151
|
Scott MM, Deneris ES. Making and breaking serotonin neurons and autism. Int J Dev Neurosci 2005; 23:277-85. [PMID: 15749252 DOI: 10.1016/j.ijdevneu.2004.05.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 05/19/2004] [Accepted: 05/19/2004] [Indexed: 11/19/2022] Open
Abstract
Dysfunction of brain serotonin system development is hypothesized to contribute to autistic behaviors. The testing of this hypothesis will likely depend on a better understanding of the genes and mechanisms involved in serotonin neuron cell fate specification. In this review we summarize the main features of vertebrate serotonin neuroanatomical development and recent studies that have revealed critical steps in the molecular genetic program that controls serotonin neuron phenotype. We then discuss the potential relevance of these findings to advances in autism research and to new molecular genetic tools under development that will impact future testing of the hypothesis.
Collapse
Affiliation(s)
- Michael M Scott
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Rm E732, 2109 Adelbert Road, Cleveland, OH 44106-4975, USA
| | | |
Collapse
|
152
|
Coutinho AP, Borday C, Gilthorpe J, Jungbluth S, Champagnat J, Lumsden A, Fortin G. Induction of a parafacial rhythm generator by rhombomere 3 in the chick embryo. J Neurosci 2005; 24:9383-90. [PMID: 15496674 PMCID: PMC6730091 DOI: 10.1523/jneurosci.2408-04.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Observations of knock-out mice suggest that breathing at birth requires correct development of a specific hindbrain territory corresponding to rhombomeres (r) 3 and 4. Focusing on this territory, we examined the development of a neuronal rhythm generator in the chick embryo. We show that rhythmic activity in r4 is inducible after developmental stage 10 through interaction with r3. Although the nature of this interaction remains obscure, we find that the expression of Krox20, a segmentation gene responsible for specifying r3 and r5, is sufficient to endow other rhombomeres with the capacity to induce rhythmic activity in r4. Induction is robust, because it can be reproduced with r2 and r6 instead of r4 and with any hindbrain territory that normally expresses Krox20 (r3, r5) or can be forced to do so (r1, r4). Interestingly, the interaction between r4 and r3/r5 that results in rhythm production can only take place through the anterior border of r4, revealing a heretofore unsuspected polarity in individual rhombomeres. The r4 rhythm generator appears to be homologous to a murine respiratory parafacial neuronal system developing in r4 under the control of Krox20 and Hoxa1. These results identify a late role for Krox20 at the onset of neurogenesis.
Collapse
Affiliation(s)
- Ana P Coutinho
- Medical Research Council Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
153
|
Norton WH, Mangoli M, Lele Z, Pogoda HM, Diamond B, Mercurio S, Russell C, Teraoka H, Stickney HL, Rauch GJ, Heisenberg CP, Houart C, Schilling TF, Frohnhoefer HG, Rastegar S, Neumann CJ, Gardiner RM, Strähle U, Geisler R, Rees M, Talbot WS, Wilson SW. Monorail/Foxa2 regulates floorplate differentiation and specification of oligodendrocytes, serotonergic raphé neurones and cranial motoneurones. Development 2005; 132:645-58. [PMID: 15677724 PMCID: PMC2790417 DOI: 10.1242/dev.01611] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study, we elucidate the roles of the winged-helix transcription factor Foxa2 in ventral CNS development in zebrafish. Through cloning of monorail (mol), which we find encodes the transcription factor Foxa2, and phenotypic analysis of mol-/- embryos, we show that floorplate is induced in the absence of Foxa2 function but fails to further differentiate. In mol-/- mutants, expression of Foxa and Hh family genes is not maintained in floorplate cells and lateral expansion of the floorplate fails to occur. Our results suggest that this is due to defects both in the regulation of Hh activity in medial floorplate cells as well as cell-autonomous requirements for Foxa2 in the prospective laterally positioned floorplate cells themselves. Foxa2 is also required for induction and/or patterning of several distinct cell types in the ventral CNS. Serotonergic neurones of the raphenucleus and the trochlear motor nucleus are absent in mol-/- embryos, and oculomotor and facial motoneurones ectopically occupy ventral CNS midline positions in the midbrain and hindbrain. There is also a severe reduction of prospective oligodendrocytes in the midbrain and hindbrain. Finally, in the absence of Foxa2, at least two likely Hh pathway target genes are ectopically expressed in more dorsal regions of the midbrain and hindbrain ventricular neuroepithelium, raising the possibility that Foxa2 activity may normally be required to limit the range of action of secreted Hh proteins.
Collapse
Affiliation(s)
- Will H. Norton
- Department of Anatomy and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Maryam Mangoli
- Department of Paediatrics and Child Health, Royal Free and University College Medical School, University College London, 5 University Street, London WC1E 6JJ, UK
| | - Zsolt Lele
- Department of Anatomy and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Hans-Martin Pogoda
- Department of Developmental Biology, Stanford University School of Medicine, Beckman Center B315, 279 Campus Drive, Stanford, CA 94305-5329, USA
| | - Brianne Diamond
- Department of Developmental Biology, Stanford University School of Medicine, Beckman Center B315, 279 Campus Drive, Stanford, CA 94305-5329, USA
| | - Sara Mercurio
- Department of Anatomy and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Claire Russell
- Department of Anatomy and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Hiroki Teraoka
- Department of Anatomy and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Heather L. Stickney
- Department of Developmental Biology, Stanford University School of Medicine, Beckman Center B315, 279 Campus Drive, Stanford, CA 94305-5329, USA
| | - Gerd-Jörg Rauch
- Department 3 – Genetics, Max-Planck-Institut für Entwicklungsbiologie, Spemannstrasse 35/III, D-72076 Tübingen, Germany
| | | | - Corinne Houart
- Department of Anatomy and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Thomas F. Schilling
- Department of Anatomy and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Hans-Georg Frohnhoefer
- Department 3 – Genetics, Max-Planck-Institut für Entwicklungsbiologie, Spemannstrasse 35/III, D-72076 Tübingen, Germany
| | - Sepand Rastegar
- IGBMC, CNRS/INSERM/ULP, Parc d’Innovation, BP 10142, 67404 Illkirch Cedex, C.U. de Strasbourg, France
| | | | - R. Mark Gardiner
- Department of Paediatrics and Child Health, Royal Free and University College Medical School, University College London, 5 University Street, London WC1E 6JJ, UK
| | - Uwe Strähle
- Universität Heidelberg und Institut für Toxikologie und Genetik, Forschungszentrum Karlsruhe, Postfach 3640, Germany
| | - Robert Geisler
- Department 3 – Genetics, Max-Planck-Institut für Entwicklungsbiologie, Spemannstrasse 35/III, D-72076 Tübingen, Germany
| | - Michelle Rees
- Department of Paediatrics and Child Health, Royal Free and University College Medical School, University College London, 5 University Street, London WC1E 6JJ, UK
| | - William S. Talbot
- Department of Developmental Biology, Stanford University School of Medicine, Beckman Center B315, 279 Campus Drive, Stanford, CA 94305-5329, USA
| | - Stephen W. Wilson
- Department of Anatomy and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
154
|
Vallstedt A, Klos JM, Ericson J. Multiple Dorsoventral Origins of Oligodendrocyte Generation in the Spinal Cord and Hindbrain. Neuron 2005; 45:55-67. [PMID: 15629702 DOI: 10.1016/j.neuron.2004.12.026] [Citation(s) in RCA: 248] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 10/22/2004] [Accepted: 11/22/2004] [Indexed: 11/21/2022]
Abstract
Studies have indicated that oligodendrocytes in the spinal cord originate from a ventral progenitor domain defined by expression of the oligodendrocyte-determining bHLH proteins Olig1 and Olig2. Here, we provide evidence that progenitors in the dorsal spinal cord and hindbrain also produce oligodendrocytes and that the specification of these cells may result from a dorsal evasion of BMP signaling over time. Moreover, we show that the generation of ventral oligodendrocytes in the spinal cord depends on Nkx6.1 and Nkx6.2 function, while these homeodomain proteins in the anterior hindbrain instead suppress oligodendrocyte specification. The opposing roles for Nkx6 proteins in the spinal cord and hindbrain, in turn, appear to reflect that oligodendrocytes are produced by distinct ventral progenitor domains at these axial levels. Based on these findings, we propose that oligodendrocytes derive from several distinct positional origins and that the activation of Olig1/2 at different positions is controlled by distinct genetic programs.
Collapse
Affiliation(s)
- Anna Vallstedt
- Department of Cell and Molecular Biology, Karolinska Institute, S-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
155
|
Gilland E, Baker R. Evolutionary Patterns of Cranial Nerve Efferent Nuclei in Vertebrates. BRAIN, BEHAVIOR AND EVOLUTION 2005; 66:234-54. [PMID: 16254413 DOI: 10.1159/000088128] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
All vertebrates have a similar series of rhombomeric hindbrain segments within which cranial nerve efferent nuclei are distributed in a similar rostrocaudal sequence. The registration between these two morphological patterns is reviewed here to highlight the conserved vs. variable aspects of hindbrain organization contributing to diversification of efferent sub-nuclei. Recent studies of segmental origins and migrations of branchiomotor, visceromotor and octavolateral efferent neurons revealed more segmental similarities than differences among vertebrates. Nonetheless, discrete variations exist in the origins of trigeminal, abducens and glossopharyngeal efferent nuclei. Segmental variation of the abducens nucleus remains the sole example of efferent neuronal homeosis during vertebrate hindbrain evolution. Comparison of cranial efferent segmental variations with surrounding intrinsic neurons will distinguish evolutionary changes in segment identity from lesser transformations in expression of unique neuronal types. The diversification of motoneuronal subgroups serving new muscles and functions appears to occur primarily by elaboration within and migration from already established segmental efferent pools rather than by de novo specification in different segmental locations. Identifying subtle variations in segment-specific neuronal phenotypes requires studies of cranial efferent organization within highly diverse groups such as teleosts and mammals.
Collapse
Affiliation(s)
- Edwin Gilland
- Department of Physiology and Neuroscience, New York University Medical Center, New York, N.Y., USA.
| | | |
Collapse
|
156
|
Abstract
HOX genes are a family of regulatory molecules that encode conserved transcription factors controlling aspects of morphogenesis and cell differentiation during normal embryonic development. All metazoans possess a common genetic system for embryonic patterning, and this system is also used in the reproductive tract. Hox genes are also expressed in the adult uterus. Hox genes are essential both for the development of mullerian tract in the embryonic period and adult function. Sex steroids regulate Hox gene expression during embryonic and endometrial development in the menstrual cycle. EMX2 and beta(3)-integrin acting downstream of Hoxa10 gene are likely involved in both these developmental processes. This article reviews the role and molecular regulation of Hox genes in reproductive tract development.
Collapse
Affiliation(s)
- Hongling DU
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology, Yale University School of Medicine, 333 Cedar Street, P.O. Box 2008063, New Haven, CT 06520, USA
| | | |
Collapse
|
157
|
Abstract
The nervous system of higher organisms exhibits extraordinary cellular diversity owing to complex spatial and temporal patterning mechanisms. The role of spatial patterning in generating neuronal diversity is well known; here we discuss how neural progenitors change over time to contribute to cell diversity within the central nervous system (CNS). We focus on five model systems: the vertebrate retina, cortex, hindbrain, spinal cord, and Drosophila neuroblasts. For each, we address the following questions: Do multipotent progenitors generate different neuronal cell types in an invariant order? Do changes in progenitor-intrinsic factors or progenitor-extrinsic signals regulate temporal identity (i.e., the sequence of neuronal cell types produced)? What is the mechanism that regulates temporal identity transitions; i.e., what triggers the switch from one temporal identity to the next? By applying the same criteria to analyze each model system, we try to highlight common themes, point out unique attributes of each system, and identify directions for future research.
Collapse
Affiliation(s)
- Bret J Pearson
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, 1254 University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
158
|
Teraoka H, Russell C, Regan J, Chandrasekhar A, Concha ML, Yokoyama R, Higashi K, Take-Uchi M, Dong W, Hiraga T, Holder N, Wilson SW. Hedgehog and Fgf signaling pathways regulate the development of tphR-expressing serotonergic raphe neurons in zebrafish embryos. ACTA ACUST UNITED AC 2004; 60:275-88. [PMID: 15281067 PMCID: PMC2789256 DOI: 10.1002/neu.20023] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Serotonin (5HT) plays major roles in the physiological regulation of many behavioral processes, including sleep, feeding, and mood, but the genetic mechanisms by which serotonergic neurons arise during development are poorly understood. In the present study, we have investigated the development of serotonergic neurons in the zebrafish. Neurons exhibiting 5HT-immunoreactivity (5HT-IR) are detected from 45 h postfertilization (hpf) in the ventral hindbrain raphe, the hypothalamus, pineal organ, and pretectal area. Tryptophan hydroxylases encode rate-limiting enzymes that function in the synthesis of 5HT. As part of this study, we cloned and analyzed a novel zebrafish tph gene named tphR. Unlike two other zebrafish tph genes (tphD1 and tphD2), tphR is expressed in serotonergic raphe neurons, similar to tph genes in mammalian species. tphR is also expressed in the pineal organ where it is likely to be involved in the pathway leading to synthesis of melatonin. To better understand the signaling pathways involved in the induction of the serotonergic phenotype, we analyzed tphR expression and 5HT-IR in embryos in which either Hh or Fgf signals are abrogated. Hindbrain 5HT neurons are severely reduced in mutants lacking activity of either Ace/Fgf8 or the transcription factor Noi/Pax2.1, which regulates expression of ace/fgf8, and probably other genes encoding signaling proteins. Similarly, serotonergic raphe neurons are absent in embryos lacking Hh activity confirming a conserved role for Hh signals in the induction of these cells. Conversely, over-activation of the Hh pathway increases the number of serotonergic neurons. As in mammals, our results are consistent with the transcription factors Nk2.2 and Gata3 acting downstream of Hh activity in the development of serotonergic raphe neurons. Our results show that the pathways involved in induction of hindbrain serotonergic neurons are likely to be conserved in all vertebrates and help establish the zebrafish as a model system to study this important neuronal class.
Collapse
Affiliation(s)
- H Teraoka
- Department of Anatomy & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Affiliation(s)
- James Briscoe
- Developmental Neurobiology, National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK.
| | | |
Collapse
|
160
|
Abstract
The genetic approach to respiratory control is opening up new paths for research into developmental respiratory control disorders. Despite the identification of numerous genes involved in respiratory control, none of the genetically engineered mice developed to date fully replicate the human respiratory phenotype of human developmental respiratory disorders. However, combining studies in humans and studies in mouse models has proved useful in identifying candidate genes for human developmental respiratory control disorders and providing pathogenic information. In clinical practice, the development of databases that incorporate clinical phenotypes and genetic samples from patients would facilitate further genetic studies. International multicentre studies would advance the area of respiratory control research.
Collapse
Affiliation(s)
- Claude Gaultier
- Department of Physiology, INSERM 9935, Hôpital Robert, Faculté de Médecine Lariboisière, Université Paris VII, France.
| |
Collapse
|
161
|
Samad OA, Geisen MJ, Caronia G, Varlet I, Zappavigna V, Ericson J, Goridis C, Rijli FM. Integration of anteroposterior and dorsoventral regulation of Phox2b transcription in cranial motoneuron progenitors by homeodomain proteins. Development 2004; 131:4071-83. [PMID: 15289435 DOI: 10.1242/dev.01282] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Little is known about the molecular mechanisms that integrate anteroposterior (AP) and dorsoventral (DV) positional information in neural progenitors that specify distinct neuronal types within the vertebrate neural tube. We have previously shown that in ventral rhombomere (r)4 of Hoxb1 and Hoxb2 mutant mouse embryos, Phox2bexpression is not properly maintained in the visceral motoneuron progenitor domain (pMNv), resulting in a switch to serotonergic fate. Here, we show that Phox2b is a direct target of Hoxb1 and Hoxb2. We found a highly conserved Phox2b proximal enhancer that mediates rhombomere-restricted expression and contains separate Pbx-Hox (PH) and Prep/Meis (P/M) binding sites. We further show that both the PH and P/M sites are essential for Hox-Pbx-Prep ternary complex formation and regulation of the Phox2b enhancer activity in ventral r4. Moreover, the DV factor Nkx2.2 enhances Hox-mediated transactivation via a derepression mechanism. Finally, we show that induction of ectopic Phox2b-expressing visceral motoneurons in the chick hindbrain requires the combined activities of Hox and Nkx2 homeodomain proteins. This study takes an important first step to understand how activators and repressors, induced along the AP and DV axes in response to signaling pathways, interact to regulate specific target gene promoters, leading to neuronal fate specification in the appropriate developmental context.
Collapse
Affiliation(s)
- Omar Abdel Samad
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, BP 10142-67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Schubert M, Holland ND, Escriva H, Holland LZ, Laudet V. Retinoic acid influences anteroposterior positioning of epidermal sensory neurons and their gene expression in a developing chordate (amphioxus). Proc Natl Acad Sci U S A 2004; 101:10320-5. [PMID: 15226493 PMCID: PMC478570 DOI: 10.1073/pnas.0403216101] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Indexed: 11/18/2022] Open
Abstract
In developing chordates, retinoic acid (RA) signaling patterns the rostrocaudal body axis globally and affects gene expression locally in some differentiating cell populations. Here we focus on development of epidermal sensory neurons in an invertebrate chordate (amphioxus) to determine how RA signaling influences their rostrocaudal distribution and gene expression (for AmphiCoe, a neural precursor gene; for amphioxus islet and AmphiERR, two neural differentiation genes; and for AmphiHox1, -3, -4, and -6). Treatments with RA or an RA antagonist (BMS009) shift the distribution of developing epidermal neurons anteriorly or posteriorly, respectively. These treatments also affect gene expression patterns in the epidermal neurons, suggesting that RA levels may influence specification of neuronal subtypes. Although colinear expression of Hox genes is well known for the amphioxus central nervous system, we find an unexpected comparable colinearity for AmphiHox1, -3, -4, and -6 in the developing epidermis; moreover, RA levels affect the anteroposterior extent of these Hox expression domains, suggesting that RA signaling controls a colinear Hox code for anteroposterior patterning of the amphioxus epidermis. Thus, in amphioxus, the developing peripheral nervous system appears to be structured by mechanisms parallel to those that structure the central nervous system. One can speculate that, during evolution, an ancestral deuterostome that structured its panepidermal nervous system with an RA-influenced Hox code gave rise to chordates in which this patterning mechanism persisted within the epidermal elements of the peripheral nervous system and was transferred to the neuroectoderm as the central nervous system condensed dorsally.
Collapse
Affiliation(s)
- Michael Schubert
- Laboratoire de Biologie Moléculaire de la Cellule, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5161, and Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, 69364 Lyon, France
| | | | | | | | | |
Collapse
|
163
|
Puelles E, Annino A, Tuorto F, Usiello A, Acampora D, Czerny T, Brodski C, Ang SL, Wurst W, Simeone A. Otx2 regulates the extent, identity and fate of neuronal progenitor domains in the ventral midbrain. Development 2004; 131:2037-48. [PMID: 15105370 DOI: 10.1242/dev.01107] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The specification of distinct neuronal cell-types is controlled by inducing signals whose interpretation in distinct areas along the central nervous system provides neuronal progenitors with a precise and typical expression code of transcription factors. To gain insights into this process, we investigated the role of Otx2 in the specification of identity and fate of neuronal progenitors in the ventral midbrain. To achieve this, Otx2 was inactivated by Cre recombinase under the transcriptional control of En1. Lack of Otx2 in the ventrolateral and posterior midbrain results in a dorsal expansion of Shh expression and in a dorsal and anterior rotation of the midbrain-hindbrain boundary and Fgf8 expression. Indeed, in this mutant correct positioning of the ventral site of midbrain-hindbrain boundary and Fgf8 expression are efficiently controlled by Otx1 function, thus allowing the study of the identity and fate of neuronal progenitors of the ventral midbrain in the absence of Otx2. Our results suggest that Otx2 acts in two ways: by repressing Nkx2.2 in the ventral midbrain and maintaining the Nkx6.1-expressing domain through dorsal antagonism on Shh. Failure of this control affects the identity code and fate of midbrain progenitors, which exhibit features in common with neuronal precursors of the rostral hindbrain even though the midbrain retains its regional identity and these neuronal precursors are rostral to Fgf8 expression. Dopaminergic neurons are greatly reduced in number, red nucleus precursors disappear from the ventral midbrain where a relevant number of serotonergic neurons are generated. These results indicate that Otx2 is an essential regulator of the identity, extent and fate of neuronal progenitor domains in the ventral midbrain and provide novel insights into the mechanisms by which neuronal diversity is generated in the central nervous system.
Collapse
Affiliation(s)
- Eduardo Puelles
- MRC Centre for Developmental Neurobiology, New Hunt's House, 4th Floor, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
|
165
|
Krieger KE, Abbott MA, Joksimovic M, Lueth PA, Sonea IM, Jeannotte L, Tuggle CK. Transgenic mice ectopically expressing HOXA5 in the dorsal spinal cord show structural defects of the cervical spinal cord along with sensory and motor defects of the forelimb. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 150:125-39. [PMID: 15158076 DOI: 10.1016/j.devbrainres.2004.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/22/2004] [Indexed: 01/08/2023]
Abstract
Mutation of murine Hoxa5 has shown that HOXA5 controls lung, gastrointestinal tract and vertebrae development. Hoxa5 is also expressed in the spinal cord, yet no central nervous system phenotype has been described in Hoxa5 knockouts. To identify the role of Hoxa5 in spinal cord development, we developed transgenic mice that express HOXA5 in the dorsal spinal cord in the brachial region. Using HOXA5-specific antibodies, we show this expression pattern is ectopic as the endogenous protein is expressed only in the ventral spinal cord at this anterio-posterior level. This transgenic line (Hoxa5SV2) also displays forelimb-specific motor and sensory defects. Hoxa5SV2 transgenic mice cannot support their body weight in a forelimb hang, and forelimb strength is decreased. However, Rotarod performance was not impaired in Hoxa5SV2 mice. Hoxa5SV2 mice also show a delayed forelimb response to noxious heat, although hindlimb response time was normal. Administration of an analgesic significantly reduced the hang test defect and decreased the transgene effect on forelimb strength, indicating that pain pathways may be affected. The morphology of transgenic cervical (but not lumbar) spinal cord is highly aberrant. Nissl staining indicates superficial laminae of the dorsal horn are severely disrupted. The distribution of cells and axons immunoreactive for substance P, neurokinin-B, and their primary receptors were aberrant only in transgenic cervical spinal cord. Further, we see increased levels of apoptosis in transgenic spinal cord at embryonic day 13.5. Our evidence suggests apoptosis due to HOXA5 misexpression is a major cause of loss of superficial lamina cells in Hoxa5SV2 mice.
Collapse
Affiliation(s)
- Karin E Krieger
- Interdepartmental Genetics, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | |
Collapse
|
166
|
Arenkiel BR, Tvrdik P, Gaufo GO, Capecchi MR. Hoxb1 functions in both motoneurons and in tissues of the periphery to establish and maintain the proper neuronal circuitry. Genes Dev 2004; 18:1539-52. [PMID: 15198977 PMCID: PMC443517 DOI: 10.1101/gad.1207204] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Formation of neuronal circuits in the head requires the coordinated development of neurons within the central nervous system (CNS) and neural crest-derived peripheral target tissues. Hoxb1, which is expressed throughout rhombomere 4 (r4), has been shown to be required for the specification of facial branchiomotor neuron progenitors that are programmed to innervate the muscles of facial expression. In this study, we have uncovered additional roles for Hoxb1-expressing cells in the formation and maintenance of the VIIth cranial nerve circuitry. By conditionally deleting the Hoxb1 locus in neural crest, we demonstrate that Hoxb1 is also required in r4-derived neural crest to facilitate and maintain formation of the VIIth nerve circuitry. Genetic lineage analysis revealed that a significant population of r4-derived neural crest is fated to generate glia that myelinate the VIIth cranial nerve. Neural crest cultures show that the absence of Hoxb1 function does not appear to affect overall glial progenitor specification, suggesting that a later glial function is critical for maintenance of the VIIth nerve. Taken together, these results suggest that the molecular program governing the development and maintenance of the VIIth cranial nerve is dependent upon Hoxb1, both in the neural crest-derived glia and in the facial branchiomotor neurons.
Collapse
Affiliation(s)
- Benjamin R Arenkiel
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
167
|
Pattyn A, Simplicio N, van Doorninck JH, Goridis C, Guillemot F, Brunet JF. Ascl1/Mash1 is required for the development of central serotonergic neurons. Nat Neurosci 2004; 7:589-95. [PMID: 15133515 DOI: 10.1038/nn1247] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Accepted: 04/02/2004] [Indexed: 11/08/2022]
Abstract
The transcriptional control of the differentiation of central serotonergic (5-HT) neurons in vertebrates has recently come under scrutiny and has been shown to involve the homeobox genes Nkx2-2 and Lmx1b, the Ets-domain gene Pet1 (also known as Fev) and the zinc-finger gene Gata3. The basic helix-loop-helix (bHLH) gene Ascl1 (also known as Mash1) is coexpressed with Nkx2-2 in the neuroepithelial domain of the hindbrain, which gives rise to 5-HT neurons. Here we show in the mouse that Ascl1 is essential for the birth of 5-HT neurons, both as a proneural gene for the production of postmitotic neuronal precursors and as a determinant of the serotonergic phenotype for the parallel activation of Gata3, Lmx1b and Pet1. Thus Ascl1, which is essential for noradrenergic differentiation, is also a determinant of the serotonergic phenotype.
Collapse
|
168
|
Craven SE, Lim KC, Ye W, Engel JD, de Sauvage F, Rosenthal A. Gata2 specifies serotonergic neurons downstream of sonic hedgehog. Development 2004; 131:1165-73. [PMID: 14973276 DOI: 10.1242/dev.01024] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Distinct classes of serotonergic (5-HT) neurons develop along the ventral midline of the vertebrate hindbrain. Here, we identify a Sonic hedgehog (Shh)-regulated cascade of transcription factors that acts to generate a specific subset of 5-HT neurons. This transcriptional cascade is sufficient for the induction of rostral 5-HT neurons within rhombomere 1 (r1), which project to the forebrain, but not for the induction of caudal 5-HT neurons, which largely terminate in the spinal cord. Within the rostral hindbrain, the Shh-activated homeodomain proteins Nkx2.2 and Nkx6.1 cooperate to induce the closely related zinc-finger transcription factors Gata2 and Gata3. Gata2 in turn is necessary and sufficient to activate the transcription factors Lmx1b and Pet1, and to induce 5-HT neurons within r1. In contrast to Gata2, Gata3 is not required for the specification of rostral 5-HT neurons and appears unable to substitute for the loss of Gata2. Our findings reveal that the identity of closely related 5-HT subclasses occurs through distinct responses of adjacent rostrocaudal progenitor domains to broad ventral inducers.
Collapse
Affiliation(s)
- Sarah E Craven
- Department of Molecular Biology, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA.
| | | | | | | | | | | |
Collapse
|
169
|
Gaufo GO, Wu S, Capecchi MR. Contribution of Hox genes to the diversity of the hindbrain sensory system. Development 2004; 131:1259-66. [PMID: 14960494 DOI: 10.1242/dev.01029] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The perception of environmental stimuli is mediated through a diverse group of first-order sensory relay interneurons located in stereotypic positions along the dorsoventral (DV) axis of the neural tube. These interneurons form contiguous columns along the anteroposterior (AP) axis. Like neural crest cells and motoneurons, first-order sensory relay interneurons also require specification along the AP axis. Hox genes are prime candidates for providing this information. In support of this hypothesis, we show that distinct combinations of Hox genes in rhombomeres (r) 4 and 5 of the hindbrain are required for the generation of precursors for visceral sensory interneurons. As Hoxa2 is the only Hox gene expressed in the anterior hindbrain(r2), disruption of this gene allowed us to also demonstrate that the precursors for somatic sensory interneurons are under the control of Hox genes. Surprisingly, the Hox genes examined are not required for the generation of proprioceptive sensory interneurons. Furthermore, the persistence of some normal rhombomere characteristics in Hox mutant embryos suggests that the loss of visceral and somatic sensory interneurons cannot be explained solely by changes in rhombomere identity. Hox genes may thus directly regulate the specification of distinct first-order sensory relay interneurons within individual rhombomeres. More generally, these findings contribute to our understanding of how Hox genes specifically control cellular diversity in the developing organism
Collapse
Affiliation(s)
- Gary O Gaufo
- Howard Hughes Medical Institute, Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
170
|
Murakami Y, Pasqualetti M, Takio Y, Hirano S, Rijli FM, Kuratani S. Segmental development of reticulospinal and branchiomotor neurons in lamprey: insights into the evolution of the vertebrate hindbrain. Development 2004; 131:983-95. [PMID: 14973269 DOI: 10.1242/dev.00986] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During development, the vertebrate hindbrain is subdivided along its anteroposterior axis into a series of segmental bulges called rhombomeres. These segments in turn generate a repeated pattern of rhombomere-specific neurons, including reticular and branchiomotor neurons. In amphioxus(Cephalochordata), the sister group of the vertebrates, a bona fide segmented hindbrain is lacking, although the embryonic brain vesicle shows molecular anteroposterior regionalization. Therefore, evaluation of the segmental patterning of the central nervous system of agnathan embryos is relevant to our understanding of the origin of the developmental plan of the vertebrate hindbrain. To investigate the neuronal organization of the hindbrain of the Japanese lamprey, Lethenteron japonicum, we retrogradely labeled the reticulospinal and branchial motoneurons. By combining this analysis with a study of the expression patterns of genes identifying specific rhombomeric territories such as LjKrox20, LjPax6, LjEphC and LjHox3, we found that the reticular neurons in the lamprey hindbrain, including isthmic,bulbar and Mauthner cells, develop in conserved rhombomere-specific positions,similar to those in the zebrafish. By contrast, lamprey trigeminal and facial motor nuclei are not in register with rhombomere boundaries, unlike those of gnathostomes. The trigeminal-facial boundary corresponds to the rostral border of LjHox3 expression in the middle of rhombomere 4. Exogenous application of retinoic acid (RA) induced a rostral shift of both the LjHox3 expression domain and branchiomotor nuclei with no obvious repatterning of rhombomeric segmentation and reticular neurons. Therefore,whereas subtype variations of motoneuron identity along the anteroposterior axis may rely on Hox-dependent positional values, as in gnathostomes, such variations in the lamprey are not constrained by hindbrain segmentation. We hypothesize that the registering of hindbrain segmentation and neuronal patterning may have been acquired through successive and independent stepwise patterning changes during evolution.
Collapse
Affiliation(s)
- Yasunori Murakami
- Evolutionary Morphology Research Team, Center for Developmental Biology, RIKEN, Kobe, Japan.
| | | | | | | | | | | |
Collapse
|
171
|
Dynamic expression of RGS4 in the developing nervous system and regulation by the neural type-specific transcription factor Phox2b. J Neurosci 2003. [PMID: 14627646 DOI: 10.1523/jneurosci.23-33-10613.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous studies have shown that members of the family of regulators of G-protein signaling (RGS), including RGS4, have a discrete expression pattern in the adult brain (Gold et al., 1997). Here, we describe for RGS4 a distinct, mostly transient phase of neuronal expression, during embryonic development: transcription of RGS4 occurs in a highly dynamic manner in a small set of peripheral and central neuronal precursors. This expression pattern overlaps extensively with that of the paired-like homeodomain protein Phox2b, a determinant of neuronal identity. In embryos deficient for Phox2b, RGS4 expression is downregulated in the locus coeruleus, sympathetic ganglia, and cranial motor and sensory neurons. Moreover, Phox2b cooperates with the basic helix-loop-helix protein Mash1 to transiently switch on RGS4 after ectopic expression in the chicken spinal cord. Intriguingly, we also identify a heterotrimeric G-protein alpha-subunit, gustducin, as coexpressed with RGS4 in developing facial motor neurons, also under the control of Phox2b. Altogether, these data identify components of the heterotrimeric G-protein signaling pathway as part of the type-specific program of neuronal differentiation.
Collapse
|
172
|
Abstract
Serotonergic (5-HT) neurons in the brainstem modulate a wide range of physiological processes and behaviors. Two transcription factor genes, Pet-1 and Nkx2.2, are necessary but not sufficient to specify the 5-HT transmitter phenotype. Here we show that the Lim class homeobox gene Lmx1b is required for proper formation of the entire 5-HT system in the hindbrain, as indicated by the loss of expression of genes necessary for serotonin synthesis and transport in Lmx1b null mice. Lmx1b and Pet1 act downstream of Nkx2.2, and their expression is independently regulated at the time when 5-HT transmitter phenotype is specified. Ectopic expression of Lmx1b plus Pet-1 is able to induce formation of 5-HT cells in the most ventral spinal cord, where Nkx2.2 is normally expressed. Combined expression of all three genes, Lmx1b, Pet-1, and Nkx2.2, drives 5-HT differentiation in the dorsal spinal cord. Our studies therefore define a molecular pathway necessary and sufficient to specify the serotonergic neurotransmitter phenotype.
Collapse
|
173
|
Grillet N, Dubreuil V, Dufour HD, Brunet JF. Dynamic expression of RGS4 in the developing nervous system and regulation by the neural type-specific transcription factor Phox2b. J Neurosci 2003; 23:10613-21. [PMID: 14627646 PMCID: PMC6740911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Previous studies have shown that members of the family of regulators of G-protein signaling (RGS), including RGS4, have a discrete expression pattern in the adult brain (Gold et al., 1997). Here, we describe for RGS4 a distinct, mostly transient phase of neuronal expression, during embryonic development: transcription of RGS4 occurs in a highly dynamic manner in a small set of peripheral and central neuronal precursors. This expression pattern overlaps extensively with that of the paired-like homeodomain protein Phox2b, a determinant of neuronal identity. In embryos deficient for Phox2b, RGS4 expression is downregulated in the locus coeruleus, sympathetic ganglia, and cranial motor and sensory neurons. Moreover, Phox2b cooperates with the basic helix-loop-helix protein Mash1 to transiently switch on RGS4 after ectopic expression in the chicken spinal cord. Intriguingly, we also identify a heterotrimeric G-protein alpha-subunit, gustducin, as coexpressed with RGS4 in developing facial motor neurons, also under the control of Phox2b. Altogether, these data identify components of the heterotrimeric G-protein signaling pathway as part of the type-specific program of neuronal differentiation.
Collapse
Affiliation(s)
- Nicolas Grillet
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8542, Département de Biologie, Ecole Normale Supérieure, 75005 Paris, France
| | | | | | | |
Collapse
|
174
|
Cheng L, Chen CL, Luo P, Tan M, Qiu M, Johnson R, Ma Q. Lmx1b, Pet-1, and Nkx2.2 coordinately specify serotonergic neurotransmitter phenotype. J Neurosci 2003; 23:9961-7. [PMID: 14602809 PMCID: PMC6740868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Serotonergic (5-HT) neurons in the brainstem modulate a wide range of physiological processes and behaviors. Two transcription factor genes, Pet-1 and Nkx2.2, are necessary but not sufficient to specify the 5-HT transmitter phenotype. Here we show that the Lim class homeobox gene Lmx1b is required for proper formation of the entire 5-HT system in the hindbrain, as indicated by the loss of expression of genes necessary for serotonin synthesis and transport in Lmx1b null mice. Lmx1b and Pet1 act downstream of Nkx2.2, and their expression is independently regulated at the time when 5-HT transmitter phenotype is specified. Ectopic expression of Lmx1b plus Pet-1 is able to induce formation of 5-HT cells in the most ventral spinal cord, where Nkx2.2 is normally expressed. Combined expression of all three genes, Lmx1b, Pet-1, and Nkx2.2, drives 5-HT differentiation in the dorsal spinal cord. Our studies therefore define a molecular pathway necessary and sufficient to specify the serotonergic neurotransmitter phenotype.
Collapse
Affiliation(s)
- Leping Cheng
- The Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
175
|
Gaufo GO, Thomas KR, Capecchi MR. Hox3 genes coordinate mechanisms of genetic suppression and activation in the generation of branchial and somatic motoneurons. Development 2003; 130:5191-201. [PMID: 12954718 DOI: 10.1242/dev.00730] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the developing hindbrain, the functional loss of individual Hox genes has revealed some of their roles in specifying rhombomere (r) identity. However, it is unclear how Hox genes act in concert to confer the unique identity to multiple rhombomeres. Moreover, it remains to be elucidated how these genes interact with other transcriptional programs to specify distinct neuronal lineages within each rhombomere. We demonstrate that in r5, the combined mutation of Hoxa3 and Hoxb3 result in a loss of Pax6- and Olig2-expressing progenitors that give rise to somatic motoneurons of the abducens nucleus. In r6, the absence of any combination of the Hox3 paralogous genes results in ectopic expression of the r4-specific determinant Hoxb1. This ectopic expression in turn results in the differentiation of r4-like facial branchiomotoneurons within this rhombomere. These studies reveal that members of the Hox1 and Hox3 paralogous groups participate in a 'Hox code' that is necessary for coordinating both suppression and activation mechanisms that ensure distinction between the multiple rhombomeres in the developing hindbrain.
Collapse
Affiliation(s)
- Gary O Gaufo
- Howard Hughes Medical Institute, Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
176
|
Ding YQ, Marklund U, Yuan W, Yin J, Wegman L, Ericson J, Deneris E, Johnson RL, Chen ZF. Lmx1b is essential for the development of serotonergic neurons. Nat Neurosci 2003; 6:933-8. [PMID: 12897786 DOI: 10.1038/nn1104] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Accepted: 07/01/2003] [Indexed: 11/09/2022]
Abstract
The specification and differentiation of serotonergic (5-HT) neurons require both extrinsic signaling molecules and intrinsic transcription factors to work in concert or in cascade. Here we identify the genetic cascades that control the specification and differentiation of 5-HT neurons in mice. A major determinant in the cascades is an LIM homeodomain-containing gene, Lmx1b, which is required for the development of all 5-HT neurons in the central nervous system. Our results suggest that, during development of 5-HT neurons, Lmx1b is a critical intermediate factor that couples Nkx2-2-mediated early specification with Pet1-mediated terminal differentiation. Moreover, our data indicate that genetic cascades controlling the caudal and rostral 5-HT neurons are distinct, despite their shared components.
Collapse
Affiliation(s)
- Yu-Qiang Ding
- Department of Anesthesiology, School of Medicine Pain Center, Washington University, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Pattyn A, Vallstedt A, Dias JM, Sander M, Ericson J. Complementary roles for Nkx6 and Nkx2 class proteins in the establishment of motoneuron identity in the hindbrain. Development 2003; 130:4149-59. [PMID: 12874134 DOI: 10.1242/dev.00641] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genetic program that underlies the generation of visceral motoneurons in the developing hindbrain remains poorly defined. We have examined the role of Nkx6 and Nkx2 class homeodomain proteins in this process, and provide evidence that these proteins mediate complementary roles in the specification of visceral motoneuron fate. The expression of Nkx2.2 in hindbrain progenitor cells is sufficient to mediate the activation of Phox2b, a homeodomain protein required for the generation of hindbrain visceral motoneurons. The redundant activities of Nkx6.1 and Nkx6.2, in turn, are dispensable for visceral motoneuron generation but are necessary to prevent these cells from adopting a parallel program of interneuron differentiation. The expression of Nkx6.1 and Nkx6.2 is further maintained in differentiating visceral motoneurons, and consistent with this the migration and axonal projection properties of visceral motoneurons are impaired in mice lacking Nkx6.1 and/or Nkx6.2 function. Our analysis provides insight also into the role of Nkx6 proteins in the generation of somatic motoneurons. Studies in the spinal cord have shown that Nkx6.1 and Nkx6.2 are required for the generation of somatic motoneurons, and that the loss of motoneurons at this level correlates with the extinguished expression of the motoneuron determinant Olig2. Unexpectedly, we find that the initial expression of Olig2 is left intact in the caudal hindbrain of Nkx6.1/Nkx6.2 compound mutants, and despite this, all somatic motoneurons are missing. These data argue against models in which Nkx6 proteins and Olig2 operate in a linear pathway, and instead indicate a parallel requirement for these proteins in the progression of somatic motoneuron differentiation. Thus, both visceral and somatic motoneuron differentiation appear to rely on the combined activity of cell intrinsic determinants, rather than on a single key determinant of neuronal cell fate.
Collapse
Affiliation(s)
- Alexandre Pattyn
- Department of Cell and Molecular Biology, Karolinska Institute, S-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
178
|
Tiveron MC, Pattyn A, Hirsch MR, Brunet JF. Role of Phox2b and Mash1 in the generation of the vestibular efferent nucleus. Dev Biol 2003; 260:46-57. [PMID: 12885554 DOI: 10.1016/s0012-1606(03)00213-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The inner ear (vestibular and cochlear) efferent neurons are a group of atypical motor-like hindbrain neurons which innervate inner ear hair cells and their sensory afferents. They are born in the fourth rhombomere, in close association with facial branchial motor neurons, from which they subsequently part through a specific migration route. Here, we demonstrate that the inner ear efferents depend on Phox2b for their differentiation, behaving in that respect like hindbrain visceral and branchial motor neurons. We also show that the vestibular efferent nucleus is no longer present at its usual site in mice inactivated for the bHLH transcription factor Mash 1. The concomitant appearance of an ectopic branchial-like nucleus at the location where both inner ear efferents and facial branchial motor neurons are born suggests that Mash1 is required for the migration of a subpopulation of rhombomere 4-derived efferents.
Collapse
Affiliation(s)
- M-C Tiveron
- CNRS UMR 6156, NMDA-IBDM, Case 907 Parc Scientifique de Luminy, 13288, Marseille Cedex 9, France
| | | | | | | |
Collapse
|
179
|
Wood H. Space—time continuum. Nat Rev Genet 2003. [DOI: 10.1038/nrg1073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
180
|
|