151
|
Tobin DV, Saito RM. Developmental decisions: balancing genetics and the environment by C. elegans. Cell Cycle 2012; 11:1666-71. [PMID: 22510569 DOI: 10.4161/cc.19443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The small nematode C. elegans is characterized by developing through a highly coordinated, reproducible cell lineage that serves as the basis of many studies focusing on the development of multi-lineage organisms. Indeed, the reproducible cell lineage enables discovery of developmental defects that occur in even a single cell. Only recently has attention been focused on how these animals modify their genetically programmed cell lineages to adapt to altered environments. Here, we summarize the current understanding of how C. elegans responds to food deprivation by adapting their developmental program in order to conserve energy. In particular, we highlight the AMPK-mediated and insulin-like growth factor signaling pathways that are the principal regulators of induced cell cycle quiescence.
Collapse
Affiliation(s)
- David V Tobin
- Department of Genetics, Dartmouth Medical School, Hanover, NH, USA
| | | |
Collapse
|
152
|
Billing O, Natarajan B, Mohammed A, Naredi P, Kao G. A directed RNAi screen based on larval growth arrest reveals new modifiers of C. elegans insulin signaling. PLoS One 2012; 7:e34507. [PMID: 22511947 PMCID: PMC3325266 DOI: 10.1371/journal.pone.0034507] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 03/06/2012] [Indexed: 01/03/2023] Open
Abstract
Genes regulating Caenorhabditis elegans insulin/IGF signaling (IIS) have largely been identified on the basis of their involvement in dauer development or longevity. A third IIS phenotype is the first larval stage (L1) diapause, which is also influenced by asna-1, a regulator of DAF-28/insulin secretion. We reasoned that new regulators of IIS strength might be identified in screens based on the L1 diapause and the asna-1 phenotype. Eighty- six genes were selected for analysis by virtue of their predicted interaction with ASNA-1 and screened for asna-1-like larval arrest. ykt-6, mrps-2, mrps-10 and mrpl-43 were identified as genes which, when inactivated, caused larval arrest without any associated feeding defects. Several tests indicated that IIS strength was weaker and that insulin secretion was defective in these animals. This study highlights the role of the Golgi network and the mitochondria in insulin secretion and provides a new list of genes that modulate IIS in C. elegans.
Collapse
Affiliation(s)
- Ola Billing
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | | | | | - Peter Naredi
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
- * E-mail: (PN); (GK)
| | - Gautam Kao
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
- * E-mail: (PN); (GK)
| |
Collapse
|
153
|
Park D, Jones KL, Lee H, Snutch TP, Taubert S, Riddle DL. Repression of a potassium channel by nuclear hormone receptor and TGF-β signaling modulates insulin signaling in Caenorhabditis elegans. PLoS Genet 2012; 8:e1002519. [PMID: 22359515 PMCID: PMC3280960 DOI: 10.1371/journal.pgen.1002519] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 12/15/2011] [Indexed: 12/16/2022] Open
Abstract
Transforming growth factor β (TGF-β) signaling acts through Smad proteins to play fundamental roles in cell proliferation, differentiation, apoptosis, and metabolism. The Receptor associated Smads (R-Smads) interact with DNA and other nuclear proteins to regulate target gene transcription. Here, we demonstrate that the Caenorhabditis elegans R-Smad DAF-8 partners with the nuclear hormone receptor NHR-69, a C. elegans ortholog of mammalian hepatocyte nuclear factor 4α HNF4α), to repress the exp-2 potassium channel gene and increase insulin secretion. We find that NHR-69 associates with DAF-8 both in vivo and in vitro. Functionally, daf-8 nhr-69 double mutants show defects in neuropeptide secretion and phenotypes consistent with reduced insulin signaling such as increased expression of the sod-3 and gst-10 genes and a longer life span. Expression of the exp-2 gene, encoding a voltage-gated potassium channel, is synergistically increased in daf-8 nhr-69 mutants compared to single mutants and wild-type worms. In turn, exp-2 acts selectively in the ASI neurons to repress the secretion of the insulin-like peptide DAF-28. Importantly, exp-2 mutation shortens the long life span of daf-8 nhr-69 double mutants, demonstrating that exp-2 is required downstream of DAF-8 and NHR-69. Finally, animals over-expressing NHR-69 specifically in DAF-28–secreting ASI neurons exhibit a lethargic, hypoglycemic phenotype that is rescued by exogenous glucose. We propose a model whereby DAF-8/R-Smad and NHR-69 negatively regulate the transcription of exp-2 to promote neuronal DAF-28 secretion, thus demonstrating a physiological crosstalk between TGF-β and HNF4α-like signaling in C. elegans. NHR-69 and DAF-8 dependent regulation of exp-2 and DAF-28 also provides a novel molecular mechanism that contributes to the previously recognized link between insulin and TGF-β signaling in C. elegans. All animals must ensure metabolic homeostasis; if they fail to do so, diseases such as obesity and diabetes can develop. To maintain glucose balance, insulin is secreted upon glucose intake in a highly regulated and coordinated process. Previous studies suggested that the transforming growth factor beta (TGF-β) signaling pathway regulates insulin secretion in mammals. In the genetically tractable roundworm Caenorhabditis elegans, TGF-β and insulin signaling modulate larval development and aging, although the molecular link between insulin and TGF-β signaling remains poorly understood. In this study, we show that the TGF-β signaling component DAF-8 partners with NHR-69, a nuclear hormone receptor, to control the expression of the potassium channel exp-2, which in turn modulates the secretion of an insulin-like peptide. A loss-of-function exp-2 mutant exhibits increased insulin secretion and a shortened life span, whereas a gain-of-function mutant exhibits decreased insulin secretion. We also show that tissue-specific expression of nhr-69 in a pair of neurons that secrete neuropeptides causes reduced glucose content, increased insulin-like peptide levels and a lethargic phenotype. Because insulin and TGF-β signaling are linked to numerous diseases, our data may provide novel insights into the mechanisms contributing to pathophysiological changes.
Collapse
Affiliation(s)
- Donha Park
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- * E-mail: (DP); (ST); (DLR)
| | - Karen L. Jones
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Hyojin Lee
- Department of Biochemistry, College of Science, Yonsei University, Seoul, Korea
| | - Terrance P. Snutch
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Stefan Taubert
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- * E-mail: (DP); (ST); (DLR)
| | - Donald L. Riddle
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- * E-mail: (DP); (ST); (DLR)
| |
Collapse
|
154
|
Abstract
Phenotypic plasticity refers to the ability of an organism to adopt different phenotypes depending on environmental conditions. In animals and plants, the progression of juvenile development and the formation of dormant stages are often associated with phenotypic plasticity, indicating the importance of phenotypic plasticity for life-history theory. Phenotypic plasticity has long been emphasized as a crucial principle in ecology and as facilitator of phenotypic evolution. In nematodes, several examples of phenotypic plasticity have been studied at the genetic and developmental level. In addition, the influence of different environmental factors has been investigated under laboratory conditions. These studies have provided detailed insight into the molecular basis of phenotypic plasticity and its ecological and evolutionary implications. Here, we review recent studies on the formation of dauer larvae in Caenorhabditis elegans, the evolution of nematode parasitism and the generation of a novel feeding trait in Pristionchus pacificus. These examples reveal a conserved and co-opted role of an endocrine signaling module involving the steroid hormone dafachronic acid. We will discuss how hormone signaling might facilitate life-history and morphological evolution.
Collapse
|
155
|
de novo analysis and functional classification of the transcriptome of the root lesion nematode, Pratylenchus thornei, after 454 GS FLX sequencing. Int J Parasitol 2012; 42:225-37. [PMID: 22309969 DOI: 10.1016/j.ijpara.2011.11.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 11/20/2022]
Abstract
The migratory endoparasitic root lesion nematode Pratylenchus thornei is a major pest of the cereals wheat and barley. In what we believe to be the first global transcriptome analysis for P. thornei, using Roche GS FLX sequencing, 787,275 reads were assembled into 34,312 contigs using two assembly programs, to yield 6,989 contigs common to both. These contigs were annotated, resulting in functional assignments for 3,048. Specific transcripts studied in more detail included carbohydrate active enzymes potentially involved in cell wall degradation, neuropeptides, putative plant nematode parasitism genes, and transcripts that could be secreted by the nematode. Transcripts for cell wall degrading enzymes were similar to bacterial genes, suggesting that they were acquired by horizontal gene transfer. Contigs matching 14 parasitism genes found in sedentary endoparasitic nematodes were identified. These genes are thought to function in suppression of host defenses and in feeding site development, but their function in P. thornei may differ. Comparison of the common contigs from P. thornei with other nematodes showed that 2,039 were common to sequences of the Heteroderidae, 1,947 to the Meloidogynidae, 1,218 to Radopholus similis, 1,209 matched expressed sequence tags (ESTs) of Pratylenchus penetrans and Pratylenchus vulnus, and 2,940 to contigs of Pratylenchus coffeae. There were 2,014 contigs common to Caenarhabditis elegans, with 15.9% being common to all three groups. Twelve percent of contigs with matches to the Heteroderidae and the Meloidogynidae had no homology to any C. elegans protein. Fifty-seven percent of the contigs did not match known sequences and some could be unique to P. thornei. These data provide substantial new information on the transcriptome of P. thornei, those genes common to migratory and sedentary endoparasitic nematodes, and provide additional understanding of genes required for different forms of parasitism. The data can also be used to identify potential genes to study host interactions and for crop protection.
Collapse
|
156
|
Zhu H, Li J, Nolan TJ, Schad GA, Lok JB. Sensory neuroanatomy of Parastrongyloides trichosuri, a nematode parasite of mammals: Amphidial neurons of the first-stage larva. J Comp Neurol 2011; 519:2493-507. [PMID: 21456026 PMCID: PMC3125480 DOI: 10.1002/cne.22637] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Owing to its ability to switch between free-living and parasitic modes of development, Parastrongyloides trichosuri represents a valuable model with which to study the evolution of parasitism among the nematodes, especially aspects pertaining to morphogenesis of infective third-stage larvae. In the free-living nematode Caenorhabditis elegans, developmental fates of third-stage larvae are determined in part by environmental cues received by chemosensory neurons in the amphidial sensillae. As a basis for comparative study, we have described the neuroanatomy of the amphidial sensillae of P. trichosuri. By using computational methods, we incorporated serial electron micrographs into a three-dimensional reconstruction of the amphidial neurons of this parasite. Each amphid is innervated by 13 neurons, and the dendritic processes of 10 of these extend nearly to the amphidial pore. Dendritic processes of two specialized neurons leave the amphidial channel and terminate within invaginations of the sheath cell. One of these is similar to the finger cell of C. elegans, terminating in digitiform projections. The other projects a single cilium into the sheath cell. The dendritic process of a third specialized neuron terminates within the tight junction of the amphid. Each amphidial neuron was traced from the tip of its dendrite(s) to its cell body in the lateral ganglion. Positions of these cell bodies approximate those of morphologically similar amphidial neurons in Caenorhabditis elegans, so the standard nomenclature for amphidial neurons in C. elegans was adopted. A map of cell bodies within the lateral ganglion of P. trichosuri was prepared to facilitate functional study of these neurons.
Collapse
Affiliation(s)
- He Zhu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jian Li
- Department of Neurology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Thomas J. Nolan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Gerhard A. Schad
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - James B. Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
157
|
Honda Y, Fujita Y, Maruyama H, Araki Y, Ichihara K, Sato A, Kojima T, Tanaka M, Nozawa Y, Ito M, Honda S. Lifespan-extending effects of royal jelly and its related substances on the nematode Caenorhabditis elegans. PLoS One 2011; 6:e23527. [PMID: 21858156 PMCID: PMC3153499 DOI: 10.1371/journal.pone.0023527] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 07/20/2011] [Indexed: 12/14/2022] Open
Abstract
Background One of the most important challenges in the study of aging is to discover compounds with longevity-promoting activities and to unravel their underlying mechanisms. Royal jelly (RJ) has been reported to possess diverse beneficial properties. Furthermore, protease-treated RJ (pRJ) has additional pharmacological activities. Exactly how RJ and pRJ exert these effects and which of their components are responsible for these effects are largely unknown. The evolutionarily conserved mechanisms that control longevity have been indicated. The purpose of the present study was to determine whether RJ and its related substances exert a lifespan-extending function in the nematode Caenorhabditis elegans and to gain insights into the active agents in RJ and their mechanism of action. Principal Findings We found that both RJ and pRJ extended the lifespan of C. elegans. The lifespan-extending activity of pRJ was enhanced by Octadecyl-silica column chromatography (pRJ-Fraction 5). pRJ-Fr.5 increased the animals' lifespan in part by acting through the FOXO transcription factor DAF-16, the activation of which is known to promote longevity in C. elegans by reducing insulin/IGF-1 signaling (IIS). pRJ-Fr.5 reduced the expression of ins-9, one of the insulin-like peptide genes. Moreover, pRJ-Fr.5 and reduced IIS shared some common features in terms of their effects on gene expression, such as the up-regulation of dod-3 and the down-regulation of dod-19, dao-4 and fkb-4. 10-Hydroxy-2-decenoic acid (10-HDA), which was present at high concentrations in pRJ-Fr.5, increased lifespan independently of DAF-16 activity. Conclusions/Significance These results demonstrate that RJ and its related substances extend lifespan in C. elegans, suggesting that RJ may contain longevity-promoting factors. Further analysis and characterization of the lifespan-extending agents in RJ and pRJ may broaden our understanding of the gene network involved in longevity regulation in diverse species and may lead to the development of nutraceutical interventions in the aging process.
Collapse
Affiliation(s)
- Yoko Honda
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, Sakaecho, Itabashiku, Tokyo, Japan
| | - Yasunori Fujita
- Department of Longevity and Aging Research, Gifu International Institute of Biotechnology, Naka-fudogaoka, Kakamigahara, Gifu, Japan
| | - Hiroe Maruyama
- API Company Limited, Nagaragawa Research Center, Nagarayamasaki, Gifu, Japan
| | - Yoko Araki
- API Company Limited, Nagaragawa Research Center, Nagarayamasaki, Gifu, Japan
| | - Kenji Ichihara
- API Company Limited, Nagaragawa Research Center, Nagarayamasaki, Gifu, Japan
| | - Akira Sato
- Computational Systems Biology Research Group, Advanced Science Institute, RIKEN, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Toshio Kojima
- Computational Systems Biology Research Group, Advanced Science Institute, RIKEN, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | - Masashi Tanaka
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, Sakaecho, Itabashiku, Tokyo, Japan
| | - Yoshinori Nozawa
- Department of Longevity and Aging Research, Gifu International Institute of Biotechnology, Naka-fudogaoka, Kakamigahara, Gifu, Japan
- Department of Food and Health, Tokai Gakuin University, Naka-kirinocho, Kakamigahara, Gifu, Japan
| | - Masafumi Ito
- Department of Longevity and Aging Research, Gifu International Institute of Biotechnology, Naka-fudogaoka, Kakamigahara, Gifu, Japan
| | - Shuji Honda
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, Sakaecho, Itabashiku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
158
|
Alper S. Model systems to the rescue: The relationship between aging and innate immunity. Commun Integr Biol 2011; 3:409-14. [PMID: 21057627 DOI: 10.4161/cib.3.5.12561] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 06/03/2010] [Indexed: 12/27/2022] Open
Abstract
In humans, there is an interdependent relationship between aging and immune system function, with each process affecting the outcome of the other. Aging can trigger immune system dysfunction, and alterations in the immune response can in turn affect human lifespan. Genetic experiments in model organisms such as C. elegans and Drosophila have led to the identification of numerous genes and signaling pathways that can modulate organismal lifespan and immune system function. Importantly, many of these signaling pathways exhibit conserved function in multiple species, including mammals, suggesting that the research in these simpler models could one day pave the way for the modulation of aging and immunity in humans. Here, we review the recent progress in our understanding of aging, innate immunity and the interaction between these two processes using these simple model systems. Additionally, we discuss what this may tell us about aging and the innate immune system in humans.
Collapse
Affiliation(s)
- Scott Alper
- Integrated Department of Immunology; Center for Genes, environment and Health; National Jewish Health; Denver, CO USA
| |
Collapse
|
159
|
Linford NJ, Kuo TH, Chan TP, Pletcher SD. Sensory perception and aging in model systems: from the outside in. Annu Rev Cell Dev Biol 2011; 27:759-85. [PMID: 21756108 DOI: 10.1146/annurev-cellbio-092910-154240] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sensory systems provide organisms from bacteria to humans with the ability to interact with the world. Numerous senses have evolved that allow animals to detect and decode cues from sources in both their external and internal environments. Recent advances in understanding the central mechanisms by which the brains of simple organisms evaluate different cues and initiate behavioral decisions, coupled with observations that sensory manipulations are capable of altering organismal lifespan, have opened the door for powerful new research into aging. Although direct links between sensory perception and aging have been established only recently, here we discuss these initial discoveries and evaluate the potential for different forms of sensory processing to modulate lifespan across taxa. Harnessing the neurobiology of simple model systems to study the biological impact of sensory experiences will yield insights into the broad influence of sensory perception in mammals and may help uncover new mechanisms of healthy aging.
Collapse
Affiliation(s)
- Nancy J Linford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | |
Collapse
|
160
|
Engelmann I, Griffon A, Tichit L, Montañana-Sanchis F, Wang G, Reinke V, Waterston RH, Hillier LW, Ewbank JJ. A comprehensive analysis of gene expression changes provoked by bacterial and fungal infection in C. elegans. PLoS One 2011; 6:e19055. [PMID: 21602919 PMCID: PMC3094335 DOI: 10.1371/journal.pone.0019055] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/17/2011] [Indexed: 12/16/2022] Open
Abstract
While Caenorhabditis elegans specifically responds to infection by the up-regulation of certain genes, distinct pathogens trigger the expression of a common set of genes. We applied new methods to conduct a comprehensive and comparative study of the transcriptional response of C. elegans to bacterial and fungal infection. Using tiling arrays and/or RNA-sequencing, we have characterized the genome-wide transcriptional changes that underlie the host's response to infection by three bacterial (Serratia marcescens, Enterococcus faecalis and otorhabdus luminescens) and two fungal pathogens (Drechmeria coniospora and Harposporium sp.). We developed a flexible tool, the WormBase Converter (available at http://wormbasemanager.sourceforge.net/), to allow cross-study comparisons. The new data sets provided more extensive lists of differentially regulated genes than previous studies. Annotation analysis confirmed that genes commonly up-regulated by bacterial infections are related to stress responses. We found substantial overlaps between the genes regulated upon intestinal infection by the bacterial pathogens and Harposporium, and between those regulated by Harposporium and D. coniospora, which infects the epidermis. Among the fungus-regulated genes, there was a significant bias towards genes that are evolving rapidly and potentially encode small proteins. The results obtained using new methods reveal that the response to infection in C. elegans is determined by the nature of the pathogen, the site of infection and the physiological imbalance provoked by infection. They form the basis for future functional dissection of innate immune signaling. Finally, we also propose alternative methods to identify differentially regulated genes that take into account the greater variability in lowly expressed genes.
Collapse
Affiliation(s)
- Ilka Engelmann
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Aurélien Griffon
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | | | - Frédéric Montañana-Sanchis
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Guilin Wang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Valerie Reinke
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Robert H. Waterston
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - LaDeana W. Hillier
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jonathan J. Ewbank
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
- * E-mail:
| |
Collapse
|
161
|
Hao Y, Xu N, Box AC, Schaefer L, Kannan K, Zhang Y, Florens L, Seidel C, Washburn MP, Wiegraebe W, Mak HY. Nuclear cGMP-dependent kinase regulates gene expression via activity-dependent recruitment of a conserved histone deacetylase complex. PLoS Genet 2011; 7:e1002065. [PMID: 21573134 PMCID: PMC3088716 DOI: 10.1371/journal.pgen.1002065] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/21/2011] [Indexed: 01/01/2023] Open
Abstract
Elevation of the second messenger cGMP by nitric oxide (NO) activates the cGMP-dependent protein kinase PKG, which is key in regulating cardiovascular, intestinal, and neuronal functions in mammals. The NO-cGMP-PKG signaling pathway is also a major therapeutic target for cardiovascular and male reproductive diseases. Despite widespread effects of PKG activation, few molecular targets of PKG are known. We study how EGL-4, the Caenorhabditis elegans PKG ortholog, modulates foraging behavior and egg-laying and seeks the downstream effectors of EGL-4 activity. Using a combination of unbiased forward genetic screen and proteomic analysis, we have identified a conserved SAEG-1/SAEG-2/HDA-2 histone deacetylase complex that is specifically recruited by activated nuclear EGL-4. Gene expression profiling by microarrays revealed >40 genes that are sensitive to EGL-4 activity in a SAEG-1–dependent manner. We present evidence that EGL-4 controls egg laying via one of these genes, Y45F10C.2, which encodes a novel protein that is expressed exclusively in the uterine epithelium. Our results indicate that, in addition to cytoplasmic functions, active EGL-4/PKG acts in the nucleus via a conserved Class I histone deacetylase complex to regulate gene expression pertinent to behavioral and physiological responses to cGMP. We also identify transcriptional targets of EGL-4 that carry out discrete components of the physiological response. Nitrates and phosphodiesterase inhibitors raise the intracellular level of cGMP, and they have been widely used to treat hypertension and erectile dysfunction. Although it is known that cGMP activates the cGMP-dependent protein kinase PKG, which in turn causes smooth muscle relaxation and other physiological responses, very few molecular targets of PKG have been identified. In addition, the long-term effects of sustained elevation of cGMP and PKG activation are not known. We study a family member of PKG called EGL-4 in the nematode C. elegans. Using a combination of unbiased forward genetic screen and proteomic analysis, we show that constitutively active EGL-4 alters gene expression in multiple tissues, which is achieved through activity-dependent recruitment of a conserved Class I histone deacetylase complex in the nucleus. Furthermore, we identify a novel EGL-4–responsive gene that encodes a putative secreted protein that modulates the egg laying rate of C. elegans. Taken together, our results uncover novel PKG targets in the nucleus that respond to sustained elevation of cGMP. Development of chemicals that modulate the activity of these PKG targets may differentiate or alleviate undesirable side-effects of existing drugs that manipulate cGMP level.
Collapse
Affiliation(s)
- Yan Hao
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Ningyi Xu
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Andrew C. Box
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Laura Schaefer
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kasthuri Kannan
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Christopher Seidel
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Michael P. Washburn
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Winfried Wiegraebe
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Ho Yi Mak
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
162
|
Cornils A, Gloeck M, Chen Z, Zhang Y, Alcedo J. Specific insulin-like peptides encode sensory information to regulate distinct developmental processes. Development 2011; 138:1183-93. [PMID: 21343369 DOI: 10.1242/dev.060905] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An insulin-like signaling pathway mediates the environmental influence on the switch between the C. elegans developmental programs of reproductive growth versus dauer arrest. However, the specific role of endogenous insulin-like peptide (ILP) ligands in mediating the switch between these programs remains unknown. C. elegans has 40 putative insulin-like genes, many of which are expressed in sensory neurons and interneurons, raising the intriguing possibility that ILPs encode different environmental information to regulate the entry into, and exit from, dauer arrest. These two developmental switches can have different regulatory requirements: here we show that the relative importance of three different ILPs varies between dauer entry and exit. Not only do we find that one ILP, ins-1, ensures dauer arrest under harsh environments and that two other ILPs, daf-28 and ins-6, ensure reproductive growth under good conditions, we also show that daf-28 and ins-6 have non-redundant functions in regulating these developmental switches. Notably, daf-28 plays a more primary role in inhibiting dauer entry, whereas ins-6 has a more significant role in promoting dauer exit. Moreover, the switch into dauer arrest surprisingly shifts ins-6 transcriptional expression from a set of dauer-inhibiting sensory neurons to a different set of neurons, where it promotes dauer exit. Together, our data suggest that specific ILPs generate precise responses to dauer-inducing cues, such as pheromones and low food levels, to control development through stimulus-regulated expression in different neurons.
Collapse
Affiliation(s)
- Astrid Cornils
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
163
|
Narasimhan SD, Yen K, Bansal A, Kwon ES, Padmanabhan S, Tissenbaum HA. PDP-1 links the TGF-β and IIS pathways to regulate longevity, development, and metabolism. PLoS Genet 2011; 7:e1001377. [PMID: 21533078 PMCID: PMC3080858 DOI: 10.1371/journal.pgen.1001377] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 03/18/2011] [Indexed: 12/11/2022] Open
Abstract
The insulin/IGF-1 signaling (IIS) pathway is a conserved regulator of longevity, development, and metabolism. In Caenorhabditis elegans IIS involves activation of DAF-2 (insulin/IGF-1 receptor tyrosine kinase), AGE-1 (PI 3-kinase), and additional downstream serine/threonine kinases that ultimately phosphorylate and negatively regulate the single FOXO transcription factor homolog DAF-16. Phosphatases help to maintain cellular signaling homeostasis by counterbalancing kinase activity. However, few phosphatases have been identified that negatively regulate the IIS pathway. Here we identify and characterize pdp-1 as a novel negative modulator of the IIS pathway. We show that PDP-1 regulates multiple outputs of IIS such as longevity, fat storage, and dauer diapause. In addition, PDP-1 promotes DAF-16 nuclear localization and transcriptional activity. Interestingly, genetic epistasis analyses place PDP-1 in the DAF-7/TGF-β signaling pathway, at the level of the R-SMAD proteins DAF-14 and DAF-8. Further investigation into how a component of TGF-β signaling affects multiple outputs of IIS/DAF-16, revealed extensive crosstalk between these two well-conserved signaling pathways. We find that PDP-1 modulates the expression of several insulin genes that are likely to feed into the IIS pathway to regulate DAF-16 activity. Importantly, dysregulation of IIS and TGF-β signaling has been implicated in diseases such as Type 2 Diabetes, obesity, and cancer. Our results may provide a new perspective in understanding of the regulation of these pathways under normal conditions and in the context of disease.
Collapse
Affiliation(s)
- Sri Devi Narasimhan
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kelvin Yen
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ankita Bansal
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Eun-Soo Kwon
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Srivatsan Padmanabhan
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Heidi A. Tissenbaum
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
164
|
So S, Miyahara K, Ohshima Y. Control of body size in C. elegans dependent on food and insulin/IGF-1 signal. Genes Cells 2011; 16:639-51. [PMID: 21501345 DOI: 10.1111/j.1365-2443.2011.01514.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The body size of an organism is governed by genetic and environmental factors. As an environmental factor, food appears to be the most important for body size control in animals. C. elegans worms are usually grown on an E. coli strain OP50. We show that the wild-type worms fed on another E. coli strain HB101 grow 1.6 times as large as those fed on OP50. The regression line representing the relationship between the sizes of worms grown on each food for over 30 mutants was drawn, indicating that small mutants tend to be more affected by the change in food. Mutants for the DAF-2 insulin/IGF-1 receptor and downstream SGK-1, a homolog of the serum- and glucocorticoid-inducible kinase, grow less or little larger on HB101, indicating control of body size by these factors. Results on the suppression of mutations in these factors by a mutation in the DAF-16/FOXO transcription factor indicate both DAF-16-dependent and DAF-16-independent control. Furthermore, we show that the food-dependent body size change is because of a change in cell size that is closely related to the protein content per cell.
Collapse
Affiliation(s)
- Shuhei So
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Kumamoto city 860-0082, Japan
| | | | | |
Collapse
|
165
|
Hahm JH, Kim S, Paik YK. GPA-9 is a novel regulator of innate immunity against Escherichia coli foods in adult Caenorhabditis elegans. Aging Cell 2011; 10:208-19. [PMID: 21108728 DOI: 10.1111/j.1474-9726.2010.00655.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Innate immune responses to pathogens are governed by the nervous system. Here, we investigated the molecular mechanism underlying innate immunity in Caenorhabditis elegans against Escherichia coli OP50, a standard laboratory C. elegans food. Longevity was compared in worms fed live or UV-killed OP50 at low or high density food condition (HDF). Expression of the antimicrobial gene lys-8 was approximately 5-fold higher in worms fed live OP50, suggesting activation of innate immunity upon recognition of OP50 metabolites. Lifespan was extended and SOD-3 mRNA levels were increased in gpa-9-overexpressing gpa-9XS worms under HDF in association with robust induction of insulin/IGF-1 signaling (IIS). Expression of ins-7 and daf-28 that control lys-8 expression was reduced in gpa-9XS, indicating that GPA-9-mediated immunity is due in part to ins-7 and daf-28 downregulation. Our results suggest that OP50 metabolites in amphid neurons elicit innate immunity through the IIS pathway, and identify GPA-9 as a novel regulator of both the immune system and aging in C. elegans.
Collapse
Affiliation(s)
- Jeong-Hoon Hahm
- Yonsei Proteome Research Center Department of Biochemistry and Integrated Omics for Biomedical Science, College of Life Science and Biotechnology, World Class University Program, Graduate School, Yonsei University, Seoul, Korea
| | | | | |
Collapse
|
166
|
Gallo M, Park D, Luciani DS, Kida K, Palmieri F, Blacque OE, Johnson JD, Riddle DL. MISC-1/OGC links mitochondrial metabolism, apoptosis and insulin secretion. PLoS One 2011; 6:e17827. [PMID: 21448454 PMCID: PMC3063170 DOI: 10.1371/journal.pone.0017827] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 02/15/2011] [Indexed: 12/21/2022] Open
Abstract
We identified MISC-1 (Mitochondrial Solute Carrier) as the C. elegans orthologue of mammalian OGC (2-oxoglutarate carrier). OGC was originally identified for its ability to transfer α-ketoglutarate across the inner mitochondrial membrane. However, we found that MISC-1 and OGC are not solely involved in metabolic control. Our data show that these orthologous proteins participate in phylogenetically conserved cellular processes, like control of mitochondrial morphology and induction of apoptosis. We show that MISC-1/OGC is required for proper mitochondrial fusion and fission events in both C. elegans and human cells. Transmission electron microscopy reveals that loss of MISC-1 results in a decreased number of mitochondrial cristae, which have a blebbed appearance. Furthermore, our pull-down experiments show that MISC-1 and OGC interact with the anti-apoptotic proteins CED-9 and Bcl-x(L), respectively, and with the pro-apoptotic protein ANT. Knock-down of misc-1 in C. elegans and OGC in mouse cells induces apoptosis through the caspase cascade. Genetic analysis suggests that MISC-1 controls apoptosis through the physiological pathway mediated by the LIN-35/Rb-like protein. We provide genetic and molecular evidence that absence of MISC-1 increases insulin secretion and enhances germline stem cell proliferation in C. elegans. Our study suggests that the mitochondrial metabolic protein MISC-1/OGC integrates metabolic, apoptotic and insulin secretion functions. We propose a novel mechanism by which mitochondria integrate metabolic and cell survival signals. Our data suggest that MISC-1/OGC functions by sensing the metabolic status of mitochondria and directly activate the apoptotic program when required. Our results suggest that controlling MISC-1/OGC function allows regulation of mitochondrial morphology and cell survival decisions by the metabolic needs of the cell.
Collapse
Affiliation(s)
- Marco Gallo
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Baugh LR, Kurhanewicz N, Sternberg PW. Sensitive and precise quantification of insulin-like mRNA expression in Caenorhabditis elegans. PLoS One 2011; 6:e18086. [PMID: 21445366 PMCID: PMC3062572 DOI: 10.1371/journal.pone.0018086] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 02/24/2011] [Indexed: 12/15/2022] Open
Abstract
Insulin-like signaling regulates developmental arrest, stress resistance and lifespan in the nematode Caenorhabditis elegans. However, the genome encodes 40 insulin-like peptides, and the regulation and function of individual peptides is largely uncharacterized. We used the nCounter platform to measure mRNA expression of all 40 insulin-like peptides as well as the insulin-like receptor daf-2, its transcriptional effector daf-16, and the daf-16 target gene sod-3. We validated the platform using 53 RNA samples previously characterized by high density oligonucleotide microarray analysis. For this set of genes and the standard nCounter protocol, sensitivity and precision were comparable between the two platforms. We optimized conditions of the nCounter assay by varying the mass of total RNA used for hybridization, thereby increasing sensitivity up to 50-fold and reducing the median coefficient of variation as much as 4-fold. We used deletion mutants to demonstrate specificity of the assay, and we used optimized conditions to assay insulin-like gene expression throughout the C. elegans life cycle. We detected expression for nearly all insulin-like genes and find that they are expressed in a variety of distinct patterns suggesting complexity of regulation and specificity of function. We identified insulin-like genes that are specifically expressed during developmental arrest, larval development, adulthood and embryogenesis. These results demonstrate that the nCounter platform provides a powerful approach to analyzing insulin-like gene expression dynamics, and they suggest hypotheses about the function of individual insulin-like genes.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology and IGSP Center for Systems Biology, Duke University, Durham, North Carolina, United States of America.
| | | | | |
Collapse
|
168
|
Abstract
While specific signalling cascades involved in aging, such as the insulin/IGF-1 pathway, are well-described, the actual metabolic changes they elicit to prolong lifespan remain obscure. Nevertheless, the tuning of cellular metabolism towards maximal survival is the molecular basis of longevity. The eukaryotic mitochondrial prohibitin complex is a macromolecular structure at the inner mitochondrial membrane, implicated in several important cellular processes such as mitochondrial biogenesis and function, molecular signalling, replicative senescence, and cell death. Recent studies in C. elegans have revealed that prohibitin differentially influences aging by moderating fat metabolism and energy production, in response to both intrinsic signalling events and extrinsic cues. These findings indicate that prohibitin is a context-dependent modulator of longevity. The tight evolutionary conservation and ubiquitous expression of prohibitin proteins suggest a similar role for the mitochondrial prohibitin complex during aging in other organisms.
Collapse
Affiliation(s)
- Marta Artal-Sanz
- Laboratory for Bioinformatics and Molecular Genetics, Bio III, Albert-Ludwigs-University of Freiburg, D-79104 Freiburg, Germany. ‐freiburg.de
| | | |
Collapse
|
169
|
Neuropeptide gene families in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 692:98-137. [PMID: 21189676 DOI: 10.1007/978-1-4419-6902-6_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuropeptides are short sequences ofamino acids that function in all multicellular organisms to communicate information between cells. The first sequence ofa neuropeptide was reported in 1970' and the number of identified neuropeptides remained relatively small until the 1990s when the DNA sequence of multiple genomes revealed treasure troves ofinformation. Byblasting away at the genome, gene families, the sizes ofwhich were previously unknown, could now be determined. This information has led to an exponential increase in the number of putative neuropeptides and their respective gene families. The molecular biology age greatly benefited the neuropeptide field in the nematode Caenorhabditis elegans. Its genome was among the first to be sequenced and this allowed us the opportunity to screen the genome for neuropeptide genes. Initially, the screeningwas slow, as the Genefinder and BLAST programs had difficulty identifying small genes and peptides. However, as the bioinformatics programs improved, the extent of the neuropeptide gene families in C. elegans gradually emerged.
Collapse
|
170
|
You H, Gobert GN, Jones MK, Zhang W, McManus DP. Signalling pathways and the host-parasite relationship: putative targets for control interventions against schistosomiasis: signalling pathways and future anti-schistosome therapies. Bioessays 2011; 33:203-14. [PMID: 21290396 DOI: 10.1002/bies.201000077] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A better understanding of how schistosomes exploit host nutrients, neuro-endocrine hormones and signalling pathways for growth, development and maturation may provide new insights for improved interventions in the control of schistosomiasis. This paper describes recent advances in the identification and characterisation of schistosome tyrosine kinase and signalling pathways. It discusses the potential intervention value of insulin signalling, which may play an important role in glucose uptake and carbohydrate metabolism in schistosomes, providing the nutrients essential for parasite growth, development and, notably, female fecundity. Significant progress has also been made in the characterisation of other schistosome growth factor receptors, such as transforming growth factor beta receptor and epidermal growth factor receptor, and in our understanding of their roles in the host-parasite molecular dialogue and parasite development. The use of parasite signal transduction components as novel vaccine or drug targets may prove invaluable in prevention, treatment and control strategies to combat schistosomiasis.
Collapse
Affiliation(s)
- Hong You
- Queensland Institute of Medical Research, Australian Centre for International and Tropical Health, Brisbane, Australia
| | | | | | | | | |
Collapse
|
171
|
Yu S, Driscoll M. EGF signaling comes of age: promotion of healthy aging in C. elegans. Exp Gerontol 2011; 46:129-34. [PMID: 21074601 PMCID: PMC4841623 DOI: 10.1016/j.exger.2010.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 10/24/2010] [Accepted: 10/26/2010] [Indexed: 01/23/2023]
Abstract
More than 400 genes have been noted to modulate Caenorhabditis elegans longevity. Recent studies testing the role of proposed secreted insulin-binding proteins unexpectedly revealed a potent role for the EGF signaling pathway in promoting healthy aging and longevity in C. elegans. Activation of EGF receptor LET-23 is associated with increased mean and maximum lifespan, maintained pharyngeal pumping, extended locomotory function, and low lipofuscin and advanced glycation end product accumulation. Conversely, reducing the activity of the EGF pathway is associated with system-wide evidence of progeria. The EGF pathway appears to work in a manner largely independent of the insulin/IGF-like pathway, in that effects are additive with reduction of DAF-2/InsR activity and are not affected by DAF-16/FOXO transcription factor deficiency. Two novel regulators of EGF signaling, called HPA-1 and HPA-2 (for the high performance in advanced age locomotory phenotypes that their disruption confers), negatively regulate EGF action, possibly by binding and sequestering EGF. Interestingly, whereas HPA-1 appears to control aging of the animal overall, HPA-2 exerts an effect primarily on locomotory aging. As such, HPA-2 is an example of a protein with an effect on healthspan but not lifespan, a gene class that may have been missed in screens focused on longevity endpoint. To date, roles for EGF signaling in adult maintenance (particularly in non-dividing tissues) have not been addressed in other organisms-should EGF signaling exert a conserved impact on healthy aging, testing this hypothesis could hold implications for anti-aging therapies.
Collapse
Affiliation(s)
- Simon Yu
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08855, USA
| | | |
Collapse
|
172
|
Fierro-González JC, Cornils A, Alcedo J, Miranda-Vizuete A, Swoboda P. The thioredoxin TRX-1 modulates the function of the insulin-like neuropeptide DAF-28 during dauer formation in Caenorhabditis elegans. PLoS One 2011; 6:e16561. [PMID: 21304598 PMCID: PMC3029385 DOI: 10.1371/journal.pone.0016561] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 12/21/2010] [Indexed: 11/19/2022] Open
Abstract
Thioredoxins comprise a conserved family of redox regulators involved in many biological processes, including stress resistance and aging. We report that the C. elegans thioredoxin TRX-1 acts in ASJ head sensory neurons as a novel modulator of the insulin-like neuropeptide DAF-28 during dauer formation. We show that increased formation of stress-resistant, long-lived dauer larvae in mutants for the gene encoding the insulin-like neuropeptide DAF-28 requires TRX-1 acting in ASJ neurons, upstream of the insulin-like receptor DAF-2. Genetic rescue experiments demonstrate that redox-independent functions of TRX-1 specifically in ASJ neurons are needed for the dauer formation constitutive (Daf-c) phenotype of daf-28 mutants. GFP reporters of trx-1 and daf-28 show opposing expression patterns in dauers (i.e. trx-1 is up-regulated and daf-28 is down-regulated), an effect that is not observed in growing L2/L3 larvae. In addition, functional TRX-1 is required for the down-regulation of a GFP reporter of daf-28 during dauer formation, a process that is likely subject to DAF-28-mediated feedback regulation. Our findings demonstrate that TRX-1 modulates DAF-28 signaling by contributing to the down-regulation of daf-28 expression during dauer formation. We propose that TRX-1 acts as a fluctuating neuronal signaling modulator within ASJ neurons to monitor the adjustment of neuropeptide expression, including insulin-like proteins, during dauer formation in response to adverse environmental conditions.
Collapse
Affiliation(s)
- Juan Carlos Fierro-González
- Department of Biosciences and Nutrition, Center for Biosciences at NOVUM, Karolinska Institute, Huddinge, Sweden
| | - Astrid Cornils
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Joy Alcedo
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Antonio Miranda-Vizuete
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo - Consejo Superior de Investigaciones Científicas (CABD-CSIC), Universidad Pablo de Olavide, Sevilla, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Sevilla, Spain
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Center for Biosciences at NOVUM, Karolinska Institute, Huddinge, Sweden
| |
Collapse
|
173
|
Luo S, Murphy CT. Caenorhabditis elegans reproductive aging: Regulation and underlying mechanisms. Genesis 2011; 49:53-65. [PMID: 21105070 DOI: 10.1002/dvg.20694] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 11/16/2010] [Accepted: 11/17/2010] [Indexed: 01/04/2023]
Abstract
Female reproductive decline is one of the first aging phenotypes in humans, manifested in increasing rates of infertility, miscarriage, and birth defects in children of mothers over 35. Recently, Caenorhabditis elegans (C. elegans) has been developed as a model to study reproductive aging, and several studies have advanced our knowledge of reproductive aging regulation in this organism. In this review, we describe our current understanding of reproductive cessation in C. elegans, including the relationship between oocyte quality, ovulation rate, progeny number, and reproductive span. We then discuss possible mechanisms of oocyte quality control, and provide an overview of the signaling pathways currently identified to be involved in reproductive span regulation in C. elegans. Finally, we extend the relevance of C. elegans reproductive aging studies to the issue of human female reproductive decline, and we discuss ideas concerning the relationship between reproductive aging and somatic longevity.
Collapse
Affiliation(s)
- Shijing Luo
- Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jeresy, USA.
| | | |
Collapse
|
174
|
Billing O, Kao G, Naredi P. Mitochondrial function is required for secretion of DAF-28/insulin in C. elegans. PLoS One 2011; 6:e14507. [PMID: 21264209 PMCID: PMC3022011 DOI: 10.1371/journal.pone.0014507] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 12/06/2010] [Indexed: 12/13/2022] Open
Abstract
While insulin signaling has been extensively studied in Caenorhabditis elegans in the context of ageing and stress response, less is known about the factors underlying the secretion of insulin ligands upstream of the insulin receptor. Activation of the receptor governs the decision whether to progress through the reproductive lifecycle or to arrest growth and enter hibernation. We find that animals with reduced levels of the mitochondrial outer membrane translocase homologue TOMM-40 arrest growth as larvae and have decreased insulin signaling strength. TOMM-40 acts as a mitochondrial translocase in C. elegans and in its absence animals fail to import a mitochondrial protein reporter across the mitochondrial membrane(s). Inactivation of TOMM-40 evokes the mitochondrial unfolded protein response and causes a collapse of the proton gradient across the inner mitochondrial membrane. Consequently these broadly dysfunctional mitochondria render an inability to couple food abundance to secretion of DAF-28/insulin. The secretion defect is not general in nature since two other neuropeptides, ANF::GFP and INS-22::VENUS, are secreted normally. RNAi against two other putative members of the TOMM complex give similar phenotypes, implying that DAF-28 secretion is sensitive to mitochondrial dysfunction in general. We conclude that mitochondrial function is required for C. elegans to secrete DAF-28/insulin when food is abundant. This modulation of secretion likely represents an additional level of control over DAF-28/insulin function.
Collapse
Affiliation(s)
- Ola Billing
- Department of Surgery and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Gautam Kao
- Department of Surgery and Perioperative Sciences, Umeå University, Umeå, Sweden
- * E-mail:
| | - Peter Naredi
- Department of Surgery and Perioperative Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
175
|
Allard JB, Duan C. Comparative endocrinology of aging and longevity regulation. Front Endocrinol (Lausanne) 2011; 2:75. [PMID: 22654825 PMCID: PMC3356063 DOI: 10.3389/fendo.2011.00075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/28/2011] [Indexed: 01/06/2023] Open
Abstract
Hormones regulate growth, development, metabolism, and other complex processes in multicellular animals. For many years it has been suggested that hormones may also influence the rate of the aging process. Aging is a multifactorial process that causes biological systems to break down and cease to function in adult organisms as time passes, eventually leading to death. The exact underlying causes of the aging process remain a topic for debate, and clues that may shed light on these causes are eagerly sought after. In the last two decades, gene mutations that result in delayed aging and extended longevity have been discovered, and many of the affected genes have been components of endocrine signaling pathways. In this review we summarize the current knowledge on the roles of endocrine signaling in the regulation of aging and longevity in various animals. We begin by discussing the notion that conserved systems, including endocrine signaling pathways, "regulate" the aging process. Findings from the major model organisms: worms, flies, and rodents, are then outlined. Unique lessons from studies of non-traditional models: bees, salmon, and naked mole rats, are also discussed. Finally, we summarize the endocrinology of aging in humans, including changes in hormone levels with age, and the involvement of hormones in aging-related diseases. The most well studied and widely conserved endocrine pathway that affects aging is the insulin/insulin-like growth factor system. Mutations in genes of this pathway increase the lifespan of worms, flies, and mice. Population genetic evidence also suggests this pathway's involvement in human aging. Other hormones including steroids have been linked to aging only in a subset of the models studied. Because of the value of comparative studies, it is suggested that the aging field could benefit from adoption of additional model organisms.
Collapse
Affiliation(s)
- John B. Allard
- Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, USA
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, USA
- *Correspondence: Cunming Duan, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Natural Science Building, Ann Arbor, MI 48109, USA. e-mail:
| |
Collapse
|
176
|
Cheong MC, Na K, Kim H, Jeong SK, Joo HJ, Chitwood DJ, Paik YK. A potential biochemical mechanism underlying the influence of sterol deprivation stress on Caenorhabditis elegans longevity. J Biol Chem 2010; 286:7248-56. [PMID: 21186286 DOI: 10.1074/jbc.m110.189183] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the biochemical mechanism underlying the effect of sterol deprivation on longevity in Caenorhabditis elegans, we treated parent worms (P0) with 25-azacoprostane (Aza), which inhibits sitosterol-to-cholesterol conversion, and measured mean lifespan (MLS) in F2 worms. At 25 μM (∼EC(50)), Aza reduced total body sterol by 82.5%, confirming sterol depletion. Aza (25 μM) treatment of wild-type (N2) C. elegans grown in sitosterol (5 μg/ml) reduced MLS by 35%. Similar results were obtained for the stress-related mutants daf-16(mu86) and gas-1(fc21). Unexpectedly, Aza had essentially no effect on MLS in the stress-resistant daf-2(e1370) or mitochondrial complex II mutant mev-1(kn1) strains, indicating that Aza may target both insulin/IGF-1 signaling (IIS) and mitochondrial complex II. Aza increased reactive oxygen species (ROS) levels 2.7-fold in N2 worms, but did not affect ROS production by mev-1(kn1), suggesting a direct link between Aza treatment and mitochondrial ROS production. Moreover, expression of the stress-response transcription factor SKN-1 was decreased in amphid neurons by Aza and that of DAF-28 was increased when DAF-6 was involved, contributing to lifespan reduction.
Collapse
Affiliation(s)
- Mi Cheong Cheong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | | | |
Collapse
|
177
|
Luedtke S, O'Connor V, Holden-Dye L, Walker RJ. The regulation of feeding and metabolism in response to food deprivation in Caenorhabditis elegans. INVERTEBRATE NEUROSCIENCE 2010; 10:63-76. [PMID: 21120572 DOI: 10.1007/s10158-010-0112-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Accepted: 11/18/2010] [Indexed: 12/31/2022]
Abstract
This review considers the factors involved in the regulation of feeding and metabolism in response to food deprivation using Caenorhabditis elegans as a model organism. Some of the sensory neurons and interneurons involved in food intake are described, together with an overview of pharyngeal pumping. A number of chemical transmitters control feeding in C. elegans including 5-hydroxytryptamine (5-HT, serotonin), acetylcholine, glutamate, dopamine, octopamine, and tyramine. The roles of these transmitters are modified by neuropeptides, including FMRFamide-like peptides (FLPs), neuropeptide-like protein (NLPs), and insulin-like peptides. The precise effects of many of these neuropeptides have yet to be elucidated but increasingly they are being shown to play a role in feeding and metabolism in C. elegans. The regulation of fat stores is complex and appears to involve the expression of a large number of genes, many with mammalian homologues, suggesting that fat regulatory signalling is conserved across phyla. Finally, a brief comparison is made between C. elegans and mammals where for both, despite their evolutionary distance, classical transmitters and neuropeptides have anorectic or orexigenic properties. Thus, there is a rationale to support the argument that an understanding of the molecular and genetic basis of feeding and fat regulation in C. elegans may contribute to efforts aimed at the identification of targets for the treatment of conditions associated with abnormal metabolism and obesity.
Collapse
Affiliation(s)
- Sarah Luedtke
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | | | | | | |
Collapse
|
178
|
Abstract
hid-1 was originally identified as a Caenorhabditis elegans gene encoding a novel conserved protein that regulates the decision to enter into the enduring dauer larval stage. We isolated a novel allele of hid-1 in a forward genetic screen for mutants mislocalizing RBF-1 rabphilin, a RAB-27 effector. Here we demonstrate that HID-1 functions in the nervous system to regulate neuromuscular signaling and in the intestine to regulate the defecation motor program. We further show that a conserved N-terminal myristoylated motif of both invertebrate and vertebrate HID-1 is essential for its association with intracellular membranes in nematodes and PC12 cells. C. elegans neuronal HID-1 resides on intracellular membranes in neuronal cell somas; however, the kinesin UNC-104 also transports HID-1 to synaptic regions. HID-1 accumulates in the axons of unc-13 and unc-31 mutants, suggesting it is associated with neurosecretory vesicles. Consistent with this, genetic studies place HID-1 in a peptidergic signaling pathway. Finally, a hid-1 null mutation reduces the levels of endogenous neuropeptides and alters the secretion of fluorescent-tagged cargos derived from neuronal and intestinal dense core vesicles (DCVs). Taken together, our findings indicate that HID-1 is a novel component of a DCV-based neurosecretory pathway and that it regulates one or more aspects of the biogenesis, maturation, or trafficking of DCVs.
Collapse
|
179
|
The developmental timing regulator HBL-1 modulates the dauer formation decision in Caenorhabditis elegans. Genetics 2010; 187:345-53. [PMID: 20980238 DOI: 10.1534/genetics.110.123992] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Animals developing in the wild encounter a range of environmental conditions, and so developmental mechanisms have evolved that can accommodate different environmental contingencies. Harsh environmental conditions cause Caenorhabditis elegans larvae to arrest as stress-resistant "dauer" larvae after the second larval stage (L2), thereby indefinitely postponing L3 cell fates. HBL-1 is a key transcriptional regulator of L2 vs. L3 cell fate. Through the analysis of genetic interactions between mutations of hbl-1 and of genes encoding regulators of dauer larva formation, we find that hbl-1 can also modulate the dauer formation decision in a complex manner. We propose that dynamic interactions between genes that regulate stage-specific cell fate decisions and those that regulate dauer formation promote the robustness of developmental outcomes to changing environmental conditions.
Collapse
|
180
|
Abstract
Cancer can be cured by platinum-based chemotherapy, but resistance is a major cause of treatment failure. Here we present the nematode Caenorhabditis elegans as a model to study interactions between the platinum drug cisplatin and signaling pathways in vivo. Null mutation in a single gene, asna-1, makes worms hypersensitive to cisplatin. The metalloregulated ATPase ASNA-1 promotes insulin secretion and membrane insertion of tail-anchored proteins. Using structural data from ASNA-1 homologues, we identify specific ASNA-1 mutants that are sensitive to cisplatin while still able to promote insulin signaling. Mutational analysis reveals that hypersensitivity of ASNA-1 mutants to cisplatin remains in absence of CEP-1/p53 or apoptosis. Human ASNA1 can substitute for the worm gene, indicating a conserved function. Cisplatin sensitivity is not affected by decreased insulin signaling in wild-type nematodes or restored insulin signaling in asna-1 mutants. These findings provide a functional insight into ASNA-1, demonstrate that C. elegans can be used to characterize cisplatin resistance mechanisms, and suggest that rationally designed drugs against ASNA-1 can sensitize cancer cells to cisplatin.
Collapse
Affiliation(s)
- Oskar Hemmingsson
- Division of Surgery, Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | | | | | | |
Collapse
|
181
|
Abstract
Lifespan can be lengthened by genetic and environmental modifications. Study of these might provide valuable insights into the mechanism of aging. Low doses of radiation and short-term exposure to heat and high concentrations of oxygen prolong the lifespan of the nematode Caenorhabditis elegans. These might be caused by adaptive responses to harmful environmental conditions. Single-gene mutations have been found to extend lifespan in C. elegans, Drosophila and mice. So far, the best-characterized system is the C. elegans mutant in the daf-2, insulin/IGF-I receptor gene that is the component of the insulin/IGF-I signaling pathway. The mutant animals live twice as long as the wild type. The insulin/IGF-I signaling pathway regulates the activity of DAF-16, a FOXO transcription factor. However, the unified explanation for the function of DAF-16 transcription targets in the lifespan extension is not yet fully established. As both of the Mn superoxide dismutase (MnSOD) isoforms (sod-2 and sod-3) are found to be targets of DAF-16, we attempted to assess their functions in regulating lifespan and oxidative stress responsivity. We show that the double deletions of sod-2 and sod-3 genes induced oxidative-stress sensitivity but do not shorten lifespan in the daf-2 mutant background, indicating that oxidative stress is not necessarily a limiting factor for longevity. Furthermore, the deletion in the sod-3 gene lengthens lifespan in the daf-2 mutant. We conclude that the MnSOD systems in C. elegans fine-tune the insulin/IGF-I-signaling based regulation of longevity by acting not as anti-oxidants but as physiological-redox-signaling modulators.
Collapse
Affiliation(s)
- Yoko Honda
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| | | | | |
Collapse
|
182
|
Insulin/Insulin-like growth factor signaling controls non-Dauer developmental speed in the nematode Caenorhabditis elegans. Genetics 2010; 187:337-43. [PMID: 20944013 DOI: 10.1534/genetics.110.123323] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Identified as a major pathway controlling entry in the facultative dauer diapause stage, the DAF-2/Insulin receptor (InsR) signaling acts in multiple developmental and physiological regulation events in Caenorhabditis elegans. Here we identified a role of the insulin-like pathway in controlling developmental speed during the C. elegans second larval stage. This role relies on the canonical DAF-16/FOXO-dependent branch of the insulin-like signaling and is largely independent of dauer formation. Our studies provide further evidence for broad conservation of insulin/insulin-like growth factor (IGF) functions in developmental speed control.
Collapse
|
183
|
Yamada K, Hirotsu T, Matsuki M, Butcher RA, Tomioka M, Ishihara T, Clardy J, Kunitomo H, Iino Y. Olfactory plasticity is regulated by pheromonal signaling in Caenorhabditis elegans. Science 2010; 329:1647-50. [PMID: 20929849 PMCID: PMC3021133 DOI: 10.1126/science.1192020] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Population density-dependent dispersal is a well-characterized strategy of animal behavior in which dispersal rate increases when population density is higher. Caenorhabditis elegans shows positive chemotaxis to a set of odorants, but the chemotaxis switches from attraction to dispersal after prolonged exposure to the odorants. We show here that this plasticity of olfactory behavior is dependent on population density and that this regulation is mediated by pheromonal signaling. We show that a peptide, suppressor of NEP-2 (SNET-1), negatively regulates olfactory plasticity and that its expression is down-regulated by the pheromone. NEP-2, a homolog of the extracellular peptidase neprilysin, antagonizes SNET-1, and this function is essential for olfactory plasticity. These results suggest that population density information is transmitted through the external pheromone and endogenous peptide signaling to modulate chemotactic behavior.
Collapse
Affiliation(s)
- Koji Yamada
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takaaki Hirotsu
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Biology, Graduate School of Science, Kyushu University, Fukuoka, Japan
| | - Masahiro Matsuki
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Rebecca A Butcher
- Department of Biological Chemistry and Molecular Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Masahiro Tomioka
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takeshi Ishihara
- Department of Biology, Graduate School of Science, Kyushu University, Fukuoka, Japan
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hirofumi Kunitomo
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yuichi Iino
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
184
|
Abstract
Prohibitin-1 (PHB, also known as PHB1), a member of the Band-7 family of proteins, is highly conserved evolutionarily, widely expressed, and present in different cellular compartments. Genetic studies with different organism models have provided strong evidence for an important biological role of PHB in mitochondrial function, cell proliferation, and development. Recent discoveries regarding the involvement of PHB in phophatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) and transforming growth factor-β (TGF-β)/signal transducers and activators of transcription signaling pathways, and earlier reports on the interaction of PHB with Raf and its critical role in Ras/mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling opened up the possibility that PHB has functions outside of the mitochondria (extramitochondrial) and may be a multifunctional protein. The PI3K/Akt and Ras/MAPK/ERK signaling cascades are versatile signaling processes that diverge from the same receptor tyrosine kinase root, and are involved in cell metabolism, proliferation, and development. Here, we review the emerging role of PHB and its post-translational modifications in signal transduction pathways, especially in PI3K/Akt and Ras/MAPK/ERK signaling. A recent discovery of opposing effects of PHB on longevity under different metabolic states and its potential connection with insulin/insulin-like growth factor-I signaling is also discussed.
Collapse
Affiliation(s)
- Suresh Mishra
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | |
Collapse
|
185
|
Landis JN, Murphy CT. Integration of diverse inputs in the regulation of Caenorhabditis elegans DAF-16/FOXO. Dev Dyn 2010; 239:1405-12. [PMID: 20140911 DOI: 10.1002/dvdy.22244] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In a remarkably conserved insulin signaling pathway that is well-known for its regulation of longevity in worms, flies, and mammals, the major C. elegans effector of this pathway, DAF-16/FOXO, also modulates many other physiological processes. This raises the question of how DAF-16/FOXO chooses the correct targets to achieve the appropriate response in a particular context. Here, we review current knowledge of tissue-specificity and interacting partners that modulate DAF-16/FOXO functional output.
Collapse
Affiliation(s)
- Jessica N Landis
- Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
186
|
Janssen T, Lindemans M, Meelkop E, Temmerman L, Schoofs L. Coevolution of neuropeptidergic signaling systems: from worm to man. Ann N Y Acad Sci 2010; 1200:1-14. [PMID: 20633129 DOI: 10.1111/j.1749-6632.2010.05506.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the general knowledge and repeated predictions of peptide G protein-coupled receptors following the elucidation of the Caenorhabditis elegans genome in 1998, only a few have been deorphanized so far. This was attributed to the apparent lack of coevolution between (neuro)peptides and their cognate receptors. To resolve this issue, we have used an in silico genomic data mining tool to identify the real putative peptide GPCRs in the C. elegans genome and then made a well-considered selection of orphan peptide GPCRs. To maximize our chances of a successful deorphanization, we adopted a combined reverse pharmacology approach. At this moment, we have successfully uncovered four C. elegans neuropeptide signaling systems that support the theory of receptor-ligand coevolution. All four systems are extremely well conserved within nematodes and show a high degree of similarity with their vertebrate and arthropod counterparts. Our data indicate that these four neuropeptide signaling systems have been well conserved during the course of evolution and that they were already well established prior to the divergence of protostomes and deuterostomes.
Collapse
Affiliation(s)
- Tom Janssen
- Functional Genomics and Proteomics Unit, Department of Biology, KULeuven, Leuven, Belgium.
| | | | | | | | | |
Collapse
|
187
|
Okuyama T, Inoue H, Ookuma S, Satoh T, Kano K, Honjoh S, Hisamoto N, Matsumoto K, Nishida E. The ERK-MAPK pathway regulates longevity through SKN-1 and insulin-like signaling in Caenorhabditis elegans. J Biol Chem 2010; 285:30274-81. [PMID: 20624915 DOI: 10.1074/jbc.m110.146274] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
It has not been determined yet whether the ERK-MAPK pathway regulates longevity of metazoans. Here, we show that the Caenorhabditis elegans ERK cascade promotes longevity through the two longevity-promoting transcription factors, SKN-1 and DAF-16. We find that RNAi of three genes, which constitute the ERK cascade (lin-45/RAF1, mek-2/MEK1/2, and mpk-1/ERK1/2), results in reduction of life span. Moreover, RNAi of lip-1, the gene encoding a MAPK phosphatase that inactivates MPK-1, increases life span. Epistasis analyses show that the ERK (MPK-1) cascade-mediated life span extension requires SKN-1, whose function is mediated, at least partly, through DAF-2/DAF-16 insulin-like signaling. MPK-1 phosphorylates SKN-1 on the key sites that are required for SKN-1 nuclear accumulation. Our results also show that one mechanism by which SKN-1 regulates insulin-like signaling is through the regulation of expression of insulin-like peptides. Our findings thus identify a novel ERK-MAPK-mediated signaling pathway that promotes longevity.
Collapse
Affiliation(s)
- Tetsuya Okuyama
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Alekseev VR. Physiological and molecular biological mechanisms underlying diapause in aquatic invertebrates. Russ J Dev Biol 2010. [DOI: 10.1134/s1062360410020013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
189
|
Kaletsky R, Murphy CT. The role of insulin/IGF-like signaling in C. elegans longevity and aging. Dis Model Mech 2010; 3:415-9. [PMID: 20354111 DOI: 10.1242/dmm.001040] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aging is characterized by general physiological decline over time. A hallmark of human senescence is the onset of various age-related afflictions including neurodegeneration, cardiovascular disease and cancer. Although environmental and stochastic factors undoubtedly contribute to the increased incidence of disease with age, recent studies suggest that intrinsic genetic determinants govern both life span and overall health. Current aging research aims at achieving the 'longevity dividend', in which life span extension in humans is accomplished with a concomitant increase in the quality of life (Olshansky et al., 2007). Significant progress has been made using model organisms, especially the nematode worm Caenorhabditis elegans, to delineate the genetic and biochemical pathways involved in aging to identify strategies for therapeutic intervention in humans. In this review, we discuss how C. elegans has contributed to our understanding of insulin signaling and aging.
Collapse
Affiliation(s)
- Rachel Kaletsky
- Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
190
|
Michaelson D, Korta DZ, Capua Y, Hubbard EJA. Insulin signaling promotes germline proliferation in C. elegans. Development 2010; 137:671-80. [PMID: 20110332 DOI: 10.1242/dev.042523] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cell proliferation must be coordinated with cell fate specification during development, yet interactions among pathways that control these two critical aspects of development are not well understood. The coordination of cell fate specification and proliferation is particularly crucial during early germline development, when it impacts the establishment of stem/progenitor cell populations and ultimately the production of gametes. In C. elegans, insulin/IGF-like receptor (IIR) signaling has been implicated in fertility, but the basis for the fertility defect had not been previously characterized. We found that IIR signaling is required for robust larval germline proliferation, separate from its well-characterized role in preventing dauer entry. IIR signaling stimulates the larval germline cell cycle. This activity is distinct from Notch signaling, occurs in a predominantly germline-autonomous manner, and responds to somatic activity of ins-3 and ins-33, genes that encode putative insulin-like ligands. IIR signaling in this role acts through the canonical PI3K pathway, inhibiting DAF-16/FOXO. However, signaling from these ligands does not inhibit daf-16 in neurons nor in the intestine, two tissues previously implicated in other IIR roles. Our data are consistent with a model in which: (1) under replete reproductive conditions, the larval germline responds to insulin signaling to ensure robust germline proliferation that builds up the germline stem cell population; and (2) distinct insulin-like ligands contribute to different phenotypes by acting on IIR signaling in different tissues.
Collapse
Affiliation(s)
- David Michaelson
- Developmental Genetics Program, Helen and Martin Kimmel Center for Stem Cell Biology, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
191
|
Dumas KJ, Guo C, Wang X, Burkhart KB, Adams EJ, Alam H, Hu PJ. Functional divergence of dafachronic acid pathways in the control of C. elegans development and lifespan. Dev Biol 2010; 340:605-12. [PMID: 20178781 DOI: 10.1016/j.ydbio.2010.02.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 01/26/2010] [Accepted: 02/12/2010] [Indexed: 01/30/2023]
Abstract
Steroid hormone and insulin/insulin-like growth factor signaling (IIS) pathways control development and lifespan in the nematode Caenorhabditis elegans by regulating the activity of the nuclear receptor DAF-12 and the FoxO transcription factor DAF-16, respectively. The DAF-12 ligands Delta(4)- and Delta(7)-dafachronic acid (DA) promote bypass of the dauer diapause and proper gonadal migration during larval development; in adults, DAs influence lifespan. Whether Delta(4)- and Delta(7)-DA have unique biological functions is not known. We identified the 3-beta-hydroxysteroid dehydrogenase (3betaHSD) family member HSD-1, which participates in Delta(4)-DA biosynthesis, as an inhibitor of DAF-16/FoxO activity. Whereas IIS promotes the cytoplasmic sequestration of DAF-16/FoxO, HSD-1 inhibits nuclear DAF-16/FoxO activity without affecting DAF-16/FoxO subcellular localization. Thus, HSD-1 and IIS inhibit DAF-16/FoxO activity via distinct and complementary mechanisms. In adults, HSD-1 was required for full lifespan extension in IIS mutants, indicating that HSD-1 interactions with IIS are context-dependent. In contrast to the Delta(7)-DA biosynthetic enzyme DAF-36, HSD-1 is dispensable for proper gonadal migration and lifespan extension induced by germline ablation. These findings provide insights into the molecular interface between DA and IIS pathways and suggest that Delta(4)- and Delta(7)-DA pathways have unique as well as overlapping biological functions in the control of development and lifespan.
Collapse
Affiliation(s)
- Kathleen J Dumas
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
192
|
A metabolic signature of long life in Caenorhabditis elegans. BMC Biol 2010; 8:14. [PMID: 20146810 PMCID: PMC2829508 DOI: 10.1186/1741-7007-8-14] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 02/10/2010] [Indexed: 12/29/2022] Open
Abstract
Background Many Caenorhabditis elegans mutations increase longevity and much evidence suggests that they do so at least partly via changes in metabolism. However, up until now there has been no systematic investigation of how the metabolic networks of long-lived mutants differ from those of normal worms. Metabolomic technologies, that permit the analysis of many untargeted metabolites in parallel, now make this possible. Here we use one of these, 1H nuclear magnetic resonance spectroscopy, to investigate what makes long-lived worms metabolically distinctive. Results We examined three classes of long-lived worms: dauer larvae, adult Insulin/IGF-1 signalling (IIS)-defective mutants, and a translation-defective mutant. Surprisingly, these ostensibly different long-lived worms share a common metabolic signature, dominated by shifts in carbohydrate and amino acid metabolism. In addition the dauer larvae, uniquely, had elevated levels of modified amino acids (hydroxyproline and phosphoserine). We interrogated existing gene expression data in order to integrate functional (metabolite-level) changes with transcriptional changes at a pathway level. Conclusions The observed metabolic responses could be explained to a large degree by upregulation of gluconeogenesis and the glyoxylate shunt as well as changes in amino acid catabolism. These responses point to new possible mechanisms of longevity assurance in worms. The metabolic changes observed in dauer larvae can be explained by the existence of high levels of autophagy leading to recycling of cellular components. See associated minireview: http://jbiol.com/content/9/1/7
Collapse
|
193
|
Marks NJ, Maule AG. Neuropeptides in Helminths: Occurrence and Distribution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 692:49-77. [DOI: 10.1007/978-1-4419-6902-6_4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
194
|
Alcedo J, Maier W, Ch’ng Q. Sensory Influence on Homeostasis and Lifespan: Molecules and Circuits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010. [DOI: 10.1007/978-1-4419-7002-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
195
|
Kim K, Sato K, Shibuya M, Zeiger DM, Butcher RA, Ragains JR, Clardy J, Touhara K, Sengupta P. Two chemoreceptors mediate developmental effects of dauer pheromone in C. elegans. Science 2009; 326:994-8. [PMID: 19797623 PMCID: PMC4448937 DOI: 10.1126/science.1176331] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intraspecific chemical communication is mediated by signals called pheromones. Caenorhabditis elegans secretes a mixture of small molecules (collectively termed dauer pheromone) that regulates entry into the alternate dauer larval stage and also modulates adult behavior via as yet unknown receptors. Here, we identify two heterotrimeric GTP-binding protein (G protein)-coupled receptors (GPCRs) that mediate dauer formation in response to a subset of dauer pheromone components. The SRBC-64 and SRBC-66 GPCRs are members of the large Caenorhabditis-specific SRBC subfamily and are expressed in the ASK chemosensory neurons, which are required for pheromone-induced dauer formation. Expression of both, but not each receptor alone, confers pheromone-mediated effects on heterologous cells. Identification of dauer pheromone receptors will allow a better understanding of the signaling cascades that transduce the context-dependent effects of ecologically important chemical signals.
Collapse
Affiliation(s)
- Kyuhyung Kim
- Department of Biology and National Center for Behavioral Genomics Brandeis University, Waltham, MA 02454
| | - Koji Sato
- Department of Integrated Biosciences, University of Tokyo Chiba, Japan
| | - Mayumi Shibuya
- Department of Biology and National Center for Behavioral Genomics Brandeis University, Waltham, MA 02454
| | - Danna M. Zeiger
- Department of Biology and National Center for Behavioral Genomics Brandeis University, Waltham, MA 02454
| | - Rebecca A. Butcher
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School, Boston, MA 02115
| | - Justin R. Ragains
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School, Boston, MA 02115
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School, Boston, MA 02115
| | - Kazushige Touhara
- Department of Integrated Biosciences, University of Tokyo Chiba, Japan
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics Brandeis University, Waltham, MA 02454
| |
Collapse
|
196
|
Prohibitin couples diapause signalling to mitochondrial metabolism during ageing in C. elegans. Nature 2009; 461:793-7. [PMID: 19812672 DOI: 10.1038/nature08466] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 08/24/2009] [Indexed: 01/05/2023]
Abstract
Marked alterations in cellular energy metabolism are a universal hallmark of the ageing process. The biogenesis and function of mitochondria, the energy-generating organelles in eukaryotic cells, are primary longevity determinants. Genetic or pharmacological manipulations of mitochondrial activity profoundly affect the lifespan of diverse organisms. However, the molecular mechanisms regulating mitochondrial biogenesis and energy metabolism during ageing are poorly understood. Prohibitins are ubiquitous, evolutionarily conserved proteins, which form a ring-like, high-molecular-mass complex at the inner membrane of mitochondria. Here, we show that the mitochondrial prohibitin complex promotes longevity by modulating mitochondrial function and fat metabolism in the nematode Caenorhabditis elegans. We found that prohibitin deficiency shortens the lifespan of otherwise wild-type animals. Notably, knockdown of prohibitin promotes longevity in diapause mutants or under conditions of dietary restriction. In addition, prohibitin deficiency extends the lifespan of animals with compromised mitochondrial function or fat metabolism. Depletion of prohibitin influences ATP levels, animal fat content and mitochondrial proliferation in a genetic-background- and age-specific manner. Together, these findings reveal a novel mechanism regulating mitochondrial biogenesis and function, with opposing effects on energy metabolism, fat utilization and ageing in C. elegans. Prohibitin may have a similar key role in modulating energy metabolism during ageing in mammals.
Collapse
|
197
|
Wang Y, Ezemaduka AN, Tang Y, Chang Z. Understanding the mechanism of the dormant dauer formation of C. elegans: from genetics to biochemistry. IUBMB Life 2009; 61:607-12. [PMID: 19472183 DOI: 10.1002/iub.211] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dauer is a dormancy state that may occur at the end of developmental stage L1 or L2 of Caenorhabditis elegans when the environmental conditions are unfavorable (e.g., lack of food, high temperature, or overcrowding) for further growth. Dauer is a nonaging duration that does not affect the postdauer adult lifespan. Major molecular events would include the sensing of the environmental cues, the transduction of the signals into the cells, and the subsequent integration of the signals that result in the corresponding alteration of the metabolism and morphology of the organism. Genetics approach has been effectively used in identifying many of the so-called daf genes involved in dauer formation using C. elegans as the model. Nevertheless, biochemical studies at the protein and metabolic level has been lacking behind in understanding this important life phenomenon. This review focuses on the biochemical understanding so far achieved on dauer formation and dormancy in general, as well as important issues that need to be addressed in the future.
Collapse
Affiliation(s)
- Yunbiao Wang
- National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Center for Protein Science, Peking University, Beijing, China
| | | | | | | |
Collapse
|
198
|
Abstract
The processes that determine an organism's lifespan are complex and poorly understood. Yet single gene manipulations and environmental interventions can substantially delay age-related morbidity. In this review, we focus on the two most potent modulators of longevity: insulin/insulin-like growth factor 1 (IGF-1) signaling and dietary restriction. The remarkable molecular conservation of the components associated with insulin/IGF-1 signaling and dietary restriction allow us to understand longevity from a multi-species perspective. We summarize the most recent findings on insulin/IGF-1 signaling and examine the proteins and pathways that reveal a more genetic basis for dietary restriction. Although insulin/IGF-1 signaling and dietary restriction pathways are currently viewed as being independent, we suggest that these two pathways are more intricately connected than previously appreciated. We highlight that numerous interactions between these two pathways can occur at multiple levels. Ultimately, both the insulin/IGF-1 pathway and the pathway that mediates the effects of dietary restriction have evolved to respond to the nutritional status of an organism, which in turn affects its lifespan.
Collapse
Affiliation(s)
- Sri Devi Narasimhan
- Program in Gene Function and Expression, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Kelvin Yen
- Program in Gene Function and Expression, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Heidi A. Tissenbaum
- Program in Gene Function and Expression, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
199
|
Hahm JH, Kim S, Paik YK. Endogenous cGMP regulates adult longevity via the insulin signaling pathway in Caenorhabditis elegans. Aging Cell 2009; 8:473-83. [PMID: 19489741 DOI: 10.1111/j.1474-9726.2009.00495.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
G-proteins, including GPA-3, play an important role in regulating physiological responses in Caenorhabditis elegans. When confronted with an environmental stimulus such as dauer pheromone, or poor nutrients, C. elegans receives and integrates external signals through its nervous system (i.e. amphid neurons), which interprets and translates them into biological action. Here it is shown that a suppressed neuronal cGMP level caused by GPA-3 activation leads to a significant increase (47.3%) in the mean lifespan of adult C. elegans through forkhead transcription factor family O (FOXO)-mediated signal. A reduced neuronal cGMP level was found to be caused by an increased cGMP-specific phosphodiesterase activity at the transcriptional level. Our results using C. elegans mutants with specific deficits in TGF-beta and FOXO RNAi system suggest a mechanism in that cGMP, TGF-beta, and FOXO signaling interact to differentially produce the insulin-like molecules, ins-7 and daf-28, causing suppression of the insulin/IGF-1 pathway and promoting lifespan extension. Our findings provide not only a new mechanism of cGMP-mediated induction of longevity in adult C. elegans but also a possible therapeutic strategy for neuronal disease, which has been likened to brain diabetes.
Collapse
Affiliation(s)
- Jeong-Hoon Hahm
- Department of Biochemistry, Yonsei Proteome Research Center, Yonsei University, Seoul, Korea
| | | | | |
Collapse
|
200
|
Panowski SH, Dillin A. Signals of youth: endocrine regulation of aging in Caenorhabditis elegans. Trends Endocrinol Metab 2009; 20:259-64. [PMID: 19646896 DOI: 10.1016/j.tem.2009.03.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/23/2009] [Accepted: 03/25/2009] [Indexed: 01/16/2023]
Abstract
Aging research has advanced greatly in the nematode Caenorhabditis elegans over the past 20 years, and we are now beginning to piece together distinct pathways that impinge on the aging process. The knowledge base that has been obtained through genetic analysis strongly suggests that endocrine signalling has a key role in most, if not all, of the pathways that alter the aging process of multicellular organisms such as the worm. In this review, we provide an overview of two well-studied aging pathways in C. elegans, the insulin/IGF-1 and germline signalling pathways, in which endocrine signalling is clearly important. We also incorporate recent data to create a model of how endocrine signalling in these pathways might occur.
Collapse
Affiliation(s)
- Siler H Panowski
- Howard Hughes Medical Institute, Glenn Center for Aging Research, Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory, La Jolla, CA 92037, USA
| | | |
Collapse
|