151
|
Ahlskog JK, Larsen BD, Achanta K, Sørensen CS. ATM/ATR-mediated phosphorylation of PALB2 promotes RAD51 function. EMBO Rep 2016; 17:671-81. [PMID: 27113759 PMCID: PMC5341514 DOI: 10.15252/embr.201541455] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/23/2016] [Accepted: 02/29/2016] [Indexed: 11/09/2022] Open
Abstract
DNA damage activates the ATM and ATR kinases that coordinate checkpoint and DNA repair pathways. An essential step in homology-directed repair (HDR) of DNA breaks is the formation of RAD51 nucleofilaments mediated by PALB2-BRCA2; however, roles of ATM and ATR in this critical step of HDR are poorly understood. Here, we show that PALB2 is markedly phosphorylated in response to genotoxic stresses such as ionizing radiation and hydroxyurea. This response is mediated by the ATM and ATR kinases through three N-terminal S/Q-sites in PALB2, the consensus target sites for ATM and ATR Importantly, a phospho-deficient PALB2 mutant is unable to support proper RAD51 foci formation, a key PALB2 regulated repair event, whereas a phospho-mimicking PALB2 version supports RAD51 foci formation. Moreover, phospho-deficient PALB2 is less potent in HDR than wild-type PALB2. Further, this mutation reveals a separation in PALB2 function, as the PALB2-dependent checkpoint response is normal in cells expressing the phospho-deficient PALB2 mutant. Collectively, our findings highlight a critical importance of PALB2 phosphorylation as a novel regulatory step in genome maintenance after genotoxic stress.
Collapse
Affiliation(s)
- Johanna K Ahlskog
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Brian D Larsen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Kavya Achanta
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Claus S Sørensen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
152
|
Abstract
The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is initiated by nucleolytic degradation of the 5'-terminated strands in a process termed end resection. End resection generates 3'-single-stranded DNA tails, substrates for Rad51 to catalyze homologous pairing and DNA strand exchange, and for activation of the DNA damage checkpoint. The commonly accepted view is that end resection occurs by a two-step mechanism. In the first step, Sae2/CtIP activates the Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex to endonucleolytically cleave the 5'-terminated DNA strands close to break ends, and in the second step Exo1 and/or Dna2 nucleases extend the resected tracts to produce long 3'-ssDNA-tailed intermediates. Initiation of resection commits a cell to repair a DSB by HR because long ssDNA overhangs are poor substrates for non-homologous end joining (NHEJ). Thus, the initiation of end resection has emerged as a critical control point for repair pathway choice. Here, I review recent studies on the mechanism of end resection and how this process is regulated to ensure the most appropriate repair outcome.
Collapse
Affiliation(s)
- Lorraine S Symington
- a Department of Microbiology & Immunology , Columbia University Medical Center , New York , USA
| |
Collapse
|
153
|
Cui J, Luo J, Kim YC, Snyder C, Becirovic D, Downs B, Lynch H, Wang SM. Differences of Variable Number Tandem Repeats in XRCC5 Promoter Are Associated with Increased or Decreased Risk of Breast Cancer in BRCA Gene Mutation Carriers. Front Oncol 2016; 6:92. [PMID: 27148484 PMCID: PMC4829605 DOI: 10.3389/fonc.2016.00092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/29/2016] [Indexed: 01/04/2023] Open
Abstract
Ku80 is a subunit of the Ku heterodimer that binds to DNA double-strand break ends as part of the non-homologous end joining (NHEJ) pathway. Ku80 is also involved in homologous recombination (HR) via its interaction with BRCA1. Ku80 is encoded by the XRCC5 gene that contains a variable number tandem repeat (VNTR) insertion in its promoter region. Different VNTR genotypes can alter XRCC5 expression and affect Ku80 production, thereby affecting NHEJ and HR pathways. VNTR polymorphism is associated with multiple types of sporadic cancer. In this study, we investigated its potential association with familial breast cancer at the germline level. Using PCR, PAGE, Sanger sequencing, and statistical analyses, we compared VNTR genotypes in the XRCC5 promoter between healthy individuals and three types of familial breast cancer cases: mutated BRCA1 (BRCA1+), mutated BRCA2 (BRCA2+), and wild-type BRCA1/BRCA2 (BRCAx). We observed significant differences of VNTR genotypes between control and BRCA1+ group (P < 0.0001) and BRCA2+ group (P = 0.0042) but not BRCAx group (P = 0.2185), and the differences were significant between control and cancer-affected BRCA1+ cases (P < 0.0001) and BRCA2+ cases (P = 0.0092) but not cancer-affected BRCAx cases (P = 0.4251). Further analysis indicated that 2R/2R (OR = 1.94, 95%CI = 1.26–2.95, P = 0.0096) and 2R/1R (OR = 1.58, 95%CI = 1.11–2.26, P = 0.0388) were associated with increased risk but 1R/1R (OR = 0.55, 95%CI = 0.35–0.84, P = 0.0196) and 1R/0R (OR = 0, 95%CI = 0–0.29, P = 0.0012) were associated with decreased risk in cancer-affected BRCA1+ group; 2R/1R (OR = 1.94, 95%CI = 1.14–3.32, P = 0.0242) was associated with increased risk in cancer-affected BRCA2+ group. No correlation was observed for the altered risk between cancer-affected or -unaffected carriers and between different age of cancer diagnosis in cancer-affected carriers. The frequently observed VNTR association with in BRCA1+ and BRCA2+ breast cancer group indicates that VNTR polymorphism in the XRCC5 promoter is associated with altered risk of breast cancer in BRCA1+ and BRCA2+ carriers.
Collapse
Affiliation(s)
- Jian Cui
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center , Omaha, NE , USA
| | - Jiangtao Luo
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center , Omaha, NE , USA
| | - Yeong C Kim
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center , Omaha, NE , USA
| | - Carrie Snyder
- Department of Preventive Medicine, Hereditary Cancer Center, Creighton University , Omaha, NE , USA
| | - Dina Becirovic
- Department of Preventive Medicine, Hereditary Cancer Center, Creighton University , Omaha, NE , USA
| | - Bradley Downs
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center , Omaha, NE , USA
| | - Henry Lynch
- Department of Preventive Medicine, Hereditary Cancer Center, Creighton University , Omaha, NE , USA
| | - San Ming Wang
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center , Omaha, NE , USA
| |
Collapse
|
154
|
Nair SJ, Zhang X, Chiang HC, Jahid MJ, Wang Y, Garza P, April C, Salathia N, Banerjee T, Alenazi FS, Ruan J, Fan JB, Parvin JD, Jin VX, Hu Y, Li R. Genetic suppression reveals DNA repair-independent antagonism between BRCA1 and COBRA1 in mammary gland development. Nat Commun 2016; 7:10913. [PMID: 26941120 PMCID: PMC4785232 DOI: 10.1038/ncomms10913] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/29/2016] [Indexed: 12/14/2022] Open
Abstract
The breast cancer susceptibility gene BRCA1 is well known for its function in double-strand break (DSB) DNA repair. While BRCA1 is also implicated in transcriptional regulation, the physiological significance remains unclear. COBRA1 (also known as NELF-B) is a BRCA1-binding protein that regulates RNA polymerase II (RNAPII) pausing and transcription elongation. Here we interrogate functional interaction between BRCA1 and COBRA1 during mouse mammary gland development. Tissue-specific deletion of Cobra1 reduces mammary epithelial compartments and blocks ductal morphogenesis, alveologenesis and lactogenesis, demonstrating a pivotal role of COBRA1 in adult tissue development. Remarkably, these developmental deficiencies due to Cobra1 knockout are largely rescued by additional loss of full-length Brca1. Furthermore, Brca1/Cobra1 double knockout restores developmental transcription at puberty, alters luminal epithelial homoeostasis, yet remains deficient in homologous recombination-based DSB repair. Thus our genetic suppression analysis uncovers a previously unappreciated, DNA repair-independent function of BRCA1 in antagonizing COBRA1-dependent transcription programme during mammary gland development. COBRA1 is a BRCA1-binding protein and, as part of the negative elongation factor, regulates RNA polymerase II pausing and transcription elongation. Here, the authors show that tissue-specific deletion of mouse Cobra1 inhibits postnatal mammary gland development and that the mammary defects can be rescued by additional deletion of Brca1 in a DNA repair-independent manner.
Collapse
Affiliation(s)
- Sreejith J Nair
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Xiaowen Zhang
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Huai-Chin Chiang
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Md Jamiul Jahid
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Yao Wang
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Paula Garza
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Craig April
- Research and Development, Illumina, Inc., San Diego, California 92122, USA
| | - Neeraj Salathia
- Research and Development, Illumina, Inc., San Diego, California 92122, USA
| | - Tapahsama Banerjee
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Fahad S Alenazi
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Jianhua Ruan
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Jian-Bing Fan
- Research and Development, Illumina, Inc., San Diego, California 92122, USA
| | - Jeffrey D Parvin
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Victor X Jin
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Yanfen Hu
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Rong Li
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| |
Collapse
|
155
|
EXD2 promotes homologous recombination by facilitating DNA end resection. Nat Cell Biol 2016; 18:271-280. [PMID: 26807646 PMCID: PMC4829102 DOI: 10.1038/ncb3303] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/17/2015] [Indexed: 01/13/2023]
Abstract
Repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is critical for survival and genome stability of individual cells and organisms, but also contributes to the genetic diversity of species. A vital step in HR is MRN-CtIP-dependent end resection, which generates the 3' single-stranded DNA overhangs required for the subsequent strand exchange reaction. Here, we identify EXD2 (also known as EXDL2) as an exonuclease essential for DSB resection and efficient HR. EXD2 is recruited to chromatin in a damage-dependent manner and confers resistance to DSB-inducing agents. EXD2 functionally interacts with the MRN complex to accelerate resection through its 3'-5' exonuclease activity, which efficiently processes double-stranded DNA substrates containing nicks. Finally, we establish that EXD2 stimulates both short- and long-range DSB resection, and thus, together with MRE11, is required for efficient HR. This establishes a key role for EXD2 in controlling the initial steps of chromosomal break repair.
Collapse
|
156
|
Hofstetter C, Kampka JM, Huppertz S, Weber H, Schlosser A, Müller AM, Becker M. Inhibition of KDM6 activity during murine ESC differentiation induces DNA damage. J Cell Sci 2016; 129:788-803. [PMID: 26759175 DOI: 10.1242/jcs.175174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 01/05/2016] [Indexed: 12/30/2022] Open
Abstract
Pluripotent embryonic stem cells (ESCs) are characterised by their capacity to self-renew indefinitely while maintaining the potential to differentiate into all cell types of an adult organism. Both the undifferentiated and differentiated states are defined by specific gene expression programs that are regulated at the chromatin level. Here, we have analysed the contribution of the H3K27me2- and H3K27me23-specific demethylases KDM6A and KDM6B to murine ESC differentiation by employing the GSK-J4 inhibitor, which is specific for KDM6 proteins, and by targeted gene knockout (KO) and knockdown. We observe that inhibition of the H3K27 demethylase activity induces DNA damage along with activation of the DNA damage response (DDR) and cell death in differentiating but not in undifferentiated ESCs. Laser microirradiation experiments revealed that the H3K27me3 mark, but not the KDM6B protein, colocalise with γH2AX-positive sites of DNA damage in differentiating ESCs. Lack of H3K27me3 attenuates the GSK-J4-induced DDR in differentiating Eed-KO ESCs. Collectively, our findings indicate that differentiating ESCs depend on KDM6 and that the H3K27me3 demethylase activity is crucially involved in DDR and survival of differentiating ESCs.
Collapse
Affiliation(s)
- Christine Hofstetter
- Institute for Medical Radiation and Cell Research (MSZ) in the Center of Experimental Molecular Medicine (ZEMM), University of Würzburg, Würzburg 97078, Germany
| | - Justyna M Kampka
- Institute for Medical Radiation and Cell Research (MSZ) in the Center of Experimental Molecular Medicine (ZEMM), University of Würzburg, Würzburg 97078, Germany
| | - Sascha Huppertz
- Institute for Medical Radiation and Cell Research (MSZ) in the Center of Experimental Molecular Medicine (ZEMM), University of Würzburg, Würzburg 97078, Germany
| | - Heike Weber
- Microarray Core Unit, Interdisciplinary Center for Clinical Science, University of Würzburg, Würzburg 97078, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg 97078, Germany
| | - Albrecht M Müller
- Institute for Medical Radiation and Cell Research (MSZ) in the Center of Experimental Molecular Medicine (ZEMM), University of Würzburg, Würzburg 97078, Germany
| | - Matthias Becker
- Institute for Medical Radiation and Cell Research (MSZ) in the Center of Experimental Molecular Medicine (ZEMM), University of Würzburg, Würzburg 97078, Germany
| |
Collapse
|
157
|
|
158
|
Baude A, Aaes TL, Zhai B, Al-Nakouzi N, Oo HZ, Daugaard M, Rohde M, Jäättelä M. Hepatoma-derived growth factor-related protein 2 promotes DNA repair by homologous recombination. Nucleic Acids Res 2015; 44:2214-26. [PMID: 26721387 PMCID: PMC4797281 DOI: 10.1093/nar/gkv1526] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 12/21/2015] [Indexed: 01/29/2023] Open
Abstract
We have recently identified lens epithelium-derived growth factor (LEDGF/p75, also known as PSIP1) as a component of the homologous recombination DNA repair machinery. Through its Pro-Trp-Trp-Pro (PWWP) domain, LEDGF/p75 binds to histone marks associated with active transcription and promotes DNA end resection by recruiting DNA endonuclease retinoblastoma-binding protein 8 (RBBP8/CtIP) to broken DNA ends. Here we show that the structurally related PWWP domain-containing protein, hepatoma-derived growth factor-related protein 2 (HDGFRP2), serves a similar function in homologous recombination repair. Its depletion compromises the survival of human U2OS osteosarcoma and HeLa cervix carcinoma cells and impairs the DNA damage-induced phosphorylation of replication protein A2 (RPA2) and the recruitment of DNA endonuclease RBBP8/CtIP to DNA double strand breaks. In contrast to LEDGF/p75, HDGFRP2 binds preferentially to histone marks characteristic for transcriptionally silent chromatin. Accordingly, HDGFRP2 is found in complex with the heterochromatin-binding chromobox homologue 1 (CBX1) and Pogo transposable element with ZNF domain (POGZ). Supporting the functionality of this complex, POGZ-depleted cells show a similar defect in DNA damage-induced RPA2 phosphorylation as HDGFRP2-depleted cells. These data suggest that HDGFRP2, possibly in complex with POGZ, recruits homologous recombination repair machinery to damaged silent genes or to active genes silenced upon DNA damage.
Collapse
Affiliation(s)
- Annika Baude
- Unit of Cell Death and Metabolism, Center for Autophagy, Recycling and Metabolism, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Tania Løve Aaes
- Unit of Cell Death and Metabolism, Center for Autophagy, Recycling and Metabolism, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Beibei Zhai
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Nader Al-Nakouzi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Htoo Zarni Oo
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Mads Daugaard
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Mikkel Rohde
- Unit of Cell Death and Metabolism, Center for Autophagy, Recycling and Metabolism, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Marja Jäättelä
- Unit of Cell Death and Metabolism, Center for Autophagy, Recycling and Metabolism, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| |
Collapse
|
159
|
Homologous Recombination Repair Factors Rad51 and BRCA1 Are Necessary for Productive Replication of Human Papillomavirus 31. J Virol 2015; 90:2639-52. [PMID: 26699641 DOI: 10.1128/jvi.02495-15] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/16/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED High-risk human papillomavirus 31 (HPV31)-positive cells exhibit constitutive activation of the ATM-dependent DNA damage response (DDR), which is necessary for productive viral replication. In response to DNA double-strand breaks (DSBs), ATM activation leads to DNA repair through homologous recombination (HR), which requires the principal recombinase protein Rad51, as well as BRCA1. Previous studies from our lab demonstrated that Rad51 and BRCA1 are expressed at high levels in HPV31-positive cells and localize to sites of viral replication. These results suggest that HPV may utilize ATM activity to increase HR activity as a means to facilitate viral replication. In this study, we demonstrate that high-risk HPV E7 expression alone is sufficient for the increase in Rad51 and BRCA1 protein levels. We have found that this increase occurs, at least in part, at the level of transcription. Studies analyzing protein stability indicate that HPV may also protect Rad51 and BRCA1 from turnover, contributing to the overall increase in cellular levels. We also demonstrate that Rad51 is bound to HPV31 genomes, with binding increasing per viral genome upon productive replication. We have found that depletion of Rad51 and BRCA1, as well as inhibition of Rad51's recombinase activity, abrogates productive viral replication upon differentiation. Overall, these results indicate that Rad51 and BRCA1 are required for the process of HPV31 genome amplification and suggest that productive replication occurs in a manner dependent upon recombination. IMPORTANCE Productive replication of HPV31 requires activation of an ATM-dependent DNA damage response, though how ATM activity contributes to replication is unclear. Rad51 and BRCA1 play essential roles in repair of double-strand breaks, as well as the restart of stalled replication forks through homologous recombination (HR). Given that ATM activity is required to initiate HR repair, coupled with the requirement of Rad51 and BRCA1 for productive viral replication, our findings suggest that HPV may utilize ATM activity to ensure localization of recombination factors to productively replicating viral genomes. The finding that E7 increases the levels of Rad51 and BRCA1 suggests that E7 contributes to productive replication by providing DNA repair factors required for viral DNA synthesis. Our studies not only imply a role for recombination in the regulation of productive HPV replication but provide further insight into how HPV manipulates the DDR to facilitate the productive phase of the viral life cycle.
Collapse
|
160
|
Patterns and functional implications of rare germline variants across 12 cancer types. Nat Commun 2015; 6:10086. [PMID: 26689913 PMCID: PMC4703835 DOI: 10.1038/ncomms10086] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/02/2015] [Indexed: 12/14/2022] Open
Abstract
Large-scale cancer sequencing data enable discovery of rare germline cancer susceptibility variants. Here we systematically analyse 4,034 cases from The Cancer Genome Atlas cancer cases representing 12 cancer types. We find that the frequency of rare germline truncations in 114 cancer-susceptibility-associated genes varies widely, from 4% (acute myeloid leukaemia (AML)) to 19% (ovarian cancer), with a notably high frequency of 11% in stomach cancer. Burden testing identifies 13 cancer genes with significant enrichment of rare truncations, some associated with specific cancers (for example, RAD51C, PALB2 and MSH6 in AML, stomach and endometrial cancers, respectively). Significant, tumour-specific loss of heterozygosity occurs in nine genes (ATM, BAP1, BRCA1/2, BRIP1, FANCM, PALB2 and RAD51C/D). Moreover, our homology-directed repair assay of 68 BRCA1 rare missense variants supports the utility of allelic enrichment analysis for characterizing variants of unknown significance. The scale of this analysis and the somatic-germline integration enable the detection of rare variants that may affect individual susceptibility to tumour development, a critical step toward precision medicine.
Collapse
|
161
|
Saghatelian A, Couso JP. Discovery and characterization of smORF-encoded bioactive polypeptides. Nat Chem Biol 2015; 11:909-16. [PMID: 26575237 PMCID: PMC4956473 DOI: 10.1038/nchembio.1964] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 10/19/2015] [Indexed: 12/13/2022]
Abstract
Analysis of genomes, transcriptomes and proteomes reveals the existence of hundreds to thousands of translated, yet non-annotated, short open reading frames (small ORFs or smORFs). The discovery of smORFs and their protein products, smORF-encoded polypeptides (SEPs), points to a fundamental gap in our knowledge of protein-coding genes. Various studies have identified central roles for smORFs in metabolism, apoptosis and development. The discovery of these bioactive SEPs emphasizes the functional potential of this unexplored class of biomolecules. Here, we provide an overview of this emerging field and highlight the opportunities for chemical biology to answer fundamental questions about these novel genes. Such studies will provide new insights into the protein-coding potential of genomes and identify functional genes with roles in biology and disease.
Collapse
Affiliation(s)
- Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Helmsley Center for Genomic Medicine, Salk Institute for Biological Studies, San Diego, CA 92037
| | - Juan Pablo Couso
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 6PU, UK
| |
Collapse
|
162
|
Ismail IH, Gagné JP, Genois MM, Strickfaden H, McDonald D, Xu Z, Poirier GG, Masson JY, Hendzel MJ. The RNF138 E3 ligase displaces Ku to promote DNA end resection and regulate DNA repair pathway choice. Nat Cell Biol 2015; 17:1446-57. [PMID: 26502055 DOI: 10.1038/ncb3259] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 09/22/2015] [Indexed: 12/30/2022]
Abstract
DNA double-strand breaks (DSBs) are repaired mainly by non-homologous end joining or homologous recombination (HR). Cell cycle stage and DNA end resection are believed to regulate the commitment to HR repair. Here we identify RNF138 as a ubiquitin E3 ligase that regulates the HR pathway. RNF138 is recruited to DNA damage sites through zinc fingers that have a strong preference for DNA with 5'- or 3'-single-stranded overhangs. RNF138 stimulates DNA end resection and promotes ATR-dependent signalling and DSB repair by HR, thereby contributing to cell survival on exposure to DSB-inducing agents. Finally, we establish that RNF138-dependent Ku removal from DNA breaks is one mechanism whereby RNF138 can promote HR. These results establish RNF138 as an important regulator of DSB repair pathway choice.
Collapse
Affiliation(s)
- Ismail Hassan Ismail
- Departments of Oncology and Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue Edmonton, Alberta T6G 1Z2, Canada.,Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Jean-Philippe Gagné
- CHU de Québec Research Center, CHUL Pavilion, Oncology Axis, 2705 boul. Laurier Québec city, Québec G1V 4G2, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, Québec G1V 0A6, Canada
| | - Marie-Michelle Genois
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, Québec G1V 0A6, Canada.,Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon Québec City, Québec G1R 2J6, Canada
| | - Hilmar Strickfaden
- Departments of Oncology and Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue Edmonton, Alberta T6G 1Z2, Canada
| | - Darin McDonald
- Departments of Oncology and Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue Edmonton, Alberta T6G 1Z2, Canada
| | - Zhizhong Xu
- Departments of Oncology and Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue Edmonton, Alberta T6G 1Z2, Canada
| | - Guy G Poirier
- CHU de Québec Research Center, CHUL Pavilion, Oncology Axis, 2705 boul. Laurier Québec city, Québec G1V 4G2, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, Québec G1V 0A6, Canada
| | - Jean-Yves Masson
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, Québec G1V 0A6, Canada.,Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon Québec City, Québec G1R 2J6, Canada
| | - Michael J Hendzel
- Departments of Oncology and Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue Edmonton, Alberta T6G 1Z2, Canada
| |
Collapse
|
163
|
The role of Rak in the regulation of stability and function of BRCA1. Oncotarget 2015; 8:86799-86815. [PMID: 29156836 PMCID: PMC5689726 DOI: 10.18632/oncotarget.5717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/02/2015] [Indexed: 01/07/2023] Open
Abstract
BRCA1 is an important player in the DNA damage response signaling, and its deficiency results in genomic instability. A complete loss or significantly reduced BRCA1 protein expression is often found in sporadic breast cancer cases despite the absence of genetic or epigenetic aberrations, suggesting the existence of other regulatory mechanisms controlling BRCA1 protein expression. Herein, we demonstrate that Fyn-related kinase (Frk)/Rak plays an important role in maintaining genomic stability, possibly in part through positively regulating BRCA1 protein stability and function via tyrosine phosphorylation on BRCA1 Tyr1552. In addition, Rak deficiency confers cellular sensitivity to DNA damaging agents and poly(ADP-ribose) polymerase (PARP) inhibitors. Overall, our findings highlight a critical role of Rak in the maintenance of genomic stability, at least in part, through protecting BRCA1 and provide novel treatment strategies for patients with breast tumors lacking Rak.
Collapse
|
164
|
Microhomology-Mediated End Joining: A Back-up Survival Mechanism or Dedicated Pathway? Trends Biochem Sci 2015; 40:701-714. [PMID: 26439531 DOI: 10.1016/j.tibs.2015.08.006] [Citation(s) in RCA: 436] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 12/12/2022]
Abstract
DNA double-strand breaks (DSBs) disrupt the continuity of chromosomes and their repair by error-free mechanisms is essential to preserve genome integrity. Microhomology-mediated end joining (MMEJ) is an error-prone repair mechanism that involves alignment of microhomologous sequences internal to the broken ends before joining, and is associated with deletions and insertions that mark the original break site, as well as chromosome translocations. Whether MMEJ has a physiological role or is simply a back-up repair mechanism is a matter of debate. Here we review recent findings pertaining to the mechanism of MMEJ and discuss its role in normal and cancer cells.
Collapse
|
165
|
Pinder J, Salsman J, Dellaire G. Nuclear domain 'knock-in' screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing. Nucleic Acids Res 2015; 43:9379-92. [PMID: 26429972 PMCID: PMC4627099 DOI: 10.1093/nar/gkv993] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 09/21/2015] [Indexed: 12/31/2022] Open
Abstract
CRISPR is a genome-editing platform that makes use of the bacterially-derived endonuclease Cas9 to introduce DNA double-strand breaks at precise locations in the genome using complementary guide RNAs. We developed a nuclear domain knock-in screen, whereby the insertion of a gene encoding the green fluorescent protein variant Clover is inserted by Cas9-mediated homology directed repair (HDR) within the first exon of genes that are required for the structural integrity of subnuclear domains such as the nuclear lamina and promyelocytic leukemia nuclear bodies (PML NBs). Using this approach, we compared strategies for enhancing CRISPR-mediated HDR, focusing on known genes and small molecules that impact non-homologous end joining (NHEJ) and homologous recombination (HR). Ultimately, we identified the small molecule RS-1 as a potent enhancer of CRISPR-based genome editing, enhancing HDR 3- to 6-fold depending on the locus and transfection method. We also characterized U2OS human osteosarcoma cells expressing Clover-tagged PML and demonstrate that this strategy generates cell lines with PML NBs that are structurally and functionally similar to bodies in the parental cell line. Thus, the nuclear domain knock-in screen that we describe provides a simple means of rapidly evaluating methods and small molecules that have the potential to enhance Cas9-mediated HDR.
Collapse
Affiliation(s)
- Jordan Pinder
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Jayme Salsman
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
166
|
Lee C, Banerjee T, Gillespie J, Ceravolo A, Parvinsmith MR, Starita LM, Fields S, Toland AE, Parvin JD. Functional Analysis of BARD1 Missense Variants in Homology-Directed Repair of DNA Double Strand Breaks. Hum Mutat 2015; 36:1205-14. [PMID: 26350354 DOI: 10.1002/humu.22902] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/30/2015] [Indexed: 12/22/2022]
Abstract
Genes associated with hereditary breast and ovarian cancer (HBOC) are often sequenced in search of mutations that are predictive of susceptibility to these cancer types, but the sequence results are frequently ambiguous because of the detection of missense substitutions for which the clinical impact is unknown. The BARD1 protein is the heterodimeric partner of BRCA1 and is included on clinical gene panels for testing for susceptibility to HBOC. Like BRCA1, it is required for homology-directed DNA repair (HDR). We measured the HDR function of 29 BARD1 missense variants, 27 culled from clinical test results and two synthetic variants. Twenty-three of the assayed variants were functional for HDR; of these, four are known neutral variants. Three variants showed intermediate function, and three others were defective in HDR. When mapped to BARD1 domains, residues crucial for HDR were located in the N- and C- termini of BARD1. In the BARD1 RING domain, critical residues mapped to the zinc-coordinating amino acids and to the BRCA1-BARD1 binding interface, highlighting the importance of interaction between BRCA1 and BARD1 for HDR activity. Based on these results, we propose that the HDR assay is a useful complement to genetic analyses to classify BARD1 variants of unknown clinical significance.
Collapse
Affiliation(s)
- Cindy Lee
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Tapahsama Banerjee
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Jessica Gillespie
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Amanda Ceravolo
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Matthew R Parvinsmith
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Lea M Starita
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Amanda E Toland
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Jeffrey D Parvin
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
167
|
Vartak SV, Raghavan SC. Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing. FEBS J 2015; 282:4289-94. [PMID: 26290158 DOI: 10.1111/febs.13416] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/02/2015] [Accepted: 08/04/2015] [Indexed: 12/22/2022]
Abstract
DNA repair, one of the fundamental processes occurring in a cell, safeguards the genome and maintains its integrity. Among various DNA lesions, double-strand breaks are considered to be the most deleterious, as they can lead to potential loss of genetic information, if not repaired. Nonhomologous end joining (NHEJ) and homologous recombination are two major double-strand break repair pathways. SCR7, a DNA ligase IV inhibitor, was recently identified and characterized as a potential anticancer compound. Interestingly, SCR7 was shown to have several applications, owing to its unique property as an NHEJ inhibitor. Here, we focus on three main areas of research in which SCR7 is actively being used, and discuss one of the applications, i.e. genome editing via CRISPR/Cas, in detail. In the past year, different studies have shown that SCR7 significantly increases the efficiency of precise genome editing by inhibiting NHEJ, and favouring the error-free homologous recombination pathway, both in vitro and in vivo. Overall, we discuss the current applications of SCR7 to shed light on the unique property of the small molecule of having distinct applications in normal and cancer cells, when used at different cellular concentrations.
Collapse
Affiliation(s)
- Supriya V Vartak
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
168
|
Robert F, Barbeau M, Éthier S, Dostie J, Pelletier J. Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing. Genome Med 2015; 7:93. [PMID: 26307031 PMCID: PMC4550049 DOI: 10.1186/s13073-015-0215-6] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/06/2015] [Indexed: 11/22/2022] Open
Abstract
Background The ability to modify the genome of any cell at a precise location has drastically improved with the recent discovery and implementation of CRISPR/Cas9 editing technology. However, the capacity to introduce specific directed changes at given loci is hampered by the fact that the major cellular repair pathway that occurs following Cas9-mediated DNA cleavage is the erroneous non-homologous end joining (NHEJ) pathway. Homology-directed recombination (HDR) is far less efficient than NHEJ and makes screening of clones containing directed changes time-consuming and labor-intensive. Methods We investigated the possibility of pharmacologically inhibiting DNA-PKcs, a key player in NHEJ, using small molecule inhibitors (NU7441 and KU-0060648), to ameliorate the rates of HDR repair events. These compounds were tested in a sensitive reporter assay capable of simultaneously informing on NHEJ and HDR, as well as on an endogenous gene targeted by Cas9. Results We find that NU7441 and KU-0060648 reduce the frequency of NHEJ while increasing the rate of HDR following Cas9-mediated DNA cleavage. Conclusions Our results identify two small molecules compatible for use with Cas9-editing technology to improve the frequency of HDR. Electronic supplementary material The online version of this article (doi:10.1186/s13073-015-0215-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francis Robert
- Department of Biochemistry, McGill University, Montréal, Québec, H3G 1Y6, Canada.
| | - Mathilde Barbeau
- Department of Biochemistry, McGill University, Montréal, Québec, H3G 1Y6, Canada.
| | - Sylvain Éthier
- Department of Biochemistry, McGill University, Montréal, Québec, H3G 1Y6, Canada.
| | - Josée Dostie
- Department of Biochemistry, McGill University, Montréal, Québec, H3G 1Y6, Canada.
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montréal, Québec, H3G 1Y6, Canada. .,Department of Oncology, McGill University, Montréal, Québec, H3G 1Y6, Canada. .,The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, Québec, H3G 1Y6, Canada.
| |
Collapse
|
169
|
Choi YE, Park E. Curcumin enhances poly(ADP-ribose) polymerase inhibitor sensitivity to chemotherapy in breast cancer cells. J Nutr Biochem 2015; 26:1442-7. [PMID: 26350251 DOI: 10.1016/j.jnutbio.2015.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 07/16/2015] [Accepted: 07/18/2015] [Indexed: 12/12/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitor has shown promising responses in homologous recombination (HR) repair-deficient cancer cells. More specifically, targeting HR pathway in combination with PARP inhibitor has been an effective chemotherapy strategy by so far. Curcumin has been recognized as anticancer agents for several types of cancers. Here, we demonstrate that curcumin inhibits a critical step in HR pathway, Rad51 foci formation, and accumulates γ-H2AX levels in MDA-MB-231 breast cancer cells. Curcumin also directly reduces HR and induces cell death with cotreatment of PARP inhibitor in MDA-MB-231 breast cancer cells. Moreover, curcumin, when combined with ABT-888, could effectively delayed breast tumor formation in vivo. Our study indicates that cotreatment of curcumin and PARP inhibitor might be useful for the combination chemotherapy for aggressive breast cancer treatment as a natural bioactive compound.
Collapse
Affiliation(s)
- Young Eun Choi
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Eunmi Park
- Department of Food and Nutrition, School of Life Science and Nano-Technology, Hannam University, Daejeon 305-811, Korea.
| |
Collapse
|
170
|
Lee KY, Im JS, Shibata E, Park J, Handa N, Kowalczykowski SC, Dutta A. MCM8-9 complex promotes resection of double-strand break ends by MRE11-RAD50-NBS1 complex. Nat Commun 2015; 6:7744. [PMID: 26215093 PMCID: PMC4525285 DOI: 10.1038/ncomms8744] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 06/08/2015] [Indexed: 11/20/2022] Open
Abstract
MCM8-9 complex is required for homologous recombination (HR)-mediated repair of double-strand breaks (DSBs). Here we report that MCM8-9 is required for DNA resection by MRN (MRE11-RAD50-NBS1) at DSBs to generate ssDNA. MCM8-9 interacts with MRN and is required for the nuclease activity and stable association of MRN with DSBs. The ATPase motifs of MCM8-9 are required for recruitment of MRE11 to foci of DNA damage. Homozygous deletion of the MCM9 found in various cancers sensitizes a cancer cell line to interstrand-crosslinking (ICL) agents. A cancer-derived point mutation or an SNP on MCM8 associated with premature ovarian failure (POF) diminishes the functional activity of MCM8. Therefore, the MCM8-9 complex facilitates DNA resection by the MRN complex during HR repair, genetic or epigenetic inactivation of MCM8 or MCM9 are seen in human cancers, and genetic inactivation of MCM8 may be the basis of a POF syndrome.
Collapse
Affiliation(s)
- Kyung Yong Lee
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Jordan Hall, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908 USA
| | - Jun-Sub Im
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Jordan Hall, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908 USA
| | - Etsuko Shibata
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Jordan Hall, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908 USA
| | - Jonghoon Park
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Jordan Hall, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908 USA
| | - Naofumi Handa
- Department of Microbiology and Molecular Genetics, University of California, Briggs Hall, One Shields Avenue, Davis, California 95616-8665 USA
| | - Stephen C. Kowalczykowski
- Department of Microbiology and Molecular Genetics, University of California, Briggs Hall, One Shields Avenue, Davis, California 95616-8665 USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Jordan Hall, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908 USA
| |
Collapse
|
171
|
Chen MC, Zhou B, Zhang K, Yuan YC, Un F, Hu S, Chou CM, Chen CH, Wu J, Wang Y, Liu X, Smith DL, Li H, Liu Z, Warden CD, Su L, Malkas LH, Chung YM, Hu MCT, Yen Y. The Novel Ribonucleotide Reductase Inhibitor COH29 Inhibits DNA Repair In Vitro. Mol Pharmacol 2015; 87:996-1005. [PMID: 25814515 PMCID: PMC4429719 DOI: 10.1124/mol.114.094987] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/26/2015] [Indexed: 01/07/2023] Open
Abstract
COH29 [N-(4-(3,4-dihydroxyphenyl)-5-phenylthiazol-2-yl)-3,4-dihydroxybenzamide], a novel antimetabolite drug developed at City of Hope Cancer Center, has anticancer activity that stems primarily from the inhibition of human ribonucleotide reductase (RNR). This key enzyme in deoxyribonucleotide biosynthesis is the target of established clinical agents such as hydroxyurea and gemcitabine because of its critical role in DNA replication and repair. Herein we report that BRCA-1-defective human breast cancer cells are more sensitive than wild-type BRCA-1 counterparts to COH29 in vitro and in vivo. Microarray gene expression profiling showed that COH29 reduces the expression of DNA repair pathway genes, suggesting that COH29 interferes with these pathways. It is well established that BRCA1 plays a role in DNA damage repair, especially homologous recombination (HR) repair, to maintain genome integrity. In BRCA1-defective HCC1937 breast cancer cells, COH29 induced more double-strand breaks (DSBs) and DNA-damage response than in HCC1937 + BRCA1 cells. By EJ5- and DR-green fluorescent protein (GFP) reporter assay, we found that COH29 could inhibit nonhomologous end joining (NHEJ) efficiency and that no HR activity was detected in HCC1937 cells, suggesting that repression of the NHEJ repair pathway may be involved in COH29-induced DSBs in BRCA1-deficient HCC1937 cells. Furthermore, we observed an accumulation of nuclear Rad51 foci in COH29-treated HCC1937 + BRCA1 cells, suggesting that BRCA1 plays a crucial role in repairing and recovering drug-induced DNA damage by recruiting Rad51 to damage sites. In summary, we describe here additional biologic effects of the RNR inhibitor COH29 that potentially strengthen its use as an anticancer agent.
Collapse
Affiliation(s)
- Mei-Chuan Chen
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Bingsen Zhou
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Keqiang Zhang
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Yate-Ching Yuan
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Frank Un
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Shuya Hu
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Chih-Ming Chou
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Chun-Han Chen
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Jun Wu
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Yan Wang
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Xiyong Liu
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - D Lynne Smith
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Hongzhi Li
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Zheng Liu
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Charles D Warden
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Leila Su
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Linda H Malkas
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Young Min Chung
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Mickey C-T Hu
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Yun Yen
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
172
|
Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 2015. [PMID: 25798939 DOI: 10.1038/nbt.3190.inhibition] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Methods to introduce targeted double-strand breaks (DSBs) into DNA enable precise genome editing by increasing the rate at which externally supplied DNA fragments are incorporated into the genome through homologous recombination. The efficiency of these methods is limited by nonhomologous end joining (NHEJ), an alternative DNA repair pathway that competes with homology-directed repair (HDR). To promote HDR at the expense of NHEJ, we targeted DNA ligase IV, a key enzyme in the NHEJ pathway, using the inhibitor Scr7. Scr7 treatment increased the efficiency of HDR-mediated genome editing, using Cas9 in mammalian cell lines and in mice for all four genes examined, up to 19-fold. This approach should be applicable to other customizable endonucleases, such as zinc finger nucleases and transcription activator-like effector nucleases, and to nonmammalian cells with sufficiently conserved mechanisms of NHEJ and HDR.
Collapse
Affiliation(s)
- Takeshi Maruyama
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Stephanie K Dougan
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | | | - Angelina M Bilate
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Jessica R Ingram
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Hidde L Ploegh
- 1] Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA. [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
173
|
Lin YH, Yuan J, Pei H, Liu T, Ann DK, Lou Z. KAP1 Deacetylation by SIRT1 Promotes Non-Homologous End-Joining Repair. PLoS One 2015; 10:e0123935. [PMID: 25905708 PMCID: PMC4408008 DOI: 10.1371/journal.pone.0123935] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/09/2015] [Indexed: 01/13/2023] Open
Abstract
Homologous recombination and non-homologous end joining are two major DNA double-strand-break repair pathways. While HR-mediated repair requires a homologous sequence as the guiding template to restore the damage site precisely, NHEJ-mediated repair ligates the DNA lesion directly and increases the risk of losing nucleotides. Therefore, how a cell regulates the balance between HR and NHEJ has become an important issue for maintaining genomic integrity over time. Here we report that SIRT1-dependent KAP1 deacetylation positively regulates NHEJ. We show that up-regulation of KAP1 attenuates HR efficiency while promoting NHEJ repair. Moreover, SIRT1-mediated KAP1 deacetylation further enhances the effect of NHEJ by stabilizing its interaction with 53BP1, which leads to increased 53BP1 focus formation in response to DNA damage. Taken together, our study suggests a SIRT1-KAP1 regulatory mechanism for HR-NHEJ repair pathway choice.
Collapse
Affiliation(s)
- Yi-Hui Lin
- Department of Biochemistry and Molecular Biology, Mayo Graduate School, Rochester, Minnesota, United States of America
| | - Jian Yuan
- Research Center for Translational Medicine, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huadong Pei
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Tongzheng Liu
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - David K. Ann
- Department of Molecular Pharmacology and Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Zhenkun Lou
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
174
|
Prakash R, Zhang Y, Feng W, Jasin M. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol 2015; 7:a016600. [PMID: 25833843 DOI: 10.1101/cshperspect.a016600] [Citation(s) in RCA: 613] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Homologous recombination (HR) is a major pathway for the repair of DNA double-strand breaks in mammalian cells, the defining step of which is homologous strand exchange directed by the RAD51 protein. The physiological importance of HR is underscored by the observation of genomic instability in HR-deficient cells and, importantly, the association of cancer predisposition and developmental defects with mutations in HR genes. The tumor suppressors BRCA1 and BRCA2, key players at different stages of HR, are frequently mutated in familial breast and ovarian cancers. Other HR proteins, including PALB2 and RAD51 paralogs, have also been identified as tumor suppressors. This review summarizes recent findings on BRCA1, BRCA2, and associated proteins involved in human disease with an emphasis on their molecular roles and interactions.
Collapse
Affiliation(s)
- Rohit Prakash
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Yu Zhang
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Weiran Feng
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065 Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065 Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
175
|
Nakajima NI, Hagiwara Y, Oike T, Okayasu R, Murakami T, Nakano T, Shibata A. Pre-exposure to ionizing radiation stimulates DNA double strand break end resection, promoting the use of homologous recombination repair. PLoS One 2015; 10:e0122582. [PMID: 25826455 PMCID: PMC4380452 DOI: 10.1371/journal.pone.0122582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 02/17/2015] [Indexed: 01/19/2023] Open
Abstract
The choice of DNA double strand break (DSB) repair pathway is determined at the stage of DSB end resection. Resection was proposed to control the balance between the two major DSB repair pathways, homologous recombination (HR) and non-homologous end joining (NHEJ). Here, we examined the regulation of DSB repair pathway choice at two-ended DSBs following ionizing radiation (IR) in G2 phase of the cell cycle. We found that cells pre-exposed to low-dose IR preferred to undergo HR following challenge IR in G2, whereas NHEJ repair kinetics in G1 were not affected by pre-IR treatment. Consistent with the increase in HR usage, the challenge IR induced Replication protein A (RPA) foci formation and RPA phosphorylation, a marker of resection, were enhanced by pre-IR. However, neither major DNA damage signals nor the status of core NHEJ proteins, which influence the choice of repair pathway, was significantly altered in pre-IR treated cells. Moreover, the increase in usage of HR due to pre-IR exposure was prevented by treatment with ATM inhibitor during the incubation period between pre-IR and challenge IR. Taken together, the results of our study suggest that the ATM-dependent damage response after pre-IR changes the cellular environment, possibly by regulating gene expression or post-transcriptional modifications in a manner that promotes resection.
Collapse
Affiliation(s)
- Nakako Izumi Nakajima
- Research Center for Charged Particle Therapy and International Open Laboratory, National Institute of Radiological Sciences, Chiba, Japan
| | - Yoshihiko Hagiwara
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University, Maebashi, Gunma, Japan
| | - Ryuichi Okayasu
- Research Center for Charged Particle Therapy and International Open Laboratory, National Institute of Radiological Sciences, Chiba, Japan
| | - Takeshi Murakami
- Research Center for Charged Particle Therapy and International Open Laboratory, National Institute of Radiological Sciences, Chiba, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University, Maebashi, Gunma, Japan
| | - Atsushi Shibata
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
176
|
Massively Parallel Functional Analysis of BRCA1 RING Domain Variants. Genetics 2015; 200:413-22. [PMID: 25823446 DOI: 10.1534/genetics.115.175802] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/01/2015] [Indexed: 11/18/2022] Open
Abstract
Interpreting variants of uncertain significance (VUS) is a central challenge in medical genetics. One approach is to experimentally measure the functional consequences of VUS, but to date this approach has been post hoc and low throughput. Here we use massively parallel assays to measure the effects of nearly 2000 missense substitutions in the RING domain of BRCA1 on its E3 ubiquitin ligase activity and its binding to the BARD1 RING domain. From the resulting scores, we generate a model to predict the capacities of full-length BRCA1 variants to support homology-directed DNA repair, the essential role of BRCA1 in tumor suppression, and show that it outperforms widely used biological-effect prediction algorithms. We envision that massively parallel functional assays may facilitate the prospective interpretation of variants observed in clinical sequencing.
Collapse
|
177
|
Jiang W, Crowe JL, Liu X, Nakajima S, Wang Y, Li C, Lee BJ, Dubois RL, Liu C, Yu X, Lan L, Zha S. Differential phosphorylation of DNA-PKcs regulates the interplay between end-processing and end-ligation during nonhomologous end-joining. Mol Cell 2015; 58:172-85. [PMID: 25818648 DOI: 10.1016/j.molcel.2015.02.024] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 01/06/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
Abstract
Nonhomologous end-joining (NHEJ) is a major DNA double-strand break repair pathway that is conserved in eukaryotes. In vertebrates, NHEJ further acquires end-processing capacities (e.g., hairpin opening) in addition to direct end-ligation. The catalytic subunit of DNA-PK (DNA-PKcs) is a vertebrate-specific NHEJ factor that can be autophosphorylated or transphosphorylated by ATM kinase. Using a mouse model expressing a kinase-dead (KD) DNA-PKcs protein, we show that ATM-mediated transphosphorylation of DNA-PKcs regulates end-processing at the level of Artemis recruitment, while strict autophosphorylation of DNA-PKcs is necessary to relieve the physical blockage on end-ligation imposed by the DNA-PKcs protein itself. Accordingly, DNA-PKcs(KD/KD) mice and cells show severe end-ligation defects and p53- and Ku-dependent embryonic lethality, but open hairpin-sealed ends normally in the presence of ATM kinase activity. Together, our findings identify DNA-PKcs as the molecular switch that coordinates end-processing and end-ligation at the DNA ends through differential phosphorylations.
Collapse
Affiliation(s)
- Wenxia Jiang
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jennifer L Crowe
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Pathobiology Graduate Program, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Xiangyu Liu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Satoshi Nakajima
- University of Pittsburg, Hillman Cancer Center Research Pavilion Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213-1863, USA
| | - Yunyue Wang
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Chen Li
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Brian J Lee
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Richard L Dubois
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Chao Liu
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaochun Yu
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Li Lan
- University of Pittsburg, Hillman Cancer Center Research Pavilion Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213-1863, USA
| | - Shan Zha
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
178
|
Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 2015; 33:538-42. [PMID: 25798939 PMCID: PMC4618510 DOI: 10.1038/nbt.3190] [Citation(s) in RCA: 830] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 03/09/2015] [Indexed: 01/12/2023]
Abstract
Methods to introduce targeted double-strand breaks (DSBs) into DNA enable precise genome editing by increasing the rate at which externally supplied DNA fragments are incorporated into the genome through homologous recombination. The efficiency of these methods is limited by non-homologous end joining (NHEJ), an alternative DNA repair pathway that competes with homology-directed repair (HDR). To promote HDR at the expense of NHEJ, we targeted DNA ligase IV, a key enzyme in the NHEJ pathway, using the inhibitor Scr7. Scr7 treatment increased the efficiency of HDR-mediated genome editing using Cas9 in mammalian cell lines and in mice for all four genes examined up to 19-fold. This approach should be applicable to other customizable endonucleases, such as zinc finger nucleases and transcription activator like effector nucleases, and to non-mammalian cells with sufficiently conserved mechanisms of NHEJ and HDR.
Collapse
Affiliation(s)
- Takeshi Maruyama
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Stephanie K Dougan
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | | | - Angelina M Bilate
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Jessica R Ingram
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Hidde L Ploegh
- 1] Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA. [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
179
|
Gerelchuluun A, Manabe E, Ishikawa T, Sun L, Itoh K, Sakae T, Suzuki K, Hirayama R, Asaithamby A, Chen DJ, Tsuboi K. The major DNA repair pathway after both proton and carbon-ion radiation is NHEJ, but the HR pathway is more relevant in carbon ions. Radiat Res 2015; 183:345-56. [PMID: 25738894 DOI: 10.1667/rr13904.1] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to identify the roles of non-homologous end-joining (NHEJ) or homologous recombination (HR) pathways in repairing DNA double-strand breaks (DSBs) induced by exposure to high-energy protons and carbon ions (C ions) versus gamma rays in Chinese hamster cells. Two Chinese hamster cell lines, ovary AA8 and lung fibroblast V79, as well as various mutant sublines lacking DNA-PKcs (V3), X-ray repair cross-complementing protein-4 [XRCC4 (XR1), XRCC3 (irs1SF) and XRCC2 (irs1)] were exposed to gamma rays ((137)Cs), protons (200 MeV; 2.2 keV/μm) and C ions (290 MeV; 50 keV/μm). V3 and XR1 cells lack the NHEJ pathway, whereas irs1 and irs1SF cells lack the HR pathway. After each exposure, survival was measured using a clonogenic survival assay, in situ DSB induction was evaluated by immunocytochemical analysis of histone H2AX phosphorylation at serine 139 (γ-H2AX foci) and chromosome aberrations were examined using solid staining. The findings from this study showed that clonogenic survival clearly depended on the NHEJ and HR pathway statuses, and that the DNA-PKcs(-/-) cells (V3) were the most sensitive to all radiation types. While protons and γ rays yielded almost the same biological effects, C-ion exposure greatly enhanced the sensitivity of wild-type and HR-deficient cells. However, no significant enhancement of sensitivity in cell killing was seen after C-ion irradiation of NHEJ deficient cells. Decreases in the number of γ-H2AX foci after irradiation occurred more slowly in the NHEJ deficient cells. In particular, V3 cells had the highest number of residual γ-H2AX foci at 24 h after C-ion irradiation. Chromosomal aberrations were significantly higher in both the NHEJ- and HR-deficient cell lines than in wild-type cell lines in response to all radiation types. Protons and gamma rays induced the same aberration levels in each cell line, whereas C ions introduced higher but not significantly different aberration levels. Our results suggest that the NHEJ pathway plays an important role in repairing DSBs induced by both clinical proton and C-ion beams. Furthermore, in C ions the HR pathway appears to be involved in the repair of DSBs to a greater extent compared to gamma rays and protons.
Collapse
|
180
|
Choi YE, Park E. Ferulic acid in combination with PARP inhibitor sensitizes breast cancer cells as chemotherapeutic strategy. Biochem Biophys Res Commun 2015; 458:520-524. [PMID: 25677620 DOI: 10.1016/j.bbrc.2015.01.147] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 01/29/2015] [Indexed: 10/24/2022]
Abstract
Homologous-recombination (HR)-dependent repair defective cells are hypersensitive to poly (ADP-ribose) polymerase (PARP) inhibitors. Combinations of defective HR pathway and PARP inhibitors have been an effective chemotherapeutic modality. We previously showed that knockdown of the WD40-repeat containing protein, Uaf1, causes an HR repair defect in mouse embryo fibroblast cells and therefore, increases sensitivity to PARP inhibitor, ABT-888. Similarly, here, we show that ferulic acid reduces HR repair, inhibits RAD 51 foci formation, and accumulates γ-H2AX in breast cancer cells. Moreover, ferulic acid, when combined with ABT-888, renders breast cancer cells become hypersensitive to ABT-888. Our study indicates that ferulic acid in combination with ABT-888 treatment may serve as an effective combination chemotherapeutic agent as a natural bioactive compound.
Collapse
Affiliation(s)
- Young Eun Choi
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Eunmi Park
- Department of Food and Nutrition, School of Life Science and Nano-Technology, Hannam University, 461-6 Jeonmin-Dong, Yuseong-gu, Daejeon 305-811, Republic of Korea.
| |
Collapse
|
181
|
Diner BA, Li T, Greco TM, Crow MS, Fuesler JA, Wang J, Cristea IM. The functional interactome of PYHIN immune regulators reveals IFIX is a sensor of viral DNA. Mol Syst Biol 2015; 11:787. [PMID: 25665578 PMCID: PMC4358659 DOI: 10.15252/msb.20145808] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The human PYHIN proteins, AIM2, IFI16, IFIX, and MNDA, are critical regulators of immune response, transcription, apoptosis, and cell cycle. However, their protein interactions and underlying mechanisms remain largely uncharacterized. Here, we provide the interaction network for all PYHIN proteins and define a function in sensing of viral DNA for the previously uncharacterized IFIX protein. By designing a cell-based inducible system and integrating microscopy, immunoaffinity capture, quantitative mass spectrometry, and bioinformatics, we identify over 300 PYHIN interactions reflective of diverse functions, including DNA damage response, transcription regulation, intracellular signaling, and antiviral response. In view of the IFIX interaction with antiviral factors, including nuclear PML bodies, we further characterize IFIX and demonstrate its function in restricting herpesvirus replication. We discover that IFIX detects viral DNA in both the nucleus and cytoplasm, binding foreign DNA via its HIN domain in a sequence-non-specific manner. Furthermore, IFIX contributes to the induction of interferon response. Our results highlight the value of integrative proteomics in deducing protein function and establish IFIX as an antiviral DNA sensor important for mounting immune responses.
Collapse
Affiliation(s)
- Benjamin A Diner
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Tuo Li
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Todd M Greco
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Marni S Crow
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - John A Fuesler
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Jennifer Wang
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| |
Collapse
|
182
|
Howard SM, Yanez DA, Stark JM. DNA damage response factors from diverse pathways, including DNA crosslink repair, mediate alternative end joining. PLoS Genet 2015; 11:e1004943. [PMID: 25629353 PMCID: PMC4309583 DOI: 10.1371/journal.pgen.1004943] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/09/2014] [Indexed: 01/06/2023] Open
Abstract
Alternative end joining (Alt-EJ) chromosomal break repair involves bypassing classical non-homologous end joining (c-NHEJ), and such repair causes mutations often with microhomology at the repair junction. Since the mediators of Alt-EJ are not well understood, we have sought to identify DNA damage response (DDR) factors important for this repair event. Using chromosomal break reporter assays, we surveyed an RNAi library targeting known DDR factors for siRNAs that cause a specific decrease in Alt-EJ, relative to an EJ event that is a composite of Alt-EJ and c-NHEJ (Distal-EJ between two tandem breaks). From this analysis, we identified several DDR factors that are specifically important for Alt-EJ relative to Distal-EJ. While these factors are from diverse pathways, we also found that most of them also promote homologous recombination (HR), including factors important for DNA crosslink repair, such as the Fanconi Anemia factor, FANCA. Since bypass of c-NHEJ is likely important for both Alt-EJ and HR, we disrupted the c-NHEJ factor Ku70 in Fanca-deficient mouse cells and found that Ku70 loss significantly diminishes the influence of Fanca on Alt-EJ. In contrast, an inhibitor of poly ADP-ribose polymerase (PARP) causes a decrease in Alt-EJ that is enhanced by Ku70 loss. Additionally, the helicase/nuclease DNA2 appears to have distinct effects from FANCA and PARP on both Alt-EJ, as well as end resection. Finally, we found that the proteasome inhibitor Bortezomib, a cancer therapeutic that has been shown to disrupt FANC signaling, causes a significant reduction in both Alt-EJ and HR, relative to Distal-EJ, as well as a substantial loss of end resection. We suggest that several distinct DDR functions are important for Alt-EJ, which include promoting bypass of c-NHEJ and end resection. Alternative EJ (Alt-EJ) is a chromosomal double strand break (DSB) repair pathway that often uses short stretches of homology (microhomology) to bridge the break during repair. Alt-EJ involves bypass of the classical non-homologous end joining (c-NHEJ) pathway, and hence may be important for DSBs that are not readily repaired by c-NHEJ, such as DSBs requiring extensive end processing prior to ligation. Since the factors that mediate Alt-EJ are unclear, we identified DNA damage response factors that differentially promote Alt-EJ relative to an EJ event that is a composite of c-NHEJ and Alt-EJ. Several of these factors promote other repair events that are enhanced by loss of c-NHEJ, namely homologous recombination (HR), including DNA crosslink repair factors, such as FANCA. We then investigated distinctions among individual factors. For instance, we found that loss of c-NHEJ appears to diminish the influence of FANCA on Alt-EJ, but enhances the effect of PARP inhibition. Furthermore, we find that FANCA and DNA2 differentially affect another aspect of the DNA damage response, namely end resection. Based on these findings, we suggest that several aspects of the DNA damage response are important for Alt-EJ.
Collapse
Affiliation(s)
- Sean M. Howard
- Department of Radiation Biology, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Diana A. Yanez
- Department of Radiation Biology, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Jeremy M. Stark
- Department of Radiation Biology, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
183
|
Jimeno S, Fernández-Ávila MJ, Cruz-García A, Cepeda-García C, Gómez-Cabello D, Huertas P. Neddylation inhibits CtIP-mediated resection and regulates DNA double strand break repair pathway choice. Nucleic Acids Res 2015; 43:987-99. [PMID: 25567988 PMCID: PMC4333419 DOI: 10.1093/nar/gku1384] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
DNA double strand breaks are the most cytotoxic lesions that can occur on the DNA. They can be repaired by different mechanisms and optimal survival requires a tight control between them. Here we uncover protein deneddylation as a major controller of repair pathway choice. Neddylation inhibition changes the normal repair profile toward an increase on homologous recombination. Indeed, RNF111/UBE2M-mediated neddylation acts as an inhibitor of BRCA1 and CtIP-mediated DNA end resection, a key process in repair pathway choice. By controlling the length of ssDNA produced during DNA resection, protein neddylation not only affects the choice between NHEJ and homologous recombination but also controls the balance between different recombination subpathways. Thus, protein neddylation status has a great impact in the way cells respond to DNA breaks.
Collapse
Affiliation(s)
- Sonia Jimeno
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain Departamento de Genética, Universidad de Sevilla, 41080 Sevilla, Spain
| | | | - Andrés Cruz-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain Departamento de Genética, Universidad de Sevilla, 41080 Sevilla, Spain
| | - Cristina Cepeda-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain
| | - Daniel Gómez-Cabello
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain
| | - Pablo Huertas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain Departamento de Genética, Universidad de Sevilla, 41080 Sevilla, Spain
| |
Collapse
|
184
|
Sridharan DM, Asaithamby A, Bailey SM, Costes SV, Doetsch PW, Dynan WS, Kronenberg A, Rithidech KN, Saha J, Snijders AM, Werner E, Wiese C, Cucinotta FA, Pluth JM. Understanding cancer development processes after HZE-particle exposure: roles of ROS, DNA damage repair and inflammation. Radiat Res 2015; 183:1-26. [PMID: 25564719 DOI: 10.1667/rr13804.1] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
During space travel astronauts are exposed to a variety of radiations, including galactic cosmic rays composed of high-energy protons and high-energy charged (HZE) nuclei, and solar particle events containing low- to medium-energy protons. Risks from these exposures include carcinogenesis, central nervous system damage and degenerative tissue effects. Currently, career radiation limits are based on estimates of fatal cancer risks calculated using a model that incorporates human epidemiological data from exposed populations, estimates of relative biological effectiveness and dose-response data from relevant mammalian experimental models. A major goal of space radiation risk assessment is to link mechanistic data from biological studies at NASA Space Radiation Laboratory and other particle accelerators with risk models. Early phenotypes of HZE exposure, such as the induction of reactive oxygen species, DNA damage signaling and inflammation, are sensitive to HZE damage complexity. This review summarizes our current understanding of critical areas within the DNA damage and oxidative stress arena and provides insight into their mechanistic interdependence and their usefulness in accurately modeling cancer and other risks in astronauts exposed to space radiation. Our ultimate goals are to examine potential links and crosstalk between early response modules activated by charged particle exposure, to identify critical areas that require further research and to use these data to reduced uncertainties in modeling cancer risk for astronauts. A clearer understanding of the links between early mechanistic aspects of high-LET response and later surrogate cancer end points could reveal key nodes that can be therapeutically targeted to mitigate the health effects from charged particle exposures.
Collapse
Affiliation(s)
- D M Sridharan
- a Lawrence Berkeley National Laboratory, Berkeley, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Abstract
A method is presented to measure homologous recombination in mouse embryonic stem cells by both gene targeting and short-tract gene conversion of a double-strand break (DSB). A fluorescence-based reporter is first gene targeted to the Hprt locus in a quantifiable way. A homing endonuclease expression vector is then introduced to generate a DSB, the repair of which is also quantifiable.
Collapse
|
186
|
Le Guen T, Ragu S, Guirouilh-Barbat J, Lopez BS. Role of the double-strand break repair pathway in the maintenance of genomic stability. Mol Cell Oncol 2014; 2:e968020. [PMID: 27308383 PMCID: PMC4905226 DOI: 10.4161/23723548.2014.968020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/18/2014] [Indexed: 11/19/2022]
Abstract
DNA double-strand breaks (DSBs) are highly lethal lesions that jeopardize genome integrity. However, DSBs are also used to generate diversity during the physiological processes of meiosis or establishment of the immune repertoire. Therefore, DSB repair must be tightly controlled. Two main strategies are used to repair DSBs: homologous recombination (HR) and non-homologous end joining (NHEJ). HR is generally considered to be error-free, whereas NHEJ is considered to be error-prone. However, recent data challenge these assertions. Here, we present the molecular mechanisms involved in HR and NHEJ and the recently described alternative end-joining mechanism, which is exclusively mutagenic. Whereas NHEJ is not intrinsically error-prone but adaptable, HR has the intrinsic ability to modify the DNA sequence. Importantly, in both cases the initial structure of the DNA impacts the outcome. Finally, the consequences and applications of these repair mechanisms are discussed. Both HR and NHEJ are double-edged swords, essential for maintenance of genome stability and diversity but also able to generate genome instability.
Collapse
Affiliation(s)
- Tangui Le Guen
- Université Paris Sud; CNRS UMR 8200; Institut de Cancérologie Gustave-Roussy; Team labeled "Ligue 2014" ; Villejuif, France
| | - Sandrine Ragu
- Université Paris Sud; CNRS UMR 8200; Institut de Cancérologie Gustave-Roussy; Team labeled "Ligue 2014" ; Villejuif, France
| | - Josée Guirouilh-Barbat
- Université Paris Sud; CNRS UMR 8200; Institut de Cancérologie Gustave-Roussy; Team labeled "Ligue 2014" ; Villejuif, France
| | - Bernard S Lopez
- Université Paris Sud; CNRS UMR 8200; Institut de Cancérologie Gustave-Roussy; Team labeled "Ligue 2014" ; Villejuif, France
| |
Collapse
|
187
|
Maeda J, Bell JJ, Genet SC, Fujii Y, Genet MD, Brents CA, Genik PC, Kato TA. Potentially lethal damage repair in drug arrested G2-phase cells after radiation exposure. Radiat Res 2014; 182:448-57. [PMID: 25251700 DOI: 10.1667/rr13744.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Potentially lethal damage (PLD) repair has been defined as that property conferring the ability of cells to recover from DNA damage depending on the postirradiation environment. Using a novel cyclin dependent kinase 1 inhibitor RO-3306 to arrest cells in the G2 phase of the cell cycle, examined PLD repair in G2 in cultured Chinese hamster ovary (CHO) cells. Several CHO-derived DNA repair mutant cell lines were used in this study to elucidate the mechanism of DNA double-strand break repair and to examine PLD repair during the G2 phase of the cell cycle. While arrested in G2 phase, wild-type CHO cells displayed significant PLD repair and improved cell survival compared with cells released immediately from G2 after irradiation. Both the radiation-induced chromosomal aberrations and the delayed entry into mitosis were also reduced by G2-holding PLD recovery. The PLD repair observed in G2 was observed in nonhomologous end-joining (NHEJ) mutant cell lines but absent in homologous recombination mutant cell lines. From the survival curves, G2-NHEJ mutant cell lines were found to be very sensitive to gamma-ray exposure when compared to G2/homologous recombination mutant cell lines. Our findings suggest that after exposure to ionizing radiation during G2, NHEJ is responsible for the majority of non-PLD repair, and conversely, that the homologous recombination is responsible for PLD repair in G2.
Collapse
Affiliation(s)
- Junko Maeda
- a Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, 80523
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Doksani Y, de Lange T. The role of double-strand break repair pathways at functional and dysfunctional telomeres. Cold Spring Harb Perspect Biol 2014; 6:a016576. [PMID: 25228584 DOI: 10.1101/cshperspect.a016576] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Telomeres have evolved to protect the ends of linear chromosomes from the myriad of threats posed by the cellular DNA damage signaling and repair pathways. Mammalian telomeres have to block nonhomologous end joining (NHEJ), thus preventing chromosome fusions; they need to control homologous recombination (HR), which could change telomere lengths; they have to avoid activating the ATM (ataxia telangiectasia mutated) and ATR (ATM- and RAD3-related) kinase pathways, which could induce cell cycle arrest; and they have to protect chromosome ends from hyperresection. Recent studies of telomeres have provided insights into the mechanisms of NHEJ and HR, how these double-strand break (DSB) repair pathways can be thwarted, and how telomeres have co-opted DNA repair factors to help in the protection of chromosome ends. These aspects of telomere biology are reviewed here with particular emphasis on recombination, the main focus of this collection.
Collapse
Affiliation(s)
- Ylli Doksani
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, New York 10065
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, New York 10065
| |
Collapse
|
189
|
Truong LN, Li Y, Sun E, Ang K, Hwang PYH, Wu X. Homologous recombination is a primary pathway to repair DNA double-strand breaks generated during DNA rereplication. J Biol Chem 2014; 289:28910-23. [PMID: 25160628 DOI: 10.1074/jbc.m114.576488] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Re-initiation of DNA replication at origins within a given cell cycle would result in DNA rereplication, which can lead to genome instability and tumorigenesis. DNA rereplication can be induced by loss of licensing control at cellular replication origins, or by viral protein-driven multiple rounds of replication initiation at viral origins. DNA double-strand breaks (DSBs) are generated during rereplication, but the mechanisms of how these DSBs are repaired to maintain genome stability and cell viability are poorly understood in mammalian cells. We generated novel EGFP-based DSB repair substrates, which specifically monitor the repair of rereplication-associated DSBs. We demonstrated that homologous recombination (HR) is an important mechanism to repair rereplication-associated DSBs, and sister chromatids are used as templates for such HR-mediated DSB repair. Micro-homology-mediated non-homologous end joining (MMEJ) can also be used but to a lesser extent compared to HR, whereas Ku-dependent classical non-homologous end joining (C-NHEJ) has a minimal role to repair rereplication-associated DSBs. In addition, loss of HR activity leads to severe cell death when rereplication is induced. Therefore, our studies identify HR, the most conservative repair pathway, as the primary mechanism to repair DSBs upon rereplication.
Collapse
Affiliation(s)
- Lan N Truong
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La, Jolla, California 92037
| | - Yongjiang Li
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La, Jolla, California 92037
| | - Emily Sun
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La, Jolla, California 92037
| | - Katrina Ang
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La, Jolla, California 92037
| | - Patty Yi-Hwa Hwang
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La, Jolla, California 92037
| | - Xiaohua Wu
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La, Jolla, California 92037
| |
Collapse
|
190
|
The Ku heterodimer: function in DNA repair and beyond. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:15-29. [PMID: 25795113 DOI: 10.1016/j.mrrev.2014.06.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/07/2014] [Accepted: 06/25/2014] [Indexed: 01/11/2023]
Abstract
Ku is an abundant, highly conserved DNA binding protein found in both prokaryotes and eukaryotes that plays essential roles in the maintenance of genome integrity. In eukaryotes, Ku is a heterodimer comprised of two subunits, Ku70 and Ku80, that is best characterized for its central role as the initial DNA end binding factor in the "classical" non-homologous end joining (C-NHEJ) pathway, the main DNA double-strand break (DSB) repair pathway in mammals. Ku binds double-stranded DNA ends with high affinity in a sequence-independent manner through a central ring formed by the intertwined strands of the Ku70 and Ku80 subunits. At the break, Ku directly and indirectly interacts with several C-NHEJ factors and processing enzymes, serving as the scaffold for the entire DNA repair complex. There is also evidence that Ku is involved in signaling to the DNA damage response (DDR) machinery to modulate the activation of cell cycle checkpoints and the activation of apoptosis. Interestingly, Ku is also associated with telomeres, where, paradoxically to its DNA end-joining functions, it protects the telomere ends from being recognized as DSBs, thereby preventing their recombination and degradation. Ku, together with the silent information regulator (Sir) complex is also required for transcriptional silencing through telomere position effect (TPE). How Ku associates with telomeres, whether it is through direct DNA binding, or through protein-protein interactions with other telomere bound factors remains to be determined. Ku is central to the protection of organisms through its participation in C-NHEJ to repair DSBs generated during V(D)J recombination, a process that is indispensable for the establishment of the immune response. Ku also functions to prevent tumorigenesis and senescence since Ku-deficient mice show increased cancer incidence and early onset of aging. Overall, Ku function is critical to the maintenance of genomic integrity and to proper cellular and organismal development.
Collapse
|
191
|
Litvinov SV. Main repair pathways of double-strand breaks in the genomic DNA and interactions between them. CYTOL GENET+ 2014. [DOI: 10.3103/s0095452714030062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
192
|
A histone H3K36 chromatin switch coordinates DNA double-strand break repair pathway choice. Nat Commun 2014; 5:4091. [PMID: 24909977 DOI: 10.1038/ncomms5091] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 05/12/2014] [Indexed: 12/19/2022] Open
Abstract
DNA double-strand break (DSB) repair is a highly regulated process performed predominantly by non-homologous end joining (NHEJ) or homologous recombination (HR) pathways. How these pathways are coordinated in the context of chromatin is unclear. Here we uncover a role for histone H3K36 modification in regulating DSB repair pathway choice in fission yeast. We find Set2-dependent H3K36 methylation reduces chromatin accessibility, reduces resection and promotes NHEJ, while antagonistic Gcn5-dependent H3K36 acetylation increases chromatin accessibility, increases resection and promotes HR. Accordingly, loss of Set2 increases H3K36Ac, chromatin accessibility and resection, while Gcn5 loss results in the opposite phenotypes following DSB induction. Further, H3K36 modification is cell cycle regulated with Set2-dependent H3K36 methylation peaking in G1 when NHEJ occurs, while Gcn5-dependent H3K36 acetylation peaks in S/G2 when HR prevails. These findings support an H3K36 chromatin switch in regulating DSB repair pathway choice.
Collapse
|
193
|
Rosa26-GFP direct repeat (RaDR-GFP) mice reveal tissue- and age-dependence of homologous recombination in mammals in vivo. PLoS Genet 2014; 10:e1004299. [PMID: 24901438 PMCID: PMC4046920 DOI: 10.1371/journal.pgen.1004299] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 02/24/2014] [Indexed: 01/15/2023] Open
Abstract
Homologous recombination (HR) is critical for the repair of double strand breaks and broken replication forks. Although HR is mostly error free, inherent or environmental conditions that either suppress or induce HR cause genomic instability. Despite its importance in carcinogenesis, due to limitations in our ability to detect HR in vivo, little is known about HR in mammalian tissues. Here, we describe a mouse model in which a direct repeat HR substrate is targeted to the ubiquitously expressed Rosa26 locus. In the Rosa26Direct Repeat-GFP (RaDR-GFP) mice, HR between two truncated EGFP expression cassettes can yield a fluorescent signal. In-house image analysis software provides a rapid method for quantifying recombination events within intact tissues, and the frequency of recombinant cells can be evaluated by flow cytometry. A comparison among 11 tissues shows that the frequency of recombinant cells varies by more than two orders of magnitude among tissues, wherein HR in the brain is the lowest. Additionally, de novo recombination events accumulate with age in the colon, showing that this mouse model can be used to study the impact of chronic exposures on genomic stability. Exposure to N-methyl-N-nitrosourea, an alkylating agent similar to the cancer chemotherapeutic temozolomide, shows that the colon, liver and pancreas are susceptible to DNA damage-induced HR. Finally, histological analysis of the underlying cell types reveals that pancreatic acinar cells and liver hepatocytes undergo HR and also that HR can be specifically detected in colonic somatic stem cells. Taken together, the RaDR-GFP mouse model provides new understanding of how tissue and age impact susceptibility to HR, and enables future studies of genetic, environmental and physiological factors that modulate HR in mammals. Cancer is a disease of the genome, caused by accumulated genetic changes, such as point mutations and large-scale sequence rearrangements. Homologous recombination (HR) is a critical DNA repair pathway. While generally accurate, HR between misaligned sequences or between homologous chromosomes can lead to insertions, deletions, and loss of heterozygosity, all of which are known to promote cancer. Indeed, most cancers harbor sequence changes caused by HR, and genetic and environmental conditions that induce or suppress HR are often carcinogenic. To enable studies of HR in vivo, we created the Rosa26 Direct Repeat-Green Fluorescent Protein (RaDR-GFP) mice that carry an integrated transgenic recombination reporter targeted to the ubiquitously expressed Rosa26 locus. Being able to detect recombinant cells by fluorescence reveals that the frequency of recombination is highly variable among tissues. Furthermore, new recombination events accumulate over time, which contributes to our understanding of why our risk for cancer increases with age. This mouse model provides new understanding of this important DNA repair pathway in vivo, and also enables future studies of genetic, environmental and physiological factors that impact the risk of HR-induced sequence rearrangements in vivo.
Collapse
|
194
|
Gao X, Kong L, Lu X, Zhang G, Chi L, Jiang Y, Wu Y, Yan C, Duerksen-Hughes P, Zhu X, Yang J. Paraspeckle protein 1 (PSPC1) is involved in the cisplatin induced DNA damage response--role in G1/S checkpoint. PLoS One 2014; 9:e97174. [PMID: 24819514 PMCID: PMC4018278 DOI: 10.1371/journal.pone.0097174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/16/2014] [Indexed: 11/18/2022] Open
Abstract
Paraspeckle protein 1 (PSPC1) was first identified as a structural protein of the subnuclear structure termed paraspeckle. However, the exact physiological functions of PSPC1 are still largely unknown. Previously, using a proteomic approach, we have shown that exposure to cisplatin can induce PSPC1 expression in HeLa cells, indicating the possible involvement for PSPC1 in the DNA damage response (DDR). In the current study, the role of PSPC1 in DDR was examined. First, it was found that cisplatin treatment could indeed induce the expression of PSPC1 protein. Abolishing PSPC1 expression by siRNA significantly inhibited cell growth, caused spontaneous cell death, and increased DNA damage. However, PSPC1 did not co-localize with γH2AX, 53BP1, or Rad51, indicating no direct involvement in DNA repair pathways mediated by these molecules. Interestingly, knockdown of PSPC1 disrupted the normal cell cycle distribution, with more cells entering the G2/M phase. Furthermore, while cisplatin induced G1/S arrest in HeLa cells, knockdown of PSPC1 caused cells to escape the G1/S checkpoint and enter mitosis, and resulted in more cell death. Taken together, these observations indicate a new role for PSPC1 in maintaining genome integrity during the DDR, particularly in the G1/S checkpoint.
Collapse
Affiliation(s)
- Xiangjing Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| | - Liya Kong
- Department of preventative medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianghong Lu
- Lishui People's Hospital, Lishui, Zhejiang, China
| | - Guanglin Zhang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| | - Linfeng Chi
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| | - Ying Jiang
- Center Testing International Corporation, Shenzhen, Guangdong, China
| | - Yihua Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| | - Chunlan Yan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| | - Penelope Duerksen-Hughes
- Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, Californina, United States of America
| | - Xinqiang Zhu
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
- * E-mail: (JY); (XQZ)
| | - Jun Yang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, Zhejiang, China
- Department of Biomedicine, College of Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, China
- * E-mail: (JY); (XQZ)
| |
Collapse
|
195
|
Tilgner K, Neganova I, Singhapol C, Saretzki G, Al-Aama JY, Evans J, Gorbunova V, Gennery A, Przyborski S, Stojkovic M, Armstrong L, Jeggo P, Lako M. Brief report: a human induced pluripotent stem cell model of cernunnos deficiency reveals an important role for XLF in the survival of the primitive hematopoietic progenitors. Stem Cells 2014; 31:2015-23. [PMID: 23818183 DOI: 10.1002/stem.1456] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 05/18/2013] [Accepted: 05/21/2013] [Indexed: 11/09/2022]
Abstract
Cernunnos (also known as XLF) deficiency syndrome is a rare recessive autosomal disorder caused by mutations in the XLF gene, a key factor involved in the end joining step of DNA during nonhomologous end joining (NHEJ) process. Human patients with XLF mutations display microcephaly, developmental and growth delays, and severe immunodeficiency. While the clinical phenotype of DNA damage disorders, including XLF Syndrome, has been described extensively, the underlying mechanisms of disease onset, are as yet, undefined. We have been able to generate an induced pluripotent stem cell (iPSC) model of XLF deficiency, which accurately replicates the double-strand break repair deficiency observed in XLF patients. XLF patient-specific iPSCs (XLF-iPSC) show typical expression of pluripotency markers, but have altered in vitro differentiation capacity and an inability to generate teratomas comprised of all three germ layers in vivo. Our results demonstrate that XLF-iPSCs possess a weak NHEJ-mediated DNA repair capacity that is incapable of coping with the DNA lesions introduced by physiological stress, normal metabolism, and ionizing radiation. XLF-iPSC lines are capable of hematopoietic differentiation; however, the more primitive subsets of hematopoietic progenitors display increased apoptosis in culture and an inability to repair DNA damage. Together, our findings highlight the importance of NHEJ-mediated-DNA repair in the maintenance of a pristine pool of hematopoietic progenitors during human embryonic development.
Collapse
Affiliation(s)
- Katarzyna Tilgner
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom; NESCI, Newcastle University, Newcastle, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Sasaki MS, Tachibana A, Takeda S. Cancer risk at low doses of ionizing radiation: artificial neural networks inference from atomic bomb survivors. JOURNAL OF RADIATION RESEARCH 2014; 55:391-406. [PMID: 24366315 PMCID: PMC4014156 DOI: 10.1093/jrr/rrt133] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 06/03/2023]
Abstract
Cancer risk at low doses of ionizing radiation remains poorly defined because of ambiguity in the quantitative link to doses below 0.2 Sv in atomic bomb survivors in Hiroshima and Nagasaki arising from limitations in the statistical power and information available on overall radiation dose. To deal with these difficulties, a novel nonparametric statistics based on the 'integrate-and-fire' algorithm of artificial neural networks was developed and tested in cancer databases established by the Radiation Effects Research Foundation. The analysis revealed unique features at low doses that could not be accounted for by nominal exposure dose, including (i) the presence of a threshold that varied with organ, gender and age at exposure, and (ii) a small but significant bumping increase in cancer risk at low doses in Nagasaki that probably reflects internal exposure to (239)Pu. The threshold was distinct from the canonical definition of zero effect in that it was manifested as negative excess relative risk, or suppression of background cancer rates. Such a unique tissue response at low doses of radiation exposure has been implicated in the context of the molecular basis of radiation-environment interplay in favor of recently emerging experimental evidence on DNA double-strand break repair pathway choice and its epigenetic memory by histone marking.
Collapse
Affiliation(s)
- Masao S. Sasaki
- Kyoto University, 17-12 Shironosato, Nagaokakyo-shi, Kyoto 617-0835, Japan
| | - Akira Tachibana
- Department of Biology, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
197
|
Pears CJ, Lakin ND. Emerging models for DNA repair: Dictyostelium discoideum as a model for nonhomologous end-joining. DNA Repair (Amst) 2014; 17:121-31. [DOI: 10.1016/j.dnarep.2014.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/09/2014] [Accepted: 01/24/2014] [Indexed: 02/03/2023]
|
198
|
Abstract
Since DNA double-strand breaks (DSBs) contribute to the genomic instability that drives cancer development, DSB repair pathways serve as important mechanisms for tumor suppression. Thus, genetic lesions, such as BRCA1 and BRCA2 mutations, that disrupt DSB repair are often associated with cancer susceptibility. In addition, recent evidence suggests that DSB "mis-repair", in which DSBs are resolved by an inappropriate repair pathway, can also promote genomic instability and presumably tumorigenesis. This notion has gained currency from recent cancer genome sequencing studies which have uncovered numerous chromosomal rearrangements harboring pathological DNA repair signatures. In this perspective, we discuss the factors that regulate DSB repair pathway choice and their consequences for genome stability and cancer.
Collapse
Affiliation(s)
- Tomas Aparicio
- Institute for Cancer Genetics & Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - Richard Baer
- Institute for Cancer Genetics & Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Jean Gautier
- Institute for Cancer Genetics & Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
199
|
Beck C, Boehler C, Guirouilh Barbat J, Bonnet ME, Illuzzi G, Ronde P, Gauthier LR, Magroun N, Rajendran A, Lopez BS, Scully R, Boussin FD, Schreiber V, Dantzer F. PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways. Nucleic Acids Res 2014; 42:5616-32. [PMID: 24598253 PMCID: PMC4027158 DOI: 10.1093/nar/gku174] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The repair of toxic double-strand breaks (DSB) is critical for the maintenance of genome integrity. The major mechanisms that cope with DSB are: homologous recombination (HR) and classical or alternative nonhomologous end joining (C-NHEJ versus A-EJ). Because these pathways compete for the repair of DSB, the choice of the appropriate repair pathway is pivotal. Among the mechanisms that influence this choice, deoxyribonucleic acid (DNA) end resection plays a critical role by driving cells to HR, while accurate C-NHEJ is suppressed. Furthermore, end resection promotes error-prone A-EJ. Increasing evidence define Poly(ADP-ribose) polymerase 3 (PARP3, also known as ARTD3) as an important player in cellular response to DSB. In this work, we reveal a specific feature of PARP3 that together with Ku80 limits DNA end resection and thereby helps in making the choice between HR and NHEJ pathways. PARP3 interacts with and PARylates Ku70/Ku80. The depletion of PARP3 impairs the recruitment of YFP-Ku80 to laser-induced DNA damage sites and induces an imbalance between BRCA1 and 53BP1. Both events result in compromised accurate C-NHEJ and a concomitant increase in DNA end resection. Nevertheless, HR is significantly reduced upon PARP3 silencing while the enhanced end resection causes mutagenic deletions during A-EJ. As a result, the absence of PARP3 confers hypersensitivity to anti-tumoral drugs generating DSB.
Collapse
Affiliation(s)
- Carole Beck
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, Equipe labellisée Ligue Nationale Contre Le Cancer, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, BP10413, 67412 Illkirch, France
| | - Christian Boehler
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, Equipe labellisée Ligue Nationale Contre Le Cancer, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, BP10413, 67412 Illkirch, France
| | - Josée Guirouilh Barbat
- Université Paris Sud, CNRS UMR8200, Institut de Cancérologie Gustave-Roussy, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Marie-Elise Bonnet
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, Equipe labellisée Ligue Nationale Contre Le Cancer, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, BP10413, 67412 Illkirch, France
| | - Giuditta Illuzzi
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, Equipe labellisée Ligue Nationale Contre Le Cancer, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, BP10413, 67412 Illkirch, France
| | - Philippe Ronde
- Laboratoire de biophotonique et pharmacologie, UMR 7213, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Laurent R Gauthier
- CEA DSV iRCM SCSR, Laboratoire de radiopathologie, INSERM, U967, 92265 Fontenay-aux-Roses, France
| | - Najat Magroun
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, Equipe labellisée Ligue Nationale Contre Le Cancer, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, BP10413, 67412 Illkirch, France
| | - Anbazhagan Rajendran
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Bernard S Lopez
- Université Paris Sud, CNRS UMR8200, Institut de Cancérologie Gustave-Roussy, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Ralph Scully
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - François D Boussin
- CEA DSV iRCM SCSR, Laboratoire de radiopathologie, INSERM, U967, 92265 Fontenay-aux-Roses, France
| | - Valérie Schreiber
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, Equipe labellisée Ligue Nationale Contre Le Cancer, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, BP10413, 67412 Illkirch, France
| | - Françoise Dantzer
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, Equipe labellisée Ligue Nationale Contre Le Cancer, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, BP10413, 67412 Illkirch, France
| |
Collapse
|
200
|
Ramaekers CHMA, van den Beucken T, Bristow RG, Chiu RK, Durocher D, Wouters BG. RNF8-independent Lys63 poly-ubiquitylation prevents genomic instability in response to replication-associated DNA damage. PLoS One 2014; 9:e89997. [PMID: 24587176 PMCID: PMC3938561 DOI: 10.1371/journal.pone.0089997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 01/28/2014] [Indexed: 01/19/2023] Open
Abstract
The cellular response to DNA double strand breaks (DSBs) involves the ordered assembly of repair proteins at or near sites of damage. This process is mediated through post-translational protein modifications that include both phosphorylation and ubiquitylation. Recent data have demonstrated that recruitment of the repair proteins BRCA1, 53BP1, and RAD18 to ionizing irradiation (IR) induced DSBs is dependent on formation of non-canonical K63-linked polyubiquitin chains by the RNF8 and RNF168 ubiquitin ligases. Here we report a novel role for K63-ubiquitylation in response to replication-associated DSBs that contributes to both cell survival and maintenance of genome stability. Suppression of K63-ubiquitylation markedly increases large-scale mutations and chromosomal aberrations in response to endogenous or exogenous replication-associated DSBs. These effects are associated with an S-phase specific defect in DNA repair as revealed by an increase in residual 53BP1 foci. Use of both knockdown and knockout cell lines indicates that unlike the case for IR-induced DSBs, the requirement for K63-ubiquitylation for the repair of replication associated DSBs was found to be RNF8-independent. Our findings reveal the existence of a novel K63-ubiquitylation dependent repair pathway that contributes to the maintenance of genome integrity in response to replication-associated DSBs.
Collapse
Affiliation(s)
- Chantal H. M. A. Ramaekers
- Ontario Cancer Institute and Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Maastricht Radiation Oncology (MaastRO) Lab, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Twan van den Beucken
- Ontario Cancer Institute and Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Maastricht Radiation Oncology (MaastRO) Lab, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Robert G. Bristow
- Ontario Cancer Institute and Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Roland K. Chiu
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Daniel Durocher
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bradly G. Wouters
- Ontario Cancer Institute and Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Maastricht Radiation Oncology (MaastRO) Lab, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
- Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|