151
|
Romero I, Teresa Sanchez-Ballesta M, Maldonado R, Isabel Escribano M, Merodio C. Anthocyanin, antioxidant activity and stress-induced gene expression in high CO2-treated table grapes stored at low temperature. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:522-30. [PMID: 17570561 DOI: 10.1016/j.jplph.2006.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 12/19/2006] [Accepted: 12/21/2006] [Indexed: 05/08/2023]
Abstract
A pretreatment with 20kPa CO2+20 kPa O2+60 kPa N2 for 3 days proved effective in maintaining the fruit quality and controlling decay in table grapes (Vitis vinifera cv. Cardinal) stored at 0 degrees C. In the present work, we analyzed whether total anthocyanin content, the molecular mechanism implicated in their biosynthesis and antioxidant activity is related to the beneficial effect of this gaseous treatment. We isolated partial cDNAs that codified for enzymes implicated in the anthocyanin biosynthesis such as l-phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS), and an antioxidant enzyme such as ascorbate peroxidase (APX). Low temperatures induced an accumulation of total anthocyanin content in the skin of both treated and non-treated grapes, although levels were lower in CO2-treated fruit. By contrast, antioxidant activity decreased during storage at 0 degrees C in non-treated grapes but did not change in CO2-treated grapes. The up-regulation of anthocyanin biosynthesis gene expression and VcAPX mRNA observed in non-treated grape is not enhanced in CO2-treated grapes, which presented low total decay. These results point out the ability of CO2-treated grapes to prevent the generation of reactive oxygen species rather than their inactivation by means of induction of studied defense systems.
Collapse
Affiliation(s)
- Irene Romero
- Departamento de Ciencia y Tecnología de Productos Vegetales, Instituto del Frio, IF-CSIC, Ciudad Universitaria, E-28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
152
|
Bidel LPR, Meyer S, Goulas Y, Cadot Y, Cerovic ZG. Responses of epidermal phenolic compounds to light acclimation: In vivo qualitative and quantitative assessment using chlorophyll fluorescence excitation spectra in leaves of three woody species. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2007; 88:163-79. [PMID: 17720509 DOI: 10.1016/j.jphotobiol.2007.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 06/28/2007] [Indexed: 11/16/2022]
Abstract
Chlorophyll fluorescence (ChlF) excitation spectra were measured to assess the UV-sunscreen compounds accumulated in fully expanded leaves of three woody species belonging to different chemotaxons, (i.e. Morus nigra L., Prunus mahaleb L. and Lagerstroemia indica L.), grown in different light microclimates. The logarithm of the ratio of ChlF excitation spectra (logFER) between two leaves acclimated to different light microclimates was used to assess the difference in epidermal absorbance (EAbs). EAbs increased with increasing solar irradiance intercepted for the three species. This epidermal localisation of UV-absorbers was confirmed by the removal of the epidermis. It was possible to simulate EAbs as a linear combination of major phenolic compounds (Phen) identified in leaf methanol extracts by HPLC-DAD. Under UV-free radiation conditions, shaded leaves of M. nigra accumulated chlorogenic acid. Hydroxybenzoic acid (HBA) derivatives and hydroxycinnamic acid (HCA) derivatives greatly increased with increasing PAR irradiance under the low UV-B conditions found in the greenhouse. These traits were also observed for the HCA of the two other species. Flavonoid (FLAV) accumulation started under low UV-A irradiance, and became maximal in the adaxial epidermis of sun-exposed leaves outdoors. A decrease in the amount of HCA was observed concomitantly to the intense accumulation of FLAV for both leaf sides of the three species. Judging from the logFER, under low UV-B conditions, larger amounts of HCA are present in the epidermis in comparison to FLAV for the three species. Upon transition from the greenhouse to full sunlight outdoors, there was a decrease in leaf-soluble HCA that paralleled FLAV accumulation in reaction to increasing solar UV-B radiation in the three species. In M. nigra, that contains large amounts of HCA, the logFER analysis showed that this decrease occurred in the adaxial epidermis, whereas the abaxial epidermis, which is protected from direct UV-B radiation, continued to accumulate large amounts of HCA.
Collapse
Affiliation(s)
- L P R Bidel
- INRA, UMR A-462 SAGAH, 42 rue Georges Morel, BP 6057, F-49071 Beaucouzé, France.
| | | | | | | | | |
Collapse
|
153
|
Sullivan JH, Gitz DC, Liu-Gitz L, Xu C, Gao W, Slusser J. Coupling short-term changes in ambient UV-B levels with induction of UV-screening compounds. Photochem Photobiol 2007; 83:863-70. [PMID: 17645657 DOI: 10.1111/j.1751-1097.2007.00138.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A substantial number of studies have been conducted over the last several decades to assess the potential impacts of long-term increases in ultraviolet-B radiation (UV-B between 280 and 320 nm) that will result from continued depletion of stratospheric ozone. However, seasonal changes, tropospheric chemistry and cloudiness are the dominant factors controlling ambient UV-B levels on a short-term or daily basis. The effects of short-term changes in UV-B on plant growth, phytochemistry and physiological processes have received relatively little attention. The USDA UV-B Monitoring and Research Program provides an excellent network of stations that provide an opportunity to monitor long-term changes in solar UV-B radiation and evaluate the responses of plants to short-term variation in UV-B levels on a near-real-time basis. In this study barley (Hordeum vulgare L.) and soybean (Glycine max [L] Merr.) were used as model systems. Emerging seedlings of these species were grown under either near-ambient levels of UV-B or under reduced levels (ca 90% reduction) in the field. Periodic measurements of foliar UV-screening compounds were made on separate groups of seedlings planted at intervals over the growing season during contrasting periods of ambient levels of UV radiation. The levels of UV-screening compounds correlated with UV-B levels in both species and with UV-A in soybean but the sensitivity of the response differed between the two species and among the soybean cultivars. Response differences among species may be related to unique secondary chemistry of each species, so one response estimate or action spectrum may not be appropriate for all species.
Collapse
Affiliation(s)
- Joe H Sullivan
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
| | | | | | | | | | | |
Collapse
|
154
|
Concellón A, Añón MC, Chaves AR. Effect of low temperature storage on physical and physiological characteristics of eggplant fruit (Solanum melongena L.). Lebensm Wiss Technol 2007. [DOI: 10.1016/j.lwt.2006.02.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
155
|
Bilger W, Rolland M, Nybakken L. UV screening in higher plants induced by low temperature in the absence of UV-B radiation. Photochem Photobiol Sci 2007; 6:190-5. [PMID: 17277843 DOI: 10.1039/b609820g] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epidermally located UV-B absorbing hydroxycinnamic acid derivatives and flavonoids serve as a screen against potentially damaging UV-B (280-315 nm) radiation in higher plants. We investigated the effect of low temperature on epidermal screening as assessed by a chlorophyll fluorescence technique. The epidermal UV-transmittance of greenhouse-grown Vicia faba plants was strongly dependent on growth temperatures between 21 and 9 degrees C, with significant differences already between 21 and 18 degrees C. There was a good correlation between epidermal UV-A and UV-B absorbance and the absorbance of whole leaf extracts at the respective wavelengths. Whereas in Oxyria digyna and Rumex longifolius no temperature dependence of epidermal transmittance could be detected, it was confirmed for seven other crop plant species, including summer and winter varieties, and for Arabidopsis thaliana. Dicotyledoneous plants showed a stronger response than monocotyledoneous ones. In all investigated species, the response in the UV-A spectral region was similar to that in the UV-B, suggesting that flavonoids were the responsible compounds. In V. faba, mature leaves did not respond with a change in epidermal transmittance upon transfer from warm to cool conditions or vice versa, whereas developing leaves did acclimate to the new conditions. We conclude that temperature is an important determinant of the acclimation of epidermal UV transmittance to environmental conditions in many plant species. The potential adaptive value of this response is discussed.
Collapse
Affiliation(s)
- Wolfgang Bilger
- Botanical Institute, University of Kiel, Olshausenstr. 40, D-24098, Kiel, Germany.
| | | | | |
Collapse
|
156
|
Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K. Loss of anthocyanins in red-wine grape under high temperature. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:1935-45. [PMID: 17452755 DOI: 10.1093/jxb/erm055] [Citation(s) in RCA: 290] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
To determine the mechanism of inhibition of anthocyanin accumulation in the skin of grape berries due to high temperature, the effects of high temperature on anthocyanin composition and the responses in terms of gene transcript levels were examined using Vitis vinifera L. cv. Cabernet Sauvignon. High temperature (maximum 35 degrees C) reduced the total anthocyanin content to less than half of that in the control berries (maximum 25 degrees C). HPLC analysis showed that the concentrations of anthocyanins, with the exception of malvidin derivatives (3-glucoside, 3-acetylglucoside, and 3-p-coumaroylglucoside), decreased considerably in the berries grown under high temperature as compared with the control. However, Affymetrix Vitis GeneChip microarray analysis indicated that the anthocyanin biosynthetic genes were not strongly down-regulated at high temperature. A quantitative real time PCR analysis confirmed this finding. To demonstrate the possibility that high temperature increases anthocyanin degradation in grape skin, stable isotope-labelled tracer experiments were carried out. Softened green berries of Cabernet Sauvignon were cut and aseptically incubated on filter paper with 1 mM aqueous L-[1-(13)C]phenylalanine solution for 1 week. Thereafter, the changes in (13)C-labelled anthocyanins were examined under different temperatures (15, 25, and 35 degrees C). In the berries cultured at 35 degrees C, the content of total (13)C-labelled anthocyanins that were produced before exposure to high temperature was markedly reduced as compared with those cultured at 15 degrees C and 25 degrees C. These data suggest that the decrease in anthocyanin accumulation under high temperature results from factors such as anthocyanin degradation as well as the inhibition of mRNA transcription of the anthocyanin biosynthetic genes.
Collapse
Affiliation(s)
- Kentaro Mori
- National Research Institute of Brewing, Higashi-Hiroshima, Hiroshima 739-0046, Japan.
| | | | | | | |
Collapse
|
157
|
Maeda H, Song W, Sage TL, DellaPenna D. Tocopherols play a crucial role in low-temperature adaptation and Phloem loading in Arabidopsis. THE PLANT CELL 2006; 18:2710-32. [PMID: 17012603 PMCID: PMC1626601 DOI: 10.1105/tpc.105.039404] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
To test whether tocopherols (vitamin E) are essential in the protection against oxidative stress in plants, a series of Arabidopsis thaliana vitamin E (vte) biosynthetic mutants that accumulate different types and levels of tocopherols and pathway intermediates were analyzed under abiotic stress. Surprisingly subtle differences were observed between the tocopherol-deficient vte2 mutant and the wild type during high-light, salinity, and drought stresses. However, vte2, and to a lesser extent vte1, exhibited dramatic phenotypes under low temperature (i.e., increased anthocyanin levels and reduced growth and seed production). That these changes were independent of light level and occurred in the absence of photoinhibition or lipid peroxidation suggests that the mechanisms involved are independent of tocopherol functions in photoprotection. Compared with the wild type, vte1 and vte2 had reduced rates of photoassimilate export as early as 6 h into low-temperature treatment, increased soluble sugar levels by 60 h, and increased starch and reduced photosynthetic electron transport rate by 14 d. The rapid reduction in photoassimilate export in vte2 coincides with callose deposition exclusively in phloem parenchyma transfer cell walls adjacent to the companion cell/sieve element complex. Together, these results indicate that tocopherols have a more limited role in photoprotection than previously assumed but play crucial roles in low-temperature adaptation and phloem loading.
Collapse
Affiliation(s)
- Hiroshi Maeda
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
158
|
Mahesh V, Rakotomalala JJ, Le Gal L, Vigne H, de Kochko A, Hamon S, Noirot M, Campa C. Isolation and genetic mapping of a Coffea canephora phenylalanine ammonia-lyase gene (CcPAL1) and its involvement in the accumulation of caffeoyl quinic acids. PLANT CELL REPORTS 2006; 25:986-92. [PMID: 16586075 DOI: 10.1007/s00299-006-0152-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 02/22/2006] [Accepted: 03/02/2006] [Indexed: 05/08/2023]
Abstract
Biosynthesis of caffeoylquinic acids occurs via the phenylpropanoid pathway in which the phenylalanine ammonia-lyase (PAL) acts as a key-control enzyme. A full-length cDNA (pF6), corresponding to a PAL gene (CcPAL1), was isolated by screening a Coffea canephora fruit cDNA library and its corresponding genomic sequence was characterized. Amplification of total DNA from seven Coffea species revealed differences in intronic length. This interspecific polymorphism was used to locate the gene on a genetic map established for a backcross progeny between Coffea pseudozanguebariae and C. dewevrei. The CcPAL1 gene was found on the same linkage group, but genetically independent, as a caffeoyl-coenzyme A-O-methyltransferase gene, another gene intervening in the phenylpropanoid pathway. In the same backcross, a lower caffeoylquinic acid content was observed in seeds harvested from plants harbouring the C. pseudozanguebariae CcPAL1 allele. Involvement of the CcPAL1 allelic form in the differential accumulation of caffeoylquinic acids in coffee green beans is then discussed.
Collapse
Affiliation(s)
- Venkataramaiah Mahesh
- IRD, Génomique et qualité du Café, UMR DGPC, BP 64501, 34304, Montpellier Cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Fiorani F, Umbach AL, Siedow JN. The alternative oxidase of plant mitochondria is involved in the acclimation of shoot growth at low temperature. A study of Arabidopsis AOX1a transgenic plants. PLANT PHYSIOLOGY 2005; 139:1795-805. [PMID: 16299170 PMCID: PMC1310560 DOI: 10.1104/pp.105.070789] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The alternative oxidase (AOX) pathway of plant mitochondria uncouples respiration from mitochondrial ATP production and may ameliorate plant performance under stressful environmental conditions, such as cold temperatures, by preventing excess accumulation of reactive oxygen species. We tested this model in whole tissues by growing AtAOX1a-transformed Arabidopsis (Arabidopsis thaliana) plants at 12 degrees C. For the first time, to our knowledge, in plants genetically engineered for AOX, we identified a vegetative shoot growth phenotype. Compared with wild type at day 21 after sowing, anti-sense and overexpressing lines showed, on average, 27% reduced leaf area and 25% smaller rosettes versus 30% increased leaf area and 33% larger rosette size, respectively. Lines overexpressing a mutated, constitutively active AOX1a showed smaller phenotypic effects. These phenotypic differences were not the result of a major alteration of the tissue redox state because the changes in levels of lipid peroxidation products, reflecting oxidative damage, and the expression of genes encoding antioxidant and electron transfer chain redox enzymes did not correspond with the shoot phenotypes. However, the observed phenotypes were correlated with the amount of total shoot anthocyanin at low temperature and with the transcription of the flavonoid pathway genes PAL1 and CHS. These results demonstrate that (1) AOX activity plays a role in shoot acclimation to low temperature in Arabidopsis, and that (2) AOX not only functions to prevent excess reactive oxygen species formation in whole tissues under stressful environmental conditions but also affects metabolism through more pervasive effects, including some that are extramitochondrial.
Collapse
Affiliation(s)
- Fabio Fiorani
- Developmental, Cell, and Molecular Biology Group/Biology Department, Duke University, Durham, North Carolina 27708-1000, USA
| | | | | |
Collapse
|
160
|
Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J. A proteomic analysis of cold stress responses in rice seedlings. Proteomics 2005; 5:3162-72. [PMID: 16078185 DOI: 10.1002/pmic.200401148] [Citation(s) in RCA: 255] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using proteomic analysis, an investigation aimed at a better understanding of the molecular adaptation mechanisms of cold stress was carried out in rice (Oryza sativa). The seedlings were exposed to a progressively low temperature stress treatment from normal temperature to 15, 10, and 5 degrees C. Proteins were extracted from the leaves collected from both control and stressed seedlings. By fractionation, approximately 1700 protein spots were separated and visualized on CBB-stained 2-D gels. Sixty protein spots were found to be up-regulated in responding to the progressively low temperature stress and displayed different dynamic patterns. As an initial work, 41 of these proteins were identified using MALDI-TOF MS or ESI/MS/MS. These cold responsive proteins, besides two proteins of unknown function, include four factors of protein biosynthesis, four molecular chaperones, two proteases, and eight enzymes involved in biosynthesis of cell wall components, seven antioxidative/detoxifying enzymes, and proteins linked to energy pathway, as well as a protein involved in signal transduction. The functional proteomes illuminate the facts, at least in plant cell, that protein quality control mediated by chaperones and proteases and enhancement of cell wall components play important roles in tolerance to cold stress. Using TargetP program, the subcellular localization of the identified proteins was analyzed. Proteins (43.9%) were predicted to be located in the chloroplasts, implying that chloroplast proteome is virtually subjective to cold stress. The physiological implications, revealed from the experimental data, are discussed in context of a complex metabolic network in plant cells responsive to cold stress.
Collapse
Affiliation(s)
- Suxia Cui
- Laboratory of Molecular Biology and MOE Laboratory of Protein Science, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100-084, P. R. China
| | | | | | | | | | | |
Collapse
|
161
|
Nacif de Abreu I, Mazzafera P. Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:241-8. [PMID: 15854832 DOI: 10.1016/j.plaphy.2005.01.020] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 01/31/2005] [Indexed: 05/23/2023]
Abstract
Hypericum brasiliense is a medicinal herb containing several compounds with important pharmacological activity. In this study, we investigated the effects of water stress (waterlogging and drought) and temperature (low and high, constant and alternate) on the content of betulinic acid and phenolic compounds (quercetin, rutin, 1,5-dihydroxyxanthone, isouliginosin B) in this species. In general, the water stress increased the levels of all of the compounds analyzed, particularly some of the phenolic compounds. On the other hand, the responses to alternating temperatures varied according to the compound. The results for plants kept in growth chambers indicated that low light intensity might have influenced the levels of the compounds. There was also a reallocation of carbon, with water-stressed plants showing a reduction in growth while the levels of the compounds increased. In the temperature treatments, such an increase was evident only for the phenolic compounds.
Collapse
Affiliation(s)
- Ilka Nacif de Abreu
- Departamento de Fisiologia Vegetal, Instituto de Biologia, CP 6109, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil
| | | |
Collapse
|
162
|
Rohde A, Morreel K, Ralph J, Goeminne G, Hostyn V, De Rycke R, Kushnir S, Van Doorsselaere J, Joseleau JP, Vuylsteke M, Van Driessche G, Van Beeumen J, Messens E, Boerjan W. Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. THE PLANT CELL 2004; 16:2749-71. [PMID: 15377757 PMCID: PMC520969 DOI: 10.1105/tpc.104.023705] [Citation(s) in RCA: 280] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Accepted: 07/14/2004] [Indexed: 05/17/2023]
Abstract
The first enzyme of the phenylpropanoid pathway, Phe ammonia-lyase (PAL), is encoded by four genes in Arabidopsis thaliana. Whereas PAL function is well established in various plants, an insight into the functional significance of individual gene family members is lacking. We show that in the absence of clear phenotypic alterations in the Arabidopsis pal1 and pal2 single mutants and with limited phenotypic alterations in the pal1 pal2 double mutant, significant modifications occur in the transcriptome and metabolome of the pal mutants. The disruption of PAL led to transcriptomic adaptation of components of the phenylpropanoid biosynthesis, carbohydrate metabolism, and amino acid metabolism, revealing complex interactions at the level of gene expression between these pathways. Corresponding biochemical changes included a decrease in the three major flavonol glycosides, glycosylated vanillic acid, scopolin, and two novel feruloyl malates coupled to coniferyl alcohol. Moreover, Phe overaccumulated in the double mutant, and the levels of many other amino acids were significantly imbalanced. The lignin content was significantly reduced, and the syringyl/guaiacyl ratio of lignin monomers had increased. Together, from the molecular phenotype, common and specific functions of PAL1 and PAL2 are delineated, and PAL1 is qualified as being more important for the generation of phenylpropanoids.
Collapse
Affiliation(s)
- Antje Rohde
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, B-9052 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Taulavuori E, Tahkokorpi M, Taulavuori K, Laine K. Anthocyanins and glutathione S-transferase activities in response to low temperature and frost hardening in Vaccinium myrtillus (L.). JOURNAL OF PLANT PHYSIOLOGY 2004; 161:903-11. [PMID: 15384401 DOI: 10.1016/j.jplph.2003.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Anthocyanin (Acy) contents and GST activities of bilberry (Vaccinium myrtillus L.) were investigated in two experiments conducted in June (Exp. I: active growth) and in August September (Exp. II: beginning of frost hardening) in Northern Finland (65 degrees N). Bilberry plants were subjected to +2 degrees C and +18 degrees C in Exp. I or +5/0 degrees C (day/night) and +18/+13 degrees C (day/night) in Exp. II. GST activities were assessed using either 1-chloro-2,4-dinitrobenzene (CDNB) or trans-cinnamic acid (tCA) as substrates. We found temperature to have no effect on Acy during either active growth or frost hardening. Acy increased several-fold from active growth to the beginning of frost hardening, but no increment was observed during the development of frost hardening. This suggests a role of Acy in photoprotection at low temperatures rather than their direct involvement in the development of freezing tolerance. The lack of response of GST activity to frost hardening and to temperature in autumn may indicate an indirect role of GSTs in frost hardening as protective enzymes. GST activity was the same with the two substrates studied (CDNB, tCA), supporting the assumption that GSTs could catalyze reactions with endogenous phenylpropanoids.
Collapse
Affiliation(s)
- Erja Taulavuori
- Department of Biology, University of Oulu, P.O. Box 3000, Oulu FIN-90014, Finland.
| | | | | | | |
Collapse
|
164
|
Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:115-27. [PMID: 14675437 DOI: 10.1046/j.1365-313x.2003.01938.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The expression of the gene Osmyb4, detected at low level in rice (Oryza sativa) coleoptiles grown for 3 days at 29 degrees C, is strongly induced by treatments at 4 degrees C. At sublethal temperatures of 10 and 15 degrees C, its expression in rice seedlings is already evident, but this effect cannot be vicariated by other stresses or ABA treatment. We demonstrate by transient expression that Myb4 transactivates the PAL2, ScD9 SAD and COR15a cold-inducible promoters. The Osmyb4 function in vivo is demonstrated overexpressing its cDNA in Arabidopsis thaliana plants (ecotype Wassilewskija) under the control of the constitutive CaMV 35S promoter. Myb4 overexpressing plants show a significant increased cold and freezing tolerance, measured as membrane or Photosystem II (PSII) stability and as whole plant tolerance. Finally, in Osmyb4 transgenic plants, the expression of genes participating in different cold-induced pathways is affected, suggesting that Myb4 represents a master switch in cold tolerance.
Collapse
Affiliation(s)
- Candida Vannini
- Dipartimento di Biologia Strutturale e Funzionale, Università dell'Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Costa MA, Collins RE, Anterola AM, Cochrane FC, Davin LB, Lewis NG. An in silico assessment of gene function and organization of the phenylpropanoid pathway metabolic networks in Arabidopsis thaliana and limitations thereof. PHYTOCHEMISTRY 2003; 64:1097-112. [PMID: 14568076 DOI: 10.1016/s0031-9422(03)00517-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The Arabidopsis genome sequencing in 2000 gave to science the first blueprint of a vascular plant. Its successful completion also prompted the US National Science Foundation to launch the Arabidopsis 2010 initiative, the goal of which is to identify the function of each gene by 2010. In this study, an exhaustive analysis of The Institute for Genomic Research (TIGR) and The Arabidopsis Information Resource (TAIR) databases, together with all currently compiled EST sequence data, was carried out in order to determine to what extent the various metabolic networks from phenylalanine ammonia lyase (PAL) to the monolignols were organized and/or could be predicted. In these databases, there are some 65 genes which have been annotated as encoding putative enzymatic steps in monolignol biosynthesis, although many of them have only very low homology to monolignol pathway genes of known function in other plant systems. Our detailed analysis revealed that presently only 13 genes (two PALs, a cinnamate-4-hydroxylase, a p-coumarate-3-hydroxylase, a ferulate-5-hydroxylase, three 4-coumarate-CoA ligases, a cinnamic acid O-methyl transferase, two cinnamoyl-CoA reductases) and two cinnamyl alcohol dehydrogenases can be classified as having a bona fide (definitive) function; the remaining 52 genes currently have undetermined physiological roles. The EST database entries for this particular set of genes also provided little new insight into how the monolignol pathway was organized in the different tissues and organs, this being perhaps a consequence of both limitations in how tissue samples were collected and in the incomplete nature of the EST collections. This analysis thus underscores the fact that even with genomic sequencing, presumed to provide the entire suite of putative genes in the monolignol-forming pathway, a very large effort needs to be conducted to establish actual catalytic roles (including enzyme versatility), as well as the physiological function(s) for each member of the (multi)gene families present and the metabolic networks that are operative. Additionally, one key to identifying physiological functions for many of these (and other) unknown genes, and their corresponding metabolic networks, awaits the development of technologies to comprehensively study molecular processes at the single cell level in particular tissues and organs, in order to establish the actual metabolic context.
Collapse
Affiliation(s)
- Michael A Costa
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | | | | | | | | | |
Collapse
|
166
|
Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W. Genome-wide characterization of the lignification toolbox in Arabidopsis. PLANT PHYSIOLOGY 2003; 133:1051-71. [PMID: 14612585 PMCID: PMC523881 DOI: 10.1104/pp.103.026484] [Citation(s) in RCA: 478] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Lignin, one of the most abundant terrestrial biopolymers, is indispensable for plant structure and defense. With the availability of the full genome sequence, large collections of insertion mutants, and functional genomics tools, Arabidopsis constitutes an excellent model system to profoundly unravel the monolignol biosynthetic pathway. In a genome-wide bioinformatics survey of the Arabidopsis genome, 34 candidate genes were annotated that encode genes homologous to the 10 presently known enzymes of the monolignol biosynthesis pathway, nine of which have not been described before. By combining evolutionary analysis of these 10 gene families with in silico promoter analysis and expression data (from a reverse transcription-polymerase chain reaction analysis on an extensive tissue panel, mining of expressed sequence tags from publicly available resources, and assembling expression data from literature), 12 genes could be pinpointed as the most likely candidates for a role in vascular lignification. Furthermore, a possible novel link was detected between the presence of the AC regulatory promoter element and the biosynthesis of G lignin during vascular development. Together, these data describe the full complement of monolignol biosynthesis genes in Arabidopsis, provide a unified nomenclature, and serve as a basis for further functional studies.
Collapse
Affiliation(s)
- Jeroen Raes
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | | | | | | | | |
Collapse
|
167
|
Chaman ME, Copaja SV, Argandoña VH. Relationships between salicylic acid content, phenylalanine ammonia-lyase (PAL) activity, and resistance of barley to aphid infestation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:2227-31. [PMID: 12670161 DOI: 10.1021/jf020953b] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
It has been suggested that salicylic acid (SA) is a signal in acquired resistance to pathogens in several plants. Also, it has been suggested that infestation of plants causes an increase in the activity of phenylalanine ammonia-lyase (PAL), a key phenolic biosynthesis enzyme. The purpose of this work was to investigate whether the induction of SA and PAL activity is related to the susceptibility of barley to aphid infestation. The induction of free and conjugated SA in two barley cultivars that differ in susceptibility to aphids was analyzed. Analyses of several physiological parameters showed that cv. UNA-80 was more susceptible to the aphid Schizaphis graminum than cv. LM-109. Salicylic acid was not detected in noninfested plants. Levels of free and conjugated SA in cv. LM-109 and of conjugated SA in cv. UNA-80 increased with aphid infestation, whereas the levels of free SA in cv. UNA-80 remained high under all infestation degrees. Maximum values reached in both cultivars were not significantly different. With respect to PAL activity, cv. LM-109 showed a significantly higher specific activity than cv. UNA-80, the more susceptible cultivar. The relationship between the susceptibility of a plant to aphid and SA induction and PAL activity is discussed.
Collapse
Affiliation(s)
- Mercedes E Chaman
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Peru
| | | | | |
Collapse
|
168
|
Wade HK, Sohal AK, Jenkins GI. Arabidopsis ICX1 is a negative regulator of several pathways regulating flavonoid biosynthesis genes. PLANT PHYSIOLOGY 2003; 131:707-15. [PMID: 12586894 PMCID: PMC166846 DOI: 10.1104/pp.012377] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2002] [Revised: 09/04/2002] [Accepted: 11/04/2002] [Indexed: 05/20/2023]
Abstract
Flavonoid biosynthesis gene expression is controlled by a range of endogenous and environmental signals. The Arabidopsis icx1 (increased chalcone synthase expression 1) mutant has elevated induction of CHS (CHALCONE SYNTHASE) and other flavonoid biosynthesis genes in response to several stimuli. We show that ICX1 is a negative regulator of the cryptochrome 1, phytochrome A, ultraviolet (UV)-B, low temperature, sucrose, and cytokinin induction of CHS expression and/or anthocyanin accumulation, demonstrating that these pathways are regulated either directly or indirectly by at least one common component. Expression analysis of CHS and other genes (LTP, CAB, and rbcS) indicates that ICX1 functions in both seedlings and mature leaf tissue and acts principally in the epidermis, consistent with the alterations in epidermal development seen in icx1. The mutant was unaltered in the synergistic interactions between UV-B, blue, and UV-A light that regulate CHS and we propose a model of action of ICX1 in these responses.
Collapse
Affiliation(s)
- Helena K Wade
- Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | |
Collapse
|
169
|
Llorente F, López-Cobollo RM, Catalá R, Martínez-Zapater JM, Salinas J. A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:13-24. [PMID: 12366797 DOI: 10.1046/j.1365-313x.2002.01398.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A cDNA from Arabidopsis corresponding to a new cold-inducible gene, RCI3 (for Rare Cold Inducible gene 3), was isolated. Isoelectric focusing electrophoresis and staining of peroxidase activity demonstrated that RCI3 encodes an active cationic peroxidase. RNA-blot analysis revealed that RCI3 expression in response to low temperature is negatively regulated by light, as RCI3 transcripts were exclusively detected in etiolated seedlings and roots of adult plants. RCI3 expression was also induced in etiolated seedlings, but not in roots, exposed to dehydration, salt stress or ABA, indicating that it is subjected to a complex regulation through different signaling pathways. Analysis of transgenic plants containing RCI3::GUS fusions established that this regulation occurs at the transcriptional level during plant development, and that cold-induced RCI3 expression in roots is mainly restricted to the endodermis. Plants overexpressing RCI3 showed an increase in dehydration and salt tolerance, while antisense suppression of RCI3 expression gave dehydration- and salt-sensitive phenotypes. These results indicate that RCI3 is involved in the tolerance to both stresses in Arabidopsis, and illustrate that manipulation of RCI3 has a potential with regard to plant improvement of stress tolerance.
Collapse
Affiliation(s)
- Francisco Llorente
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña, Km. 7, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
170
|
Steyn WJ, Wand SJE, Holcroft DM, Jacobs G. Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. THE NEW PHYTOLOGIST 2002; 155:349-361. [PMID: 33873306 DOI: 10.1046/j.1469-8137.2002.00482.x] [Citation(s) in RCA: 419] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The function of anthocyanins in green, vegetative tissues has always been a contentious issue. Here we evaluate their proposed photoprotective function since recent findings have shown that anthocyanins reduce photoinhibition and photobleaching of chlorophyll under light stress conditions. Anthocyanins generally accumulate in peripheral tissues exposed to high irradiance, although there are some exceptions (e.g. accumulation in abaxial leaf tissues and in obligatory shade plants) and accumulation is usually transient. Anthocyanin accumulation requires light and generally coincides with periods of high excitation pressure and increased potential for photo-oxidative damage due to an imbalance between light capture, CO2 assimilation and carbohydrate utilization (e.g. greening of developing tissues, senescence and adverse environmental conditions). Light attenuation by anthocyanin may help to re-establish this balance and so reduce the risk of photo-oxidative damage. Although it has been suggested that anthocyanins may act as antioxidants, the association between anthocyanins and oxidative stress appears to relate to the ability of anthocyanins to reduce excitation pressure and, hence, the potential for oxidative damage. The various aspects of anthocyanin induction and pigmentation presented here are compatible with, and support, the proposed general role of anthocyanins as photoprotective light screens in vegetative tissues.
Collapse
Affiliation(s)
- W J Steyn
- Department of Horticultural Science, University of Stellenbosch, Private BagXI, 7602 Matieland, South Africa
| | - S J E Wand
- Department of Horticultural Science, University of Stellenbosch, Private BagXI, 7602 Matieland, South Africa
| | - D M Holcroft
- Department of Horticulture, Michigan State University, East Lansing, MI 48824-1325, USA
| | - G Jacobs
- Department of Horticultural Science, University of Stellenbosch, Private BagXI, 7602 Matieland, South Africa
| |
Collapse
|
171
|
Shaked-Sachray L, Weiss D, Reuveni M, Nissim-Levi A, Oren-Shamir M. Increased anthocyanin accumulation in aster flowers at elevated temperatures due to magnesium treatment. PHYSIOLOGIA PLANTARUM 2002; 114:559-565. [PMID: 11975729 DOI: 10.1034/j.1399-3054.2002.1140408.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Temperature is one of the main external factors affecting anthocyanin accumulation in plant tissues: low temperatures cause an increase and elevated temperatures cause a decrease in anthocyanin concentration. Several metals have been shown to increase the half-life time of anthocyanins, by forming complexes with them. We studied the combined effect of elevated temperatures and increased metal concentrations on the accumulation of anthocyanins in aster 'Sungal' flowers. It has been found that magnesium treatment of aster plants or detached flower buds, partially prevents colour fading at elevated temperatures. Anthocyanin concentration of aster 'Sungal' flowers grown at 29 degrees C/21 degrees C day/night, respectively, was about half that of flowers grown at 17 degrees C/9 degrees C. The activity of phenylalanine ammonia-lyase (PAL) and chalcone isomerase (CHI) decreased as the temperature increased. Treatment of both whole plants and detached flower buds grown at elevated temperatures in the presence of magnesium salts, increased flower anthocyanin concentration by up to 80%. Measurement of magnesium following these treatments revealed an increased level of the metal in the petals, suggesting a direct effect. Magnesium treatment does not seem to cause increased synthesis of anthocyanin through a stress-related reaction, since the activities of both PAL and CHI did not increase due to this treatment. The results of this study show that increasing magnesium levels in aster petals prevents the deleterious effect of elevated temperatures on anthocyanin accumulation, thus enhancing flower colour.
Collapse
Affiliation(s)
- Liat Shaked-Sachray
- aDepartment of Ornamental Horticulture, Agricultural Research Organization, The Volcani Center, Bet-Dagan 50250, PO Box 6, Israel bDepartment of Horticulture, Faculty of Agriculture, The Hebrew University of Jerusalem, PO Box 12, 76100, Rehovot, Israel
| | | | | | | | | |
Collapse
|
172
|
Abarca D, Martín M, Sabater B. Differential leaf stress responses in young and senescent plants. PHYSIOLOGIA PLANTARUM 2001; 113:409-415. [PMID: 12060287 DOI: 10.1034/j.1399-3054.2001.1130315.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Responses to low temperature, mechanical wounding and salicylic acid (SA) treatments were studied in 3-week-old (young) and 6-week-old (senescent) Arabidopsis thaliana (L.) Heynh. plants by analyzing increases in Pal1 and Pr1 expression and superoxide dismutase (SOD; EC 1.15.1.1) and peroxidase (POX; EC 1.11.1.7) activities. Young plants showed higher Pal1 transcript accumulation after low temperature and wounding. In contrast, senescent plants presented higher accumulation of Pr1 transcripts after SA treatments. Similar results were obtained with the ethylene-insensitive etr1 mutant, suggesting that these differences are not related to increased ethylene content in senescent tissues. SOD activity and inducibility were lower, whereas POX activity and inducibility were higher in senescent plants. A possible relationship between senescence-associated changes in responses to stress and in the metabolism of active oxygen species is discussed.
Collapse
Affiliation(s)
- Dolores Abarca
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Alcalá, E-28871 Madrid, Spain
| | | | | |
Collapse
|
173
|
Jenkins GI, Long JC, Wade HK, Shenton MR, Bibikova TN. UV and blue light signalling: pathways regulating chalcone synthase gene expression in Arabidopsis. THE NEW PHYTOLOGIST 2001; 151:121-131. [PMID: 33873370 DOI: 10.1046/j.1469-8137.2001.00151.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
UV-B, UV-A and blue light control a variety of aspects of plant development via distinct photoreceptors and signalling pathways. The known photoreceptors for UV-A/blue light are cryptochrome (cry)1 and cry2, and the phototropism photoreceptor, phototropin. Redox processes are important in cry and phototropin signal transduction. A specific photoreceptor for UV-B has not been identified and there appear to be several possible UV-B signalling pathways. We are investigating the UV and blue light regulation of transcription of the chalcone synthase gene (CHS) in Arabidopsis. Experiments with photoreceptor mutants show that distinct UV-A/blue (cry mediated) and UV-B photoreception systems control CHS expression. Experiments with an Arabidopsis cell suspension culture show that the UV-B and cry1 signalling pathways differ kinetically and pharmacologically. In contrast to some other UV-B responses, the UV-B induction of CHS does not appear to involve oxidative stress signalling. Promoter elements and candidate transcription factors that effect CHS induction have been identified. Interactions within a network of UV-B, cry and phytochrome signalling pathways regulate CHS expression. Synergistic interactions between the UV-B pathway and distinct UV-A and blue-light pathways maximize the response. In addition, specific phytochromes positively control the cry1 pathway via distinct potentiation and coaction effects, and negatively regulate the UV-B pathway.
Collapse
Affiliation(s)
- Gareth I Jenkins
- Plant Molecular Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Joanne C Long
- present address: Department of Botany, North Carolina State University, Box 7612, Raleigh, NC 27695-7612, USA
| | - Helena K Wade
- Plant Molecular Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Matthew R Shenton
- Plant Molecular Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Tatiana N Bibikova
- present address: Biology Department, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
174
|
Abarca D, Roldán M, Martín M, Sabater B. Arabidopsis thaliana ecotype Cvi shows an increased tolerance to photo-oxidative stress and contains a new chloroplastic copper/zinc superoxide dismutase isoenzyme. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:1417-1425. [PMID: 11457901 DOI: 10.1093/jexbot/52.360.1417] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A new chloroplastic Cu/Zn-superoxide dismutase (SOD) isoenzyme was identified in Arabidopsis thaliana ecotype Cvi. Genetic analyses indicated that the new isoenzyme was encoded by a Cvi-specific allele of Csd2 that was named Csd2-2. Paraquat treatments of A. thaliana ecotypes Ler and Cvi resulted in higher levels of chloroplastic Cu/Zn-SOD activity in Cvi, suggesting that the Cvi isoenzyme has a higher stability and/or turnover rate than the Ler variant under photo-oxidative conditions. In addition, Cvi showed a higher tolerance to paraquat treatments. Hybrid plant populations expressing Csd2-2 also exhibited an increased tolerance, suggesting that the Cvi isoenzyme is one of the factors that contribute to a better fitness in photo-oxidative stress conditions.
Collapse
Affiliation(s)
- D Abarca
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Alcalá, 28871-Madrid, Spain.
| | | | | | | |
Collapse
|
175
|
Medina J, Catalá R, Salinas J. Developmental and stress regulation of RCI2A and RCI2B, two cold-inducible genes of arabidopsis encoding highly conserved hydrophobic proteins. PLANT PHYSIOLOGY 2001; 125:1655-66. [PMID: 11299347 PMCID: PMC88823 DOI: 10.1104/pp.125.4.1655] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2000] [Revised: 10/13/2000] [Accepted: 11/15/2000] [Indexed: 05/19/2023]
Abstract
The capability of most higher plants to tolerate environmental conditions strongly depends on their developmental stage. In addition, environmental factors have pleiotropic effects on many developmental processes. The interaction between plant development and environmental conditions implies that some genes must be regulated by both environmental factors and developmental cues. To understand their developmental regulation and obtain possible clues on their functions, we have isolated genomic clones for RCI2A and RCI2B, two genes from Arabidopsis ecotype Columbia (Col), whose expression is induced in response to low temperature, dehydration, salt stress, and abscisic acid. The promoters of RCI2A and RCI2B were fused to the uidA (GUS)-coding sequence and the resulting constructs used to transform Arabidopsis. GUS activity was analyzed in transgenic plants during development under both stressed and unstressed conditions. Transgenic plants with either the RCI2A or RCI2B promoter showed strong GUS expression during the first stages of seed development and germination, in vascular bundles, pollen, and most interestingly in guard cells. When transgenic plants were exposed to low temperature, dehydration, salt stress, or abscisic acid, reporter gene expression was induced in most tissues. These results indicate that RCI2A and RCI2B are regulated at transcriptional level during plant development and in response to different environmental stimuli and treatments. The potential role of RCI2A and RCI2B in plant development and stress response is discussed.
Collapse
Affiliation(s)
- J Medina
- Departamento de Mejora Genética y Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña, Km. 7, 28040 Madrid, Spain
| | | | | |
Collapse
|
176
|
Wade HK, Bibikova TN, Valentine WJ, Jenkins GI. Interactions within a network of phytochrome, cryptochrome and UV-B phototransduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 25:675-85. [PMID: 11319034 DOI: 10.1046/j.1365-313x.2001.01001.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Arabidopsis gene encoding the key flavonoid biosynthesis enzyme chalcone synthase (CHS) is regulated by several environmental and endogenous stimuli. Here we dissect the network of light signalling pathways that control CHS expression in mature leaves using cryptochrome (cry) and phytochrome (phy) deficient mutants. The UV-A/blue light induction of CHS is mediated principally by cry1, but neither cry1 nor cry2 is involved in UV-B induction or in the UV-A and blue light signalling pathways that interact synergistically with the UV-B pathway to enhance CHS expression. Moreover, these synergistic responses do not require phyA or phyB. Phytochrome is a positive regulator of the cry1 inductive pathway, mediating distinct potentiation and coaction effects. A red light pretreatment enhances subsequent cry1-mediated CHS induction. This potentiation is unaltered in phyA and phyB mutants but much reduced in a phyA phyB double mutant, indicating that it requires principally phyA or phyB. In contrast, the cry1-mediated induction of CHS, without pretreatment, is much reduced in phyB but not phyA mutants, indicating coaction between cry1 and phyB. Further experiments with phy-deficient mutants demonstrate that phyB is a negative regulator of the UV-B inductive pathway. We further show that phyB acts upstream of the points of interaction of the UV-A and blue synergism pathways with the UV-B pathway. We propose that phyB functions to balance flux through the cry1 and UV-B signalling pathways.
Collapse
Affiliation(s)
- H K Wade
- Plant Molecular Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | |
Collapse
|
177
|
Moran PJ, Thompson GA. Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. PLANT PHYSIOLOGY 2001; 125:1074-85. [PMID: 11161062 PMCID: PMC64906 DOI: 10.1104/pp.125.2.1074] [Citation(s) in RCA: 325] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2000] [Revised: 06/23/2000] [Accepted: 09/29/2000] [Indexed: 05/18/2023]
Abstract
Little is known about molecular responses in plants to phloem feeding by insects. The induction of genes associated with wound and pathogen response pathways was investigated following green peach aphid (Myzus persicae) feeding on Arabidopsis. Aphid feeding on rosette leaves induced transcription of two genes associated with salicylic acid (SA)-dependent responses to pathogens (PR-1 and BGL2) 10- and 23-fold, respectively. Induction of PR-1 and BGL2 mRNA was reduced in npr1 mutant plants, which are deficient in SA signaling. Application of the SA analog benzothiadiazole led to decreases in aphid reproduction on leaves of both wild-type plants and mutant plants deficient in responsiveness to SA, suggesting that wild-type SA-dependent responses do not influence resistance to aphids. Two-fold increases occurred in mRNA levels of PDF1.2, which encodes defensin, a peptide involved in the jasmonate (JA)-/ethylene-dependent response pathway. Transcripts encoding JA-inducible lipoxygenase (LOX2) and SA/JA-inducible Phe-ammonia lyase increased 1.5- to 2-fold. PDF1.2 and LOX2 induction by aphids did not occur in infested leaves of the JA-resistant coi1-1 mutant. Aphid feeding induced 10-fold increases in mRNA levels of a stress-related monosaccharide symporter gene, STP4. Phloem feeding on Arabidopsis leads to stimulation of response pathways associated with both pathogen infection and wounding.
Collapse
Affiliation(s)
- P J Moran
- Center for Insect Science and Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
178
|
Rivero RM, Ruiz JM, García PC, López-Lefebre LR, Sánchez E, Romero L. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2001; 160:315-321. [PMID: 11164603 DOI: 10.1016/s0168-9452(00)00395-2] [Citation(s) in RCA: 236] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Tomato plants, Lycopersicon esculentum L. cv. Tmknvf(2), and watermelon plants, Citrullus lanatus [Thomb.] Mansf. cv. Dulce maravilla, were grown for 30 days at different temperatures (15, 25 and 35 degrees C). We analysed soluble phenolics, enzymatic activities (phenylalanine ammonia-lyase, polyphenol oxidase and peroxidase), and dry weight. The impact of the three temperatures was different in tomato and watermelon. Our results indicate that heat stress in tomato plants occurred at 35 degrees C, while chilling stress occurred in watermelon plants at 15 degrees C. Thermal stress in both plants caused: (1) decreased shoot weight; (2) accumulation of soluble phenolics; (3) highest phenylalanine ammonia-lyase activity; and (4) lowest peroxidase and polyphenol oxidase activity. These results indicate that thermal stress induces the accumulation of phenolics in the plant by activating their biosynthesis as well as inhibiting their oxidation. This could be considered an acclimation mechanism of the plant against thermal stress.
Collapse
Affiliation(s)
- R M. Rivero
- Department of Plant Biology, Faculty of Science, University of Granada, E-18071, Granada, Spain
| | | | | | | | | | | |
Collapse
|
179
|
|
180
|
Thorlby G, Veale E, Butcher K, Warren G. Map positions of SFR genes in relation to other freezing-related genes of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 17:445-452. [PMID: 10205901 DOI: 10.1046/j.1365-313x.1999.00395.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We determined the map positions of seven SFR genes and compared them to the positions of 51 genes suspected of involvement in freezing tolerance in Arabidopsis thaliana. The SFR genes were recognized by the freezing sensitivity of mutants; the others (including 14 whose map positions we have determined) were genes whose expression is induced by low temperature, genes involved in abscisic acid (ABA) biosynthesis and perception, and genes involved in tolerance of oxidative stress. The comparison of map positions indicated a limited set of potential identities, some of which were eliminated by further mapping or by an allelism test.
Collapse
Affiliation(s)
- G Thorlby
- Department of Biochemistry, Imperial College, London, UK
| | | | | | | |
Collapse
|
181
|
Grossi M, Giorni E, Rizza F, Stanca AM, Cattivelli L. Wild and cultivated barleys show differences in the expression pattern of a cold-regulated gene family under different light and temperature conditions. PLANT MOLECULAR BIOLOGY 1998; 38:1061-9. [PMID: 9869412 DOI: 10.1023/a:1006079916917] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cold acclimation in plants involves the expression of many genes and gene families. The present study reports the expression analysis of three members of the blt14 gene family in barley. Gene-specific antisense oligonucleotides were used as probes in northern experiments so as to follow independently the expression of individual members of the gene family. Each clone revealed different accumulation kinetics when a spring and a winter cultivar were compared, suggesting that the different regulatory mechanisms leading to mRNA accumulation of an individual member of the blt14 gene family are genotype-dependent. In a collection of Hordeum spontaneum genotypes both qualitative and quantitative polymorphisms were found for the accumulation of blt14-related mRNAs, although no clear relationships were found between blt14 expression and frost resistance. The accumulation of the blt14-related mRNAs was also modulated by light and by the albino mutation a(n). The effects of light on the accumulation of the transcripts corresponding to the blt14 gene family were evaluated by comparing etiolated and green plants. Etiolated plants accumulate the blt14-related mRNAs at a detectable level already at 22 degrees C. When the same plants are exposed to cold in absence of light an increased mRNA accumulation above the level present in green cold-treated plants can be detected. On the contrary, etiolated plants showed a reduced blt14 accumulation when exposed to cold in the presence of light. Cold-induced expression of the blt14 gene family was strongly reduced in plants carrying the albino mutation a(n). This mutant showed a defective molecular response to cold even when probed with a cDNA coding for LEA type protein (paf93). The albino mutant a(n) was not able to harden when exposed to low temperature providing a direct evidence of the relationship between expression of cold-regulated (COR) genes and the development of cold hardening. Failure of cold acclimation in the mutant cannot be merely ascribed to the absence of photosynthetic activity, since etiolated wild-type plants accumulated COR mRNAs and improved frost resistance when exposed to cold.
Collapse
Affiliation(s)
- M Grossi
- Experimental Institute for Cereal Research, Section of Fiorenzuola d'Arda, PC, Italy
| | | | | | | | | |
Collapse
|
182
|
Xin Z, Browse J. Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc Natl Acad Sci U S A 1998; 95:7799-804. [PMID: 9636231 PMCID: PMC22762 DOI: 10.1073/pnas.95.13.7799] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Temperate plants develop a greater ability to withstand freezing in response to a period of low but nonfreezing temperatures through a complex, adaptive process of cold acclimation. Very little is known about the signaling processes by which plants perceive the low temperature stimulus and transduce it into the nucleus to activate genes needed for increased freezing tolerance. To help understand the signaling processes, we have isolated mutants of Arabidopsis that are constitutively freezing-tolerant in the absence of cold acclimation. Freezing tolerance of wild-type Arabidopsis was increased from -5.5 degreesC to -12.6 degreesC by cold acclimation whereas the freezing tolerance of 26 mutant lines ranged from -6.8 degreesC to -10.6 degreesC in the absence of acclimation. Plants with mutations at the eskimo1 (esk1) locus accumulated high levels of proline, a compatible osmolyte, but did not exhibit constitutively increased expression of several cold-regulated genes involved in freezing tolerance. RNA gel blot analysis suggested that proline accumulation in esk1 plants was mediated by regulation of transcript levels of genes involved in proline synthesis and degradation. The characterization of esk1 mutants and results from other mutants suggest that distinct signaling pathways activate different aspects of cold acclimation and that activation of one pathway can result in considerable freezing tolerance without activation of other pathways.
Collapse
Affiliation(s)
- Z Xin
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | |
Collapse
|
183
|
Gong Z, Yamazaki M, Sugiyama M, Tanaka Y, Saito K. Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a forma-specific manner in Perilla frutescens. PLANT MOLECULAR BIOLOGY 1997; 35:915-27. [PMID: 9426610 DOI: 10.1023/a:1005959203396] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Two cultivars of Perilla frutescens, red and green formas are known to differ in anthocyanin accumulation in leaves and stems. cDNA clones encoding the enzymes involved in anthocyanin biosynthesis, chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), and UDP glucose: flavonoid 3-O-glucosyltransferase (3GT), were isolated from cDNA libraries derived from the leaves of a red forma of P. frutescens by screening with partial fragments amplified by means of polymerase chain reaction (PCR) and heterologous cDNAs as probes. The deduced amino acid sequences of these four genes exhibited 40-90% identity with those reported for the corresponding gene from other unrelated species. Southern blot analysis for these genes and two other structural genes, the leucoanthocyanidin dioxygenase (LDOX, anthocyanidin synthase) and anthocyanin acyltransferase (AAT) genes, indicated that each gene comprises a small multi-gene family. More than three copies of the CHS gene are present, two copies of the other genes being present. The expression of five genes, the exception being the CHS gene, was detected only in red leaves of the red forma of P. frutescens, i.e. not in green leaves of the green forma plant. The CHS gene was expressed in both red and green leaves, but 10-fold more in red leaves than in green leaves. These results suggest that the expression of all structural genes examined is coordinately regulated in a forma-specific manner. Under weak-light conditions, the accumulation of both anthocyanin and mRNAs of biosynthetic enzymes was lower in leaves of the red forma. High-intensity white light coordinately induced the accumulation of transcripts of all six genes examined in the mature leaves of red P. frutescens.
Collapse
Affiliation(s)
- Z Gong
- Faculty of Pharmaceutical Sciences, Laboratory of Molecular Biology and Biotechnology, Chiba University, Japan
| | | | | | | | | |
Collapse
|
184
|
Bharti AK, Khurana JP. Mutants of Arabidopsis as tools to understand the regulation of phenylpropanoid pathway and UVB protection mechanisms. Photochem Photobiol 1997; 65:765-76. [PMID: 9155253 DOI: 10.1111/j.1751-1097.1997.tb01923.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plants accumulate certain phenylpropanoid compounds in the vacuoles of their epidermal and subepidermal cell layers thereby protecting the underlying tissue against UVB-induced damage. However, a number of mutants of Arabidopsis thaliana are known that fail to synthesize these protective pigments, thereby allowing harmful UVB radiation to penetrate into their dermal layers. Study of several of these nonlethal mutants, defective in various aspects of flavonoid and lignin biosynthesis, has led to a better understanding of the coordinate regulation and expression of important genes as well as of mechanisms involved in plant defense against UVB radiation. The characteristics of the various phenylpropanoid mutants of Arabidopsis, viz. flavonoid mutants (banyuls [ban]; increased chalcone synthase expression 1 [icx1]; transparent testa [tt] and ultraviolet sensitive [uvs]) and hydroxycinnamic acid ester mutants (ferulic acid hydroxylase 1 [fah1] and sinapoylglucose accumulator 1 [sng1]) are discussed in detail. We have briefly touched upon, wherever relevant, the unique aspects in other plant species too.
Collapse
Affiliation(s)
- A K Bharti
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | |
Collapse
|