152
|
Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat Rev Immunol 2015; 16:7-21. [PMID: 26655628 DOI: 10.1038/nri.2015.7] [Citation(s) in RCA: 464] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammatory and apoptotic caspases are central players in inflammation and apoptosis, respectively. However, recent studies have revealed that these caspases have functions beyond their established roles. In addition to mediating cleavage of the inflammasome-associated cytokines interleukin-1β (IL-1β) and IL-18, inflammatory caspases modulate distinct forms of programmed cell death and coordinate cell-autonomous immunity and other fundamental cellular processes. Certain apoptotic caspases assemble structurally diverse and dynamic complexes that direct inflammasome and interferon responses to fine-tune inflammation. In this Review, we discuss the expanding and interconnected roles of caspases that highlight new aspects of this family of cysteine proteases in innate immunity.
Collapse
|
153
|
Greaney AJ, Leppla SH, Moayeri M. Bacterial Exotoxins and the Inflammasome. Front Immunol 2015; 6:570. [PMID: 26617605 PMCID: PMC4639612 DOI: 10.3389/fimmu.2015.00570] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/26/2015] [Indexed: 11/24/2022] Open
Abstract
The inflammasomes are intracellular protein complexes that play an important role in innate immune sensing. Activation of inflammasomes leads to activation of caspase-1 and maturation and secretion of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18. In certain myeloid cells, this activation can also lead to an inflammatory cell death (pyroptosis). Inflammasome sensor proteins have evolved to detect a range of microbial ligands and bacterial exotoxins either through direct interaction or by detection of host cell changes elicited by these effectors. Bacterial exotoxins activate the inflammasomes through diverse processes, including direct sensor cleavage, modulation of ion fluxes through plasma membrane pore formation, and perturbation of various host cell functions. In this review, we summarize the findings on some of the bacterial exotoxins that activate the inflammasomes.
Collapse
Affiliation(s)
- Allison J Greaney
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
154
|
Kakkanat A, Totsika M, Schaale K, Duell BL, Lo AW, Phan MD, Moriel DG, Beatson SA, Sweet MJ, Ulett GC, Schembri MA. The role of H4 flagella in Escherichia coli ST131 virulence. Sci Rep 2015; 5:16149. [PMID: 26548325 PMCID: PMC4637896 DOI: 10.1038/srep16149] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/02/2015] [Indexed: 01/04/2023] Open
Abstract
Escherichia coli sequence type 131 (ST131) is a globally dominant multidrug resistant clone associated with urinary tract and bloodstream infections. Most ST131 strains exhibit resistance to multiple antibiotics and cause infections associated with limited treatment options. The largest sub-clonal ST131 lineage is resistant to fluoroquinolones, contains the type 1 fimbriae fimH30 allele and expresses an H4 flagella antigen. Flagella are motility organelles that contribute to UPEC colonisation of the upper urinary tract. In this study, we examined the specific role of H4 flagella in ST131 motility and interaction with host epithelial and immune cells. We show that the majority of H4-positive ST131 strains are motile and are enriched for flagella expression during static pellicle growth. We also tested the role of H4 flagella in ST131 through the construction of specific mutants, over-expression strains and isogenic mutants that expressed alternative H1 and H7 flagellar subtypes. Overall, our results revealed that H4, H1 and H7 flagella possess conserved phenotypes with regards to motility, epithelial cell adhesion, invasion and uptake by macrophages. In contrast, H4 flagella trigger enhanced induction of the anti-inflammatory cytokine IL-10 compared to H1 and H7 flagella, a property that may contribute to ST131 fitness in the urinary tract.
Collapse
Affiliation(s)
- Asha Kakkanat
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Makrina Totsika
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kolja Schaale
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin L Duell
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Alvin W Lo
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Minh-Duy Phan
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Danilo G Moriel
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew J Sweet
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia.,Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Glen C Ulett
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
155
|
Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015; 526:660-5. [PMID: 26375003 DOI: 10.1038/nature15514] [Citation(s) in RCA: 4007] [Impact Index Per Article: 445.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/25/2015] [Indexed: 02/07/2023]
Abstract
Inflammatory caspases (caspase-1, -4, -5 and -11) are critical for innate defences. Caspase-1 is activated by ligands of various canonical inflammasomes, and caspase-4, -5 and -11 directly recognize bacterial lipopolysaccharide, both of which trigger pyroptosis. Despite the crucial role in immunity and endotoxic shock, the mechanism for pyroptosis induction by inflammatory caspases is unknown. Here we identify gasdermin D (Gsdmd) by genome-wide clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 nuclease screens of caspase-11- and caspase-1-mediated pyroptosis in mouse bone marrow macrophages. GSDMD-deficient cells resisted the induction of pyroptosis by cytosolic lipopolysaccharide and known canonical inflammasome ligands. Interleukin-1β release was also diminished in Gsdmd(-/-) cells, despite intact processing by caspase-1. Caspase-1 and caspase-4/5/11 specifically cleaved the linker between the amino-terminal gasdermin-N and carboxy-terminal gasdermin-C domains in GSDMD, which was required and sufficient for pyroptosis. The cleavage released the intramolecular inhibition on the gasdermin-N domain that showed intrinsic pyroptosis-inducing activity. Other gasdermin family members were not cleaved by inflammatory caspases but shared the autoinhibition; gain-of-function mutations in Gsdma3 that cause alopecia and skin defects disrupted the autoinhibition, allowing its gasdermin-N domain to trigger pyroptosis. These findings offer insight into inflammasome-mediated immunity/diseases and also change our understanding of pyroptosis and programmed necrosis.
Collapse
|
156
|
Zhang K, Hornef MW, Dupont A. The intestinal epithelium as guardian of gut barrier integrity. Cell Microbiol 2015; 17:1561-9. [PMID: 26294173 DOI: 10.1111/cmi.12501] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022]
Abstract
A single layer of epithelial cells separates the intestinal lumen from the underlying sterile tissue. It is exposed to a multitude of nutrients and a large number of commensal bacteria. Although the presence of commensal bacteria significantly contributes to nutrient digestion, vitamin synthesis and tissue maturation, their high number represents a permanent challenge to the integrity of the epithelial surface keeping the local immune system constantly on alert. In addition, the intestinal mucosa is challenged by a variety of enteropathogenic microorganisms. In both circumstances, the epithelium actively contributes to maintaining host-microbial homeostasis and antimicrobial host defence. It deploys a variety of mechanisms to restrict the presence of commensal bacteria to the intestinal lumen and to prevent translocation of commensal and pathogenic microorganisms to the underlying tissue. Enteropathogenic microorganisms in turn have learnt to evade the host's immune system and circumvent the antimicrobial host response. In the present article, we review recent advances that illustrate the intense and intimate host-microbial interaction at the epithelial level and improve our understanding of the mechanisms that maintain the integrity of the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Kaiyi Zhang
- Institute for Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Mathias W Hornef
- Institute for Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Aline Dupont
- Institute for Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|