151
|
Lipps G. Plasmids and viruses of the thermoacidophilic crenarchaeote Sulfolobus. Extremophiles 2006; 10:17-28. [PMID: 16397749 DOI: 10.1007/s00792-005-0492-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 07/15/2005] [Indexed: 11/28/2022]
Abstract
The crenarchaeote Sulfolobus spp. is a host for a remarkably large spectrum of viruses and plasmids. The genetic elements characterized so far indicate a large degree of novelty in terms of morphology (viruses) and in terms of genome content (plasmids and viruses). The viruses and conjugative plasmids encode a great number of conserved proteins of unknown function due to the lack of sequence similarity to functionally characterized proteins. These apparently essential proteins remain to be studied and should help to understand the physiology and genetics of the respective genetic elements as well as the host. Sulfolobus is one of the best-studied archaeons and could develop into an important model organism of the crenarchaea and the archaea.
Collapse
Affiliation(s)
- Georg Lipps
- Institute of Biochemistry, University of Bayreuth, Universitätstrasse 30, 95440, Bayreuth, Germany.
| |
Collapse
|
152
|
Abstract
AbstractSmall non-coding RNAs (sRNAs) have attracted considerable attention as an emerging class of gene expression regulators. In bacteria, a few regulatory RNA molecules have long been known, but the extent of their role in the cell was not fully appreciated until the recent discovery of hundreds of potential sRNA genes in the bacteriumEscherichia coli. Orthologs of theseE. colisRNA genes, as well as unrelated sRNAs, were also found in other bacteria. Here we review the disparate experimental approaches used over the years to identify sRNA molecules and their genes in prokaryotes. These include genome-wide searches based on the biocomputational prediction of non-coding RNA genes, global detection of non-coding transcripts using microarrays, and shotgun cloning of small RNAs (RNomics). Other sRNAs were found by either co-purification with RNA-binding proteins, such as Hfq or CsrA/RsmA, or classical cloning of abundant small RNAs after size fractionation in polyacrylamide gels. In addition, bacterial genetics offers powerful tools that aid in the search for sRNAs that may play a critical role in the regulatory circuit of interest, for example, the response to stress or the adaptation to a change in nutrient availability. Many of the techniques discussed here have also been successfully applied to the discovery of eukaryotic and archaeal sRNAs.
Collapse
MESH Headings
- Cloning, Molecular
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Eukaryotic Cells/metabolism
- Gene Expression Regulation, Bacterial
- Genome, Bacterial
- Host Factor 1 Protein/chemistry
- Host Factor 1 Protein/genetics
- Host Factor 1 Protein/metabolism
- Oligonucleotide Array Sequence Analysis
- RNA Processing, Post-Transcriptional
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
Collapse
Affiliation(s)
- Jörg Vogel
- Max Planck Institute for Infection Biology, RNA Biology, Schumannstr. 21/22, D-10117 Berlin, Germany.
| | | |
Collapse
|
153
|
Lundgren M, Bernander R. Archaeal cell cycle progress. Curr Opin Microbiol 2005; 8:662-8. [PMID: 16249118 DOI: 10.1016/j.mib.2005.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 10/11/2005] [Indexed: 11/19/2022]
Abstract
The discovery of multiple chromosome replication origins in Sulfolobus species has added yet another eukaryotic trait to the archaea, and brought new levels of complexity to the cell cycle in terms of initiation of chromosome replication, replication termination and chromosome decatenation. Conserved repeated DNA elements--origin recognition boxes--have been identified in the origins of replication, and shown to bind the Orc1/Cdc6 proteins involved in cell cycle control. The origin recognition boxes aid in the identification and characterization of new origins, and their conservation suggests that most archaea have a similar replication initiation mechanism. Cell-cycle-dependent variation in Orc1/Cdc6 levels has been demonstrated, reminiscent of variations in cyclin levels during the eukaryotic cell cycle. Information about archaeal chromosome segregation is also accumulating, including the identification of a protein that binds to short regularly spaced repeats that might constitute centromere-like elements. In addition, studies of cell-cycle-specific gene expression have potential to reveal, in the near future, missing components in crenarchaeal chromosome replication, genome segregation and cell division. Together with an increased number of physiological and cytological investigations of the overall organization of the cell cycle, rapid progress of the archaeal cell cycle field is evident, and archaea, in particular Sulfolobus species, are emerging as simple and powerful models for the eukaryotic cell cycle.
Collapse
Affiliation(s)
- Magnus Lundgren
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Norbyvägen 18C, SE-752 36 Uppsala, Sweden
| | | |
Collapse
|
154
|
Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. MICROBIOLOGY-SGM 2005; 151:2551-2561. [PMID: 16079334 DOI: 10.1099/mic.0.28048-0] [Citation(s) in RCA: 1082] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Numerous prokaryote genomes contain structures known as clustered regularly interspaced short palindromic repeats (CRISPRs), composed of 25-50 bp repeats separated by unique sequence spacers of similar length. CRISPR structures are found in the vicinity of four genes named cas1 to cas4. In silico analysis revealed another cluster of three genes associated with CRISPR structures in many bacterial species, named here as cas1B, cas5 and cas6, and also revealed a certain number of spacers that have homology with extant genes, most frequently derived from phages, but also derived from other extrachromosomal elements. Sequence analysis of CRISPR structures from 24 strains of Streptococcus thermophilus and Streptococcus vestibularis confirmed the homology of spacers with extrachromosomal elements. Phage sensitivity of S. thermophilus strains appears to be correlated with the number of spacers in the CRISPR locus the strain carries. The authors suggest that the spacer elements are the traces of past invasions by extrachromosomal elements, and hypothesize that they provide the cell immunity against phage infection, and more generally foreign DNA expression, by coding an anti-sense RNA. The presence of gene fragments in CRISPR structures and the nuclease motifs in cas genes of both cluster types suggests that CRISPR formation involves a DNA degradation step.
Collapse
Affiliation(s)
- Alexander Bolotin
- Génétique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas CEDEX, France
| | - Benoit Quinquis
- Génétique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas CEDEX, France
| | - Alexei Sorokin
- Génétique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas CEDEX, France
| | - S Dusko Ehrlich
- Génétique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas CEDEX, France
| |
Collapse
|
155
|
Nolivos S, Carpousis AJ, Clouet-d'Orval B. The K-loop, a general feature of the Pyrococcus C/D guide RNAs, is an RNA structural motif related to the K-turn. Nucleic Acids Res 2005; 33:6507-14. [PMID: 16293637 PMCID: PMC1289080 DOI: 10.1093/nar/gki962] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 10/29/2005] [Accepted: 10/29/2005] [Indexed: 12/03/2022] Open
Abstract
The C/D guide RNAs predicted from the genomic sequences of three species of Pyrococcus delineate a family of small non-coding archaeal RNAs involved in the methylation of rRNA and tRNA. The C/D guides assemble into ribonucleoprotein (RNP) that contains the methyltransferase. The protein L7Ae, a key structural component of the RNP, binds to a Kink-turn (K-turn) formed by the C/D motif. The K-turn is a structure that consists of two RNA stems separated by a short asymmetric loop with a characteristic sharp bend (kink) between the two stems. The majority of the pyrococcal C/D guides contain a short 3 nt-spacer between the C'/D' motifs. We show here that conserved terminal stem-loops formed by the C'/D' motif of the Pyrococcus C/D RNAs are also L7Ae-binding sites. These stem-loops are related to the K-turn by sequence and structure, but they consist of a single stem closed by a terminal loop. We have named this structure the K-loop. We show that conserved non-canonical base pairs in the stem of the K-loop are necessary for L7Ae binding. For the C/D guides with a 3 nt-spacer we show that the sequence and length is also important. The K-loop could improve the stability of the C/D guide RNAs in Pyrococcal species, which are extreme hyperthermophiles.
Collapse
Affiliation(s)
- Sophie Nolivos
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique, UMR 5100 Université Paul Sabatier118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Agamemnon J. Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique, UMR 5100 Université Paul Sabatier118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Béatrice Clouet-d'Orval
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique, UMR 5100 Université Paul Sabatier118 route de Narbonne, 31062 Toulouse cedex 9, France
| |
Collapse
|
156
|
Dennis PP, Omer A. Small non-coding RNAs in Archaea. Curr Opin Microbiol 2005; 8:685-94. [PMID: 16256421 DOI: 10.1016/j.mib.2005.10.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 10/12/2005] [Indexed: 10/25/2022]
Abstract
Biochemical and informatics analyses conducted over the past few years have revealed the presence of a plethora of small non-coding RNAs in various species of Archaea. A large proportion of these RNAs contain a common structural motif called the RNA kink turn (K-turn). The best-characterized are the C/D box and the H/ACA box guide small (s)RNAs. Both contain the K-turn fold and require the binding of the L7Ae protein to stabilize the structure of this crucial motif. These sRNAs assemble with L7Ae and several other proteins into complex and dynamic ribonucleoprotein machines that mediate guide-directed ribose methylation or pseudouridylation to specific locations in ribosomal or transfer RNA. Analyses of new archaeal sRNA libraries have identified additional classes of novel sRNAs; many of these contain the RNA K-turn motif and suggest that the RNAs might function as ribonucleoprotein complexes. Some have characteristics of small interfering RNAs or of micro RNAs that have been implicated in the post-transcriptional control of gene expression, whereas others appear to be involved in protein translocation or in ribosomal RNA processing and ribosome assembly. A complete understanding of the structure of the K-turn motif and its contribution to various RNA-RNA and RNA-protein interactions will be absolutely essential to fully elucidate the biological organization, activity and function of these novel archaeal ribonucleoprotein machines.
Collapse
Affiliation(s)
- Patrick P Dennis
- The Division of Molecular and Cellular Biosciences, National Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230, USA
| | | |
Collapse
|
157
|
Chen L, Brügger K, Skovgaard M, Redder P, She Q, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk HP, Garrett RA. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 2005; 187:4992-9. [PMID: 15995215 PMCID: PMC1169522 DOI: 10.1128/jb.187.14.4992-4999.2005] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfolobus acidocaldarius is an aerobic thermoacidophilic crenarchaeon which grows optimally at 80 degrees C and pH 2 in terrestrial solfataric springs. Here, we describe the genome sequence of strain DSM639, which has been used for many seminal studies on archaeal and crenarchaeal biology. The circular genome carries 2,225,959 bp (37% G+C) with 2,292 predicted protein-encoding genes. Many of the smaller genes were identified for the first time on the basis of comparison of three Sulfolobus genome sequences. Of the protein-coding genes, 305 are exclusive to S. acidocaldarius and 866 are specific to the Sulfolobus genus. Moreover, 82 genes for untranslated RNAs were identified and annotated. Owing to the probable absence of active autonomous and nonautonomous mobile elements, the genome stability and organization of S. acidocaldarius differ radically from those of Sulfolobus solfataricus and Sulfolobus tokodaii. The S. acidocaldarius genome contains an integrated, and probably encaptured, pARN-type conjugative plasmid which may facilitate intercellular chromosomal gene exchange in S. acidocaldarius. Moreover, it contains genes for a characteristic restriction modification system, a UV damage excision repair system, thermopsin, and an aromatic ring dioxygenase, all of which are absent from genomes of other Sulfolobus species. However, it lacks genes for some of their sugar transporters, consistent with it growing on a more limited range of carbon sources. These results, together with the many newly identified protein-coding genes for Sulfolobus, are incorporated into a public Sulfolobus database which can be accessed at http://dac.molbio.ku.dk/dbs/Sulfolobus.
Collapse
Affiliation(s)
- Lanming Chen
- Danish Archaea Centre, Institute of Molecular Biology, Copenhagen University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Pichon C, Felden B. Small RNA genes expressed from Staphylococcus aureus genomic and pathogenicity islands with specific expression among pathogenic strains. Proc Natl Acad Sci U S A 2005; 102:14249-54. [PMID: 16183745 PMCID: PMC1242290 DOI: 10.1073/pnas.0503838102] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small RNA (sRNA) genes are expressed in all organisms, primarily as regulators of translation and message stability. We have developed comparative genomic approaches to identify sRNAs that are expressed by Staphylococcus aureus, the most common cause of hospital-acquired infections. This study represents an in-depth analysis of the RNome of a Gram-positive bacterium. A set of sRNAs candidates were identified in silico within intergenic regions, and their expression levels were monitored by using microarrays and confirmed by Northern blot hybridizations. Two sRNAs were also detected directly from purification and RNA sequence determination. In total, at least 12 sRNAs are expressed from the S. aureus genome, five from the core genome and seven from pathogenicity islands that confer virulence and antibiotic resistance. Three sRNAs are present in multiple (two to five) copies. For the sRNAs that are conserved throughout the bacterial phylogeny, their secondary structures were inferred by phylogenetic comparative methods. In vitro binding assays indicate that one sRNA encoded within a pathogenicity island is a trans-encoded antisense RNA regulating the expression of target genes at the posttranscriptional level. Some of these RNAs show large variations of expression among pathogenic strains, suggesting that they are involved in the regulation of staphylococcal virulence.
Collapse
Affiliation(s)
- Christophe Pichon
- Biochimie Pharmaceutique, Université de Rennes I, Unité Propre de Recherche de l'Enseignement Supérieur JE 2311, Inserm ESPRI, 2 Avenue du Professeur Léon Bernard, 35043 Rennes, France
| | | |
Collapse
|
159
|
Prangishvili D, Garrett RA. Viruses of hyperthermophilic Crenarchaea. Trends Microbiol 2005; 13:535-42. [PMID: 16154357 DOI: 10.1016/j.tim.2005.08.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 07/14/2005] [Accepted: 08/31/2005] [Indexed: 10/25/2022]
Abstract
Since the discovery of the Archaea--the third domain of life--by Woese and colleagues in 1977, the subsequent developments in molecular and cell biology, and also genomics, have strongly reinforced the view that archaea and eukarya co-evolved, separately from bacteria, over a long time. However, when one examines the archaeal viruses, the picture appears complex. Most viruses that are known to infect members of the kingdom Euryarchaeota resemble bacterial viruses, whereas those associated with the kingdom Crenarchaeota show little resemblance to either bacterial or eukaryal viruses. This review summarizes our current knowledge of this group of exceptional and highly diverse archaeal viruses.
Collapse
Affiliation(s)
- David Prangishvili
- Molecular Biology of the Gene in Extremophiles Unit, Institut Pasteur, rue Dr. Roux 25, 75724 Paris Cedex 15, France
| | | |
Collapse
|
160
|
Abstract
The past four years have seen an explosion in the number of detected RNA transcripts with no apparent protein-coding potential. This has led to speculation that non-protein-coding RNAs (ncRNAs) might be as important as proteins in the regulation of vital cellular functions. However, there has been significantly less progress in actually demonstrating the functions of these transcripts. In this article, we review the results of recent experiments that show that transcription of non-protein-coding RNA is far more widespread than was previously anticipated. Although some ncRNAs act as molecular switches that regulate gene expression, the function of many ncRNAs is unknown. New experimental and computational approaches are emerging that will help determine whether these newly identified transcription products are evidence of important new biochemical pathways or are merely 'junk' RNA generated by the cell as a by-product of its functional activities.
Collapse
Affiliation(s)
- Alexander Hüttenhofer
- Division of Genomics and RNomics, Innsbruck Medical University-Biocenter, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria.
| | | | | |
Collapse
|
161
|
Willkomm DK, Minnerup J, Hüttenhofer A, Hartmann RK. Experimental RNomics in Aquifex aeolicus: identification of small non-coding RNAs and the putative 6S RNA homolog. Nucleic Acids Res 2005; 33:1949-60. [PMID: 15814812 PMCID: PMC1074721 DOI: 10.1093/nar/gki334] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
By an experimental RNomics approach, we have generated a cDNA library from small RNAs expressed from the genome of the hyperthermophilic bacterium Aquifex aeolicus. The library included RNAs that were antisense to mRNAs and tRNAs as well as RNAs encoded in intergenic regions. Substantial steady-state levels in A.aeolicus cells were confirmed for several of the cloned RNAs by northern blot analysis. The most abundant intergenic RNA of the library was identified as the 6S RNA homolog of A.aeolicus. Although shorter in size (150 nt) than its γ-proteobacterial homologs (∼185 nt), it is predicted to have the most stable structure among known 6S RNAs. As in the γ-proteobacteria, the A.aeolicus 6S RNA gene (ssrS) is located immediately upstream of the ygfA gene encoding a widely conserved 5-formyltetrahydrofolate cyclo-ligase. We identifed novel 6S RNA candidates within the γ-proteobacteria but were unable to identify reasonable 6S RNA candidates in other bacterial branches, utilizing mfold analyses of the region immediately upstream of ygfA combined with 6S RNA blastn searches. By RACE experiments, we mapped the major transcription initiation site of A.aeolicus 6S RNA primary transcripts, located within the pheT gene preceding ygfA, as well as three processing sites.
Collapse
MESH Headings
- Base Sequence
- DNA, Complementary/chemistry
- Gene Library
- Genome, Bacterial
- Genomics
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA Precursors/genetics
- RNA, Antisense/analysis
- RNA, Antisense/genetics
- RNA, Bacterial/analysis
- RNA, Bacterial/chemistry
- RNA, Bacterial/classification
- RNA, Bacterial/genetics
- RNA, Messenger/genetics
- RNA, Transfer/genetics
- RNA, Untranslated/analysis
- RNA, Untranslated/genetics
- Ribonuclease P/genetics
- Sequence Alignment
- Sequence Analysis, RNA
Collapse
Affiliation(s)
| | - Jens Minnerup
- Institute for Experimental Pathology, ZMBE, University of MünsterVon-Esmarch-Strasse 56, D-48149 Münster, Germany
| | - Alexander Hüttenhofer
- Institute for Molecular Biology, Division of Functional Genomics and RNomics, Innsbruck Medical UniversityA-6020 Innsbruck, Austria
| | - Roland K. Hartmann
- To whom correspondence should be addressed. Tel: +49 6421 28 25827; Fax: +49 6421 28 25854;
| |
Collapse
|