origins of DNA replication. We also describe recent advances in understanding how the regulatory protein kinases control the progress of the initiation reaction. Finally, we describe the checkpoint mechanisms that function to preserve the integrity of the genome when the normal course of genome duplication is perturbed by factors that damage the DNA or inhibit DNA synthesis.
Collapse
Affiliation(s)
- T J Kelly
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
167
|
Myung K, Datta A, Kolodner RD. Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 2001; 104:397-408. [PMID: 11239397 DOI: 10.1016/s0092-8674(01)00227-6] [Citation(s) in RCA: 257] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cancer cells show increased genome rearrangements, although it is unclear what defects cause these rearrangements. Mutations in Saccharomyces cerevisiae RFC5, DPB11, MEC1, DDC2 MEC3, RAD53, CHK1, PDS1, and DUN1 increased the rate of genome rearrangements up to 200-fold whereas mutations in RAD9, RAD17, RAD24, BUB3, and MAD3 had little effect. The rearrangements were primarily deletion of a portion of a chromosome arm along with TEL1-dependent addition of a new telomere. tel1 mutations increased the proportion of translocations observed, and in some cases showed synergistic interactions when combined with mutations that increased the genome rearrangement rate. These data suggest that one role of S phase checkpoint functions in normal cells is to suppress spontaneous genome rearrangements resulting from DNA replication errors.
Collapse
Affiliation(s)
- K Myung
- Ludwig Institute for Cancer Research, Cancer Center and Department of Medicine, University of California-San Diego School of Medicine, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
168
|
Abstract
A tof1 mutant was recovered in a screen aimed at identifying genes involved specifically in the S phase branch of the MEC1-dependent DNA damage response pathway. The screen was based on the observation that mutants missing this branch are particularly dependent on the cell cycle-wide branch and, therefore, on RAD9, for surviving DNA damage. tof1 and rad9 conferred synergistic sensitivity to MMS, UV, and HU, and the double mutant was incapable of slowing S phase in response to MMS, inducing RNR3 transcription in response to UV, and phosphorylating Rad53p in response to HU. TOF1's contribution to DNA damage response appeared to be restricted to S phase, since TOF1 did not contribute to UV-induced transcription during G1 or to the cdc13-1-induced block to anaphase in G2/M. I suggest a model in which Tof1p functions to link Mec1p with Rad53p.
Collapse
Affiliation(s)
- E J Foss
- Division of Basic Sciences, A3-023, Fred Hutchinson Cancer Research Center, 1100 Faiorview Ave., Seattle, WA 98109-1024, USA.
| |
Collapse
|
169
|
Pellicioli A, Lee SE, Lucca C, Foiani M, Haber JE. Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. Mol Cell 2001; 7:293-300. [PMID: 11239458 DOI: 10.1016/s1097-2765(01)00177-0] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Saccharomyces cells with one unrepaired double-strand break (DSB) adapt after checkpoint-mediated G2/M arrest. Adaptation is accompanied by loss of Rad53p checkpoint kinase activity and Chk1p phosphorylation. Rad53p kinase remains elevated in yku70delta and cdc5-ad cells that fail to adapt. Permanent G2/M arrest in cells with increased single-stranded DNA is suppressed by the rfa1-t11 mutation, but this RPA mutation does not suppress permanent arrest in cdc5-ad cells. Checkpoint kinase activation and inactivation can be followed in G2-arrested cells, but there is no kinase activation in G1-arrested cells. We conclude that activation of the checkpoint kinases in response to a single DNA break is cell cycle regulated and that adaptation is an active process by which these kinases are inactivated.
Collapse
Affiliation(s)
- A Pellicioli
- Istituto F.I.R.C. di Oncologia Molecolare and, Dipartimento di Genetica e di Biologia dei, Microrganismi, Universita' degli Studi di Milano, 20133, Milan, Italy
| | | | | | | | | |
Collapse
|
170
|
Wakayama T, Kondo T, Ando S, Matsumoto K, Sugimoto K. Pie1, a protein interacting with Mec1, controls cell growth and checkpoint responses in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:755-64. [PMID: 11154263 PMCID: PMC86667 DOI: 10.1128/mcb.21.3.755-764.2001] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, the ATM and ATR family proteins play a critical role in the DNA damage and replication checkpoint controls. These proteins are characterized by a kinase domain related to the phosphatidylinositol 3-kinase, but they have the ability to phosphorylate proteins. In budding yeast, the ATR family protein Mec1/Esr1 is essential for checkpoint responses and cell growth. We have isolated the PIE1 gene in a two-hybrid screen for proteins that interact with Mec1, and we show that Pie1 interacts physically with Mec1 in vivo. Like MEC1, PIE1 is essential for cell growth, and deletion of the PIE1 gene causes defects in the DNA damage and replication block checkpoints similar to those observed in mec1Delta mutants. Rad53 hyperphosphorylation following DNA damage and replication block is also decreased in pie1Delta cells, as in mec1Delta cells. Pie1 has a limited homology to fission yeast Rad26, which forms a complex with the ATR family protein Rad3. Mutation of the region in Pie1 homologous to Rad26 results in a phenotype similar to that of the pie1Delta mutation. Mec1 protein kinase activity appears to be essential for checkpoint responses and cell growth. However, Mec1 kinase activity is unaffected by the pie1Delta mutation, suggesting that Pie1 regulates some essential function other than Mec1 kinase activity. Thus, Pie1 is structurally and functionally related to Rad26 and interacts with Mec1 to control checkpoints and cell proliferation.
Collapse
Affiliation(s)
- T Wakayama
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-0814, Japan
| | | | | | | | | |
Collapse
|
171
|
Emili A, Schieltz DM, Yates JR, Hartwell LH. Dynamic interaction of DNA damage checkpoint protein Rad53 with chromatin assembly factor Asf1. Mol Cell 2001; 7:13-20. [PMID: 11172707 DOI: 10.1016/s1097-2765(01)00150-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The evolutionarily conserved yeast checkpoint protein kinase Rad53 regulates cell cycle progression, transcription, and DNA repair in response to DNA damage. To uncover potential regulatory targets of Rad53, we identified proteins physically associated with it in vivo using protein affinity purification and tandem mass spectrometry. Here we report that Rad53 interacts in a dynamic functional manner with Asf1, a chromatin assembly factor recently shown to mediate deposition of acetylated histones H3 and H4 onto newly replicated DNA. Biochemical and molecular genetic studies suggest that Asf1 is an important target of the Rad53-dependent DNA damage response and that Rad53 may directly regulate chromatin assembly during DNA replication and repair.
Collapse
Affiliation(s)
- A Emili
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | | | | | | |
Collapse
|
172
|
Schultz LB, Chehab NH, Malikzay A, Halazonetis TD. p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J Cell Biol 2000; 151:1381-90. [PMID: 11134068 PMCID: PMC2150674 DOI: 10.1083/jcb.151.7.1381] [Citation(s) in RCA: 712] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2000] [Accepted: 11/06/2000] [Indexed: 01/19/2023] Open
Abstract
p53 binding protein 1 (53BP1), a protein proposed to function as a transcriptional coactivator of the p53 tumor suppressor, has BRCT domains with high homology to the Saccharomyces cerevisiae Rad9p DNA damage checkpoint protein. To examine whether 53BP1 has a role in the cellular response to DNA damage, we probed its intracellular localization by immunofluorescence. In untreated primary cells and U2OS osteosarcoma cells, 53BP1 exhibited diffuse nuclear staining; whereas, within 5-15 min after exposure to ionizing radiation (IR), 53BP1 localized at discreet nuclear foci. We propose that these foci represent sites of processing of DNA double-strand breaks (DSBs), because they were induced by IR and chemicals that cause DSBs, but not by ultraviolet light; their peak number approximated the number of DSBs induced by IR and decreased over time with kinetics that parallel the rate of DNA repair; and they colocalized with IR-induced Mre11/NBS and gamma-H2AX foci, which have been previously shown to localize at sites of DSBs. Formation of 53BP1 foci after irradiation was not dependent on ataxia-telangiectasia mutated (ATM), Nijmegen breakage syndrome (NBS1), or wild-type p53. Thus, the fast kinetics of 53BP1 focus formation after irradiation and the lack of dependency on ATM and NBS1 suggest that 53BP1 functions early in the cellular response to DNA DSBs.
Collapse
Affiliation(s)
- Linda B. Schultz
- Department of Molecular Genetics, The Wistar Institute, Philadelphia, Pennsylvania 19104
- Graduate Program in Cell and Molecular Biology, School of Medicine
| | - Nabil H. Chehab
- Department of Molecular Genetics, The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - Asra Malikzay
- Department of Molecular Genetics, The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - Thanos D. Halazonetis
- Department of Molecular Genetics, The Wistar Institute, Philadelphia, Pennsylvania 19104
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
173
|
Li J, Lee GI, Van Doren SR, Walker JC. The FHA domain mediates phosphoprotein interactions. J Cell Sci 2000; 113 Pt 23:4143-9. [PMID: 11069759 DOI: 10.1242/jcs.113.23.4143] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The forkhead-associated (FHA) domain is a phosphopeptide-binding domain first identified in a group of forkhead transcription factors but is present in a wide variety of proteins from both prokaryotes and eukaryotes. In yeast and human, many proteins containing an FHA domain are found in the nucleus and involved in DNA repair, cell cycle arrest, or pre-mRNA processing. In plants, the FHA domain is part of a protein that is localized to the plasma membrane and participates in the regulation of receptor-like protein kinase signaling pathways. Recent studies show that a functional FHA domain consists of 120–140 amino acid residues, which is significantly larger than the sequence motif first described. Although FHA domains do not exhibit extensive sequence similarity, they share similar secondary and tertiary structures, featuring a sandwich of two anti-parallel (beta)-sheets. One intriguing finding is that FHA domains may bind phosphothreonine, phosphoserine and sometimes phosphotyrosine, distinguishing them from other well-studied phosphoprotein-binding domains. The diversity of proteins containing FHA domains and potential differences in binding specificities suggest the FHA domain is involved in coordinating diverse cellular processes.
Collapse
Affiliation(s)
- J Li
- Division of Biological Sciences and Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
174
|
Abstract
In response to DNA damage, cell-cycle checkpoints integrate cell-cycle control with DNA repair. The idea that checkpoint controls are an integral component of normal cell-cycle progression has arisen as a result of studies in Drosophila and mice. In addition, an appreciation that DNA damage arises as a natural consequence of cellular metabolism, including DNA replication itself, has influenced thinking regarding the nature of checkpoint pathways.
Collapse
Affiliation(s)
- N C Walworth
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854-5635, USA.
| |
Collapse
|
175
|
Rouse J, Jackson SP. LCD1: an essential gene involved in checkpoint control and regulation of the MEC1 signalling pathway in Saccharomyces cerevisiae. EMBO J 2000; 19:5801-12. [PMID: 11060031 PMCID: PMC305794 DOI: 10.1093/emboj/19.21.5801] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We identified YDR499W as a Saccharomyces cerevisiae open reading frame with homology to several checkpoint proteins, including S. cerevisiae Rfc5p and Schizosaccharomyces pombe Rad26. Disruption of YDR499W (termed LCD1) results in lethality that is rescued by increasing cellular deoxyribonucleotide levels. Cells lacking LCD1 are very sensitive to a range of DNA-damaging agents, including UV irradiation, and to the inhibition of DNA replication. LCD1 is necessary for the phosphorylation and activation of Rad53p in response to DNA damage or DNA replication blocks, and for Chk1p activation in response to DNA damage. LCD1 is also required for efficient DNA damage-induced phosphorylation of Rad9p and for the association of Rad9p with the FHA2 domain of Rad53p after DNA damage. In addition, cells lacking LCD1 are completely defective in the G(1)/S and G(2)/M DNA damage checkpoints. Finally, we reveal that endogenous Mec1p co-immunoprecipitates with Lcd1p both before and after treatment with DNA-damaging agents. These results indicate that Lcd1p is a pivotal checkpoint regulator, involved in both the essential and checkpoint functions of the Mec1p pathway.
Collapse
Affiliation(s)
- J Rouse
- Wellcome Trust and Cancer Research Campaign, Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | |
Collapse
|
176
|
Brush GS, Kelly TJ. Phosphorylation of the replication protein A large subunit in the Saccharomyces cerevisiae checkpoint response. Nucleic Acids Res 2000; 28:3725-32. [PMID: 11000264 PMCID: PMC110765 DOI: 10.1093/nar/28.19.3725] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The checkpoint mechanisms that delay cell cycle progression in response to DNA damage or inhibition of DNA replication are necessary for maintenance of genetic stability in eukaryotic cells. Potential targets of checkpoint-mediated regulation include proteins directly involved in DNA metabolism, such as the cellular single-stranded DNA (ssDNA) binding protein, replication protein A (RPA). Studies in Saccharomyces cerevisiae have revealed that the RPA large subunit (Rfa1p) is involved in the G1 and S phase DNA damage checkpoints. We now demonstrate that Rfa1p is phosphorylated in response to various forms of genotoxic stress, including radiation and hydroxyurea exposure, and further show that phosphorylation of Rfa1p is dependent on the central checkpoint regulator Mec1p. Analysis of the requirement for other checkpoint genes indicates that different mechanisms mediate radiation- and hydroxyurea-induced Rfa1p phosphorylation despite the common requirement for functional Mec1p. In addition, experiments with mutants defective in the Cdc13p telomere-binding protein indicate that ssDNA formation is an important signal for Rfa1p phosphorylation. Because Rfa1p contains the major ssDNA binding activity of the RPA heterotrimer and is required for DNA replication, repair and recombination, it is possible that phosphorylation of this subunit is directly involved in modulating RPA activity during the checkpoint response.
Collapse
MESH Headings
- Cell Cycle/drug effects
- Cell Cycle/radiation effects
- Chromosomes, Fungal/drug effects
- Chromosomes, Fungal/genetics
- Chromosomes, Fungal/metabolism
- Chromosomes, Fungal/radiation effects
- Cyclin B/genetics
- Cyclin B/metabolism
- DNA Damage/drug effects
- DNA Damage/genetics
- DNA Damage/radiation effects
- DNA Repair
- DNA Replication/drug effects
- DNA Replication/radiation effects
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- DNA-Activated Protein Kinase
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Radiation
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Genes, Fungal/genetics
- Glycosyltransferases/metabolism
- Humans
- Hydroxyurea/pharmacology
- Intracellular Signaling Peptides and Proteins
- Mutation/genetics
- Nuclear Proteins
- Phosphorylation/drug effects
- Phosphorylation/radiation effects
- Protein Serine-Threonine Kinases/metabolism
- Replication Protein A
- Saccharomyces cerevisiae/cytology
- Saccharomyces cerevisiae/drug effects
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/radiation effects
- Saccharomyces cerevisiae Proteins
- Telomere/drug effects
- Telomere/genetics
- Telomere/metabolism
- Telomere/radiation effects
- Transcription Factors
- Ultraviolet Rays
Collapse
Affiliation(s)
- G S Brush
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
177
|
Liberi G, Chiolo I, Pellicioli A, Lopes M, Plevani P, Muzi-Falconi M, Foiani M. Srs2 DNA helicase is involved in checkpoint response and its regulation requires a functional Mec1-dependent pathway and Cdk1 activity. EMBO J 2000; 19:5027-38. [PMID: 10990466 PMCID: PMC314228 DOI: 10.1093/emboj/19.18.5027] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Saccharomyces cerevisiae the rate of DNA replication is slowed down in response to DNA damage as a result of checkpoint activation, which is mediated by the Mec1 and Rad53 protein kinases. We found that the Srs2 DNA helicase, which is involved in DNA repair and recombination, is phosphorylated in response to intra-S DNA damage in a checkpoint-dependent manner. DNA damage-induced Srs2 phosphorylation also requires the activity of the cyclin-dependent kinase Cdk1, suggesting that the checkpoint pathway might modulate Cdk1 activity in response to DNA damage. Moreover, srs2 mutants fail to activate Rad53 properly and to slow down DNA replication in response to intra-S DNA damage. The residual Rad53 activity observed in srs2 cells depends upon the checkpoint proteins Rad17 and Rad24. Moreover, DNA damage-induced lethality in rad17 mutants depends partially upon Srs2, suggesting that a functional Srs2 helicase causes accumulation of lethal events in a checkpoint-defective context. Altogether, our data implicate Srs2 in the Mec1 and Rad53 pathway and connect the checkpoint response to DNA repair and recombination.
Collapse
Affiliation(s)
- G Liberi
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
178
|
Kaplun L, Ivantsiv Y, Kornitzer D, Raveh D. Functions of the DNA damage response pathway target Ho endonuclease of yeast for degradation via the ubiquitin-26S proteasome system. Proc Natl Acad Sci U S A 2000; 97:10077-82. [PMID: 10963670 PMCID: PMC27699 DOI: 10.1073/pnas.97.18.10077] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ho endonuclease of Saccharomyces cerevisiae is a homing endonuclease that makes a site-specific double-strand break in the MAT gene in late G(1). Here we show that Ho is rapidly degraded via the ubiquitin-26S proteasome system through two ubiquitin-conjugating enzymes UBC2(Rad6) and UBC3(Cdc34). UBC2(Rad6) is complexed with the ring finger DNA-binding protein Rad18, and we find that Ho is stabilized in rad18 mutants. We show that the Ho degradation pathway involving UBC3(Cdc34) goes through the Skp1/Cdc53/F-box (SCF) ubiquitin ligase complex and identify a F-box protein, Yml088w, that is required for Ho degradation. Components of a defined pathway of the DNA damage response, MEC1, RAD9, and CHK1, are also necessary for Ho degradation, whereas functions of the RAD24 epistasis group and the downstream effector RAD53 have no role in degradation of Ho. Our results indicate a link between the endonuclease function of Ho and its destruction.
Collapse
Affiliation(s)
- L Kaplun
- Life Sciences Department, Ben Gurion University of the Negev, Box 653, Beersheba 84105, Israel
| | | | | | | |
Collapse
|
179
|
Paciotti V, Clerici M, Lucchini G, Longhese MP. The checkpoint protein Ddc2, functionally related to S. pombe Rad26, interacts with Mec1 and is regulated by Mec1-dependent phosphorylation in budding yeast. Genes Dev 2000. [DOI: 10.1101/gad.14.16.2046] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
DDC2 is a novel component of the DNA integrity checkpoint pathway, which is required for proper checkpoint response to DNA damage and to incomplete DNA replication. Moreover, Ddc2 overproduction causes sensitivity to DNA-damaging agents and checkpoint defects. Ddc2 physically interacts with Mec1 and undergoes Mec1-dependent phosphorylation both in vitro and in vivo. The phosphorylation of Ddc2 takes place in late S phase and in G2 phase during an unperturbed cell cycle and is further increased in response to DNA damage. Because Ddc2 phosphorylation does not require any other known tested checkpoint factors but Mec1, the Ddc2–Mec1 complex might respond to the presence of some DNA structures independently of the other known checkpoint proteins. Our findings suggest that Ddc2 may be the functional homolog of Schizosaccharomyces pombe Rad26, strengthening the hypothesis that the mechanisms leading to checkpoint activation are conserved throughout evolution.
Collapse
|
180
|
Fritz E, Friedl AA, Zwacka RM, Eckardt-Schupp F, Meyn MS. The yeast TEL1 gene partially substitutes for human ATM in suppressing hyperrecombination, radiation-induced apoptosis and telomere shortening in A-T cells. Mol Biol Cell 2000; 11:2605-16. [PMID: 10930457 PMCID: PMC14943 DOI: 10.1091/mbc.11.8.2605] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Homozygous mutations in the human ATM gene lead to a pleiotropic clinical phenotype of ataxia-telangiectasia (A-T) patients and correlating cellular deficiencies in cells derived from A-T donors. Saccharomyces cerevisiae tel1 mutants lacking Tel1p, which is the closest sequence homologue to the ATM protein, share some of the cellular defects with A-T. Through genetic complementation of A-T cells with the yeast TEL1 gene, we provide evidence that Tel1p can partially compensate for ATM in suppressing hyperrecombination, radiation-induced apoptosis, and telomere shortening. Complementation appears to be independent of p53 activation. The data provided suggest that TEL1 is a functional homologue of human ATM in yeast, and they help to elucidate different cellular and biochemical pathways in human cells regulated by the ATM protein.
Collapse
Affiliation(s)
- E Fritz
- GSF, National Research Center for Environment and Health, Institute of Radiobiology, Neuherberg, Germany.
| | | | | | | | | |
Collapse
|
181
|
Naiki T, Shimomura T, Kondo T, Matsumoto K, Sugimoto K. Rfc5, in cooperation with rad24, controls DNA damage checkpoints throughout the cell cycle in Saccharomyces cerevisiae. Mol Cell Biol 2000; 20:5888-96. [PMID: 10913172 PMCID: PMC86066 DOI: 10.1128/mcb.20.16.5888-5896.2000] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RAD24 and RFC5 are required for DNA damage checkpoint control in the budding yeast Saccharomyces cerevisiae. Rad24 is structurally related to replication factor C (RFC) subunits and associates with RFC subunits Rfc2, Rfc3, Rfc4, and Rfc5. rad24Delta mutants are defective in all the G(1)-, S-, and G(2)/M-phase DNA damage checkpoints, whereas the rfc5-1 mutant is impaired only in the S-phase DNA damage checkpoint. Both the RFC subunits and Rad24 contain a consensus sequence for nucleoside triphosphate (NTP) binding. To determine whether the NTP-binding motif is important for Rad24 function, we mutated the conserved lysine(115) residue in this motif. The rad24-K115E mutation, which changes lysine to glutamate, confers a complete loss-of-function phenotype, while the rad24-K115R mutation, which changes lysine to arginine, shows no apparent phenotype. Although neither rfc5-1 nor rad24-K115R single mutants are defective in the G(1)- and G(2)/M-phase DNA damage checkpoints, rfc5-1 rad24-K115R double mutants become defective in these checkpoints. Coimmunoprecipitation experiments revealed that Rad24(K115R) fails to interact with the RFC proteins in rfc5-1 mutants. Together, these results indicate that RFC5, like RAD24, functions in all the G(1)-, S- and G(2)/M-phase DNA damage checkpoints and suggest that the interaction of Rad24 with the RFC proteins is essential for DNA damage checkpoint control.
Collapse
Affiliation(s)
- T Naiki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-0814, Japan
| | | | | | | | | |
Collapse
|
182
|
Abstract
Prokaryotic and eukaryotic cells have developed a network of DNA repair systems that restore genomic integrity following DNA damage from endogenous and exogenous genotoxic sources. One of the mechanisms used to repair damaged chromosomes is genetic recombination, in which information present as a second chromosomal copy is used to repair a damaged region of the genome. In this review, I summarized what is known about the molecular and cellular mechanisms by which various DNA-damaging agents induce recombination in yeast. The yeast Saccharomyces cerevisiae has served as an excellent model organism to study the induction of recombination. It has helped to define the basic phenomenology and to isolate the genes involved in the process. Given the evolutionary conservation of the various DNA repair systems in eukaryotes, it is likely that the knowledge gathered about induced recombination in yeast is applicable to mammalian cells and thus to humans. Many carcinogens are known to induce recombination and to cause chromosomal rearrangements. An understanding of the mechanisms, by which genotoxic agents cause increased levels of recombination will have important consequences for the treatment of cancer, and for the assessment of risks arising from exposure to genotoxic agents in humans.
Collapse
Affiliation(s)
- M Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|
183
|
Foiani M, Pellicioli A, Lopes M, Lucca C, Ferrari M, Liberi G, Muzi Falconi M, Plevani1 P. DNA damage checkpoints and DNA replication controls in Saccharomyces cerevisiae. Mutat Res 2000; 451:187-96. [PMID: 10915872 DOI: 10.1016/s0027-5107(00)00049-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In response to genotoxic agents and cell cycle blocks all eukaryotic cells activate a set of surveillance mechanims called checkpoints. A subset of these mechanisms is represented by the DNA damage checkpoint, which is triggered by DNA lesions. The activation of this signal transduction pathway leads to a delay of cell cycle progression to prevent replication and segregation of damaged DNA molecules, and to induce transcription of several DNA repair genes. The yeast Saccharomyces cerevisiae has been invaluable in genetically dissecting the DNA damage checkpoint pathway and recent findings have provided new insights into the architecture of checkpoint protein complexes, in their order of function and in the mechanisms controlling DNA replication in response to DNA damage.
Collapse
Affiliation(s)
- M Foiani
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, Luo G, Carattini-Rivera S, DeMayo F, Bradley A, Donehower LA, Elledge SJ. Chk1 is an essential kinase that is regulated by Atr and required for the G2/M DNA damage checkpoint. Genes Dev 2000. [DOI: 10.1101/gad.14.12.1448] [Citation(s) in RCA: 747] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chk1, an evolutionarily conserved protein kinase, has been implicated in cell cycle checkpoint control in lower eukaryotes. By gene disruption, we show that CHK1 deficiency results in a severe proliferation defect and death in embryonic stem (ES) cells, and peri-implantation embryonic lethality in mice. Through analysis of a conditional CHK1-deficient cell line, we demonstrate that ES cells lacking Chk1 have a defective G2/M DNA damage checkpoint in response to γ-irradiation (IR). CHK1heterozygosity modestly enhances the tumorigenesis phenotype ofWNT-1 transgenic mice. We show that in human cells, Chk1 is phosphorylated on serine 345 (S345) in response to UV, IR, and hydroxyurea (HU). Overexpression of wild-type Atr enhances, whereas overexpression of the kinase-defective mutant Atr inhibits S345 phosphorylation of Chk1 induced by UV treatment. Taken together, these data indicate that Chk1 plays an essential role in the mammalian DNA damage checkpoint, embryonic development, and tumor suppression, and that Atr regulates Chk1.
Collapse
|
185
|
Bashkirov VI, King JS, Bashkirova EV, Schmuckli-Maurer J, Heyer WD. DNA repair protein Rad55 is a terminal substrate of the DNA damage checkpoints. Mol Cell Biol 2000; 20:4393-404. [PMID: 10825202 PMCID: PMC85806 DOI: 10.1128/mcb.20.12.4393-4404.2000] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Checkpoints, which are integral to the cellular response to DNA damage, coordinate transient cell cycle arrest and the induced expression of DNA repair genes after genotoxic stress. DNA repair ensures cellular survival and genomic stability, utilizing a multipathway network. Here we report evidence that the two systems, DNA damage checkpoint control and DNA repair, are directly connected by demonstrating that the Rad55 double-strand break repair protein of the recombinational repair pathway is a terminal substrate of DNA damage and replication block checkpoints. Rad55p was specifically phosphorylated in response to DNA damage induced by the alkylating agent methyl methanesulfonate, dependent on an active DNA damage checkpoint. Rad55p modification was also observed after gamma ray and UV radiation. The rapid time course of phosphorylation and the recombination defects identified in checkpoint-deficient cells are consistent with a role of the DNA damage checkpoint in activating recombinational repair. Rad55p phosphorylation possibly affects the balance between different competing DNA repair pathways.
Collapse
Affiliation(s)
- V I Bashkirov
- Institute of General Microbiology, CH-3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
186
|
Guo Z, Dunphy WG. Response of Xenopus Cds1 in cell-free extracts to DNA templates with double-stranded ends. Mol Biol Cell 2000; 11:1535-46. [PMID: 10793133 PMCID: PMC14865 DOI: 10.1091/mbc.11.5.1535] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although homologues of the yeast checkpoint kinases Cds1 and Chk1 have been identified in various systems, the respective roles of these kinases in the responses to damaged and/or unreplicated DNA in vertebrates have not been delineated precisely. Likewise, it is largely unknown how damaged DNA and unreplicated DNA trigger the pathways that contain these effector kinases. We report that Xenopus Cds1 (Xcds1) is phosphorylated and activated by the presence of some simple DNA molecules with double-stranded ends in cell-free Xenopus egg extracts. Xcds1 is not affected by aphidicolin, an agent that induces DNA replication blocks. In contrast, Xenopus Chk1 (Xchk1) responds to DNA replication blocks but not to the presence of double-stranded DNA ends. Immunodepletion of Xcds1 (and/or Xchk1) from egg extracts did not attenuate the cell cycle delay induced by double-stranded DNA ends. These results imply that the cell cycle delay triggered by double-stranded DNA ends either does not involve Xcds1 or uses a factor(s) that can act redundantly with Xcds1.
Collapse
Affiliation(s)
- Z Guo
- Division of Biology, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
187
|
Garcia V, Salanoubat M, Choisne N, Tissier A. An ATM homologue from Arabidopsis thaliana: complete genomic organisation and expression analysis. Nucleic Acids Res 2000; 28:1692-9. [PMID: 10734187 PMCID: PMC102827 DOI: 10.1093/nar/28.8.1692] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
ATM is a gene mutated in the human disease ataxia telangiectasia with reported homologues in yeast, Drosophila, Xenopus and mouse. Whenever mutants are available they all indicate a role of this gene family in the cellular response to DNA damage. Here, we present the identification and molecular characterisation of the first plant homologue of ATM. The genomic locus of AtATM ( Arabidopsis thaliana homologue of ATM ) spans over 30 kb and is transcribed into a 12 kb mRNA resulting from the splicing of 79 exons. It is a single copy gene and maps to the long arm of chromosome 3. Transcription of AtATM is ubiquitous and not induced by ionising radiation. The putative protein encoded by AtATM is 3856 amino acids long and contains a phosphatidyl inositol-3 kinase-like (Pi3k-l) domain and a rad3 domain, features shared by other members of the ATM family. The AtAtm protein is highly similar to Atm, with 67 and 45% similarity in the Pi3k-l and rad3 domains respectively. Interestingly, the N-terminal portion of the protein harbours a PWWP domain, which is also present in other proteins involved in DNA metabolism such as human mismatch repair enzyme Msh6 and the mammalian de novo methyl transferases, Dnmt3a/b.
Collapse
Affiliation(s)
- V Garcia
- CEA/Cadarache, DSV, DEVM, Laboratoire de Radiobiologie Végétale, 13108 St Paul-lez-Durance Cedex, France
| | | | | | | |
Collapse
|
188
|
Hammet A, Pike BL, Mitchelhill KI, Teh T, Kobe B, House CM, Kemp BE, Heierhorst J. FHA domain boundaries of the dun1p and rad53p cell cycle checkpoint kinases. FEBS Lett 2000; 471:141-6. [PMID: 10767410 DOI: 10.1016/s0014-5793(00)01392-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dun1p and Rad53p of the budding yeast Saccharomyces cerevisiae are members of a conserved family of cell cycle checkpoint protein kinases that contain forkhead-associated (FHA) domains. Here, we demonstrate that these FHA domains contain 130-140 residues, and are thus considerably larger than previously predicted by sequence comparisons (55-75 residues). In vivo, expression of the proteolytically defined Dun1p FHA domain, but not a fragment containing only the predicted domain boundaries, inhibited the transcriptional induction of repair genes following replication blocks. This indicates that the non-catalytic FHA domain plays an important role in the transcriptional function of the Dun1p protein kinase.
Collapse
Affiliation(s)
- A Hammet
- St. Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Vic., Australia
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Abstract
During yeast meiosis, a checkpoint prevents exit from pachytene in response to defects in meiotic recombination and chromosome synapsis. This pachytene checkpoint requires two meiotic chromosomal proteins, Red1 and Mek1; Mek1 is a kinase that phosphorylates Red1. In mutants that undergo checkpoint-mediated pachytene arrest, Mek1 is active and Red1 remains phosphorylated. Activation of Mek1 requires the initiation of meiotic recombination and certain DNA damage checkpoint proteins. Mek1 kinase activity and checkpoint-induced pachytene arrest are counteracted by protein phosphatase type 1 (Glc7). Glc7 coimmunoprecipitates with Red1, colocalizes with Red1 on chromosomes, and dephosphorylates Red1 in vitro. We speculate that phosphorylated Red1 prevents exit from pachytene and that completion of meiotic recombination triggers Glc7-dependent dephosphorylation of Red1.
Collapse
Affiliation(s)
- J M Bailis
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
190
|
Marsolier MC, Roussel P, Leroy C, Mann C. Involvement of the PP2C-like phosphatase Ptc2p in the DNA checkpoint pathways of Saccharomyces cerevisiae. Genetics 2000; 154:1523-32. [PMID: 10747050 PMCID: PMC1461036 DOI: 10.1093/genetics/154.4.1523] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RAD53 encodes a conserved protein kinase that acts as a central transducer in the DNA damage and the DNA replication checkpoint pathways in Saccharomyces cerevisiae. To identify new elements of these pathways acting with or downstream of RAD53, we searched for genes whose overexpression suppressed the toxicity of a dominant-lethal form of RAD53 and identified PTC2, which encodes a protein phosphatase of the PP2C family. PTC2 overexpression induces hypersensitivity to genotoxic agents in wild-type cells and is lethal to rad53, mec1, and dun1 mutants with low ribonucleotide reductase activity. Deleting PTC2 specifically suppresses the hydroxyurea hypersensitivity of mec1 mutants and the lethality of mec1Delta. PTC2 is thus implicated in one or several functions related to RAD53, MEC1, and the DNA checkpoint pathways.
Collapse
Affiliation(s)
- M C Marsolier
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, 91191 Gif-Sur-Yvette Cedex, France.
| | | | | | | |
Collapse
|
191
|
Abstract
Each year many reviews deal with checkpoint control.((1-5)) Here we discuss checkpoint pathways that control mitosis. We address four checkpoint systems in depth: budding yeast DNA damage, the DNA replication checkpoint, the spindle assembly checkpoint and the mammalian G2 topoisomerase II-dependent checkpoint. A main focus of the review is the organization of these checkpoint pathways. Recent work has elucidated the order-of-function of several checkpoint components, and has revealed that the S phase, DNA damage and spindle assembly checkpoints each have at least two parallel branches. These steps forward have largely come from kinetic studies of checkpoint-defective mutants.
Collapse
Affiliation(s)
- D J Clarke
- The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
192
|
Chehab NH, Malikzay A, Appel M, Halazonetis TD. Chk2/hCds1 functions as a DNA damage checkpoint in G1 by stabilizing p53. Genes Dev 2000. [DOI: 10.1101/gad.14.3.278] [Citation(s) in RCA: 336] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chk2/hcds1, the human homolog of theSaccharomyces cerevisiae RAD53/SPK1 andSchizosaccharomyces pombe cds1 DNA damage checkpoint genes, encodes a protein kinase that is post-translationally modified after DNA damage. Like its yeast homologs, the Chk2/hCds1 protein phosphorylates Cdc25C in vitro, suggesting that it arrests cells in G2 in response to DNA damage. We expressed Chk2/hCds1 in human cells and analyzed their cell cycle profile. Wild-type, but not catalytically inactive, Chk2/hCds1 led to G1 arrest after DNA damage. The arrest was inhibited by cotransfection of a dominant-negative p53 mutant, indicating that Chk2/hCds1 acted upstream of p53. In vitro, Chk2/hCds1 phosphorylated p53 on Ser-20 and dissociated preformed complexes of p53 with Mdm2, a protein that targets p53 for degradation. In vivo, ectopic expression of wild-type Chk2/hCds1 led to increased p53 stabilization after DNA damage, whereas expression of a dominant-negative Chk2/hCds1 mutant abrogated both phosphorylation of p53 on Ser-20 and p53 stabilization. Thus, in response to DNA damage, Chk2/hCds1 stabilizes the p53 tumor suppressor protein leading to cell cycle arrest in G1.
Collapse
|
193
|
Abstract
The many events of meiotic prophase can now be viewed as a series of specialized incidents that are monitored by meiotic checkpoints, some of which are similar to their mitotic counterparts, and some of which are probably unique to meiosis. This shift in perspective means that meiotic sterility in mammals must be reexamined and viewed as the result of errors subject to meiotic checkpoint controls. Like their mitotic counterparts, the meiotic checkpoints detect defects and halt normal progression until these mistakes can be repaired. Some of these checkpoints utilize mitotic checkpoint proteins, others may involve meiotic-specific proteins, or splice forms. If repair is impossible, the checkpoints then either trigger immediate apoptosis or cause an arrest of meiotic progression followed by eventual cell death. If a sufficient number of spermatocytes are involved, either alternative results in sterility. Identification of these meiotic checkpoints and delineation of the signal transduction cascades involved has only just begun. While yeast, or other model organisms, may provide clues to some of these pathways, others appears to have arisen during vertebrate evolution. The study of mammalian meiosis has entered a new era and the foundations are being laid for a growing understanding of the many problems that may contribute to sterility.
Collapse
Affiliation(s)
- T Ashley
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
194
|
Frei C, Gasser SM. The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci. Genes Dev 2000. [DOI: 10.1101/gad.14.1.81] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have examined the cellular function of Sgs1p, a nonessential yeast DNA helicase, homologs of which are implicated in two highly debilitating hereditary human diseases (Werner's and Bloom's syndromes). We show that Sgs1p is an integral component of the S-phase checkpoint response in yeast, which arrests cells due to DNA damage or blocked fork progression during DNA replication. DNA polε and Sgs1p are found in the same epistasis group and act upstream of Rad53p to signal cell cycle arrest when DNA replication is perturbed. Sgs1p is tightly regulated through the cell cycle, accumulates in S phase and colocalizes with Rad53p in S-phase-specific foci, even in the absence of fork arrest. The association of Rad53p with a chromatin subfraction is Sgs1p dependent, suggesting an important role for the helicase in the signal-transducing pathway that monitors replication fork progression.
Collapse
|
195
|
Vessey CJ, Norbury CJ, Hickson ID. Genetic disorders associated with cancer predisposition and genomic instability. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:189-221. [PMID: 10506832 DOI: 10.1016/s0079-6603(08)60723-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Genomic instability in its broadest sense is a feature of virtually all neoplastic cells. In addition to the mutations and/or gene amplifications that appear to be a prerequisite for the acquisition of a neoplastic phenotype, human cancers exhibit other "markers" of genomic instability--in particular, a high degree of aneuploidy. Indeed, many studies have shown that aneuploidy is an almost invariant feature of cancer cells, and it has been argued by some that the emergence of aneuploid cells is a necessary step during tumorigenesis. The functional link between genomic instability and cancer is strengthened by the existence of several "genetic instability" disorders of humans that are associated with a moderate to severe increase in the incidence of cancers. These disorders include ataxia telangiectasia, Bloom's syndrome, Fanconi anemia, xeroderma pigmentosum, and Nijmegen breakage syndrome, all of which are very rare and are inherited in a recessive manner. Analysis of the cells from such cancer-prone individuals is clearly a potentially fruitful approach for delineating the genetic basis for instability in the genome. It is assumed that by identifying the underlying cause of genetic instability in these disorders, one can derive valuable information not only about the basis of particular genetic diseases, but also about the underlying causes of genomic instability in sporadic cancers in the general population. In this article, we review the clinical and cellular properties of genetic instability disorders associated with cancer predisposition. In particular, we focus on the rapid advances made in our understanding of these disorders that have derived from the cloning of the genes mutated in each case. Because in many instances the affected genes have analogs in lower eukaryotic species, we shall discuss how studies in yeasts in particular have proved valuable in our understanding of human diseases and predisposition to cancer.
Collapse
Affiliation(s)
- C J Vessey
- Imperial Cancer Research Fund Laboratories, University of Oxford, John Radcliffe Hospital, United Kingdom
| | | | | |
Collapse
|
196
|
Basrai MA, Velculescu VE, Kinzler KW, Hieter P. NORF5/HUG1 is a component of the MEC1-mediated checkpoint response to DNA damage and replication arrest in Saccharomyces cerevisiae. Mol Cell Biol 1999; 19:7041-9. [PMID: 10490641 PMCID: PMC84699 DOI: 10.1128/mcb.19.10.7041] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of global gene expression in Saccharomyces cerevisiae by the serial analysis of gene expression technique has permitted the identification of at least 302 previously unidentified transcripts from nonannotated open reading frames (NORFs). Transcription of one of these, NORF5/HUG1 (hydroxyurea and UV and gamma radiation induced), is induced by DNA damage, and this induction requires MEC1, a homolog of the ataxia telangiectasia mutated (ATM) gene. DNA damage-specific induction of HUG1, which is independent of the cell cycle stage, is due to the alleviation of repression by the Crt1p-Ssn6p-Tup1p complex. Overexpression of HUG1 is lethal in combination with a mec1 mutation in the presence of DNA damage or replication arrest, whereas a deletion of HUG1 rescues the lethality due to a mec1 null allele. HUG1 is the first example of a NORF with important biological functional properties and defines a novel component of the MEC1 checkpoint pathway.
Collapse
Affiliation(s)
- M A Basrai
- Department of Molecular Biology & Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
197
|
Abstract
FHA domains are conserved sequences of 65-100 amino acid residues found principally within eukaryotic nuclear proteins, but which also exist in certain prokaryotes. The FHA domain is thought to mediate protein-protein interactions, but its mode of action has yet to be elucidated. Here, we show that the two highly divergent FHA domains of Saccharomyces cerevisiae Rad53p, a protein kinase involved in cell cycle checkpoint control, possess phosphopeptide-binding specificity. We also demonstrate that other FHA domains bind peptides in a phospho-dependent manner. These findings indicate that the FHA domain is a phospho-specific protein-protein interaction motif and have important implications for mechanisms of intracellular signaling in both eukaryotes and prokaryotes.
Collapse
Affiliation(s)
- D Durocher
- Wellcome Trust and Cancer Research Campaign, Institute of Cancer and Developmental Biology, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
198
|
Chaturvedi P, Eng WK, Zhu Y, Mattern MR, Mishra R, Hurle MR, Zhang X, Annan RS, Lu Q, Faucette LF, Scott GF, Li X, Carr SA, Johnson RK, Winkler JD, Zhou BB. Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene 1999; 18:4047-54. [PMID: 10435585 DOI: 10.1038/sj.onc.1202925] [Citation(s) in RCA: 301] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In response to DNA damage and replication blocks, cells activate pathways that arrest the cell cycle and induce the transcription of genes that facilitate repair. In mammals, ATM (ataxia telangiectasia mutated) kinase together with other checkpoint kinases are important components in this response. We have cloned the rat and human homologs of Saccharomyces cerevisiae Rad 53 and Schizosaccharomyces pombe Cds1, called checkpoint kinase 2 (chk2). Complementation studies suggest that Chk2 can partially replace the function of the defective checkpoint kinase in the Cds1 deficient yeast strain. Chk2 was phosphorylated and activated in response to DNA damage in an ATM dependent manner. Its activation in response to replication blocks by hydroxyurea (HU) treatment, however, was independent of ATM. Using mass spectrometry, we found that, similar to Chk1, Chk2 can phosphorylate serine 216 in Cdc25C, a site known to be involved in negative regulation of Cdc25C. These results suggest that Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Activation of Chk2 might not only delay mitotic entry, but also increase the capacity of cultured cells to survive after treatment with gamma-radiation or with the topoisomerase-I inhibitor topotecan.
Collapse
Affiliation(s)
- P Chaturvedi
- Department of Oncology Research, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Gardner R, Putnam CW, Weinert T. RAD53, DUN1 and PDS1 define two parallel G2/M checkpoint pathways in budding yeast. EMBO J 1999; 18:3173-85. [PMID: 10357828 PMCID: PMC1171398 DOI: 10.1093/emboj/18.11.3173] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic checkpoint genes regulate multiple cellular responses to DNA damage. In this report, we examine the roles of budding yeast genes involved in G2/M arrest and tolerance to UV exposure. A current model posits three gene classes: those encoding proteins acting on damaged DNA (e.g. RAD9 and RAD24), those transducing a signal (MEC1, RAD53 and DUN1) or those participating more directly in arrest (PDS1). Here, we define important features of the pathways subserved by those genes. MEC1, which we find is required for both establishment and maintenance of G2/M arrest, mediates this arrest through two parallel pathways. One pathway requires RAD53 and DUN1 (the 'RAD53 pathway'); the other pathway requires PDS1. Each pathway independently contributes approximately 50% to G2/M arrest, effects demonstrable after cdc13-induced damage or a double-stranded break inflicted by the HO endonuclease. Similarly, both pathways contribute independently to tolerance of UV irradiation. How the parallel pathways might interact ultimately to achieve arrest is not yet understood, but we do provide evidence that neither the RAD53 nor the PDS1 pathway appears to maintain arrest by inhibiting adaptation. Instead, we think it likely that both pathways contribute to establishing and maintaining arrest.
Collapse
Affiliation(s)
- R Gardner
- Department of Molecular and Cellular Biology, The University of Arizona, PO Box 21016, Tucson, AZ 85721-0106, USA
| | | | | |
Collapse
|
200
|
Pâques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1999; 63:349-404. [PMID: 10357855 PMCID: PMC98970 DOI: 10.1128/mmbr.63.2.349-404.1999] [Citation(s) in RCA: 1670] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination.
Collapse
Affiliation(s)
- F Pâques
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | |
Collapse
|