151
|
Xie M, Ren G, Costa-Nunes P, Pontes O, Yu B. A subgroup of SGS3-like proteins act redundantly in RNA-directed DNA methylation. Nucleic Acids Res 2012; 40:4422-31. [PMID: 22302148 PMCID: PMC3378875 DOI: 10.1093/nar/gks034] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plant specific SGS3-like proteins are composed of various combinations of an RNA-binding XS domain, a zinc-finger zf-XS domain, a coil–coil domain and a domain of unknown function called XH. In addition to being involved in de novo 2 (IDN2) and SGS3, the Arabidopsis genome encodes 12 uncharacterized SGS3-like proteins. Here, we show that a group of SGS3-like proteins act redundantly in RNA-directed DNA methylation (RdDM) pathway in Arabidopsis. Transcriptome co-expression analyses reveal significantly correlated expression of two SGS3-like proteins, factor of DNA methylation 1 (FDM1) and FDM2 with known genes required for RdDM. The fdm1 and fdm2 double mutations but not the fdm1 or fdm2 single mutations significantly impair DNA methylation at RdDM loci, release transcriptional gene silencing and dramatically reduce the abundance of siRNAs originated from high copy number repeats or transposons. Like IDN2 and SGS3, FDM1 binds dsRNAs with 5′ overhangs. Double mutant analyses also reveal that IDN2 and three uncharacterized SGS3-like proteins FDM3, FDM4 and FDM5 have overlapping function with FDM1 in RdDM. Five FDM proteins and IDN2 define a group of SGS3-like proteins that possess all four-signature motifs in Arabidopsis. Thus, our results demonstrate that this group of SGS3-like proteins is an important component of RdDM. This study further enhances our understanding of the SGS3 gene family and the RdDM pathway.
Collapse
Affiliation(s)
- Meng Xie
- Center for Plant Science Innovation, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0660, USA
| | | | | | | | | |
Collapse
|
152
|
Alvarado VY, Scholthof HB. AGO2: A New Argonaute Compromising Plant Virus Accumulation. FRONTIERS IN PLANT SCIENCE 2012; 2:112. [PMID: 22639628 PMCID: PMC3355599 DOI: 10.3389/fpls.2011.00112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/19/2011] [Indexed: 05/08/2023]
Abstract
Plant viruses use several strategies to transport their nucleic acid genomes throughout the plants. Regardless of the movement mechanism, a universal major block to uninterrupted viral trafficking is the induction of antiviral silencing that degrades viral RNA. To counteract this defense, viruses encode suppressors that block certain steps in the RNA silencing pathway, and consequently these proteins allow viral spread to proceed. There is a constant battle between plants and viruses and sometimes viruses will succeed and invade the plants and in other cases the RNA silencing mechanism will override the virus. A key role in the silencing versus suppression conflict between plants and viruses is played by one or more members of the Argonaute protein (AGO) family encoded by plants. Here we review the mechanisms and effects of antiviral silencing with an emphasis on the contribution of AGOs, especially the recently discovered role of AGO2.
Collapse
Affiliation(s)
- Veria Y. Alvarado
- Department of Plant Pathology and Microbiology, Texas A&M UniversityCollege Station, TX, USA
| | - Herman B. Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M UniversityCollege Station, TX, USA
| |
Collapse
|
153
|
Gu XL, Wang H, Huang H, Cui XF. SPT6L encoding a putative WG/GW-repeat protein regulates apical-basal polarity of embryo in Arabidopsis. MOLECULAR PLANT 2012; 5:249-259. [PMID: 21948524 DOI: 10.1093/mp/ssr073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In eukaryotes, a protein motif consisting of WG/GW repeats, also called the Argonaute (AGO) hook, is thought to be essential for binding AGO proteins to fulfill their functions in RNA-mediated gene silencing. Although a number of WG/GW-containing proteins have been computationally identified in Arabidopsis, their roles in plant growth and development are unknown. Here, we show that the Arabidopsis Suppressor of Ty insertion 6-like (SPT6L) gene, which encodes a protein with C-terminal WG/GW repeats, plays critical roles in embryonic development. SPT6L is evolutionarily conserved only in vascular plants, with varying numbers of C-terminal WG/GW repeats, which are plant-species specific. spt6l mutants formed embryos with an aberrant apical-basal axis, showing insufficient development of the basal domain and embryonic lethality. Expression domains of the class-III homeodomain-leucine zipper (HD-ZIP III) genes PHABULOSA (PHB) and PHAVOLUTA (PHV) were expanded in the spt6l embryo. In contrast, the PLETHORA1 (PLT1) gene, which acts antagonistically to the HD-ZIP III genes in specification of basal fate, was severely down-regulated in the spt6l mutant. Furthermore, the phb phv double mutations partially rescued aberrant basal development in the spt6l background and restored PLT1 expression. Collectively, our results indicate that SPT6L is essential for specification of the apical-basal axis, partly by controlling the HD-ZIP III genes in embryos.
Collapse
Affiliation(s)
- Xiao-Lu Gu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | |
Collapse
|
154
|
Abstract
Given the widespread impact of RNA silencing on the Arabidopsis thaliana genome, it is indeed remarkable that this means of gene regulation went undiscovered for so long. Since the publication of landmark papers in 1998 (Fire et al., Nature 391:806-811, 1998; Waterhouse et al., Proc Natl Acad Sci U S A 95:13959-13964, 1998), intense research efforts have resulted in much progress from the speculation of Mello and colleagues that "the mechanisms underlying RNA interference probably exist for a biological purpose" (Fire et al., Nature 391:806-811, 1998). Across the eukaryotic kingdom, with the notable exception of Saccharomyces cerevisiae (Moazed, Science 326:544-550, 2009), the importance of small RNA-driven gene regulation has been recognized and implicated in central developmental processes as well as in aberrant and diseased states. Plants have by far the most complex RNA-based control of gene expression (Wang et al., Floriculture, ornamental and plant biotechnology, vol. III, 2006). Four distinct RNA silencing pathways have been recognized in plants, albeit with considerable conservation of the molecular components. These pathways are directed by various small RNA species, including microRNAs (miRNAs), trans-acting small interfering RNAs (siRNA) (ta-siRNAs), repeat-associated siRNAs (ra-siRNAs), and natural antisense transcript siRNAs (nat-siRNAs). The effective functionality of each of these pathways appear to be fundamental to the integrity of A. thaliana. Furthermore, in response to viral invasion, plants synthesize viral sRNAs as a means of defense. This process may in fact reflect the ancient origins of RNA silencing: plants may have evolved RNA silencing pathways as a defense mechanism against foreign nucleic acid species in the absence of an immune system (Wang and Metzlaff, Curr Opin Plant Biol 8:216-222, 2005). The generation of viral siRNAs is a particularly interesting illustration of RNA silencing as it provides a context to explore the potential to harness a naturally occurring system to the end goal of artificially engineering viral resistance.
Collapse
|
155
|
Hamera S, Song X, Su L, Chen X, Fang R. Cucumber mosaic virus suppressor 2b binds to AGO4-related small RNAs and impairs AGO4 activities. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:104-15. [PMID: 21880078 DOI: 10.1111/j.1365-313x.2011.04774.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cucumber mosaic virus suppressor 2b (CMV2b) is a nuclear viral suppressor that interferes with local and systemic silencing and inhibits AGO1 slicer activity. CMV2b-mediated transgene hypomethylation and its localization in Cajal bodies suggests a role of CMV2b in RNA-directed DNA methylation (RdDM). However, its direct involvement in RdDM, or its binding with small RNAs (sRNAs) in vivo is not yet established. Here, we show that CMV2b binds both microRNAs (miRNAs) and small interfering RNAs (siRNAs) in vivo. sRNA sequencing data from the CMV2b immunocomplex revealed its preferential binding with 24-nt repeat-associated siRNAs. We provide evidence that CMV2b also has direct interaction with the AGO4 protein by recognizing its PAZ and PIWI domains. Subsequent analysis of AGO4 functions revealed that CMV2b reduced AGO4 slicer activity and the methylation of several loci, accompanied by the augmented accumulation of 24-nt siRNAs in Arabidopsis inflorescences. Intriguingly, CMV2b also regulated an AGO4-related epiallele independently of its catalytic potential, which further reinforces the repressive effects of CMV2b on AGO4 activity. Collectively, our results demonstrate that CMV2b can counteract AGO4-related functions. We propose that by adopting novel counter-host defense strategies against AGO1 and AGO4 proteins, CMV creates a favorable cellular niche for its proliferation.
Collapse
Affiliation(s)
- Sadia Hamera
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
156
|
Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis. Proc Natl Acad Sci U S A 2011; 109:315-20. [PMID: 22184231 DOI: 10.1073/pnas.1114673109] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant microRNAs (miRNAs) typically mediate RNA cleavage, but examples of miRNA-mediated translational repression have also been reported. However, the functional significance of this latter process is unknown. We identified SUO in a screen for Arabidopsis mutations that increase the accumulation of the miR156-regulated gene SPL3. suo has a loss-of-function phenotype characteristic of plants with reduced Argonaute (AGO)1 activity. An analysis of RNA and protein levels in suo mutants demonstrated that this phenotype is a consequence of a defect in miRNA-mediated translational repression; the effect of suo on vegetative phase change is attributable to a reduction in miR156/miR157 activity. SUO encodes a large protein with N-terminal bromo-adjacent homology (BAH) and transcription elongation factor S-II (TFS2N) domains and two C-terminal GW (glycine and tryptophan) repeats. SUO is present in the nucleus, and colocalizes with the processing-body component DCP1 in the cytoplasm. Our results reveal that SOU is a component of the miRNA pathway in Arabidopsis and demonstrate that translational repression is a functionally important aspect of miRNA activity in plants.
Collapse
|
157
|
Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature 2011; 480:391-5. [PMID: 22056986 PMCID: PMC4082306 DOI: 10.1038/nature10492] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 08/17/2011] [Indexed: 12/22/2022]
Abstract
RNAi pathways have evolved as important modulators of gene expression that act in the cytoplasm by degrading RNA target molecules via the activity of short (21-30nt) RNAs1-6 RNAi components have been reported to play a role in the nucleus as they are involved in epigenetic regulation and heterochromatin formation7-10. However, although RNAi-mediated post-transcriptional silencing (PTGS) is well documented, mechanisms of RNAi-mediated transcriptional gene silencing (TGS) and in particular the role of RNAi components in chromatin, especially in higher eukaryotes, are still elusive. Here we show that key RNAi components Dicer-2 (Dcr2) and and Argonaute-2 (AGO2) AGO2 associate with chromatin, with strong preference for euchromatic, transcriptionally active loci and interact with core transcription machinery. Notably Dcr2 and AGO2 loss of function show that transcriptional defects are accompanied by perturbation of Pol II positioning on promoters. Further, both Dcr2 and Ago2 null mutations as well as missense mutations compromising the RNAi activity impair global Pol II dynamics upon heat shock. Finally, AGO2 RIP-seq experiments reveal that, AGO2 is strongly enriched in small-RNAs encompassing promoter as well as other parts of heat shock and other gene loci on both sense and antisense, with a strong bias for antisense, particularly after heat shock. Taken together our results reveal a new scenario in which Dcr2 and AGO2 are globally associated with transcriptionally active loci and may play a pivotal role in shaping the transcriptome by controlling RNA Pol II processivity.
Collapse
|
158
|
Azevedo J, Cooke R, Lagrange T. Taking RISCs with Ago hookers. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:594-600. [PMID: 21807551 DOI: 10.1016/j.pbi.2011.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/08/2011] [Accepted: 07/08/2011] [Indexed: 05/31/2023]
Abstract
Argonautes are central and common components of crucial effectors of RNA silencing pathways. Although earlier steps in these pathways, such as small RNA biogenesis and their loading into AGO, have been quite well described, our knowledge on regulation of the action of AGO and their partners is still poor. Recent breakthroughs have highlighted the existence in many eukaryotes of an evolutionarily conserved motif, the Ago-hook, in factors implicated in AGO action. Furthermore, it has been shown that certain plant pathogen proteins have co-opted the Ago-hook as a means of evasion of plant defense systems. Here we discuss the roles and properties of Ago-hook proteins in divergent RNAi-related pathways.
Collapse
Affiliation(s)
- Jacinthe Azevedo
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique/Université de Perpignan, Perpignan, France
| | | | | |
Collapse
|
159
|
Hakimi MA, Cannella D. Apicomplexan parasites and subversion of the host cell microRNA pathway. Trends Parasitol 2011; 27:481-6. [PMID: 21840260 DOI: 10.1016/j.pt.2011.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 12/21/2022]
Abstract
RNA silencing plays a major role in innate antiviral and antibacterial defenses in plants, insects, and animals through the action of microRNAs (miRNAs). miRNAs can act in favor of the microorganism, either when it is pathogen-encoded or when the microorganism subverts host miRNAs to its benefit. Recent data point to the possibility that apicomplexan parasites have developed tactics to interfere with host miRNA populations in a parasite-specific manner, thereby identifying the RNA-silencing pathway as a new means to reshape their cellular environment. This review highlights the current understanding and new insights concerning the mechanisms that could be involved and the potential roles of the host microRNome (miRNome) in apicomplexan infection.
Collapse
Affiliation(s)
- Mohamed-ali Hakimi
- Unité Mixte de Recherche 5163, Laboratoire Adaptation et Pathogénie des Micro-organismes, Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier Grenoble 1, BP 170, F-38042 Grenoble CEDEX 9, France. (
| | | |
Collapse
|
160
|
Pélissier T, Clavel M, Chaparro C, Pouch-Pélissier MN, Vaucheret H, Deragon JM. Double-stranded RNA binding proteins DRB2 and DRB4 have an antagonistic impact on polymerase IV-dependent siRNA levels in Arabidopsis. RNA (NEW YORK, N.Y.) 2011; 17:1502-10. [PMID: 21700726 PMCID: PMC3153974 DOI: 10.1261/rna.2680711] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/20/2011] [Indexed: 05/17/2023]
Abstract
Biogenesis of the vast majority of plant siRNAs depends on the activity of the plant-specific RNA polymerase IV (PolIV) enzyme. As part of the RNA-dependent DNA methylation (RdDM) process, PolIV-dependent siRNAs (p4-siRNAs) are loaded onto an ARGONAUTE4-containing complex and guide de novo DNA methyltransferases to target loci. Here we show that the double-stranded RNA binding proteins DRB2 and DRB4 are required for proper accumulation of p4-siRNAs. In flowers, loss of DRB2 results in increased accumulation of p4-siRNAs but not ta-siRNAs, inverted repeat (IR)-derived siRNAs, or miRNA. Loss of DRB2 does not impair uniparental expression of p4-dependent siRNAs in developing endosperm, indicating that p4-siRNA increased accumulation is not the result of the activation of the polIV pathway in the male gametophyte. In contrast to drb2, drb4 mutants exhibit reduced p4-siRNA levels, but the extent of this reduction is variable, according to the nature and size of the p4-siRNAs. Loss of DRB4 also leads to a spectacular increase of p4-independent IR-derived 24-nt siRNAs, suggesting a reallocation of factors from p4-dependent to p4-independent siRNA pathways in drb4. Opposite effects of drb2 and drb4 mutations on the accumulation of p4-siRNAs were also observed in vegetative tissues. Moreover, transgenic plants overexpressing DRB2 mimicked drb4 mutants at the morphological and molecular levels, confirming the antagonistic roles of DRB2 and DRB4.
Collapse
Affiliation(s)
- Thierry Pélissier
- Université de Perpignan Via Domitia, CNRS UMR5096 LGDP, 66860 Perpignan Cedex, France
| | - Marion Clavel
- Université de Perpignan Via Domitia, CNRS UMR5096 LGDP, 66860 Perpignan Cedex, France
| | - Cristian Chaparro
- Université de Perpignan Via Domitia, CNRS UMR5096 LGDP, 66860 Perpignan Cedex, France
| | | | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique, 78026 Versailles Cedex, France
| | - Jean-Marc Deragon
- Université de Perpignan Via Domitia, CNRS UMR5096 LGDP, 66860 Perpignan Cedex, France
- Corresponding author.E-mail
| |
Collapse
|
161
|
Haag JR, Pikaard CS. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat Rev Mol Cell Biol 2011; 12:483-92. [PMID: 21779025 DOI: 10.1038/nrm3152] [Citation(s) in RCA: 288] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In all eukaryotes, nuclear DNA-dependent RNA polymerases I, II and III synthesize the myriad RNAs that are essential for life. Remarkably, plants have evolved two additional multisubunit RNA polymerases, RNA polymerases IV and V, which orchestrate non-coding RNA-mediated gene silencing processes affecting development, transposon taming, antiviral defence and allelic crosstalk. Biochemical details concerning the templates and products of RNA polymerases IV and V are lacking. However, their subunit compositions reveal that they evolved as specialized forms of RNA polymerase II, which provides the unique opportunity to study the functional diversification of a eukaryotic RNA polymerase family.
Collapse
Affiliation(s)
- Jeremy R Haag
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
162
|
Zhang X, Rossi JJ. Phylogenetic comparison of small RNA-triggered transcriptional gene silencing. J Biol Chem 2011; 286:29443-8. [PMID: 21730056 DOI: 10.1074/jbc.r111.276378] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The discovery of RNA interference has revealed complex roles for small RNAs in regulating gene expression and cellular physiology. Small RNAs have been demonstrated to be involved in post-transcriptional suppression of translation, targeted degradation of messenger RNAs, and transcriptional suppression via epigenetic modifications of histones and DNA. In fission yeast, RNAi mediates suppression of centromeric transcripts, whereas in plants, transcriptional gene silencing appears to be primarily an antiviral mechanism. In mammals, the well annotated functional role of RNAi is primarily post-transcriptional, but there is increasing evidence that this mechanism can also work to suppress or modulate gene transcription, although it is not clear what primary function this serves. We overview, compare, and contrast the transcriptional silencing pathways in yeast, plants, and mammals in this article. This minireview is intended to provide the reader with a framework of how the RNAi machinery appears to be universally involved in various aspects of transcriptional regulation with discussions of similarities and differences in the components and mechanisms of achieving transcriptional silencing.
Collapse
Affiliation(s)
- Xizhe Zhang
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope and the Irell & Manella Graduate School of Biological Sciences, Duarte, California 91010, USA
| | | |
Collapse
|
163
|
Hohn T, Vazquez F. RNA silencing pathways of plants: silencing and its suppression by plant DNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:588-600. [PMID: 21683815 DOI: 10.1016/j.bbagrm.2011.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 02/02/2023]
Abstract
RNA silencing refers to processes that depend on small (s)RNAs to regulate the expression of eukaryotic genomes. In plants, these processes play critical roles in development, in responses to a wide array of stresses, in maintaining genome integrity and in defense against viral and bacterial pathogens. We provide here an updated view on the array of endogenous sRNA pathways, including microRNAs (miRNAs), discovered in the model plant Arabidopsis, which are also the basis for antiviral silencing. We emphasize the current knowledge as well as the recent advances made on understanding the defense and counter-defense strategies evolved in the arms race between plants and DNA viruses on both the nuclear and the cytoplasmic front. This article is part of a Special Issue entitled: MicroRNA's in viral gene regulation.
Collapse
Affiliation(s)
- Thomas Hohn
- Institute of Botany, University of Basel, Basel, Switzerland.
| | | |
Collapse
|
164
|
Independent chromatin binding of ARGONAUTE4 and SPT5L/KTF1 mediates transcriptional gene silencing. PLoS Genet 2011; 7:e1002120. [PMID: 21738482 PMCID: PMC3111484 DOI: 10.1371/journal.pgen.1002120] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 04/21/2011] [Indexed: 01/06/2023] Open
Abstract
Eukaryotic genomes contain significant amounts of transposons and repetitive DNA elements, which, if transcribed, can be detrimental to the organism. Expression of these elements is suppressed by establishment of repressive chromatin modifications. In Arabidopsis thaliana, they are silenced by the siRNA-mediated transcriptional gene silencing pathway where long non-coding RNAs (lncRNAs) produced by RNA Polymerase V (Pol V) guide ARGONAUTE4 (AGO4) to chromatin and attract enzymes that establish repressive chromatin modifications. It is unknown how chromatin modifying enzymes are recruited to chromatin. We show through chromatin immunoprecipitation (ChIP) that SPT5L/KTF1, a silencing factor and a homolog of SPT5 elongation factors, binds chromatin at loci subject to transcriptional silencing. Chromatin binding of SPT5L/KTF1 occurs downstream of RNA Polymerase V, but independently from the presence of 24-nt siRNA. We also show that SPT5L/KTF1 and AGO4 are recruited to chromatin in parallel and independently of each other. As shown using methylation-sensitive restriction enzymes, binding of both AGO4 and SPT5L/KTF1 is required for DNA methylation and repressive histone modifications of several loci. We propose that the coordinate binding of SPT5L and AGO4 creates a platform for direct or indirect recruitment of chromatin modifying enzymes.
Collapse
|
165
|
Kanno T, Habu Y. siRNA-mediated chromatin maintenance and its function in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:444-51. [PMID: 21605714 DOI: 10.1016/j.bbagrm.2011.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/02/2011] [Accepted: 05/05/2011] [Indexed: 01/13/2023]
Abstract
Small interfering RNAs (siRNAs) are widespread in various eukaryotes and are involved in maintenance of chromatin modifications, especially those for inert states represented by covalent modifications of cytosine and/or histones. In contrast to mammalian genomes, in which cytosine methylation is restricted mostly to CG dinucleotide sequences, inert chromatin in plants carries cytosine methylation in all sequence contexts, and siRNAs play a major role in directing cytosine methylation through the process of RNA-directed DNA methylation. Recent advances in this field have revealed that siRNA-mediated maintenance of inert chromatin has diverse roles in development as well as in plant responses to the environment. Various proteinaceous factors required for siRNA-mediated chromatin modification have been identified in Arabidopsis thaliana, and much effort has been invested in understanding their function and interaction, resulting in the assignment of many of these factors to specific biochemical activities and engagement with specific steps such as transcription of intergenic RNAs, RNA processing, and cytosine methylation. However, the precise functions of a number of factors remain undesignated, and interactions of distinct pathways for siRNA-mediated chromatin modification are largely unknown. In this review, we summarize the roles of siRNA-mediated chromatin modification in various biological processes of A. thaliana, and present some speculation on the functions and interactions of silencing factors that, while not yet assigned to defined biochemical activities, have been loosely assigned to specific events in siRNA-mediated chromatin modification pathways. Special Issue entitled: Epigenetic control of cellular and developmental processes in plants.
Collapse
Affiliation(s)
- Tatsuo Kanno
- National Institute of Agrobiological Sciences, Ibaraki, Japan
| | | |
Collapse
|
166
|
Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 2011; 11:204-20. [PMID: 20142834 DOI: 10.1038/nrg2719] [Citation(s) in RCA: 2539] [Impact Index Per Article: 181.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cytosine DNA methylation is a stable epigenetic mark that is crucial for diverse biological processes, including gene and transposon silencing, imprinting and X chromosome inactivation. Recent findings in plants and animals have greatly increased our understanding of the pathways used to accurately target, maintain and modify patterns of DNA methylation and have revealed unanticipated mechanistic similarities between these organisms. Key roles have emerged for small RNAs, proteins with domains that bind methylated DNA and DNA glycosylases in these processes. Drawing on insights from both plants and animals should deepen our understanding of the regulation and biological significance of DNA methylation.
Collapse
Affiliation(s)
- Julie A Law
- Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, 90095-1606, USA
| | | |
Collapse
|
167
|
Burgyán J, Havelda Z. Viral suppressors of RNA silencing. TRENDS IN PLANT SCIENCE 2011; 16:265-72. [PMID: 21439890 DOI: 10.1016/j.tplants.2011.02.010] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/14/2011] [Accepted: 02/22/2011] [Indexed: 05/03/2023]
Abstract
The infection and replication of viruses in the host induce diverse mechanisms for combating viral infection. One of the best-studied antiviral defence mechanisms is based on RNA silencing. Consistently, several viral suppressors of RNA silencing (VSRs) have been identified from almost all plant virus genera, which are surprisingly diverse within and across kingdoms, exhibiting no obvious sequence similarities. VSRs efficiently inhibit host antiviral responses by interacting with the key components of cellular silencing machinery, often mimicking their normal cellular functions. Recent findings have revealed that the impact of VSRs on endogenous pathways is more complex and profound than had been estimated thus far. This review highlights the current understanding of and new insights into the mechanisms and functions of plant VSRs.
Collapse
Affiliation(s)
- József Burgyán
- Istituto di Virologia Vegetale, CNR, Strada Delle Cacce 73, Torino, Italy.
| | | |
Collapse
|
168
|
Shimura H, Pantaleo V. Viral induction and suppression of RNA silencing in plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:601-12. [PMID: 21550428 DOI: 10.1016/j.bbagrm.2011.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/15/2011] [Accepted: 04/18/2011] [Indexed: 11/19/2022]
Abstract
RNA silencing in plants and insects can function as a defence mechanism against invading viruses. RNA silencing-based antiviral defence entails the production of virus-derived small interfering RNAs which guide specific antiviral effector complexes to inactivate viral genomes. As a response to this defence system, viruses have evolved viral suppressors of RNA silencing (VSRs) to overcome the host defence. VSRs can act on various steps of the different silencing pathways. Viral infection can have a profound impact on the host endogenous RNA silencing regulatory pathways; alterations of endogenous short RNA expression profile and gene expression are often associated with viral infections and their symptoms. Here we discuss our current understanding of the main steps of RNA-silencing responses to viral invasion in plants and the effects of VSRs on endogenous pathways. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.
Collapse
Affiliation(s)
- Hanako Shimura
- Research Faculty of Agriculture-Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
169
|
Abstract
Mediator, a conserved multiprotein complex in animals, plants, and fungi, is a cofactor of RNA Polymerase II (Pol II). It is known to promote basal Pol II-mediated transcription as well as bridge sequence-specific transcriptional regulators and Pol II to integrate regulatory information. Pol II transcribes not only protein-coding genes but also intergenic regions to generate noncoding RNAs such as small RNAs (microRNAs and small interfering RNAs) and long noncoding RNAs. Intriguingly, two plant-specific polymerases, Pol IV and Pol V, have evolved from Pol II and play a role in the production of small interfering RNAs and long noncoding RNAs at heterochromatic regions to maintain genome stability through transcriptional gene silencing (TGS). Recent studies have defined the composition of the plant Mediator and evaluated its role in noncoding RNA production in relationship to Pol II, Pol IV and Pol V. Here, we review the functions of Mediator and that of noncoding RNAs generated by Pol II, Pol IV and Pol V in plants, and discuss a role of Mediator in epigenetic regulation via noncoding RNA production.
Collapse
Affiliation(s)
- Yun Ju Kim
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | | |
Collapse
|
170
|
Zhang H, Zhu JK. RNA-directed DNA methylation. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:142-7. [PMID: 21420348 PMCID: PMC3096526 DOI: 10.1016/j.pbi.2011.02.003] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/11/2011] [Accepted: 02/21/2011] [Indexed: 05/19/2023]
Abstract
DNA methylation is an important epigenetic mechanism for silencing transposons and other repetitive elements, and for stable repression of specific transgenes and endogenous genes. Plants can utilize small interfering RNAs (siRNAs) to guide de novo DNA methyltransferases for the establishment of sequence-specific DNA methylation. Genetic and biochemical approaches have identified many components involved in RNA-directed DNA methylation (RdDM). These components function in one or more of the following three aspects: biogenesis of siRNAs, production of scaffold RNAs, and the assembly of an effector complex that involves the complementary pairing between the guide siRNAs and nascent scaffold RNAs and that recruits the DNA methyltransferases. Recent studies not only unveiled new molecular players and novel interactions, but also suggested spatial and temporal segregation of the RdDM process within the nucleus.
Collapse
Affiliation(s)
- Huiming Zhang
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Jian-Kang Zhu
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
- corresponding author: Zhu, Jian-Kang ()
| |
Collapse
|
171
|
Zielezinski A, Karlowski WM. Agos--a universal web tool for GW Argonaute-binding domain prediction. Bioinformatics 2011; 27:1318-9. [DOI: 10.1093/bioinformatics/btr128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
172
|
Greenberg MVC, Ausin I, Chan SWL, Cokus SJ, Cuperus JT, Feng S, Law JA, Chu C, Pellegrini M, Carrington JC, Jacobsen SE. Identification of genes required for de novo DNA methylation in Arabidopsis. Epigenetics 2011; 6:344-54. [PMID: 21150311 DOI: 10.4161/epi.6.3.14242] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
De novo DNA methylation in Arabidopsis thaliana is catalyzed by the methyltransferase DRM2, a homolog of the mammalian de novo methyltransferase DNMT3. DRM2 is targeted to DNA by small interfering RNAs (siRNAs) in a process known as RNA-directed DNA Methylation (RdDM). While several components of the RdDM pathway are known, a functional understanding of the underlying mechanism is far from complete. We employed both forward and reverse genetic approaches to identify factors involved in de novo methylation. We utilized the FWA transgene, which is methylated and silenced when transformed into wild-type plants, but unmethylated and expressed when transformed into de novo methylation mutants. Expression of FWA is marked by a late flowering phenotype, which is easily scored in mutant versus wild-type plants. By reverse genetics we discovered the requirement for known RdDM effectors AGO6 and NRPE5a for efficient de novo methylation. A forward genetic approach uncovered alleles of several components of the RdDM pathway, including alleles of clsy1, ktf1, and nrpd/e2, which have not been previously shown to be required for the initial establishment of DNA methylation. Mutations were mapped and genes cloned by both traditional and whole genome sequencing approaches. The methodologies and the mutant alleles discovered will be instrumental in further studies of de novo DNA methylation.
Collapse
Affiliation(s)
- Maxim V C Greenberg
- Department of Molecular, Cell and Developmental Biology, University of California Davis, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
A plant-specific transcription factor IIB-related protein, pBRP2, is involved in endosperm growth control. PLoS One 2011; 6:e17216. [PMID: 21390310 PMCID: PMC3044737 DOI: 10.1371/journal.pone.0017216] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 01/26/2011] [Indexed: 11/19/2022] Open
Abstract
General transcription factor IIB (TFIIB) and TFIIB-related factor (BRF), are conserved RNA polymerase II/III (RNAPII/III) selectivity factors that are involved in polymerase recruitment and transcription initiation in eukaryotes. Recent findings have shown that plants have evolved a third type of B-factor, plant-specific TFIIB-related protein 1 (pBRP1), which seems to be involved in RNAPI transcription. Here, we extend the repertoire of B-factors in plants by reporting the characterization of a novel TFIIB-related protein, plant-specific TFIIB-related protein 2 (pBRP2), which is found to date only in the Brassicacea family. Unlike other B-factors that are ubiquitously expressed, PBRP2 expression is restricted to reproductive organs and seeds as shown by RT-PCR, immunofluorescence labelling and GUS staining experiments. Interestingly, pbrp2 loss-of-function specifically affects the development of the syncytial endosperm, with both parental contributions required for wild-type development. pBRP2, is the first B-factor to exhibit cell-specific expression and regulation in eukaryotes, and might play a role in enforcing bi-parental reproduction in angiosperms.
Collapse
|
174
|
Bouhouche K, Gout JF, Kapusta A, Bétermier M, Meyer E. Functional specialization of Piwi proteins in Paramecium tetraurelia from post-transcriptional gene silencing to genome remodelling. Nucleic Acids Res 2011; 39:4249-64. [PMID: 21216825 PMCID: PMC3105430 DOI: 10.1093/nar/gkq1283] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proteins of the Argonaute family are small RNA carriers that guide regulatory complexes to their targets. The family comprises two major subclades. Members of the Ago subclade, which are present in most eukaryotic phyla, bind different classes of small RNAs and regulate gene expression at both transcriptional and post-transcriptional levels. Piwi subclade members appear to have been lost in plants and fungi and were mostly studied in metazoa, where they bind piRNAs and have essential roles in sexual reproduction. Their presence in ciliates, unicellular organisms harbouring both germline micronuclei and somatic macronuclei, offers an interesting perspective on the evolution of their functions. Here, we report phylogenetic and functional analyses of the 15 Piwi genes from Paramecium tetraurelia. We show that four constitutively expressed proteins are involved in siRNA pathways that mediate gene silencing throughout the life cycle. Two other proteins, specifically expressed during meiosis, are required for accumulation of scnRNAs during sexual reproduction and for programmed genome rearrangements during development of the somatic macronucleus. Our results indicate that Paramecium Piwi proteins have evolved to perform both vegetative and sexual functions through mechanisms ranging from post-transcriptional mRNA cleavage to epigenetic regulation of genome rearrangements.
Collapse
Affiliation(s)
- Khaled Bouhouche
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, 46 rue d'Ulm, 75005 Paris, France
| | | | | | | | | |
Collapse
|
175
|
Yao B, Li S, Lian SL, Fritzler MJ, Chan EKL. Mapping of Ago2-GW182 functional interactions. Methods Mol Biol 2011; 725:45-62. [PMID: 21528446 DOI: 10.1007/978-1-61779-046-1_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
MicroRNA (miRNA)-mediated posttranscriptional regulation of gene expression has become a major focus in understanding fine-tuning controls in many biological processes. Argonaute 2 protein (Ago2), a core component of RNA-induced silencing complex, directly binds miRNA and functions in both RNAi and miRNA pathways. GW182 is a marker protein of GW bodies (GWB, also known as mammalian P-bodies) and is known to bind the Ago2 protein. This Ago2-GW182 interaction is crucial for Ago2-miRNA-mediated translational silencing as well as the recruitment of Ago2 into GWB. Translational silencing of tethered Ago2 to a 3'UTR reporter requires GW182 for function, whereas tethered GW182 exerts a stronger repression than tethered Ago2 and does not apparently require Ago2. This chapter describes in detail the methods used in mapping Ago2-GW182 interactions.
Collapse
Affiliation(s)
- Bing Yao
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
176
|
van Mierlo JT, van Cleef KWR, van Rij RP. Defense and counterdefense in the RNAi-based antiviral immune system in insects. Methods Mol Biol 2011; 721:3-22. [PMID: 21431676 DOI: 10.1007/978-1-61779-037-9_1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RNA interference (RNAi) is an important pathway to combat virus infections in insects and plants. Hallmarks of antiviral RNAi in these organisms are: (1) an increase in virus replication after inactivation of major actors in the RNAi pathway, (2) production of virus-derived small interfering RNAs (v-siRNAs), and (3) suppression of RNAi by dedicated viral proteins. In this chapter, we will review the mechanism of RNAi in insects, its function as an antiviral immune system, viral small RNA profiles, and viral counterdefense strategies. We will also consider alternative, inducible antiviral immune responses.
Collapse
Affiliation(s)
- Joël T van Mierlo
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
177
|
Mallory A, Vaucheret H. Form, function, and regulation of ARGONAUTE proteins. THE PLANT CELL 2010. [PMID: 21183704 DOI: 10.1105/tpc.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Both transcriptional (TGS) and posttranscriptional gene silencing (PTGS) are conserved eukaryotic gene regulatory mechanisms, integral for taming exogenous (viruses and bacteria) or endogenous (repetitive elements and transposons) invasive nucleic acids to minimize their impact on genome integrity and function. TGS and PTGS also are essential for controlling the expression of protein coding genes throughout development or in response to environmental stimuli. In plants and animals, at least one member of the conserved ARGONAUTE (AGO) protein family comprises the catalytic engine of the silencing complex, which is guided by sequence-specific small RNA to cognate RNA. In this review, we present general features of plant and animal AGO proteins and detail our knowledge on the 10 Arabidopsis thaliana AGOs.
Collapse
Affiliation(s)
- Allison Mallory
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique, 78026 Versailles Cedex, France.
| | | |
Collapse
|
178
|
Mallory A, Vaucheret H. Form, function, and regulation of ARGONAUTE proteins. THE PLANT CELL 2010; 22:3879-89. [PMID: 21183704 PMCID: PMC3027166 DOI: 10.1105/tpc.110.080671] [Citation(s) in RCA: 271] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 11/28/2010] [Accepted: 12/08/2010] [Indexed: 05/18/2023]
Abstract
Both transcriptional (TGS) and posttranscriptional gene silencing (PTGS) are conserved eukaryotic gene regulatory mechanisms, integral for taming exogenous (viruses and bacteria) or endogenous (repetitive elements and transposons) invasive nucleic acids to minimize their impact on genome integrity and function. TGS and PTGS also are essential for controlling the expression of protein coding genes throughout development or in response to environmental stimuli. In plants and animals, at least one member of the conserved ARGONAUTE (AGO) protein family comprises the catalytic engine of the silencing complex, which is guided by sequence-specific small RNA to cognate RNA. In this review, we present general features of plant and animal AGO proteins and detail our knowledge on the 10 Arabidopsis thaliana AGOs.
Collapse
Affiliation(s)
- Allison Mallory
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique, 78026 Versailles Cedex, France.
| | | |
Collapse
|
179
|
The de novo cytosine methyltransferase DRM2 requires intact UBA domains and a catalytically mutated paralog DRM3 during RNA-directed DNA methylation in Arabidopsis thaliana. PLoS Genet 2010; 6:e1001182. [PMID: 21060858 PMCID: PMC2965745 DOI: 10.1371/journal.pgen.1001182] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 09/28/2010] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic DNA cytosine methylation can be used to transcriptionally silence repetitive sequences, including transposons and retroviruses. This silencing is stable between cell generations as cytosine methylation is maintained epigenetically through DNA replication. The Arabidopsis thaliana Dnmt3 cytosine methyltransferase ortholog DOMAINS rearranged methyltransferase2 (DRM2) is required for establishment of small interfering RNA (siRNA) directed DNA methylation. In mammals PIWI proteins and piRNA act in a convergently evolved RNA-directed DNA methylation system that is required to repress transposon expression in the germ line. De novo methylation may also be independent of RNA interference and small RNAs, as in Neurospora crassa. Here we identify a clade of catalytically mutated DRM2 paralogs in flowering plant genomes, which in A.thaliana we term domains rearranged methyltransferase3 (DRM3). Despite being catalytically mutated, DRM3 is required for normal maintenance of non-CG DNA methylation, establishment of RNA-directed DNA methylation triggered by repeat sequences and accumulation of repeat-associated small RNAs. Although the mammalian catalytically inactive Dnmt3L paralogs act in an analogous manner, phylogenetic analysis indicates that the DRM and Dnmt3 protein families diverged independently in plants and animals. We also show by site-directed mutagenesis that both the DRM2 N-terminal UBA domains and C-terminal methyltransferase domain are required for normal RNA-directed DNA methylation, supporting an essential targeting function for the UBA domains. These results suggest that plant and mammalian RNA-directed DNA methylation systems consist of a combination of ancestral and convergent features.
Collapse
|
180
|
Bivalkar-Mehla S, Vakharia J, Mehla R, Abreha M, Kanwar JR, Tikoo A, Chauhan A. Viral RNA silencing suppressors (RSS): novel strategy of viruses to ablate the host RNA interference (RNAi) defense system. Virus Res 2010; 155:1-9. [PMID: 20951748 DOI: 10.1016/j.virusres.2010.10.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 09/28/2010] [Accepted: 10/05/2010] [Indexed: 12/13/2022]
Abstract
Pathogenic viruses have developed a molecular defense arsenal for their survival by counteracting the host anti-viral system known as RNA interference (RNAi). Cellular RNAi, in addition to regulating gene expression through microRNAs, also serves as a barrier against invasive foreign nucleic acids. RNAi is conserved across the biological species, including plants, animals and invertebrates. Viruses in turn, have evolved mechanisms that can counteract this anti-viral defense of the host. Recent studies of mammalian viruses exhibiting RNA silencing suppressor (RSS) activity have further advanced our understanding of RNAi in terms of host-virus interactions. Viral proteins and non-coding viral RNAs can inhibit the RNAi (miRNA/siRNA) pathway through different mechanisms. Mammalian viruses having dsRNA-binding regions and GW/WG motifs appear to have a high chance of conferring RSS activity. Although, RSSs of plant and invertebrate viruses have been well characterized, mammalian viral RSSs still need in-depth investigations to present the concrete evidences supporting their RNAi ablation characteristics. The information presented in this review together with any perspective research should help to predict and identify the RSS activity-endowed new viral proteins that could be the potential targets for designing novel anti-viral therapeutics.
Collapse
Affiliation(s)
- Shalmali Bivalkar-Mehla
- Dept of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | | | | | | | | | | | | |
Collapse
|
181
|
Meyer P. DNA methylation systems and targets in plants. FEBS Lett 2010; 585:2008-15. [DOI: 10.1016/j.febslet.2010.08.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 08/12/2010] [Indexed: 12/27/2022]
|
182
|
|
183
|
Giner A, Lakatos L, García-Chapa M, López-Moya JJ, Burgyán J. Viral protein inhibits RISC activity by argonaute binding through conserved WG/GW motifs. PLoS Pathog 2010; 6:e1000996. [PMID: 20657820 PMCID: PMC2904775 DOI: 10.1371/journal.ppat.1000996] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 06/11/2010] [Indexed: 11/24/2022] Open
Abstract
RNA silencing is an evolutionarily conserved sequence-specific gene-inactivation system that also functions as an antiviral mechanism in higher plants and insects. To overcome antiviral RNA silencing, viruses express silencing-suppressor proteins. These viral proteins can target one or more key points in the silencing machinery. Here we show that in Sweet potato mild mottle virus (SPMMV, type member of the Ipomovirus genus, family Potyviridae), the role of silencing suppressor is played by the P1 protein (the largest serine protease among all known potyvirids) despite the presence in its genome of an HC-Pro protein, which, in potyviruses, acts as the suppressor. Using in vivo studies we have demonstrated that SPMMV P1 inhibits si/miRNA-programmed RISC activity. Inhibition of RISC activity occurs by binding P1 to mature high molecular weight RISC, as we have shown by immunoprecipitation. Our results revealed that P1 targets Argonaute1 (AGO1), the catalytic unit of RISC, and that suppressor/binding activities are localized at the N-terminal half of P1. In this region three WG/GW motifs were found resembling the AGO-binding linear peptide motif conserved in metazoans and plants. Site-directed mutagenesis proved that these three motifs are absolutely required for both binding and suppression of AGO1 function. In contrast to other viral silencing suppressors analyzed so far P1 inhibits both existing and de novo formed AGO1 containing RISC complexes. Thus P1 represents a novel RNA silencing suppressor mechanism. The discovery of the molecular bases of P1 mediated silencing suppression may help to get better insight into the function and assembly of the poorly explored multiprotein containing RISC. RNA silencing is an evolutionarily conserved sequence-specific gene-inactivation system that also functions as a major antiviral mechanism in higher plants and insects. Viral RNAs are processed by Dicer-like proteins into small interfering (si) RNAs, which trigger the RNA-induced silencing complex (RISC) assembly. Then siRNA loaded RISC inactivates cognate viral RNA. However, viral silencing suppressors evolved to counteract with RNA silencing targeting one or more key points in the silencing machinery. Here we show that in Sweet potato mild mottle virus, the role of silencing suppressor is played by P1 protein and it works by inhibiting si/miRNA-loaded RISC through targeting Argonaute 1 (AGO1). We confirmed using immunoprecipitation and in vitro binding assays that the interaction between P1 and small RNA loaded AGO1 is specific and direct. The suppression activity mapped to the N-terminal part of P1 containing three WG/GW motifs that resemble the AGO-binding linear peptide motif conserved in metazoans and plants. Site-directed mutagenesis proved that these three motifs are essential for both binding and suppression of AGO1 function. P1 protein is the only silencing suppressor identified so far that inhibits active RISC and this is the first demonstration of a WG/GW protein having negative effect on RNA silencing.
Collapse
Affiliation(s)
- Ana Giner
- Centre for Research in Agricultural Genomics, CRAG, CSIC-IRTA-UAB, Barcelona, Spain
| | - Lóránt Lakatos
- Agricultural Biotechnology Centre, Gödöllő, Hungary
- * E-mail: (LL); (JJLM); or (JB)
| | | | - Juan José López-Moya
- Centre for Research in Agricultural Genomics, CRAG, CSIC-IRTA-UAB, Barcelona, Spain
- * E-mail: (LL); (JJLM); or (JB)
| | - József Burgyán
- Agricultural Biotechnology Centre, Gödöllő, Hungary
- Instituto di Virologia Vegetale, Torino, Italy
- * E-mail: (LL); (JJLM); or (JB)
| |
Collapse
|
184
|
Gibbings D, Voinnet O. Control of RNA silencing and localization by endolysosomes. Trends Cell Biol 2010; 20:491-501. [PMID: 20630759 DOI: 10.1016/j.tcb.2010.06.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/31/2010] [Accepted: 06/02/2010] [Indexed: 01/24/2023]
Abstract
Recent advances in the cell biology of RNA silencing have unraveled an intriguing association of post-transcriptionally regulated RNA with endolysosomal membranes in several circumstances of mRNA localization, microRNA activity and viral RNA transport and packaging. Endolysosomal membranes are a nexus of communication and transport between cells and their exterior environment for signaling receptors, pathogens and nutrients. Here, we discuss recent data that support a view that endolysosomal positioning of RNA might facilitate intercellular transmission of RNA and host defence against viruses and retrotransposons. Positioning of RNA regulatory mechanisms on endolysosomal membranes might permit rapid and localized control of microRNA (miRNA) gene regulatory programs and mRNA translation in response to environmental signals, such as activated plasma membrane receptors transported on endosomes. Finally, we suggest that the pathology of several conditions, including Huntington's disease, might be a consequence of the disruption of the control of RNA via endolysosomal membranes.
Collapse
Affiliation(s)
- Derrick Gibbings
- UPR2357, Centre National de la Recherche Scientifique, Institut de Biologie Moleculaire des Plantes, 12 rue du General Zimmer, 67084 Strasbourg France.
| | | |
Collapse
|
185
|
Mahfouz MM. RNA-directed DNA methylation: mechanisms and functions. PLANT SIGNALING & BEHAVIOR 2010; 5:806-16. [PMID: 20421728 PMCID: PMC3115029 DOI: 10.4161/psb.5.7.11695] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 05/21/2023]
Abstract
Epigenetic RNA based gene silencing mechanisms play a major role in genome stability and control of gene expression. Transcriptional gene silencing via RNA-directed DNA methylation (RdDM) guides the epigenetic regulation of the genome in response to disease states, growth, developmental and stress signals. RdDM machinery is composed of proteins that produce and modify 24-nt- long siRNAs, recruit the RdDM complex to genomic targets, methylate DNA and remodel chromatin. The final DNA methylation pattern is determined by either DNA methyltransferase alone or by the combined action of DNA methyltransferases and demethylases. The dynamic interaction between RdDM and demethylases may render the plant epigenome plastic to growth, developmental, and environmental cues. The epigenome plasticity may allow the plant genome to assume many epigenomes and to have the right epigenome at the right time in response to intracellular or extracellular stimuli. This review discusses recent advances in RdDM research and considers future perspectives.
Collapse
Affiliation(s)
- Magdy M Mahfouz
- Center for Plant Stress Genomics & Technology, 4700 King Abdullah University of Science & Technology, Kingdom of Saudi Arabia.
| |
Collapse
|
186
|
Cuperus JT, Carbonell A, Fahlgren N, Garcia-Ruiz H, Burke RT, Takeda A, Sullivan CM, Gilbert SD, Montgomery TA, Carrington JC. Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 2010; 17:997-1003. [PMID: 20562854 PMCID: PMC2916640 DOI: 10.1038/nsmb.1866] [Citation(s) in RCA: 320] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 06/10/2010] [Indexed: 12/21/2022]
Abstract
RNA interference pathways can involve amplification of secondary siRNAs by RNA-dependent RNA polymerases. In plants, RDR6-dependent secondary siRNAs arise from transcripts targeted by some microRNAs (miRNAs). Here, Arabidopsis thaliana secondary siRNAs from mRNA as well as trans-acting siRNAs are shown to be triggered through initial targeting by a 22-nucleotide (nt) miRNA that associates with AGO1. In contrast to canonical 21-nt miRNAs, 22-nt miRNAs primarily arise from foldback precursors containing asymmetric bulges. Using artificial miRNA constructs, conversion of asymmetric foldbacks to symmetric foldbacks resulted in the production of 21-nt forms of miR173, miR472 and miR828. Both 21- and 22-nt forms associated with AGO1 and guided accurate slicer activity, but only 22-nt forms were competent to trigger RDR6-dependent siRNA production from target RNA. These data suggest that AGO1 functions differentially with 21- and 22-nt miRNAs to engage the RDR6-associated amplification apparatus.
Collapse
Affiliation(s)
- Josh T Cuperus
- Molecular and Cellular Biology Program, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Chekulaeva M, Parker R, Filipowicz W. The GW/WG repeats of Drosophila GW182 function as effector motifs for miRNA-mediated repression. Nucleic Acids Res 2010; 38:6673-83. [PMID: 20530530 PMCID: PMC2965232 DOI: 10.1093/nar/gkq501] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The control of messenger RNA (mRNA) function by micro RNAs (miRNAs) in animal cells requires the GW182 protein. GW182 is recruited to the miRNA repression complex via interaction with Argonaute protein, and functions downstream to repress protein synthesis. Interaction with Argonaute is mediated by GW/WG repeats, which are conserved in many Argonaute-binding proteins involved in RNA interference and miRNA silencing, from fission yeast to mammals. GW182 contains at least three effector domains that function to repress target mRNA. Here, we analyze the functions of the N-terminal GW182 domain in repression and Argonaute1 binding, using tethering and immunoprecipitation assays in Drosophila cultured cells. We demonstrate that its function in repression requires intact GW/WG repeats, but does not involve interaction with the Argonaute1 protein, and is independent of the mRNA polyadenylation status. These results demonstrate a novel role for the GW/WG repeats as effector motifs in miRNA-mediated repression.
Collapse
Affiliation(s)
- Marina Chekulaeva
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland.
| | | | | |
Collapse
|
188
|
Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA Translation and Stability by microRNAs. Annu Rev Biochem 2010; 79:351-79. [PMID: 20533884 DOI: 10.1146/annurev-biochem-060308-103103] [Citation(s) in RCA: 2386] [Impact Index Per Article: 159.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marc Robert Fabian
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, Quebec, H3G 1Y6, Canada;
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, Quebec, H3G 1Y6, Canada;
| | - Witold Filipowicz
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland;
| |
Collapse
|
189
|
Jin H, Zhu JK. A viral suppressor protein inhibits host RNA silencing by hooking up with Argonautes. Genes Dev 2010; 24:853-6. [PMID: 20439425 DOI: 10.1101/gad.1927310] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RNA viruses are particularly vulnerable to RNAi-based defenses in the host, and thus have evolved specific proteins, known as viral suppressors of RNA silencing (VSRs), as a counterdefense. In this issue of Genes & Development, Azevedo and colleagues (pp. 904-915) discovered that P38, the VSR of Turnip crinkle virus, uses its glycine/tryptophane (GW) motifs as an ARGONAUTE (AGO) hook to attract and disarm the host's essential effector of RNA silencing. Several GW motif-containing cellular proteins are known to be important partners of AGOs in RNA silencing effector complexes in yeast, plants, and animals. The GW motif appears to be a versatile and effective tool for regulating the activities of RNA silencing pathways, and the use of GW mimicry to compete for and inhibit host AGOs may be a strategy used by many pathogens to counteract host RNAi-based defenses.
Collapse
Affiliation(s)
- Hailing Jin
- Institute for Integrative Genome Biology, University of California at Riverside, Riverside, California 92521, USA
| | | |
Collapse
|
190
|
Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev 2010; 24:904-15. [PMID: 20439431 DOI: 10.1101/gad.1908710] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In plants and invertebrates, viral-derived siRNAs processed by the RNaseIII Dicer guide Argonaute (AGO) proteins as part of antiviral RNA-induced silencing complexes (RISC). As a counterdefense, viruses produce suppressor proteins (VSRs) that inhibit the host silencing machinery, but their mechanisms of action and cellular targets remain largely unknown. Here, we show that the Turnip crinckle virus (TCV) capsid, the P38 protein, acts as a homodimer, or multiples thereof, to mimic host-encoded glycine/tryptophane (GW)-containing proteins normally required for RISC assembly/function in diverse organisms. The P38 GW residues bind directly and specifically to Arabidopsis AGO1, which, in addition to its role in endogenous microRNA-mediated silencing, is identified as a major effector of TCV-derived siRNAs. Point mutations in the P38 GW residues are sufficient to abolish TCV virulence, which is restored in Arabidopsis ago1 hypomorphic mutants, uncovering both physical and genetic interactions between the two proteins. We further show how AGO1 quenching by P38 profoundly impacts the cellular availability of the four Arabidopsis Dicers, uncovering an AGO1-dependent, homeostatic network that functionally connects these factors together. The likely widespread occurrence and expected consequences of GW protein mimicry on host silencing pathways are discussed in the context of innate and adaptive immunity in plants and metazoans.
Collapse
|
191
|
Role of GW182 proteins and PABPC1 in the miRNA pathway: a sense of déjà vu. Nat Rev Mol Cell Biol 2010; 11:379-84. [PMID: 20379206 DOI: 10.1038/nrm2885] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GW182 proteins have emerged as key components of microRNA (miRNA) silencing complexes in animals. Although the precise molecular function of GW182 proteins is not fully understood, new findings indicate that they act as poly(A)-binding protein (PABP)-interacting proteins (PAIPs) that promote gene silencing, at least in part, by interfering with cytoplasmic PABP1 (PABPC1) function during translation and mRNA stabilization. This recent discovery paves the way for future studies of miRNA silencing mechanisms.
Collapse
|
192
|
Karlowski WM, Zielezinski A, Carrère J, Pontier D, Lagrange T, Cooke R. Genome-wide computational identification of WG/GW Argonaute-binding proteins in Arabidopsis. Nucleic Acids Res 2010; 38:4231-45. [PMID: 20338883 PMCID: PMC2910046 DOI: 10.1093/nar/gkq162] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Domains in Arabidopsis proteins NRPE1 and SPT5-like, composed almost exclusively of repeated motifs in which only WG or GW sequences and an overall amino-acid preference are conserved, have been experimentally shown to bind multiple molecules of Argonaute (AGO) protein(s). Domain swapping between the WG/GW domains of NRPE1 and the human protein GW182 showed a conserved function. As classical sequence alignment methods are poorly-adapted to detect such weakly-conserved motifs, we have developed a tool to carry out a systematic analysis to identify genes potentially encoding AGO-binding GW/WG proteins. Here, we describe exhaustive analysis of the Arabidopsis genome for all regions potentially encoding proteins bearing WG/GW motifs and consider the possible role of some of them in AGO-dependent mechanisms. We identified 20 different candidate WG/GW genes, encoding proteins in which the predicted domains range from 92aa to 654aa. These mostly correspond to a limited number of families: RNA-binding proteins, transcription factors, glycine-rich proteins, translation initiation factors and known silencing-associated proteins such as SDE3. Recent studies have argued that the interaction between WG/GW-rich domains and AGO proteins is evolutionarily conserved. Here, we demonstrate by an in silico domain-swapping simulation between plant and mammalian WG/GW proteins that the biased amino-acid composition of the AGO-binding sites is conserved.
Collapse
Affiliation(s)
- Wojciech M Karlowski
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland.
| | | | | | | | | | | |
Collapse
|
193
|
Abstract
Small RNAs associated with post-transcriptional gene silencing were first discovered in plants in 1999. Although this study marked the beginning of small RNA biology in plants, the sequence of the Arabidopsis genome and related genomic resources that were soon to become available to the Arabidopsis community launched the research on small RNAs at a remarkable pace. In 2000, when the genetic blueprint of the first plant species was revealed, the tens of thousands of endogenous small RNA species as we know today remained hidden features of the genome. However, the subsequent 10 years have witnessed an explosion of our knowledge of endogenous small RNAs: their widespread existence, diversity, biogenesis, mode of action and biological functions. As key sequence-specific regulators of gene expression in the nucleus and the cytoplasm, small RNAs influence almost all aspects of plant biology. Because of the extensive conservation of mechanisms concerning the biogenesis and molecular actions of small RNAs, research in the model plant Arabidopsis has contributed vital knowledge to the small RNA field in general. Our knowledge of small RNAs gained primarily from Arabidopsis has also led to the invention of effective gene knock-down technologies that are applicable to diverse plant species, including crop plants. Here, I attempt to recount the developments of the small RNA field in the pre- and post-genomic era, in celebration of the 10th anniversary of the completion of the first plant genome.
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
194
|
Havecker ER, Wallbridge LM, Hardcastle TJ, Bush MS, Kelly KA, Dunn RM, Schwach F, Doonan JH, Baulcombe DC. The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci. THE PLANT CELL 2010; 22:321-34. [PMID: 20173091 PMCID: PMC2845420 DOI: 10.1105/tpc.109.072199] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/31/2009] [Accepted: 01/29/2010] [Indexed: 05/18/2023]
Abstract
Argonaute (AGO) effectors of RNA silencing bind small RNA (sRNA) molecules and mediate mRNA cleavage, translational repression, or epigenetic DNA modification. In many organisms, these targeting mechanisms are devolved to different products of AGO multigene families. To investigate the basis of AGO functional diversification, we characterized three closely related Arabidopsis thaliana AGOs (AGO4, AGO6, and AGO9) implicated in RNA-directed DNA methylation. All three AGOs bound 5' adenosine 24-nucleotide sRNAs, but each exhibited different preferences for sRNAs from different heterochromatin-associated loci. This difference was reduced when AGO6 and AGO9 were expressed from the AGO4 promoter, indicating that the functional diversification was partially due to differential expression of the corresponding genes. However, the AGO4-directed pattern of sRNA accumulation and DNA methylation was not fully recapitulated with AGO6 or AGO9 expressed from the AGO4 promoter. Here, we show that sRNA length and 5' nucleotide do not account for the observed functional diversification of these AGOs. Instead, the selectivity of sRNA binding is determined by the coincident expression of the AGO and sRNA-generating loci, and epigenetic modification is influenced by interactions between the AGO protein and the different target loci. These findings highlight the importance of tissue specificity and AGO-associated proteins in influencing epigenetic modifications.
Collapse
Affiliation(s)
- Ericka R. Havecker
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Laura M. Wallbridge
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Thomas J. Hardcastle
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Maxwell S. Bush
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Krystyna A. Kelly
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Ruth M. Dunn
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Frank Schwach
- Computing Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - John H. Doonan
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - David C. Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
195
|
Abstract
Small RNAs of 20-30 nucleotides guide regulatory processes at the DNA or RNA level in a wide range of eukaryotic organisms. Many, although not all, small RNAs are processed from double-stranded RNAs or single-stranded RNAs with local hairpin structures by RNase III enzymes and are loaded into argonaute-protein-containing effector complexes. Many eukaryotic organisms have evolved multiple members of RNase III and the argonaute family of proteins to accommodate different classes of small RNAs with specialized molecular functions. Some small RNAs cause transcriptional gene silencing by guiding heterochromatin formation at homologous loci, whereas others lead to posttranscriptional gene silencing through mRNA degradation or translational inhibition. Small RNAs are not only made from and target foreign nucleic acids such as viruses and transgenes, but are also derived from endogenous loci and regulate a multitude of developmental and physiological processes. Here I review the biogenesis and function of three major classes of endogenous small RNAs in plants: microRNAs, trans-acting siRNAs, and heterochromatic siRNAs, with an emphasis on the roles of these small RNAs in developmental regulation.
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA.
| |
Collapse
|
196
|
Shen XH, Han YJ, Cui XS, Kim NH. Ago2 and GW182 expression in mouse preimplantation embryos: a link between microRNA biogenesis and GW182 protein synthesis. Reprod Fertil Dev 2010; 22:634-43. [DOI: 10.1071/rd09188] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 09/28/2009] [Indexed: 12/11/2022] Open
Abstract
MicroRNA-mediated RNA interference appears to play a role in early development and differentiation processes in preimplantation embryos. However, the expression of its key effectors, including Ago2, a key component of the RNA-induced silencing complex, and GW182, a critical component of GW bodies (GWBs), has not been assessed in preimplantation embryos. To characterise the roles of Ago2 and GW182 in early embryo development, we determined their transcription and protein synthesis in mouse embryos. Transcript levels of Ago2 and GW182 increased steadily from the one-cell stage through to the blastocyst stage when data were not normalised against an internal reference. However, when normalised against the internal standard, transcript levels for both genes were highest in four-cell stage embryos and decreased steadily through to the blastocyst stage. Indirect immunocytochemistry showed that both AGO2 and GW182 proteins were expressed in each stage in the early embryo and were observed to colocalise in the morula and blastocyst stages. Specific silencing of mRNA expression by short interference (si) RNA against Ago2 or Dicer1 decreased the expression of selected apoptosis- and development-related microRNAs, but did not inhibit development up to the blastocyst stage. However, transcription levels of Oct3/4, Nanog and Sox2 were decreased in both Ago2- and Dicer1-knockdown embryos at the blastocyst stage. Furthermore, although knockdown of these genes did not change transcript levels of GW182, GW182 protein synthesis was decreased in blastocyst stage embryos. These results suggest that Ago2 and Dicer1 regulate GW182 protein expression in mouse embryos, which is linked to microRNA biogenesis and likely to be important for differentiation in the blastocyst stage.
Collapse
|
197
|
Zheng B, Wang Z, Li S, Yu B, Liu JY, Chen X. Intergenic transcription by RNA polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis. Genes Dev 2009; 23:2850-60. [PMID: 19948763 DOI: 10.1101/gad.1868009] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intergenic transcription by RNA Polymerase II (Pol II) is widespread in plant and animal genomes, but the functions of intergenic transcription or the resulting noncoding transcripts are poorly understood. Here, we show that Arabidopsis Pol II is indispensable for endogenous siRNA-mediated transcriptional gene silencing (TGS) at intergenic low-copy-number loci, despite the presence of two other polymerases-Pol IV and Pol V-that specialize in TGS through siRNAs. We show that Pol II produces noncoding scaffold transcripts that originate outside of heterochromatic, siRNA-generating loci. Through these transcripts and physical interactions with the siRNA effector protein ARGONAUTE4 (AGO4), Pol II recruits AGO4/siRNAs to homologous loci to result in TGS. Meanwhile, Pol II transcription also recruits Pol IV and Pol V to different locations at heterochromatic loci to promote siRNA biogenesis and siRNA-mediated TGS, respectively. This study establishes that intergenic transcription by Pol II is required for siRNA-mediated TGS, and reveals an intricate collaboration and division of labor among the three polymerases in gene silencing.
Collapse
Affiliation(s)
- Binglian Zheng
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California at Riverside, Riverside, California 92521, USA
| | | | | | | | | | | |
Collapse
|
198
|
Dalakouras A, Moser M, Zwiebel M, Krczal G, Hell R, Wassenegger M. A hairpin RNA construct residing in an intron efficiently triggered RNA-directed DNA methylation in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:840-51. [PMID: 19702668 DOI: 10.1111/j.1365-313x.2009.04003.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
So far, conventional hairpin RNA (hpRNA) constructs consisting of an inverted repeat (IR) of target promoters directly introduced into an expression cassette have been used to mediate de novo DNA methylation. Transcripts of such constructs resemble mRNA molecules, and are likely to be exported to the cytoplasm. The presence of hpRNAs in the cytoplasm and the nucleus may account for the simultaneous activation of post-transcriptional gene silencing (PTGS) and RNA-directed DNA methylation (RdDM). We hypothesized that by retaining hpRNAs in the nucleus, efficient induction of only RdDM may be achieved. Thus, we introduced into tobacco a transgene containing an intron into which an IR of a target promoter was inserted. The intronic hpRNA initiated highly specific cis- and trans-methylation, but did not induce PTGS. No spreading of methylation into sequences flanking the region of homology between the hpRNA and the target DNA was detectable. The efficient methylation-directing activity of the intronic hpRNA may indicate a previously unrecognized role of introns, potentially regulating gene expression at the transcriptional level.
Collapse
Affiliation(s)
- Athanasios Dalakouras
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, 67435 Neustadt, Germany
| | | | | | | | | | | |
Collapse
|
199
|
Zhao Y, Shen Y, Yang S, Wang J, Hu Q, Wang Y, He Q. Ubiquitin ligase components Cullin4 and DDB1 are essential for DNA methylation in Neurospora crassa. J Biol Chem 2009; 285:4355-65. [PMID: 19948733 DOI: 10.1074/jbc.m109.034710] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
DNA methylation and H3K9 trimethylation are involved in gene silencing and heterochromatin assembly in mammals and fungi. In the filamentous fungus Neurospora crassa, it has been demonstrated that H3K9 trimethylation catalyzed by histone methyltransferase DIM-5 is essential for DNA methylation. Trimethylated H3K9 is recognized by HP1, which then recruits the DNA methyltransferase DIM-2 to methylate the DNA. Here, we show that in Neurospora, ubiquitin ligase components Cullin4 and DDB1 are essential for DNA methylation. These proteins regulate DNA methylation through their effects on the trimethylation of histone H3K9. In addition, we showed that the E3 ligase activity of the Cul4-based ubiquitin ligase is required for its function in histone H3K9 trimethylation in Neurospora. Furthermore, we demonstrated that Cul4 and DDB1 are associated with the histone methyltransferase DIM-5 protein in vivo. Together, these results suggest a mechanism for DNA methylation control that may be applicable in other eukaryotic organisms.
Collapse
Affiliation(s)
- Yuanbiao Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | |
Collapse
|
200
|
Perales R, Bentley D. "Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions. Mol Cell 2009; 36:178-91. [PMID: 19854129 DOI: 10.1016/j.molcel.2009.09.018] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/07/2009] [Accepted: 08/06/2009] [Indexed: 12/27/2022]
Abstract
Much of the complex process of RNP biogenesis takes place at the gene cotranscriptionally. The target for RNA binding and processing factors is, therefore, not a solitary RNA molecule but, rather, a transcription elongation complex (TEC) comprising the growing nascent RNA and RNA polymerase traversing a chromatin template with associated passenger proteins. RNA maturation factors are not the only nuclear machines whose work is organized cotranscriptionally around the TEC scaffold. Additionally, DNA repair, covalent chromatin modification, "gene gating" at the nuclear pore, Ig gene hypermutation, and sister chromosome cohesion have all been demonstrated or suggested to involve a cotranscriptional component. From this perspective, TECs can be viewed as potent "community organizers" within the nucleus.
Collapse
Affiliation(s)
- Roberto Perales
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, UCHSC, MS8101, P.O. Box 6511, Aurora CO, 80045, USA
| | | |
Collapse
|