151
|
Abstract
Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5' untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling in these highly complex expression systems.
Collapse
Affiliation(s)
- J E McCarthy
- Posttranscriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), Manchester M60 1QD, United Kingdom.
| |
Collapse
|
152
|
Lorenz MC, Heitman J. Regulators of pseudohyphal differentiation in Saccharomyces cerevisiae identified through multicopy suppressor analysis in ammonium permease mutant strains. Genetics 1998; 150:1443-57. [PMID: 9832522 PMCID: PMC1460428 DOI: 10.1093/genetics/150.4.1443] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nitrogen-starved diploid cells of the yeast Saccharomyces cerevisiae differentiate into a filamentous, pseudohyphal growth form. Recognition of nitrogen starvation is mediated, at least in part, by the ammonium permease Mep2p and the Galpha subunit Gpa2p. Genetic activation of the pheromone-responsive MAP kinase cascade, which is also required for filamentous growth, only weakly suppresses the filamentation defect of Deltamep2/Deltamep2 and Deltagpa2/Deltagpa2 strain. Surprisingly, deletion of Mep1p, an ammonium permease not previously thought to regulate differentiation, significantly enhances the potency of MAP kinase activation, such that the STE11-4 allele induces filamentation to near wild-type levels in Deltamep1/Deltamep1 Deltamep2/Deltamep2 and Deltamep1/Deltamep1 Deltagpa2/Deltagpa2 strains. To identify additional regulatory components, we isolated high-copy suppressors of the filamentation defect of the Deltamep1/Deltamep1 Deltamep2/Deltamep2 mutant. Multicopy expression of TEC1, PHD1, PHD2 (MSS10/MSN1/FUP4), MSN5, CDC6, MSS11, MGA1, SKN7, DOT6, HMS1, HMS2, or MEP2 each restored filamentation in a Deltamep1/Deltamep1 Deltamep2/Deltamep2 strain. Overexpression of SRK1 (SSD1), URE2, DAL80, MEP1, or MEP3 suppressed only the growth defect of the Deltamep1/Deltamep1 Deltamep2/Deltamep2 mutant strain. Characterization of these genes through deletion analysis and epistasis underscores the complexity of this developmental pathway and suggests that stress conditions other than nitrogen deprivation may also promote filamentous growth.
Collapse
Affiliation(s)
- M C Lorenz
- Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
153
|
Daviet L, Bois F, Battisti PL, Gatignol A. Identification of limiting steps for efficient trans-activation of HIV-1 promoter by Tat in Saccharomyces cerevisiae. J Biol Chem 1998; 273:28219-28. [PMID: 9774443 DOI: 10.1074/jbc.273.43.28219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular context is an important determinant for the activity of Tat, the trans-activator of human immunodeficiency virus (HIV). We have investigated HIV-1 promoter expression and trans-activation in Saccharomyces cerevisiae to provide clues about the limiting steps for Tat activity in this organism. A minimal 43-nucleotide HIV promoter (HIV43) has the activity of a weak yeast promoter in the presence or absence of various enhancer binding sites (bs), whereas the entire long terminal repeat is not expressed. None of these constructs could be trans-activated by Tat. Fusion proteins Gal4 binding domain (BD)-Tat48 and Gal4BD-Tat72 are active with different efficiencies on various yeast promoters that have Gal4 bs. They have 70 and 50% of Gal4 wild type activity on hybrid HIV promoters fused to Gal4 bs only in the presence of AP1 bs. This study shows that trans-activation of the HIV-1 promoter by Tat occurs in yeast when Tat is targeted to the promoter and a functional enhancer activity is present. Sp1 function and Tat transfer from the RNA to the promoter are two major elements for in vivo trans-activation of HIV-1 that are defective in S. cerevisiae but can be replaced by functional equivalents.
Collapse
Affiliation(s)
- L Daviet
- Unité 332, INSERM, Institut Cochin de Génétique Moléculaire, 22, rue Méchain, 75014 Paris, France
| | | | | | | |
Collapse
|
154
|
Piper P, Mahé Y, Thompson S, Pandjaitan R, Holyoak C, Egner R, Mühlbauer M, Coote P, Kuchler K. The pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J 1998; 17:4257-65. [PMID: 9687494 PMCID: PMC1170759 DOI: 10.1093/emboj/17.15.4257] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Exposure of Saccharomyces cerevisiae to sorbic acid strongly induces two plasma membrane proteins, one of which is identified in this study as the ATP-binding cassette (ABC) transporter Pdr12. In the absence of weak acid stress, yeast cells grown at pH 7.0 express extremely low Pdr12 levels. However, sorbate treatment causes a dramatic induction of Pdr12 in the plasma membrane. Pdr12 is essential for the adaptation of yeast to growth under weak acid stress, since Deltapdr12 mutants are hypersensitive at low pH to the food preservatives sorbic, benzoic and propionic acids, as well as high acetate levels. Moreover, active benzoate efflux is severely impaired in Deltapdr12 cells. Hence, Pdr12 confers weak acid resistance by mediating energy-dependent extrusion of water-soluble carboxylate anions. The normal physiological function of Pdr12 is perhaps to protect against the potential toxicity of weak organic acids secreted by competitor organisms, acids that will accumulate to inhibitory levels in cells at low pH. This is the first demonstration that regulated expression of a eukaryotic ABC transporter mediates weak organic acid resistance development, the cause of widespread food spoilage by yeasts. The data also have important biotechnological implications, as they suggest that the inhibition of this transporter could be a strategy for preventing food spoilage.
Collapse
Affiliation(s)
- P Piper
- Department of Molecular Genetics, University and Biocenter of Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Abstract
Eukaryotic cells have developed response mechanisms to combat the harmful effects of a variety of stress conditions. In the majority of cases, such responses involve changes in the gene expression pattern of the cell, leading to increased levels and activities of proteins that have stress-protective functions. Over the last few years, considerable progress has been made in understanding how stress-dependent transcriptional changes are brought about, and it transpires that the underlying mechanisms are highly conserved, being similar in organisms ranging from yeast to man. Many of the stress signals derive from the extracellular environment and accordingly these signals require transduction from the cell surface to the nucleus. This is accomplished through stress-activated signalling pathways, key amongst which are the highly conserved stress-activated MAP kinase pathways. Stimulation of these pathways leads to the increased activity of specific transcription factors and consequently the increased expression of certain stress-related genes. In this review, we focus on the progress that has been made in understanding these stress responses in yeast.
Collapse
Affiliation(s)
- W M Toone
- Imperial Cancer Research Fund, PO Box 123, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | |
Collapse
|
156
|
Kuge S, Toda T, Iizuka N, Nomoto A. Crm1 (XpoI) dependent nuclear export of the budding yeast transcription factor yAP-1 is sensitive to oxidative stress. Genes Cells 1998; 3:521-32. [PMID: 9797454 DOI: 10.1046/j.1365-2443.1998.00209.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The yAP-1 transcription factor is crucial for the oxidative stress response of the budding yeast Saccharomyces cerevisiae; its activity is induced in response to oxidative stress, and as a consequence the expression of a number of target genes is enhanced. We have shown previously that yAP-1 is mainly found in the cytoplasm, but that upon the imposition of oxidative stress it localizes to the nucleus. In this study, we addressed the mechanism through which yAP-1 nuclear localization is regulated. RESULTS Here we show that yAP-1 localization is mediated by active export from the nucleus, resulting from the activity of Crm1 (XpoI), a conserved protein that functions as an export receptor which recognizes the nuclear export signal (NES). When Crm1 expression was repressed, yAP-1 was localized in the nucleus and induced the expression of a yAP-1 dependent target gene. Our results also suggest that the cysteine rich domain (CRD), at the C-terminus of yAP-1, functions as an export recognition sequence. yAP-1 and Crm1 interact in vivo and this interaction is reduced in response to oxidative stress. CONCLUSIONS These results suggest a novel regulatory mechanism of nucleocytoplasmic transport which is dependent upon a redox sensitive nuclear export pathway.
Collapse
Affiliation(s)
- S Kuge
- Department of Microbiology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | |
Collapse
|
157
|
Albrecht G, Mösch HU, Hoffmann B, Reusser U, Braus GH. Monitoring the Gcn4 protein-mediated response in the yeast Saccharomyces cerevisiae. J Biol Chem 1998; 273:12696-702. [PMID: 9582292 DOI: 10.1074/jbc.273.21.12696] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae the GCN4 gene encodes the transcriptional activator of the "general control" system of amino acid bioynthesis, a network of at least 12 different biosynthetic pathways. We characterized the consequences of the general control response upon the signal "amino acid starvation" induced by the histidine analogue 3-aminotriazole with respect to Gcn4p levels in more detail. Therefore, we established test systems to monitor the time course of different parameters, including GCN4 mRNA, Gcn4 protein, Gcn4p DNA binding activity, as well as Gcn4p transactivation ability. We observed a biphasic response of Gcn4p activity in the cell. At first, translation of GCN4 mRNA is induced within 20 min after switch to starvation conditions. However, an additional increase in GCN4 transcript steady state level was observed, leading to an additional second phase of GCN4 expression after 3-4 h of starvation. The DNA binding activity of Gcn4p, as well as the ability to activate transcription of target genes, correlate with the amount of Gcn4 protein in the cell, suggesting that under the tested conditions there is no additional regulation of DNA binding or transactivation ability of Gcn4p, respectively.
Collapse
Affiliation(s)
- G Albrecht
- Institut für Mikrobiologie und Genetik, Abteilung für Molekulare Mikrobiologie, Georg-August-Universität, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
158
|
Flattery-O'Brien JA, Dawes IW. Hydrogen peroxide causes RAD9-dependent cell cycle arrest in G2 in Saccharomyces cerevisiae whereas menadione causes G1 arrest independent of RAD9 function. J Biol Chem 1998; 273:8564-71. [PMID: 9535829 DOI: 10.1074/jbc.273.15.8564] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study shows differences at the level of cell cycle arrest between the response of yeast cells to hydrogen peroxide and superoxide stress. These include both cell cycle phases at which arrest occurs and the involvement of the RAD9 checkpoint gene. Wild-type and rad9 cells were treated with hydrogen peroxide or the superoxide-generating agent menadione. rad9 mutants were up to 100-fold more sensitive to hydrogen peroxide but not affected in their resistance to menadione. Hydrogen peroxide caused G2-phase arrest, whereas menadione-treated cells arrested in G1. G2 arrest, induced by methyl 2-benzimidazil carbamate, increased cellular resistance to hydrogen peroxide but not to menadione. G1 arrest mediated by alpha-factor caused an increase in survival of wild-type cells treated with menadione but not with hydrogen peroxide. A cdc28 mutant arrested in G1 was significantly more sensitive to hydrogen peroxide than other cdc mutants arrested in later phases, including G2. rad9 cells have normal stationary phase resistance to hydrogen peroxide, the ability to adapt to it, glutathione content and induction of genes via the stress responsive element. Although rad9-dependent G2 arrest is important, other rad9-dependent factors may be involved in the resistance of cells to hydrogen peroxide since arrest in G2 did not make rad9 cells fully resistant.
Collapse
Affiliation(s)
- J A Flattery-O'Brien
- School of Biochemistry & Molecular Genetics, Cooperative Research Centre for Food Industry Innovation, University of New South Wales, Sydney NSW 2052, Australia
| | | |
Collapse
|
159
|
Brys R, Nelles L, van der Schueren E, Silvestre N, Huylebroeck D, Remacle JE. Identical cis-acting elements and related trans-acting factors control activity of nonviral promoter in Schizosaccharomyces pombe and mammalian cells. DNA Cell Biol 1998; 17:349-58. [PMID: 9570152 DOI: 10.1089/dna.1998.17.349] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have analyzed the transcriptional activity of the human plasminogen activator inhibitor-1 promoter in the fission yeast Schizosaccharomyces pombe. This promoter is active in S. pombe, and the initiation site of transcription corresponds to the site identified previously in mammalian cells. Mutations in the AP-1-binding site (PAI-1 A box) or the HLTF-binding site (the B box), which reduced the basal and phorbol ester-induced levels of PAI-1 expression in human cells, also decreased the transcriptional activity in S. pombe. Gel retardation assays showed that an S. pombe protein binds specifically to this B box element and displays the same B box sequence requirement as HLTF. Furthermore, this yeast protein binds specifically to other HLTF-binding sites in the human immunodeficiency virus-1 long terminal repeat (LTR) and the simian virus 40 (SV40) enhancer. The B box (but not a mutated B box) strongly stimulated transcription when combined with adh downstream promoter elements, indicating that the S. pombe B box-binding protein, like HLTF, is a transcriptional activator. We conclude that the transcriptional activity of the nonviral PAI-1 promoter is controlled by the same promoter elements in S. pombe as in mammalian cells. In addition, mammalian trans-acting factors that bind to these promoter elements were shown to have counterparts with conserved DNA-binding activity in S. pombe. These results further illustrate the conservation of the mechanism of transcription between mammalian cells and fission yeast.
Collapse
Affiliation(s)
- R Brys
- Laboratory of Molecular Biology (CELGEN), University of Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
160
|
Hallstrom TC, Katzmann DJ, Torres RJ, Sharp WJ, Moye-Rowley WS. Regulation of transcription factor Pdr1p function by an Hsp70 protein in Saccharomyces cerevisiae. Mol Cell Biol 1998; 18:1147-55. [PMID: 9488429 PMCID: PMC108827 DOI: 10.1128/mcb.18.3.1147] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/1997] [Accepted: 12/02/1997] [Indexed: 02/06/2023] Open
Abstract
Multiple or pleiotropic drug resistance in the yeast Saccharomyces cerevisiae requires the expression of several ATP binding cassette transporter-encoding genes under the control of the zinc finger-containing transcription factor Pdrlp. The ATP binding cassette transporter-encoding genes regulated by Pdrlp include PDR5 and YOR1, which are required for normal cycloheximide and oligomycin tolerances, respectively. We have isolated a new member of the PDR gene family that encodes a member of the Hsp70 family of proteins found in this organism. This gene has been designated PDR13 and is required for normal growth. Overexpression of Pdr13p leads to an increase in both the expression of PDR5 and YOR1 and a corresponding enhancement in drug resistance. Pdr13p requires the presence of both the PDR1 structural gene and the Pdr1p binding sites in target promoters to mediate its effect on drug resistance and gene expression. A dominant, gain-of-function mutant allele of PDR13 was isolated and shown to have the same phenotypic effects as when the gene is present on a 2microm plasmid. Genetic and Western blotting experiments indicated that Pdr13p exerts its effect on Pdr1p at a posttranslational step. These data support the view that Pdr13p influences pleiotropic drug resistance by enhancing the function of the transcriptional regulatory protein Pdr1p.
Collapse
Affiliation(s)
- T C Hallstrom
- Department of Physiology, University of Iowa, Iowa City 52242, USA
| | | | | | | | | |
Collapse
|
161
|
Affiliation(s)
- M S Sachs
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland 97291-1000, USA.
| |
Collapse
|
162
|
Vilela C, Linz B, Rodrigues-Pousada C, McCarthy JE. The yeast transcription factor genes YAP1 and YAP2 are subject to differential control at the levels of both translation and mRNA stability. Nucleic Acids Res 1998; 26:1150-9. [PMID: 9469820 PMCID: PMC147385 DOI: 10.1093/nar/26.5.1150] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Two forms of post-transcriptional control direct differential expression of the Saccharomyces cerevisiae genes encoding the AP1-like transcription factors Yap1p and Yap2p. The mRNAs of these genes contain respectively one (YAP1 uORF) and two (YAP2 uORF1 and uORF2) upstream open reading frames. uORF-mediated modulation of post-termination events on the 5'-untranslated region (5'-UTR) directs differential control not only of translation but also of mRNA decay. Translational control is defined by two types of uORF function. The YAP1 -type uORF allows scanning 40S subunits to proceed via leaky scanning and re-initiation to the major ORF, whereas the YAP2 -type acts to block ribosomal scanning by promoting efficient termination. At the same time, the YAP2 uORFs define a new type of mRNA destabilizing element. Both post-termination ribosome scanning behaviour and mRNA decay are influenced by the coding sequence and mRNA context of the respective uORFs, including downstream elements. Our data indicate that release of post-termination ribosomes promotes largely upf -independent accelerated decay. It follows that translational termination on the 5'-UTR of a mature, non-aberrant yeast mRNA can trigger destabilization via a different pathway to that used to rid the cell of mRNAs containing premature stop codons. This route of control of non-aberrant mRNA decay influences the stress response in yeast. It is also potentially relevant to expression of the sizable number of eukaryotic mRNAs that are now recognized to contain uORFs.
Collapse
Affiliation(s)
- C Vilela
- Posttranscriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), PO Box 88, Manchester M60 1QD, UK
| | | | | | | |
Collapse
|
163
|
Hallstrom TC, Moye-Rowley WS. Divergent transcriptional control of multidrug resistance genes in Saccharomyces cerevisiae. J Biol Chem 1998; 273:2098-104. [PMID: 9442049 DOI: 10.1074/jbc.273.4.2098] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Improper control of expression of ATP binding cassette transporter-encoding genes is an important contributor to acquisition of multidrug resistance in human tumor cells. In this study, we have analyzed the function of the promoter region of the Saccharomyces cerevisiae YOR1 gene, which encodes an ATP binding cassette transporter protein that is required for multidrug tolerance in S. cerevisiae. Deletion analysis of a YOR1-lacZ fusion gene defines three important transcriptional regulatory elements. Two of these elements serve to positively regulate expression of YOR1, and the third element is a negative regulatory site. One positive element corresponds to a Pdr1p/Pdr3p response element, a site required for transcriptional control by the homologous zinc finger transcription factors Pdr1p and Pdr3p in other promoters. The second positive element is located between nucleotides -535 and -299 and is referred to as UASYOR1 (where UAS is upstream activation sequence). Interestingly, function of UASYOR1 is inhibited by the downstream negative regulatory site. Promoter fusions constructed between UASYOR1 and the PDR5 promoter, another gene under Pdr1p/Pdr3p control, are active, whereas analogous promoter fusions constructed with the CYC1 promoter are not. This suggests the possibility that UASYOR1 has promoter-specific sequence requirements that are satisfied by another Pdr1p/Pdr3p-regulated gene but not by a heterologous promoter.
Collapse
Affiliation(s)
- T C Hallstrom
- Molecular Biology Program, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
164
|
Wolfger H, Mahé Y, Parle-McDermott A, Delahodde A, Kuchler K. The yeast ATP binding cassette (ABC) protein genes PDR10 and PDR15 are novel targets for the Pdr1 and Pdr3 transcriptional regulators. FEBS Lett 1997; 418:269-74. [PMID: 9428726 DOI: 10.1016/s0014-5793(97)01382-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The yeast transcription factors Pdr1 and Pdr3 control pleiotropic drug resistance (PDR) development, since they regulate expression of ATP-binding cassette (ABC) drug efflux pumps through binding to cis-acting sites known as PDREs (PDR responsive elements). In this report, we show by Northern blotting, gel shift mobility assays and DNase I footprinting that transcription of the ABC genes PDR10 and PDR15 is also controlled by Pdr1 and Pdr3. In addition, in vitro band shift assays demonstrate that a GST-Pdr1 fusion protein can bind to the PDREs of PDR10 and PDR15. DNase I footprinting allowed the identification of the precise PDRE binding motifs, indicating the presence of a novel slightly degenerate PDRE motif in the PDR15 promoter. Finally, PDR10 and PDR15 mRNA levels vary dramatically in abundance in isogenic yeast strains carrying either deltapdr1, deltapdr3 and deltapdr1 deltapdr3 deletions or pdr1-3 and pdr3-2 gain-of-function mutations, demonstrating that both PDR10 and PDR15 are new members of the yeast PDR network.
Collapse
Affiliation(s)
- H Wolfger
- Department of Molecular Genetics, University and Biocenter of Vienna, Austria
| | | | | | | | | |
Collapse
|
165
|
Fernandes L, Rodrigues-Pousada C, Struhl K. Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol Cell Biol 1997; 17:6982-93. [PMID: 9372930 PMCID: PMC232555 DOI: 10.1128/mcb.17.12.6982] [Citation(s) in RCA: 239] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Saccharomyces cerevisiae contains eight members of a novel and fungus-specific family of bZIP proteins that is defined by four atypical residues on the DNA-binding surface. Two of these proteins, Yap1 and Yap2, are transcriptional activators involved in pleiotropic drug resistance. Although initially described as AP-1 factors, at least four Yap proteins bind most efficiently to TTACTAA, a sequence that differs at position +/-2 from the optimal AP-1 site (TGACTCA); further, a Yap-like derivative of the AP-1 factor Gcn4 (A239Q S242F) binds efficiently to the Yap recognition sequence. Molecular modeling suggests that the Yap-specific residues make novel contacts and cause physical constraints at the +/-2 position that may account for the distinct DNA-binding specificities of Yap and AP-1 proteins. To various extents, Yap1, Yap2, Yap3, and Yap5 activate transcription from a promoter containing a Yap recognition site. Yap-dependent transcription is abolished in strains containing high levels of protein kinase A; in contrast, Gcn4 transcriptional activity is stimulated by protein kinase A. Interestingly, Yap1 transcriptional activity is stimulated by hydrogen peroxide, whereas Yap2 activity is stimulated by aminotriazole and cadmium. In addition, unlike other yap mutations tested, yap4 (cin5) mutations affect chromosome stability, and they suppress the cold-sensitive phenotype of yap1 mutant strains. Thus, members of the Yap family carry out overlapping but distinct biological functions.
Collapse
Affiliation(s)
- L Fernandes
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
166
|
Takeuchi T, Miyahara K, Hirata D, Miyakawa T. Mutational analysis of Yap1 protein, an AP-1-like transcriptional activator of Saccharomyces cerevisiae. FEBS Lett 1997; 416:339-43. [PMID: 9373181 DOI: 10.1016/s0014-5793(97)01233-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To define the essential amino acid residues of Yap1 in stress response, we generated yap1 mutations by in vitro mutagenesis, which cause defects in mediating resistance to the stress of H2O2, but not of CdCl2. Sequence analysis of the mutant yap1 genes revealed three point mutations and two truncation mutations near the carboxy-terminus. The truncation mutations resulted in hyperresistance to cadmium. Northern blot analysis of stress-induced levels of TRX2 and GSH1 mRNAs indicated that the ability of the mutant Yap1 protein to induce transcriptional activation of target genes correlates well with its ability to confer stress resistance. The carboxy-terminal domain of Yap1 appears to act negatively in cadmium resistance.
Collapse
Affiliation(s)
- T Takeuchi
- Department of Molecular Biotechnology, Faculty of Engineering, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | |
Collapse
|
167
|
Wendler F, Bergler H, Prutej K, Jungwirth H, Zisser G, Kuchler K, Högenauer G. Diazaborine resistance in the yeast Saccharomyces cerevisiae reveals a link between YAP1 and the pleiotropic drug resistance genes PDR1 and PDR3. J Biol Chem 1997; 272:27091-8. [PMID: 9341149 DOI: 10.1074/jbc.272.43.27091] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have investigated the mechanisms underlying resistance to the drug diazaborine in Saccharomyces cerevisiae. We used UV mutagenesis to generate resistant mutants, which were divided into three different complementation groups. The resistant phenotype in these groups was found to be caused by allelic forms of the genes AFG2, PDR1, and PDR3. The AFG2 gene encodes an AAA (ATPases associated to a variety of cellular activities) protein of unknown function, while PDR1 and PDR3 encode two transcriptional regulatory proteins involved in pleiotropic drug resistance development. The isolated PDR1-12 and PDR3-33 alleles carry mutations that lead to a L1044Q and a Y276H exchange, respectively. In addition, we report that overexpression of Yap1p, the yeast homologue of the transcription factor AP1, results in a diazaborine-resistant phenotype. The YAP1-mediated diazaborine resistance is dependent on the presence of functional PDR1 and PDR3 genes, although PDR3 had a more pronounced effect. These results provide the first evidence for a functional link between the Yap1p-dependent stress response pathway and Pdr1p/Pdr3p-dependent development of pleiotropic drug resistance.
Collapse
Affiliation(s)
- F Wendler
- Institut für Mikrobiologie, Karl-Franzens-Universität, A-8010, Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
168
|
Kolaczkowski M, Goffeau A. Active efflux by multidrug transporters as one of the strategies to evade chemotherapy and novel practical implications of yeast pleiotropic drug resistance. Pharmacol Ther 1997; 76:219-42. [PMID: 9535181 DOI: 10.1016/s0163-7258(97)00094-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mankind is faced by the increasing emergence of resistant pathogens, including cancer cells. An overview of the different strategies adopted by a variety of cells to evade chemotherapy is presented, with a focus on the mechanisms of multidrug transport. In particular, we analyze the yeast network for pleiotropic drug resistance and assess the potentiality of this system for further understanding of the mechanism of broad specificity and for development of novel practical applications.
Collapse
Affiliation(s)
- M Kolaczkowski
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Louvain La Neuve, Belgium
| | | |
Collapse
|
169
|
Coleman ST, Tseng E, Moye-Rowley WS. Saccharomyces cerevisiae basic region-leucine zipper protein regulatory networks converge at the ATR1 structural gene. J Biol Chem 1997; 272:23224-30. [PMID: 9287330 DOI: 10.1074/jbc.272.37.23224] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Saccharomyces cerevisiae cells express a family of transcription factors belonging to the basic region-leucine zipper family. Two of these proteins, yAP-1 and Gcn4p, are known to be involved in oxidative stress tolerance and general control of amino acid biosynthesis, respectively. Strains lacking the YAP1 or GCN4 structural gene have very different phenotypes, which have been taken as evidence that these transcriptional regulatory proteins control separate batteries of target genes. In this study, we provide evidence that both yAP-1 and Gcn4p control the expression of a putative integral membrane protein, Atr1p. Both yAP-1 and Gcn4p can elevate resistance to 3-amino-1,2,4-triazole and 4-nitroquinoline-N-oxide but only if the ATR1 gene is intact. Expression of ATR1 is enhanced in the presence of constitutively active alleles of YAP1 and GCN4. Regulation of ATR1 transcription by yAP-1 and Gcn4p occurs through a common DNA element related to the yAP-1 recognition element found upstream of other yAP-1-regulated genes. These data provide the first indication of overlap between the regulatory networks defined by yAP-1 and Gcn4p.
Collapse
Affiliation(s)
- S T Coleman
- Department of Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
170
|
Lee J, Dawes IW, Roe JH. Isolation, expression, and regulation of the pgr1(+) gene encoding glutathione reductase absolutely required for the growth of Schizosaccharomyces pombe. J Biol Chem 1997; 272:23042-9. [PMID: 9287302 DOI: 10.1074/jbc.272.37.23042] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The pgr1(+) gene encoding glutathione reductase (GR, EC 1.6.4.2) was isolated from Schizosaccharomyces pombe using a polymerase chain reaction fragment as a probe. The gene consists of two exons and an intron of 55 nucleotides, encoding a polypeptide of 465 amino acids (50,238 Da) with conserved residues characteristic of GR. The transcriptional start site was localized at 239 nucleotides upstream from the ATG initiation codon. The level of transcript as well as the GR enzyme activity increased more than 11-fold when the cloned pgr1(+) gene was expressed on a multicopy plasmid. This overexpression conferred on S. pombe cells more resistance against menadione, a redox cycling agent, but not against H2O2. The level of pgr1(+) transcripts increased by treatment with oxidants such as menadione, cumene hydroperoxide, and diamide. It also increased by treatment with high osmolarity, heat shock, or at the stationary growth phase. The deletion of the pap1(+) gene encoding an AP-1 homolog in S. pombe caused reduction in the pgr1(+) gene expression. Furthermore, Deltapap1 cells lost the inducibility of pgr1(+) gene expression by the above stresses, implying that Pap1 is involved in general stress-inducible gene expression. When the pgr1(+) gene was disrupted, the haploid spores were not viable. Repression of nmt1 promoter-driven pgr1(+) expression by thiamine caused cessation of growth, which was rescued by the episomal pgr1(+) gene. These results indicate that GR activity, which efficiently reduces GSSG, is essentially required for the growth of S. pombe, unlike in Saccharomyces cerevisiae or Escherichia coli.
Collapse
Affiliation(s)
- J Lee
- Department of Microbiology, College of Natural Sciences, and Research Center for Molecular Microbiology, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
171
|
Alarco AM, Balan I, Talibi D, Mainville N, Raymond M. AP1-mediated multidrug resistance in Saccharomyces cerevisiae requires FLR1 encoding a transporter of the major facilitator superfamily. J Biol Chem 1997; 272:19304-13. [PMID: 9235926 DOI: 10.1074/jbc.272.31.19304] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have isolated a Candida albicans gene that confers resistance to the azole derivative fluconazole (FCZ) when overexpressed in Saccharomyces cerevisiae. This gene encodes a protein highly homologous to S. cerevisiae yAP-1, a bZip transcription factor known to mediate cellular resistance to toxicants such as cycloheximide (CYH), 4-nitroquinoline N-oxide (4-NQO), cadmium, and hydrogen peroxide. The gene was named CAP1, for C. albicans AP-1. Cap1 and yAP-1 are functional homologues, since CAP1 expression in a yap1 mutant strain partially restores the ability of the cells to grow on toxic concentrations of cadmium or hydrogen peroxide. We have found that the expression of YBR008c, an open reading frame identified in the yeast genome sequencing project and predicted to code for a multidrug transporter of the major facilitator superfamily, is dramatically induced in S. cerevisiae cells overexpressing CAP1. Overexpression of either CAP1 or YAP1 in a wild-type strain results in resistance to FCZ, CYH, and 4-NQO, whereas such resistance is completely abrogated (FCZ and CYH) or strongly reduced (4-NQO) in a ybr008c deletion mutant, demonstrating that YBR008c is involved in YAP1- and CAP1-mediated multidrug resistance. YBR008c has been renamed FLR1, for fluconazole resistance 1. The expression of an FLR1-lacZ reporter construct is strongly induced by the overexpression of either CAP1 or YAP1, indicating that the FLR1 gene is transcriptionally regulated by the Cap1 and yAP-1 proteins. Taken collectively, our results demonstrate that FLR1 represents a new YAP1-controlled multidrug resistance molecular determinant in S. cerevisiae. A similar detoxification pathway is also likely to operate in C. albicans.
Collapse
Affiliation(s)
- A M Alarco
- Institut de recherches cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | | | | | | | | |
Collapse
|
172
|
Linz B, Koloteva N, Vasilescu S, McCarthy JE. Disruption of ribosomal scanning on the 5'-untranslated region, and not restriction of translational initiation per se, modulates the stability of nonaberrant mRNAs in the yeast Saccharomyces cerevisiae. J Biol Chem 1997; 272:9131-40. [PMID: 9083042 DOI: 10.1074/jbc.272.14.9131] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Translation and mRNA decay constitute key players in the post-transcriptional control of gene expression. We examine the mechanisms by which the 5'-untranslated region (UTR) of nonaberrant mRNAs acts to modulate both these processes in Saccharomyces cerevisiae. Two classes of functional relationship between ribosome-5'-UTR interactions and mRNA decay are identifiable. In the first of these, elements in the main open reading frame (ORF) dictate how the decay process reacts to inhibitory structures in the 5'-UTR. The same types of stability modulation can be elicited by trans-regulation of translation via inducible binding of the iron-regulatory protein to an iron-responsive element located 9 nucleotides from the 5' cap. A eukaryotic translational repressor can therefore modulate mRNA decay via the 5'-UTR. In contrast, translational regulation mediated via changes in the activity of the cap-binding eukaryotic translation initiation factor eIF-4E bypasses translation-dependent pathways of mRNA degradation. Thus modulation of mRNA stability via the 5'-UTR depends on disruption of the scanning process, rather than changes in translational initiation efficiency per se. In the second class of pathway, an upstream ORF (uORF) functions as a powerful destabilizing element, inducing termination-dependent degradation that is apparently independent of any main ORF determinants but influenced by the efficiencies of ribosomal recognition of the uORF start and stop codons. This latter mechanism provides a regulatable means to modulate the stability of nonaberrant mRNAs via a UPF-dependent pathway.
Collapse
Affiliation(s)
- B Linz
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester M60 1QD, United Kingdom
| | | | | | | |
Collapse
|
173
|
Kuge S, Jones N, Nomoto A. Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J 1997; 16:1710-20. [PMID: 9130715 PMCID: PMC1169774 DOI: 10.1093/emboj/16.7.1710] [Citation(s) in RCA: 339] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The YAP1 gene of Saccharomyces cerevisiae encodes a bZIP-containing transcription factor that is essential for the normal response of cells to oxidative stress. Under stress conditions, the activity of yAP-1 is increased, leading to the induced expression of a number of target genes encoding protective enzymes or molecules. We have examined the mechanism of this activation. Upon imposition of oxidative stress, a small increase in the DNA-binding capacity of yAP-1 occurs. However, the major change is at the level of nuclear localization; upon induction the yAP-1 protein relocalizes from the cytoplasm to the nucleus. This regulated localization is mediated by a cysteine-rich domain (CRD) at the C-terminus, its removal resulting in constitutive nuclear localization and high level activity. Furthermore, the CRD of yAP-1 is sufficient to impose regulated nuclear localization of the GAL4 DNA-binding domain. Amino acid substitutions indicated that three conserved cysteine residues in the CRD are essential for the regulation. We suggest therefore, that these cysteine residues are important in sensing the redox state of the cell and hence regulating yAP-1 activity.
Collapse
Affiliation(s)
- S Kuge
- Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | | | | |
Collapse
|
174
|
Wemmie JA, Steggerda SM, Moye-Rowley WS. The Saccharomyces cerevisiae AP-1 protein discriminates between oxidative stress elicited by the oxidants H2O2 and diamide. J Biol Chem 1997; 272:7908-14. [PMID: 9065458 DOI: 10.1074/jbc.272.12.7908] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Saccharomyces cerevisiae AP-1 protein (yAP-1) is a key mediator of oxidative stress tolerance. Transcriptional activation by yAP-1 has been shown to be inducible by exposure of cells to H2O2 and diamide, among other oxidative stress eliciting compounds. Here we define the segments of the yAP-1 protein that are required to respond to this environmental challenge. Western blotting analyses indicated that levels of yAP-1 do not change during oxidative stress. Deletion mutagenesis and gene fusion experiments indicate that two different segments of yAP-1 are required for oxidative stress inducibility. These two domains function differentially depending on the type of oxidant used to generate oxidative stress. Three repeated cysteine-serine-glutamate sequences located in the carboxyl terminus are required for normal regulation of yAP-1 function during oxidative stress. Replacement of these cysteine-serine-glutamate repeats by alanine residues does not similarly affect H2O2 and diamide regulation of yAP-1 function. While yAP-1 transactivation is enhanced by exposure to either H2O2 or diamide, the protein responds to the oxidative stress produced by these compounds in nonidentical ways.
Collapse
Affiliation(s)
- J A Wemmie
- Department of Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
175
|
Miyahara K, Mizunuma M, Hirata D, Tsuchiya E, Miyakawa T. The involvement of the Saccharomyces cerevisiae multidrug resistance transporters Pdr5p and Snq2p in cation resistance. FEBS Lett 1996; 399:317-20. [PMID: 8985171 DOI: 10.1016/s0014-5793(96)01353-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The ATP-binding cassette superfamily proteins Pdr5p and Snq2p of Saccharomyces cerevisiae are implicated in multidrug resistance. Here, we show that these transporters are also involved in cation resistance. Null mutants of PDR5 and SNQ2 genes exhibit increased sensitivity to NaCl, LiCl and MnCl2. The mutant cells grown in the presence of high concentrations of these metal salts contain higher levels of the metals than wild-type cells. The expression of PDR5 and SNQ2 is induced by the metal salts. These results provide evidence that the yeast drug transporters contribute to cation resistance by regulating cellular cation homeostasis under ionic stress conditions.
Collapse
Affiliation(s)
- K Miyahara
- Department of Fermentation Technology, Faculty of Engineering, Hiroshima University, Japan
| | | | | | | | | |
Collapse
|
176
|
Springer C, Künzler M, Balmelli T, Braus GH. Amino acid and adenine cross-pathway regulation act through the same 5'-TGACTC-3' motif in the yeast HIS7 promoter. J Biol Chem 1996; 271:29637-43. [PMID: 8939895 DOI: 10.1074/jbc.271.47.29637] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The HIS7 gene of Saccharomyces cerevisiae encodes a bifunctional glutamine amidotransferase:cyclase catalyzing two reactions that lead to the formation of biosynthetic intermediates of the amino acid histidine and the purine adenine. The HIS7 gene is activated by GCN4p under environmental conditions of amino acid starvation through two synergistic upstream sites GCRE1 and GCRE2. The BAS1p-BAS2p complex activates the HIS7 gene in response to adenine limitation. For this activation the proximal GCN4p-binding site GCRE2 is required. GCN4p and BAS1p bind to GCRE2 in vitro. Under conditions of simultaneous amino acid starvation and adenine limitation the effects of GCN4p and BAS1/2p are additive and both factors are necessary for maximal HIS7 transcription. These results suggest that GCN4p and BAS1/2p are able to act simultaneously through the same DNA sequence in vivo and use this site independently from each other in a non-exclusive manner.
Collapse
Affiliation(s)
- C Springer
- Institute of Microbiology, Biochemistry & Genetics, Friedrich-Alexander-University, Staudtstrasse 5, D-91058 Erlangen, Germany.
| | | | | | | |
Collapse
|
177
|
Muller EG. A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth. Mol Biol Cell 1996; 7:1805-13. [PMID: 8930901 PMCID: PMC276027 DOI: 10.1091/mbc.7.11.1805] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A glutathione reductase null mutant of Saccharomyces cerevisiae was isolated in a synthetic lethal genetic screen for mutations which confer a requirement for thioredoxin. Yeast mutants that lack glutathione reductase (glr1 delta) accumulate high levels of oxidized glutathione and have a twofold increase in total glutathione. The disulfide form of glutathione increases 200-fold and represents 63% of the total glutathione in a glr1 delta mutant compared with only 6% in wild type. High levels of oxidized glutathione are also observed in a trx1 delta, trx2 delta double mutant (22% of total), in a glr1 delta, trx1 delta double mutant (71% of total), and in a glr1 delta, trx2 delta double mutant (69% of total). Despite the exceptionally high ratio of oxidized/reduced glutathione, the glr1 delta mutant grows with a normal cell cycle. However, either one of the two thioredoxins is essential for growth. Cells lacking both thioredoxins and glutathione reductase are not viable under aerobic conditions and grow poorly anaerobically. In addition, the glr1 delta mutant shows increased sensitivity to the thiol oxidant diamide. The sensitivity to diamide was suppressed by deletion of the TRX2 gene. The genetic analysis of thioredoxin and glutathione reductase in yeast runs counter to previous studies in Escherichia coli and for the first time links thioredoxin with the redox state of glutathione in vivo.
Collapse
Affiliation(s)
- E G Muller
- Department of Biochemistry, University of Washington, Seattle 98195-7350, USA
| |
Collapse
|
178
|
Lee J, Romeo A, Kosman DJ. Transcriptional remodeling and G1 arrest in dioxygen stress in Saccharomyces cerevisiae. J Biol Chem 1996; 271:24885-93. [PMID: 8798765 DOI: 10.1074/jbc.271.40.24885] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Saccharomyces cerevisiae, which lack a functional SOD1 gene, encoding the cytosolic Cu,Zn-superoxide dismutase (SOD1), exhibit a variety of metabolic defects in aerobic but not in anaerobic growth. We test here the hypothesis that some of these defects may be due to specific transcriptional changes programmed for cell survival under dioxygen stress. Analysis of the budding pattern and generation time showed that the slower proliferation of an sod1Delta mutant strain under air was due to an increase from 42 to 89 min spent in the G1 phase of the cell cycle. This delay in G1 was not due to an overall decline in biosynthetic activity since total protein and mRNA synthesis was not reduced even under 100% O2. However, rRNA synthesis was strongly decreased, e.g. by 80% in the mutant under 100% O2 (in comparison to N2). Under these conditions, the mutant permanently arrested in G1; this arrest was due to an inhibition of the Start function that prepares yeast for S phase. This Start arrest was due to an inhibition of transcription of the autoregulated G1 cyclins, CLN1 and CLN2; the transcription of the constitutive G1 cyclin, CLN3, was unaffected by the stress. Expression of a hyperstable Cln3 prevented the G1 arrest, indicating that it was due solely to the inhibition of cell cycle-dependent cyclin expression. This remodeling of transcription in oxidative stress was seen also in the inhibition of glucose derepression of SUC2 expression. In contrast, the signaling and activation of mating pheromone (FUS1) and copper-responsive (CUP1) promoter activity were not affected by dioxygen stress, while genes encoding other anti-oxidant enzymes (SOD2, CTT1 and CTA1) were strongly induced. The UBI loci, encoding ubiquitin, were particularly good examples of this pattern of negative and positive transcriptional response to the stress. UBI1-UBI3 expression was repressed in the mutant under 100% O2, while expression of UBI4 was strongly induced. The data demonstrate that extensive remodeling of transcription occurs in yeast under a strong dioxygen stress. This remodeling results in a pattern of expression of gene products needed for defense and repair, and suppression of activities associated with normal proliferative growth.
Collapse
Affiliation(s)
- J Lee
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
179
|
Katzmann DJ, Hallstrom TC, Mahé Y, Moye-Rowley WS. Multiple Pdr1p/Pdr3p binding sites are essential for normal expression of the ATP binding cassette transporter protein-encoding gene PDR5. J Biol Chem 1996; 271:23049-54. [PMID: 8798494 DOI: 10.1074/jbc.271.38.23049] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Saccharomyces cerevisiae has large number of genes that can be genetically altered to produce a multiple or pleiotropic drug resistance phenotype. The homologous zinc finger transcription factors Pdr1p and Pdr3p both elevate resistance to many drugs, including cycloheximide. This elevation in cycloheximide tolerance only occurs in the presence of an intact copy of the PDR5 gene that encodes a plasma membrane-localized ATP binding cassette transporter protein. Previously, we have found that a single binding site for Pdr3p present in the PDR5 promoter is sufficient to provide Pdr3p-responsive gene expression. In this study, we have found that there are three sites in the PDR5 5'-noncoding region that are closely related to one another and are bound by both Pdr1p and Pdr3p. These elements have been designated Pdr1p/Pdr3p response elements (PDREs), and their role in the maintenance of normal PDR5 expression has been analyzed. Mutations have been constructed in each PDRE and shown to eliminate Pdr1p/Pdr3p binding in vitro. Analysis of the effect of these mutant PDREs on normal PDR5 promoter function indicates that each element is required for wild-type expression and drug resistance. A single PDRE placed upstream of a yeast gene lacking its normal upstream activation sequence is sufficient to confer Pdr1p responsiveness to this heterologous promoter.
Collapse
Affiliation(s)
- D J Katzmann
- Molecular Biology Program, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
180
|
Cairns BR, Levinson RS, Yamamoto KR, Kornberg RD. Essential role of Swp73p in the function of yeast Swi/Snf complex. Genes Dev 1996; 10:2131-44. [PMID: 8804308 DOI: 10.1101/gad.10.17.2131] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Swi/Snf protein was purified previously from the yeast Saccharomyces cerevisiae as an 11-polypeptide complex, including five novel Swp polypeptides. Here we present evidence concerning the role of Swp73p in the function of the complex. Deletion mutants in the SWP73 gene display phenotypes similar to those of swi and snf mutants, and in addition are temperature-sensitive. Swp73p is required for transcriptional activation by full-length glucocorticoid receptor (GR), but not by all GR derivatives. Swp73p is also required for activation with an enhancer element that binds the transcription factors Swi5p and Pho2p, which may underlie the defects in HO expression observed with swi and snf mutants. A single amino acid change in the protein confers phenotypes that are similar to those observed in the swp73 delta strain, but in some cases the two strains behave differently. The extent to which Swp73p is required for assisting transcriptional activation depends on the activator and promoter tested. Homologs of SWP73 are present in S. cerevisiae, Ashbya gossypii, Caenorhabditis elegans, and mice, indicating that SWP73 may belong to a family of related genes encoding proteins with analogous functions.
Collapse
Affiliation(s)
- B R Cairns
- Department of Structural Biology, Stanford University School of Medicine, California 94305, USA
| | | | | | | |
Collapse
|
181
|
Masson JY, Vadnais J, Ramotar D. The Schizosaccharomyces pombe spqM gene is a new member of the Qm transcription factor family. Gene X 1996; 170:153-4. [PMID: 8621081 DOI: 10.1016/0378-1119(95)00853-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Qm family of proteins, which are found in a wide variety of species such as budding yeast, plants and humans, are believed to play a role in gene expression. Here, we report the isolation ofaa gene, spqM, from the fission yeast Schizosaccharomyces pombe, whose deduced amino-acid sequence shared 71.6 to 61.36% identity with members of the Qm family. The high degree of conservation of the Qm members suggest that they were selectively conserved, because of an important biological role.
Collapse
Affiliation(s)
- J Y Masson
- CHUL Research Center, Health and Environment Unit, Sainte-Foy, Québec, Canada
| | | | | |
Collapse
|
182
|
Mahé Y, Parle-McDermott A, Nourani A, Delahodde A, Lamprecht A, Kuchler K. The ATP-binding cassette multidrug transporter Snq2 of Saccharomyces cerevisiae: a novel target for the transcription factors Pdr1 and Pdr3. Mol Microbiol 1996; 20:109-17. [PMID: 8861209 DOI: 10.1111/j.1365-2958.1996.tb02493.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pleiotropic drug resistance (PDR) in the yeast Saccharomyces cerevisiae can arise from overexpression of ATP-binding cassette (ABC) efflux pumps such as Pdr5 and Snq2. Mutations in the transcription factor genes PDR1 and PDR3 are also associated with PDR. We show here that a pdr1-3 mutant exhibits a PDR phenotype, including elevated resistance to the mutagen 4-nitroquinoline-N-oxide, a known substrate for Snq2 but not for Pdr5. Northern analysis and immunoblotting demonstrated that the SNQ2 gene is 10-fold overexpressed in a pdr1-3 gain-of-function mutant strain, whereas Snq2 expression is severely reduced in a delta pdr1 deletion strain, and almost abolished in a delta pdr1 delta pdr3 double disruptant when compared to the PDR1 strain. However, expression of the Ste6 a-factor pheromone transporter, another yeast ABC transporter not associated with PDR, is unaffected in pdr1-3 mutant cells and in strains carrying delta pdr1, delta pdr3, or delta pdr1 delta pdr3 deletions. Finally, DNA footprint analysis revealed that the SNQ2 promoter contains three binding sites for Pdr3. Our results identify SNQ2 as a novel target for both Pdr1 and Pdr3, and demonstrate that the PDR phenotype of a pdr1-3 mutant strain results from overexpression of more than one ABC drug-efflux pump.
Collapse
Affiliation(s)
- Y Mahé
- Department of Molecular Genetics, University and Biocenter of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
183
|
Wu AL, Hallstrom TC, Moye-Rowley WS. ROD1, a novel gene conferring multiple resistance phenotypes in Saccharomyces cerevisiae. J Biol Chem 1996; 271:2914-20. [PMID: 8621680 DOI: 10.1074/jbc.271.6.2914] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Glutathione-dependent detoxification reactions are catalyzed by the enzyme glutathione S-transferase and are important in drug resistance in organisms ranging from bacteria to humans. The yeast Issatchenkia orientalis expresses a glutathione S-transferase (GST) protein that is induced when the GST substrate o-dinitrobenzene (o-DNB) is added to the culture. In this study, we show that overproduction of the I. orientalis GST in Saccharomyces cerevisiae leads to an increase in o-dinitrobenzene resistance in S. cerevisiae cells. To recover genes that influence o-DNB resistance in S. cerevisiae, a high copy plasmid library was screened for loci that elevate o-DNB tolerance. One gene was recovered and designated ROD1 (resistance to o-dinitrobenzene). This locus was found to encode a novel protein with no significant sequence similarity with proteins of known function in the data base. An epitope-tagged version of Rod1p was produced in S. cerevisiae and shown to function properly. Subcellular fractionation experiments indicated that this factor was found in the particulate fraction by differential centrifugation. Overproduction of Rod1p leads to resistance to not only o-DNB but also zinc and calcium. Strains that lack the ROD1 gene are hypersensitive to these same compounds. Rod1p represents a new type of molecule influencing drug tolerance in eukaryotes.
Collapse
Affiliation(s)
- A L Wu
- Molecular Biology Program and the Department of Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
184
|
Watanabe Y, Yamamoto M. Schizosaccharomyces pombe pcr1+ encodes a CREB/ATF protein involved in regulation of gene expression for sexual development. Mol Cell Biol 1996; 16:704-11. [PMID: 8552099 PMCID: PMC231050 DOI: 10.1128/mcb.16.2.704] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Schizosaccharomyces pombe pcr1 gene encodes a bZIP protein that apparently belongs to the cyclic AMP response element (CRE)-binding protein/activating transcription factor family. The deduced pcr1 gene product consists of 171 amino acid residues and is most similar to the mammalian CRE-BP1. A glutathione S-transferase-Pcr1 fusion protein produced in Escherichia coli was able to bind specifically to the CRE motif in vitro. Analysis with anti-Pcr1 serum suggested that Pcr1 is included in the major CRE-binding factors present in the S. pombe cell extract. Disruption of the pcr1 gene was not lethal, but the disruptant showed cold-sensitive growth on rich medium. The disruptant was also inefficient in mating and sporulation, though it was not completely sterile. Expression of the ste11 gene, which encodes a key transcription factor for sexual development, was greatly reduced in the disruptant, and overexpression of ste11+ suppressed the deficiency of the pcr1 disruptant in sexual development. It has been shown that expression of ste11 is negatively regulated by cyclic AMP-dependent protein kinase (PKA) and that the loss of PKA activity results in ectopic sexual development. Disruption of pcr1 blocked ectopic sexual development. Furthermore, disruption of pcr1 reduced expression of fbp1, a glucose-repressible gene negatively regulated by PKA. These results suggest that Pcr1 is a putative transcriptional regulator whose activity may be controlled by PKA. Alternatively, its activity may be independent of PKA, and full induction of ste11 and fbp1 expression requires the function of Pcr1 in addition to elimination of the repression by PKA.
Collapse
Affiliation(s)
- Y Watanabe
- Department of Biophysics and Biochemistry, School of Science, University of Tokyo, Japan
| | | |
Collapse
|
185
|
Kumada K, Yanagida M, Toda T. Caffeine-resistance in fission yeast is caused by mutations in a single essential gene, crm1+. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:59-68. [PMID: 8569688 DOI: 10.1007/bf02191825] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Caffeine is a base analogue and is known to affect a wide variety of cellular processes. In order to dissect genetically molecules which mediate the biological effects of caffeine, temperature-sensitive (ts) and caffeine-resistant mutants were isolated from fission yeast, Schizosaccharomyces pombe. Surprisingly, all twelve ts isolates contained a mutation in the same locus, crm1. Cells of the ts crm1 mutant showed an abnormal chromosome structure at the restrictive temperature, an elevated expression of Pap1-dependent transcription, and cross-resistance to an unrelated drug such as staurosporine. Overproduction of pap1+ also conferred caffeine resistance, whilst the resistance of the crm1 mutant is abolished in the pap1- background. These results show that the crm1+ gene is a major locus for caffeine resistance, which arises from Pap1-dependent transcriptional activation.
Collapse
Affiliation(s)
- K Kumada
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | |
Collapse
|
186
|
Miyahara K, Hirata D, Miyakawa T. yAP-1- and yAP-2-mediated, heat shock-induced transcriptional activation of the multidrug resistance ABC transporter genes in Saccharomyces cerevisiae. Curr Genet 1996; 29:103-5. [PMID: 8821655 DOI: 10.1007/bf02221572] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have examined whether the stress-induced transcriptional activation of YDR1/PDR5/STS1 is mediated by yAP-1 and yAP-2. Of the stresses examined, heat shock-induced, rapid and transient PDR5 expression became very low in a yap1 yap2 double-gene disruptant, indicating that the yAP proteins mediate the response. Similar results were obtained with SNQ2, a close homologue of PDR5. A set of 5'-truncation derivatives of the PDR5 gene identified the region from -484 to -434 as being sufficient for the response. A sequence similar to the yAP-1 recognition element recently identified in the stress-responsive yeast genes was found in this region and in the 5'-flanking sequences of SNQ2.
Collapse
Affiliation(s)
- K Miyahara
- Department of Fermentation Technology, Hiroshima University, Japan
| | | | | |
Collapse
|
187
|
Takeda T, Toda T, Kominami K, Kohnosu A, Yanagida M, Jones N. Schizosaccharomyces pombe atf1+ encodes a transcription factor required for sexual development and entry into stationary phase. EMBO J 1995; 14:6193-208. [PMID: 8557039 PMCID: PMC394744 DOI: 10.1002/j.1460-2075.1995.tb00310.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We describe the identification and characterization of a transcription factor encoded by the atf1+ gene of the fission yeast Schizosaccharomyces pombe. The factor Atf1, contains a bZIP domain at its C-terminus with strong homology to members of the ATF/CREB family of mammalian factors and in vitro binds specifically to ATF/CRE recognition sites. Furthermore the ATF-like binding activity detected in extracts from fission yeast cells is entirely lost upon deletion of the atf1+ gene. Upon growth to saturation, fission yeast cells exit the mitotic cycle and enter a G0-like stationary phase. However, on rich medium, entry of atf1- cells into stationary phase is restricted and they rapidly lose viability; this does not occur on minimal medium unless cAMP levels are raised. Thus stationary phase entry appears to be regulated negatively by cAMP and positively by Atf1. atf1- cells are also sterile and this sterility appears to be due to a combination of two defects: first, upon nitrogen starvation the majority of atf1- cells fail to arrest in the G1 phase of the cell cycle and second, the induction of ste11+ expression is lost. Thus expression of ste11+ represents a second example of an event that is negatively regulated by the cAMP pathway and positively regulated by Atf1. Despite their close association however, these two regulatory pathways function independently and Atf1 activity is not directly modulated by cAMP levels or mutations that alter the activity of components of the cAMP signalling pathway. Thus Atf1 is a transcription factor that plays an important role in the response of cells to adverse environmental conditions, which is to exit the mitotic cell cycle and either sexually differentiate or enter a resting state.
Collapse
Affiliation(s)
- T Takeda
- Laboratory of Gene Regulation, Imperial Cancer Research Fund, London, UK
| | | | | | | | | | | |
Collapse
|
188
|
Abstract
The rat cdc37-related gene product (RCdc37), which is possibly involved in the regulation of cell cycle progression, contains a putative basic/leucine zipper (bZIP) domain in its N-terminal portion. In this study, we have identified a rat genomic sequence which can interact with RCdc37 using an in vitro binding assay. The specificity of this interaction was confirmed by gel retardation experiments. These results raise a possibility that RCdc37 might play an important role in the control of cell cycle progression via a sequence-specific DNA binding mechanism.
Collapse
Affiliation(s)
- T Ozaki
- Division of Biochemistry, Chiba Cancer Center Research Institute, Japan
| | | |
Collapse
|
189
|
Hardwick KG, Murray AW. Mad1p, a phosphoprotein component of the spindle assembly checkpoint in budding yeast. J Cell Biol 1995; 131:709-20. [PMID: 7593191 PMCID: PMC2120625 DOI: 10.1083/jcb.131.3.709] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The spindle assembly checkpoint prevents cells from initiating anaphase until the spindle has been fully assembled. We previously isolated mitotic arrest deficient (mad) mutants that inactivate this checkpoint and thus increase the sensitivity of cells to benomyl, a drug that interferes with mitotic spindle assembly by depolymerizing microtubules. We have cloned the MAD1 gene and show that when it is disrupted yeast cells have the same phenotype as the previously isolated mad1 mutants: they fail to delay the metaphase to anaphase transition in response to microtubule depolymerization. MAD1 is predicted to encode a 90-kD coiled-coil protein. Anti-Mad1p antibodies give a novel punctate nuclear staining pattern and cell fractionation reveals that the bulk of Mad1p is soluble. Mad1p becomes hyperphosphorylated when wild-type cells are arrested in mitosis by benomyl treatment, or by placing a cold sensitive tubulin mutant at the restrictive temperature. This modification does not occur in G1-arrested cells treated with benomyl or in cells arrested in mitosis by defects in the mitotic cyclin proteolysis machinery, suggesting that Mad1p hyperphosphorylation is a step in the activation of the spindle assembly checkpoint. Analysis of Mad1p phosphorylation in other spindle assembly checkpoint mutants reveals that this response to microtubule-disrupting agents is defective in some (mad2, bub1, and bub3) but not all (mad3, bub2) mutant strains. We discuss the possible functions of Mad1p at this cell cycle checkpoint.
Collapse
Affiliation(s)
- K G Hardwick
- Department of Physiology, University of California, San Francisco 94143-0444, USA
| | | |
Collapse
|
190
|
Egner R, Mahé Y, Pandjaitan R, Kuchler K. Endocytosis and vacuolar degradation of the plasma membrane-localized Pdr5 ATP-binding cassette multidrug transporter in Saccharomyces cerevisiae. Mol Cell Biol 1995; 15:5879-87. [PMID: 7565740 PMCID: PMC230839 DOI: 10.1128/mcb.15.11.5879] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Multidrug resistance (MDR) to different cytotoxic compounds in the yeast Saccharomyces cerevisiae can arise from overexpression of the Pdr5 (Sts1, Ydr1, or Lem1) ATP-binding cassette (ABC) multidrug transporter. We have raised polyclonal antibodies recognizing the yeast Pdr5 ABC transporter to study its biogenesis and to analyze the molecular mechanisms underlying MDR development. Subcellular fractionation and indirect immunofluorescence experiments showed that Pdr5 is localized in the plasma membrane. In addition, pulse-chase radiolabeling of cells and immunoprecipitation indicated that Pdr5 is a short-lived membrane protein with a half-life of about 60 to 90 min. A dramatic metabolic stabilization of Pdr5 was observed in delta pep4 mutant cells defective in vacuolar proteinases, and indirect immunofluorescence showed that Pdr5 accumulates in vacuoles of stationary-phase delta pep4 mutant cells, demonstrating that Pdr5 turnover requires vacuolar proteolysis. However, Pdr5 turnover does not require a functional proteasome, since the half-life of Pdr5 was unaffected in either pre1-1 or pre1-1 pre2-1 mutants defective in the multicatalytic cytoplasmic proteasome that is essential for cytoplasmic protein degradation. Immunofluorescence analysis revealed that vacuolar delivery of Pdr5 is blocked in conditional end4 endocytosis mutants at the restrictive temperature, showing that endocytosis delivers Pdr5 from the plasma membrane to the vacuole.
Collapse
Affiliation(s)
- R Egner
- Department of Molecular Genetics, University and Biocenter of Vienna, Austria
| | | | | | | |
Collapse
|
191
|
Delahodde A, Delaveau T, Jacq C. Positive autoregulation of the yeast transcription factor Pdr3p, which is involved in control of drug resistance. Mol Cell Biol 1995; 15:4043-51. [PMID: 7623800 PMCID: PMC230643 DOI: 10.1128/mcb.15.8.4043] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Simultaneous resistance to an array of drugs with different cytotoxic activities is a property of Saccharomyces cerevisiae, in which the protein Pdr3p has recently been shown to play a role as a transcriptional regulator. We provide evidence that the yeast PDR3 gene, which encodes a zinc finger transcription factor implicated in certain drug resistance phenomena, is under positive autoregulation by Pdr3p. DNase I footprinting analyses using bacterially expressed Pdr3p showed specific recognition by this protein of at least two upstream activating sequences in the PDR3 promoter. The use of lacZ reporter constructs, a mutational analysis of the upstream activating sequences, as well as band shift experiments enabled the identification of two 5'TC CGCGGA3' sequence motifs in the PDR3 gene as consensus elements for the binding of Pdr3p. Several similar sequence motifs can be found in the promoter of PDR5, a gene encoding an ATP-dependent drug pump whose Pdr3p-induced overexpression is responsible for drug resistance phenomena. Recently one of these sequence elements was shown to be the target of Pdr3p to elevate the level of PDR5 transcription. Finally, we provide evidence in the absence of PDR1 for a PDR3-controlled transcriptional induction of the drug pump by cycloheximide and propose a model for the mechanism governing the transcriptional autoregulation of Pdr3p.
Collapse
Affiliation(s)
- A Delahodde
- Laboratoire de Génétique Moléculaire CNRS URA1302, Ecole Normale Supérieure, Paris, France
| | | | | |
Collapse
|
192
|
Kim J, Struhl K. Determinants of half-site spacing preferences that distinguish AP-1 and ATF/CREB bZIP domains. Nucleic Acids Res 1995; 23:2531-7. [PMID: 7630732 PMCID: PMC307062 DOI: 10.1093/nar/23.13.2531] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The AP-1 and ATF/CREB families of eukaryotic transcription factors are dimeric DNA-binding proteins that contain the bZIP structural motif. The AP-1 and ATF/CREB proteins are structurally related and recognize identical half-sites (TGAC), but they differ in their requirements for half-site spacing. AP-1 proteins such as yeast GCN4 preferentially bind to sequences with overlapping half-sites, whereas ATF/CREB proteins bind exclusively to sequences with adjacent half-sites. Here we investigate the distinctions between AP-1 and ATF/CREB proteins by determining the DNA-binding properties of mutant and hybrid proteins. First, analysis of GCN4-ATF1 hybrid proteins indicates that a short surface spanning the basic and fork regions of the bZIP domain is the major determinant of half-site spacing. Replacement of two GCN4 residues on this surface (Ala244 and Leu247) by their ATF1 counterparts largely converts GCN4 into a protein with ATF/CREB specificity. Secondly, analysis of a Fos derivative containing the GCN4 leucine zipper indicates that Fos represents a novel intermediate between AP-1 and ATF/CREB proteins. Thirdly, we examine the effects of mutations in the invariant arginine residue of GCN4 (Arg243) that contacts the central base pair(s) of the target sites. While most mutations abolish DNA binding, substitution of a histidine residue results in a GCN4 derivative with ATF/CREB binding specificity. These results suggest that the AP-1 and ATF/CREB proteins differ in positioning a short surface that includes the invariant arginine and that AP-1 proteins may represent a subclass (and perhaps evolutionary offshoot) of ATF/CREB proteins that can tolerate overlapping half-sites.
Collapse
Affiliation(s)
- J Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
193
|
Tremble P, Damsky CH, Werb Z. Components of the nuclear signaling cascade that regulate collagenase gene expression in response to integrin-derived signals. J Biophys Biochem Cytol 1995; 129:1707-20. [PMID: 7790365 PMCID: PMC2291183 DOI: 10.1083/jcb.129.6.1707] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have shown previously that the expression of collagenase is upregulated in rabbit synovial fibroblasts cultured on a substrate of antibody to the alpha 5 chain of the alpha 5 beta 1 integrin fibronectin receptor or on the 120-kD cell-binding chymotryptic fragment of plasma fibronectin, but remains at basal levels in cells plated on intact plasma fibronectin. We now have identified some of the components of a signaling pathway that couples the fibronectin receptor to the induction of collagenase transcription. We studied the control of collagenase gene expression in cells adhering to the 120-kD fragment of fibronectin, to antifibronectin receptor antibody, or to plasma fibronectin by transiently introducing promoter-reporter constructs into rabbit synovial fibroblasts before plating cells on these matrices. The constructs contained segments of the human collagenase promoter regulating transcription of chloramphenicol acyl transferase. Expression of constructs containing the -1200/-42-bp segment or the -139/-42-bp segment of the collagenase promoter inserted upstream from the reporter gene was induced to similar extents in cells plated on the 120-kD fragment of fibronectin or on anti-fibronectin receptor antibody, relative to that in fibroblasts plated on fibronectin. The expression of the construct containing the -66/-42-bp segment of the promoter was not regulated and was similar to that of the parent pBLCAT2 plasmid, suggesting that the -139/-67 region of the collagenase promoter, which contains PEA3- and AP1-binding sites, regulates the transcription of collagenase caused by integrin-derived signals. Expression of a reporter construct containing only the PEA3 and AP1 sites in the collagenase promoter (-90/-67) also increased in cells plated on the 120-kD fragment of fibronectin or on anti-fibronectin receptor antibody, relative to that in cells plated on fibronectin. Mutations in either the AP1 or PEA3 site of this minimal promoter abrogated its activity in cells plated on these inductive ligands. Expression of c-fos mRNA increased within 1 h of plating cells on the 120-kD fibronectin fragment or on anti-fibronectin receptor antibody, relative to that in cells plated on fibronectin. c-Fos protein accumulated in the nuclei of fibroblasts within 10 min of plating on the 120-kD fibronectin fragment. The increase in c-Fos was required for the increase in collagenase in cells plated on the 120-kD fibronectin fragment: incubation of cells with antisense, but not sense, c-fos oligonucleotides diminished both basal and induced expression of the -139/-42 collagenase promoter-reporter construct and decreased expression of the endogenous collagenase gene.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- P Tremble
- Laboratory of Radiobiology and Environmental Health, University of California, San Francisco 94143, USA
| | | | | |
Collapse
|
194
|
Erkine AM, Szent-Gyorgyi C, Simmons SF, Gross DS. The upstream sequences of the HSP82 and HSC82 genes of Saccharomyces cerevisiae: regulatory elements and nucleosome positioning motifs. Yeast 1995; 11:573-80. [PMID: 7645348 DOI: 10.1002/yea.320110607] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We present the upstream sequences of HSP82 and HSC82, two closely related, but differentially regulated, heat-shock genes of Saccharomyces cerevisiae. Several dozen potential regulatory elements are identified within each upstream region; interestingly, only a few are conserved between the two genes. These include a consensus heat-shock element, an upstream repressor element, and a consensus TATA element. A search for motifs known actively to position nucleosomes in vitro revealed that such sequences are three- to seven-fold enriched within each promoter; a comparable enrichment is seen near the 3' end of each transcription unit. Located approximately 1100 bp upstream of HSC82 is an open reading frame (ORF) of 255 amino acids; approximately 800 bp upstream of HSP82 is an ORF of 132 amino acids. The latter ORF contains several conserved ankyrin motifs and appears to be expressed under normal growth conditions. Finally, we show by clamped homogeneous electric field gel electrophoresis that the two genetic loci map to different chromosomes: HSP82 to chromosome XVI and HSC82 to chromosome XIII. The sequences have been deposited in the GenBank database under Accession Numbers U20323 and U20349.
Collapse
Affiliation(s)
- A M Erkine
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130, USA
| | | | | | | |
Collapse
|
195
|
Krems B, Charizanis C, Entian KD. Mutants of Saccharomyces cerevisiae sensitive to oxidative and osmotic stress. Curr Genet 1995; 27:427-34. [PMID: 7586028 DOI: 10.1007/bf00311211] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although oxidative stress is involved in many human diseases, little is known of its molecular basis in eukaryotes. In a genetic approach, S. cerevisiae was used to identify elements involved in oxidative stress. By using hydrogen peroxide as an agent for oxidative stress, 34 mutants were identified. All mutants were recessive and fell into 16 complementation groups (pos1 to pos16 for peroxide sensitivity). They corresponded to single mutations as shown by a 2:2 segregation pattern. Enzymes reportedly involved in oxidative stress, such as glucose-6-phosphate dehydrogenase, glutathione reductase, superoxide dismutase, as well as glutathione concentrations, were investigated in wild-type and mutant-cells. One complementation group lacked glucose-6-phosphate dehydrogenase and was shown to be allelic to the glucose-6-phosphate dehydrogenase structural gene ZWF1/MET19. In other mutants all enzymes supposedly involved in oxidative-stress resistance were still present. However, several mutants showed strongly elevated levels of glutathione reductase, gluconate-6-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase. One complementation group, pos9, was highly sensitive to oxidative stress and revealed the same growth phenotype as the previously described yap1/par1 mutant coding for the yeast homologue of mammalian transcriptional activator protein, c-Jun, of the proto-oncogenic AP-1 complex. However, unlike par1 mutants, which showed diminished activities of oxidative-stress enzymes and glutathion level, the pos9 mutants did not reveal any such changes. In contrast to other recombinants between pos mutations and par1, the sensitivity did not further increase in par1 pos9 recombinants, which may indicate that both mutations belong to the same regulating circuit.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B Krems
- Institut für Mikrobiologie, Frankfurt/Main, Germany
| | | | | |
Collapse
|
196
|
Grey M, Pich CT, Haase E, Brendel M. SNG1--a new gene involved in nitrosoguanidine resistance in Saccharomyces cerevisiae. Mutat Res 1995; 346:207-14. [PMID: 7753113 DOI: 10.1016/0165-7992(95)90037-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have molecularly characterized the SNG1 gene that confers hyper-resistance to the mutagen N-methyl-N'nitro-N-nitrosoguanidine (MNNG) in Saccharomyces cerevisiae when overexpressed on a multi-copy plasmid. This hyper-resistance to MNNG is not due to depletion of glutathione pools since multi-copy SNG1 containing yeast transformants contain at least wild type levels of glutathione; DNA repair seems unaffected in these transformants as the multi-copy SNG1-mediated MNNG hyper-resistance is also seen in DNA repair mutants belonging to each of the three epistasis groups of yeast repair mutants. It could be shown that SNG1 is not under control of the YAP1 encoded transcription activator that controls expression of at least two genes involved in MNNG metabolism in yeast. sng1 null mutants are viable but exhibit only slight sensitivity to MNNG, indicating that SNG1 does not encode a protein involved in a major detoxification step of this mutagen. Sequencing of the HYR-mediating passenger DNA revealed that SNG1 encodes a 547 a polypeptide containing seven transmembrane-spanning regions that may be membrane-bound. Comparison of the DNA sequence with established gene databanks revealed that SNG1 is a novel yeast gene.
Collapse
Affiliation(s)
- M Grey
- Institut für Mikrobiologie, J.W. Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
197
|
Shimanuki M, Saka Y, Yanagida M, Toda T. A novel essential fission yeast gene pad1+ positively regulates pap1(+)-dependent transcription and is implicated in the maintenance of chromosome structure. J Cell Sci 1995; 108 ( Pt 2):569-79. [PMID: 7769002 DOI: 10.1242/jcs.108.2.569] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fission yeast pap1+ gene encodes an AP-1-like transcription factor, whose overexpression can confer resistance to staurosporine, a protein kinase inhibitor. We have previously identified a target gene (p25) for pap1+, and shown that, crm1+, which is required for maintenance of higher order chromosome structure, negatively regulates pap1-dependent transcription. In this study, we have characterized a novel gene, pad1+, which was isolated as a multicopy plasmid capable of conferring staurosporine-resistance. We showed that high copy pad1+ induces transcriptional activation of the p25 gene and that the induction by pad1+ is dependent on the pap1+ gene. Furthermore, a cis-element analysis of the 5'-region of the p25 gene showed that two elements (an AP-1 site and a 14 bp palindrome sequence) where pap1 binds in vitro is essential for the induction by pad1+. These results indicate that pad1 can positively regulate pap1-dependent transcription. Through an electromobility shift assay we showed that overexpression of pad1+ is not capable of enhancing the DNA-binding activity of pap1 directly. The pad1+ gene encodes a 35 kDa protein that has significant identity (68%) to Caenorhabditis elegans F37A4.5, and is also similar to mouse Mov34 and human C6.1A. Gene disruption experiments have demonstrated that pad1+ is essential for viability. A disruption mutant of pad1+ obtained after spore germination exhibited an elongated cell body with abberantly folded chromosomes. A mitotic plasmid loss experiment also produced similar cells having an abnormal chromosome structure. These suggest that pad1+ may play an important role in higher order chromosome structure. Taken concurrently with our previous results, two essential genes pad1+ and crm1+ regulate pap1-dependent transcription; pad1+ and crm1+ are positive and negative regulators, respectively.
Collapse
Affiliation(s)
- M Shimanuki
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | | | |
Collapse
|
198
|
Oxidative stress response in yeast: Induction of glucose-6-phosphate dehydrogenase by lipid hydroperoxide in Hansenula mrakii. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0922-338x(96)87740-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
199
|
ATP binding cassette transporters in yeast. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1874-592x(06)80004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
200
|
Wemmie JA, Szczypka MS, Thiele DJ, Moye-Rowley WS. Cadmium tolerance mediated by the yeast AP-1 protein requires the presence of an ATP-binding cassette transporter-encoding gene, YCF1. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31675-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|