151
|
Taillard J, Gronfier C, Bioulac S, Philip P, Sagaspe P. Sleep in Normal Aging, Homeostatic and Circadian Regulation and Vulnerability to Sleep Deprivation. Brain Sci 2021; 11:1003. [PMID: 34439622 PMCID: PMC8392749 DOI: 10.3390/brainsci11081003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/30/2022] Open
Abstract
In the context of geriatric research, a growing body of evidence links normal age-related changes in sleep with many adverse health outcomes, especially a decline in cognition in older adults. The most important sleep alterations that continue to worsen after 60 years involve sleep timing, (especially early wake time, phase advance), sleep maintenance (continuity of sleep interrupted by numerous awakenings) and reduced amount of sigma activity (during non-rapid eye movement (NREM) sleep) associated with modifications of sleep spindle characteristics (density, amplitude, frequency) and spindle-Slow Wave coupling. After 60 years, there is a very clear gender-dependent deterioration in sleep. Even if there are degradations of sleep after 60 years, daytime wake level and especially daytime sleepiness is not modified with age. On the other hand, under sleep deprivation condition, older adults show smaller cognitive impairments than younger adults, suggesting an age-related lower vulnerability to extended wakefulness. These sleep and cognitive age-related modifications would be due to a reduced homeostatic drive and consequently a reduced sleep need, an attenuation of circadian drive (reduction of sleep forbidden zone in late afternoon and wake forbidden zone in early morning), a modification of the interaction of the circadian and homeostatic processes and/or an alteration of subcortical structures involved in generation of circadian and homeostatic drive, or connections to the cerebral cortex with age. The modifications and interactions of these two processes with age are still uncertain, and still require further investigation. The understanding of the respective contribution of circadian and homeostatic processes in the regulation of neurobehavioral function with aging present a challenge for improving health, management of cognitive decline and potential early chronobiological or sleep-wake interventions.
Collapse
Affiliation(s)
- Jacques Taillard
- Sommeil, Addiction et Neuropsychiatrie, Université de Bordeaux, SANPSY, USR 3413, F-33000 Bordeaux, France; (S.B.); (P.P.); (P.S.)
- CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France
| | - Claude Gronfier
- Lyon Neuroscience Research Center (CRNL), Integrative Physiology of the Brain Arousal Systems (Waking) Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000 Lyon, France;
| | - Stéphanie Bioulac
- Sommeil, Addiction et Neuropsychiatrie, Université de Bordeaux, SANPSY, USR 3413, F-33000 Bordeaux, France; (S.B.); (P.P.); (P.S.)
- CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France
- Pôle Neurosciences Cliniques, CHU de Bordeaux, F-33076 Bordeaux, France
| | - Pierre Philip
- Sommeil, Addiction et Neuropsychiatrie, Université de Bordeaux, SANPSY, USR 3413, F-33000 Bordeaux, France; (S.B.); (P.P.); (P.S.)
- CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France
- Pôle Neurosciences Cliniques, CHU de Bordeaux, F-33076 Bordeaux, France
| | - Patricia Sagaspe
- Sommeil, Addiction et Neuropsychiatrie, Université de Bordeaux, SANPSY, USR 3413, F-33000 Bordeaux, France; (S.B.); (P.P.); (P.S.)
- CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France
- Pôle Neurosciences Cliniques, CHU de Bordeaux, F-33076 Bordeaux, France
| |
Collapse
|
152
|
Measurement of Circadian Effectiveness in Lighting for Office Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As one factor among others, circadian effectiveness depends on the spatial light distribution of the prevalent lighting conditions. In a typical office context focusing on computer work, the light that is experienced by the office workers is usually composed of a direct component emitted by the room luminaires and the computer monitors as well as by an indirect component reflected from the walls, surfaces, and ceiling. Due to this multi-directional light pattern, spatially resolved light measurements are required for an adequate prediction of non-visual light-induced effects. In this work, we therefore propose a novel methodological framework for spatially resolved light measurements that allows for an estimate of the circadian effectiveness of a lighting situation for variable field of view (FOV) definitions. Results of exemplary in-field office light measurements are reported and compared to those obtained from standard spectral radiometry to validate the accuracy of the proposed approach. The corresponding relative error is found to be of the order of 3–6%, which denotes an acceptable range for most practical applications. In addition, the impact of different FOVs as well as non-zero measurement angles will be investigated.
Collapse
|
153
|
Spitschan M. Time-Varying Light Exposure in Chronobiology and Sleep Research Experiments. Front Neurol 2021; 12:654158. [PMID: 34335437 PMCID: PMC8319561 DOI: 10.3389/fneur.2021.654158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Light exposure profoundly affects human physiology and behavior through circadian and neuroendocrine photoreception primarily through the melanopsin-containing intrinsically photosensitive retinal ganglion cells. Recent research has explored the possibility of using temporally patterned stimuli to manipulate circadian and neuroendocrine responses to light. This mini-review, geared to chronobiologists, sleep researchers, and scientists in adjacent disciplines, has two objectives: (1) introduce basic concepts in time-varying stimuli and (2) provide a checklist-based set of recommendations for documenting time-varying light exposures based on current best practices and standards.
Collapse
Affiliation(s)
- Manuel Spitschan
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom.,Centre for Chronobiology, Psychiatric Hospital of the University of Basel (UPK), Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| |
Collapse
|
154
|
Prayag AS, Münch M, Aeschbach D, Chellappa SL, Gronfier C. Reply to Bracke et al. Comment on "Prayag et al. Light Modulation of Human Clocks, Wake, and Sleep. Clocks&Sleep 2019, 1, 193-208". Clocks Sleep 2021; 3:398-402. [PMID: 34287255 PMCID: PMC8293177 DOI: 10.3390/clockssleep3030026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/07/2021] [Indexed: 02/08/2023] Open
Abstract
We thank Bracke and colleagues [...].
Collapse
Affiliation(s)
- Abhishek S. Prayag
- Lyon Neuroscience Research Center (CRNL), Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, 69000 Lyon, France;
| | - Mirjam Münch
- Centre for Public Health Research, Massey University, Wellington 6140, New Zealand;
| | - Daniel Aeschbach
- Department of Sleep and Human Factors Research, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51170 Cologne, Germany;
- Faculty of Medicine, University of Bonn, 53127 Bonn, Germany
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA;
| | - Sarah L. Chellappa
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA;
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Claude Gronfier
- Lyon Neuroscience Research Center (CRNL), Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, 69000 Lyon, France;
| |
Collapse
|
155
|
Nagare R, Rea MS, Figueiro MG. Spatial sensitivity of human circadian response: Melatonin suppression from on-axis and off-axis light exposures. Neurobiol Sleep Circadian Rhythms 2021; 11:100071. [PMID: 34286162 PMCID: PMC8278206 DOI: 10.1016/j.nbscr.2021.100071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/17/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
A better understanding of the spatial sensitivity of the human circadian system to photic stimulation can provide practical solutions for optimized circadian light exposures. Two psychophysical experiments, involving 25 adult participants in Experiment 1 (mean age = 34.0 years [SD 15.5]; 13 females) and 15 adult participants in Experiment 2 (mean age = 43.0 years [SD 12.6]; 12 females), were designed to investigate whether varying only the spatial distribution of luminous stimuli in the environment while maintaining a constant spectrally weighted irradiance at the eye could influence nocturnal melatonin suppression. Two spatial distributions were employed, one where the luminous stimulus was presented On-axis (along the line of sight) and one where two luminous stimuli were both presented Off-axis (laterally displaced at center by 14°). Two narrowband LED light sources, blue (λmax = 451 nm) for first experiment and green (λmax = 522 nm) for second experiment, were used in both the On-axis and the Off-axis spatial distributions. The blue luminous stimulus targeting the fovea and parafovea (On-axis) was about three times more effective for suppressing melatonin than the photometrically and spectrally matched stimulus targeting the more peripheral retina (Off-axis). The green luminous stimulus targeting the fovea and parafovea (On-axis) was about two times more effective for suppressing melatonin than the photometrically and spectrally matched stimulus targeting the more peripheral retina (Off-axis).
Collapse
Affiliation(s)
- Rohan Nagare
- Light and Health Research Center, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark S Rea
- Light and Health Research Center, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mariana G Figueiro
- Light and Health Research Center, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
156
|
Watson LA, McGlashan EM, Hosken IT, Anderson C, Phillips AJK, Cain SW. Sleep and circadian instability in delayed sleep-wake phase disorder. J Clin Sleep Med 2021; 16:1431-1436. [PMID: 32347206 DOI: 10.5664/jcsm.8516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES In patients with delayed sleep-wake phase disorder (DSWPD), the circadian clock may be more easily affected by light at night. This creates a potential vulnerability, whereby individuals with irregular schedules may have less stable circadian rhythms. We investigated the stability of circadian timing and regularity of sleep in patients with DSWPD and healthy controls. METHODS Participants completed 2 dim-light melatonin onset (DLMO) assessments approximately 2 weeks apart while keeping their habitual sleep/wake schedule. After the second DLMO assessment, light sensitivity was assessed using the phase-resetting response to a 6.5-hour 150-lux stimulus. The change in DLMO timing (DLMO instability) was assessed and related to light sensitivity and the sleep regularity index. RESULTS Relative to healthy controls, patients with DSWPD had later sleep rhythm timing relative to clock time, earlier sleep rhythm timing relative to DLMO, lower sleep regularity index, and greater DLMO instability. Greater DLMO instability was associated with increased light sensitivity across all participants, but not within groups. CONCLUSIONS We find that circadian timing is less stable and sleep is less regular in patients with DSWPD, which could contribute to etiology of the disorder. Measures of light sensitivity may be informative in generating DSWPD treatment plans.
Collapse
Affiliation(s)
- Lauren A Watson
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia; *Contributed equally
| | - Elise M McGlashan
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia; *Contributed equally
| | - Ihaia T Hosken
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia; *Contributed equally
| | - Clare Anderson
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia; *Contributed equally
| | - Andrew J K Phillips
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia; *Contributed equally
| | - Sean W Cain
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia; *Contributed equally
| |
Collapse
|
157
|
Nakamoto I, Uiji S, Okata R, Endo H, Tohyama S, Nitta R, Hashimoto S, Matsushima Y, Wakimoto J, Hashimoto S, Nishiyama Y, Kanikowska D, Negoro H, Wakamura T. Diurnal rhythms of urine volume and electrolyte excretion in healthy young men under differing intensities of daytime light exposure. Sci Rep 2021; 11:13097. [PMID: 34162962 PMCID: PMC8222329 DOI: 10.1038/s41598-021-92595-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
In humans, most renal functions, including urine volume and electrolyte excretions, have a circadian rhythm. Light is a strong circadian entrainment factor and daytime-light exposure is known to affect the circadian rhythm of rectal temperature (RT). The effects of daytime-light exposure on the diurnal rhythm of urinary excretion have yet to be clarified. The aim of this study was to clarify whether and how daytime exposure to bright-light affects urinary excretions. Twenty-one healthy men (21–27 years old) participated in a 4-day study involving daytime (08:00–18:00 h) exposure to two light conditions, Dim (< 50 lx) and Bright (~ 2500 lx), in a random order. During the experiment, RT was measured continuously. Urine samples were collected every 3 ~ 4 h. Compared to the Dim condition, under the Bright condition, the RT nadir time was 45 min earlier (p = 0.017) and sodium (Na), chloride (Cl), and uric acid (UA) excretion and urine volumes were greater (all p < 0.001), from 11:00 h to 13:00 h without a difference in total daily urine volume. The present results suggest that daytime bright light exposure can induce a phase shift advance in urine volume and urinary Na, Cl, and UA excretion rhythms.
Collapse
Affiliation(s)
- Isuzu Nakamoto
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 kawahara-cho, shogoin, sakyo-ku, Kyoto, 606-8507, Japan
| | - Sayaka Uiji
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 kawahara-cho, shogoin, sakyo-ku, Kyoto, 606-8507, Japan
| | - Rin Okata
- Human Health Sciences, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Hisayoshi Endo
- Human Health Sciences, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Sena Tohyama
- Human Health Sciences, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Rina Nitta
- Human Health Sciences, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Saya Hashimoto
- Human Health Sciences, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiko Matsushima
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 kawahara-cho, shogoin, sakyo-ku, Kyoto, 606-8507, Japan
| | - Junko Wakimoto
- Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan
| | - Seiji Hashimoto
- Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan
| | | | - Dominika Kanikowska
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Tomoko Wakamura
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 kawahara-cho, shogoin, sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
158
|
Kumari R, Verma V, Kronfeld-Schor N, Singaravel M. Differential response of diurnal and nocturnal mammals to prolonged altered light-dark cycle: a possible role of mood associated endocrine, inflammatory and antioxidant system. Chronobiol Int 2021; 38:1618-1630. [PMID: 34128442 DOI: 10.1080/07420528.2021.1937200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The circadian system maintains internal 24 h oscillation of behavior and physiology, and its misalignment with external light-dark (LD) cycle results in negative health outcomes. In order to elucidate the effect of prolonged constant condition and the differences in the response between nocturnal and diurnal species, we studied the effects of constant light (LL) and constant darkness (DD) on a diurnal (squirrel) and a nocturnal (mouse) rodent species, focusing on the endocrine, inflammatory and antioxidant systems associated with depression-like behavior. Squirrels and mice (n = 10/group) were placed in chronocubicle under 12:12 h LD cycle, LL and DD. After 4 weeks, animals were subjected to sucrose preference test and blood and brain tissues were collected for measuring melatonin, corticosterone, proinflammatory cytokine, tumor necrosis factor-α (TNF-α) and the activity of primary antioxidant enzymes, catalase (CAT) and superoxide dismutase (SOD). The results show that in diurnal squirrels, prolonged constant darkness reduced sucrose preference, CAT, and SOD, increased corticosterone and TNF-α levels, but caused no significant change in the melatonin compared to LD condition. In contrast, in nocturnal mice constant darkness caused no significant changes in sucrose preference and corticosterone levels, increased melatonin, CAT and SOD levels but decreased TNF-α levels. Chronic LL caused a similar response in both squirrels and mice: it decreased sucrose preference, melatonin, CAT and SOD levels but increased corticosterone and TNF-α levels. Together, the study demonstrates differential effects of altered light-dark cycle in a diurnal and a nocturnal rodent on interrelated endocrine, inflammatory and antioxidant systems associated with depression-like behavior, with constant light having adverse effects on both species but constant darkness having a negative effect mainly in the diurnal squirrels.
Collapse
Affiliation(s)
- Ruchika Kumari
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vivek Verma
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Noga Kronfeld-Schor
- Ecological and Evolutionary Physiology Laboratory, School of Zoology and Sagol School of Neuroscience, Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Muniyandi Singaravel
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
159
|
The Pathways Linking to Sleep Habits among Children and Adolescents: A Complete Survey at Setagaya-ku, Tokyo. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126309. [PMID: 34200815 PMCID: PMC8296119 DOI: 10.3390/ijerph18126309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022]
Abstract
It has been noted that Japanese children sleep the least in the world, and this has become a major social issue. This study examined the pathways linked to sleep habits (SH) among children and adolescents. A questionnaire-based survey was conducted in March 2019 on children and their parents at all 63 public elementary and 29 public junior high schools in Setagaya-ku, Tokyo. For the analysis, 22,385 pairs of children-parent responses (valid response rate: 68.8%) with no missing data were used. This survey collected data on SH, physical activity (PA), screen time (ST) for the child, and lifestyle and neighborhood social capital (NSC) for the parents. Moreover, the pathways linking 'NSC' → 'parental lifestyle' → 'child's PA/ST' →'child's SH' were examined through structural equation modeling. The results indicated that children's SH were affected by their PA and ST and influenced by the lifestyle of their parents and the NSC that surrounds them. Thus, we concluded that it is necessary to provide direct interventions and take additional measures with regard to parent lifestyle and their NSC to solve persistent sleep problems in children.
Collapse
|
160
|
Spitschan M, Mead J, Roos C, Lowis C, Griffiths B, Mucur P, Herf M. luox: novel validated open-access and open-source web platform for calculating and sharing physiologically relevant quantities for light and lighting. Wellcome Open Res 2021; 6:69. [PMID: 34017925 PMCID: PMC8095192 DOI: 10.12688/wellcomeopenres.16595.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 12/16/2022] Open
Abstract
Light exposure has a profound impact on human physiology and behaviour. For example, light exposure at the wrong time can disrupt our circadian rhythms and acutely suppress the production of melatonin. In turn, appropriately timed light exposure can support circadian photoentrainment. Beginning with the discovery that melatonin production is acutely suppressed by bright light more than 40 years ago, understanding which aspects of light drive the 'non-visual' responses to light remains a highly active research area, with an important translational dimension and implications for "human-centric" or physiologically inspired architectural lighting design. In 2018, the International Commission on Illumination (CIE) standardised the spectral sensitivities for predicting the non-visual effects of a given spectrum of light with respect to the activation of the five photoreceptor classes in the human retina: the L, M and S cones, the rods, and the melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs). Here, we described a novel, lean, user-friendly, open-access and open-source platform for calculating quantities related to light. The platform, called luox, enables researchers and research users in chronobiology, sleep research and adjacent field to turn spectral measurements into reportable quantities. The luox code base, released under the GPL-3.0 License, is modular and therefore extendable to other spectrum-derived quantities. luox has been endorsed by the CIE following black-box validation.
Collapse
Affiliation(s)
- Manuel Spitschan
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Sleep and Circadian Neuroscience Institute (SCNi), University of Oxford, Oxford, UK.,Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
161
|
Vethe D, Scott J, Engstrøm M, Salvesen Ø, Sand T, Olsen A, Morken G, Heglum HS, Kjørstad K, Faaland PM, Vestergaard CL, Langsrud K, Kallestad H. The evening light environment in hospitals can be designed to produce less disruptive effects on the circadian system and improve sleep. Sleep 2021; 44:5909282. [PMID: 32954412 PMCID: PMC7953207 DOI: 10.1093/sleep/zsaa194] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/02/2020] [Indexed: 01/12/2023] Open
Abstract
STUDY OBJECTIVES Blue-depleted lighting reduces the disruptive effects of evening artificial light on the circadian system in laboratory experiments, but this has not yet been shown in naturalistic settings. The aim of the current study was to test the effects of residing in an evening blue-depleted light environment on melatonin levels, sleep, neurocognitive arousal, sleepiness, and potential side effects. METHODS The study was undertaken in a new psychiatric hospital unit where dynamic light sources were installed. All light sources in all rooms were blue-depleted in one half of the unit between 06:30 pm and 07:00 am (melanopic lux range: 7-21, melanopic equivalent daylight illuminance [M-EDI] range: 6-19, photopic lux range: 55-124), whereas the other had standard lighting (melanopic lux range: 30-70, M-EDI range: 27-63, photopic lux range: 64-136), but was otherwise identical. A total of 12 healthy adults resided for 5 days in each light environment (LE) in a randomized cross-over trial. RESULTS Melatonin levels were less suppressed in the blue-depleted LE (15%) compared with the normal LE (45%; p = 0.011). Dim light melatonin onset was phase-advanced more (1:20 h) after residing in the blue-depleted LE than after the normal LE (0:46 h; p = 0.008). Total sleep time was 8.1 min longer (p = 0.032), rapid eye movement sleep 13.9 min longer (p < 0.001), and neurocognitive arousal was lower (p = 0.042) in the blue-depleted LE. There were no significant differences in subjective sleepiness (p = 0.16) or side effects (p = 0.09). CONCLUSIONS It is possible to create an evening LE that has an impact on the circadian system and sleep without serious side effects. This demonstrates the feasibility and potential benefits of designing buildings or hospital units according to chronobiological principles and provide a basis for studies in both nonclinical and clinical populations.
Collapse
Affiliation(s)
- Daniel Vethe
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway.,Division of Mental Health Care, St. Olav's University Hospital, Trondheim, Norway
| | - Jan Scott
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway.,Institute of Neuroscience, University of Newcastle, Newcastle, UK
| | - Morten Engstrøm
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical Neurophysiology, St. Olav's University Hospital, Trondheim Norway
| | - Øyvind Salvesen
- Unit of Applied Clinical Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Trond Sand
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical Neurophysiology, St. Olav's University Hospital, Trondheim Norway
| | - Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Gunnar Morken
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway.,Division of Mental Health Care, St. Olav's University Hospital, Trondheim, Norway
| | - Hanne S Heglum
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,Novelda AS, Trondheim, Norway
| | - Kaia Kjørstad
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway.,Division of Mental Health Care, St. Olav's University Hospital, Trondheim, Norway
| | - Patrick M Faaland
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway.,Division of Mental Health Care, St. Olav's University Hospital, Trondheim, Norway
| | - Cecilie L Vestergaard
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway.,Division of Mental Health Care, St. Olav's University Hospital, Trondheim, Norway
| | - Knut Langsrud
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway.,Division of Mental Health Care, St. Olav's University Hospital, Trondheim, Norway
| | - Håvard Kallestad
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway.,Division of Mental Health Care, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
162
|
Cain SW, Phillips AJK. Do no harm: the beginning of the age of healthy hospital lighting. Sleep 2021; 44:6158960. [PMID: 33709150 DOI: 10.1093/sleep/zsab016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sean W Cain
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Andrew J K Phillips
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
163
|
Micic G, Lovato N, Ferguson SA, Burgess HJ, Lack L. Circadian tau differences and rhythm associations in delayed sleep-wake phase disorder and sighted non-24-hour sleep-wake rhythm disorder. Sleep 2021; 44:5867108. [PMID: 32619243 DOI: 10.1093/sleep/zsaa132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/19/2020] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES We investigated biological and behavioral rhythm period lengths (i.e. taus) of delayed sleep-wake phase disorder (DSWPD) and non-24-hour sleep-wake rhythm disorder (N24SWD). Based on circadian phase timing (temperature and dim light melatonin onset), DSWPD participants were dichotomized into a circadian-delayed and a circadian non-delayed group to investigate etiological differences. METHODS Participants with DSWPD (n = 26, 17 m, age: 21.85 ± 4.97 years), full-sighted N24SWD (n = 4, 3 m, age: 25.75 ± 4.99 years) and 18 controls (10 m, age: 23.72 ± 5.10 years) participated in an 80-h modified constant routine. An ultradian protocol of 1-h "days" in dim light, controlled conditions alternated 20-min sleep/dark periods with 40-min enforced wakefulness/light. Subjective sleepiness ratings were recorded prior to every sleep/dark opportunity and median reaction time (vigilance) was measured hourly. Obtained sleep (sleep propensity) was derived from 20-min sleep/dark opportunities to quantify hourly objective sleepiness. Hourly core body temperature was recorded, and salivary melatonin assayed to measure endogenous circadian rhythms. Rhythm data were curved using the two-component cosine model. RESULTS Patients with DSWPD and N24SWD had significantly longer melatonin and temperature taus compared to controls. Circadian non-delayed DSWPD had normally timed temperature and melatonin rhythms but were typically sleeping at relatively late circadian phases compared to those with circadian-delayed DSWPD. CONCLUSIONS People with DSWPD and N24SWD exhibit significantly longer biological circadian rhythm period lengths compared to controls. Approximately half of those diagnosed with DSWPD do not have abnormally delayed circadian rhythm timings suggesting abnormal phase relationship between biological rhythms and behavioral sleep period or potentially conditioned sleep-onset insomnia.
Collapse
Affiliation(s)
- Gorica Micic
- Adelaide Institute for Sleep Health: A Flinders Centre of Research Excellence, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia
| | - Nicole Lovato
- Adelaide Institute for Sleep Health: A Flinders Centre of Research Excellence, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia
| | - Sally A Ferguson
- Appleton Institute, Central Queensland University, Adelaide, South Australia
| | - Helen J Burgess
- Sleep and Circadian Research Laboratory, Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan
| | - Leon Lack
- Adelaide Institute for Sleep Health: A Flinders Centre of Research Excellence, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia.,College of Education, Psychology and Social Work, Flinders University, Bedford Park, South Australia
| |
Collapse
|
164
|
The Urban Observatory: A Multi-Modal Imaging Platform for the Study of Dynamics in Complex Urban Systems. REMOTE SENSING 2021. [DOI: 10.3390/rs13081426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We describe an “Urban Observatory” facility designed for the study of complex urban systems via persistent, synoptic, and granular imaging of dynamical processes in cities. An initial deployment of the facility has been demonstrated in New York City and consists of a suite of imaging systems—both broadband and hyperspectral—sensitive to wavelengths from the visible (∼400 nm) to the infrared (∼13 micron) operating at cadences of ∼0.01–30 Hz (characteristically ∼0.1 Hz). Much like an astronomical survey, the facility generates a large imaging catalog from which we have extracted observables (e.g., time-dependent brightnesses, spectra, temperatures, chemical species, etc.), collecting them in a parallel source catalog. We have demonstrated that, in addition to the urban science of cities as systems, these data are applicable to a myriad of domain-specific scientific inquiries related to urban functioning including energy consumption and end use, environmental impacts of cities, and patterns of life and public health. We show that an Urban Observatory facility of this type has the potential to improve both a city’s operations and the quality of life of its inhabitants.
Collapse
|
165
|
Spitschan M, Mead J, Roos C, Lowis C, Griffiths B, Mucur P, Herf M. luox: novel open-access and open-source web platform for calculating and sharing physiologically relevant quantities for light and lighting. Wellcome Open Res 2021; 6:69. [DOI: 10.12688/wellcomeopenres.16595.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 11/20/2022] Open
Abstract
Light exposure has a profound impact on human physiology and behaviour. For example, light exposure at the wrong time can disrupt our circadian rhythms and acutely suppress the production of melatonin. In turn, appropriately timed light exposure can support circadian photoentrainment. Beginning with the discovery that melatonin production is acutely suppressed by bright light more than 40 years ago, understanding which aspects of light drive the 'non-visual' responses to light remains a highly active research area, with an important translational dimension and implications for "human-centric" or physiologically inspired architectural lighting design. In 2018, the International Commission on Illumination (CIE) standardised the spectral sensitivities for predicting the non-visual effects of a given spectrum of light with respect to the activation of the five photoreceptor classes in the human retina: the L, M and S cones, the rods, and the melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs). Here, we described a novel, lean, user-friendly, open-access and open-source platform for calculating quantities related to light. The platform, called luox, enables researchers and research users in chronobiology, sleep research and adjacent field to turn spectral measurements into reportable quantities. The luox code base, released under the GPL-3.0 License, is modular and therefore extendable to other spectrum-derived quantities.
Collapse
|
166
|
Kompier ME, Smolders KCHJ, de Kort YAW. Abrupt light transitions in illuminance and correlated colour temperature result in different temporal dynamics and interindividual variability for sensation, comfort and alertness. PLoS One 2021; 16:e0243259. [PMID: 33750954 PMCID: PMC7984641 DOI: 10.1371/journal.pone.0243259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 11/19/2022] Open
Abstract
Detailed insights in both visual effects of light and effects beyond vision due to manipulations in illuminance and correlated color temperature (CCT) are needed to optimize study protocols as well as to design light scenarios for practical applications. This study investigated temporal dynamics and interindividual variability in subjective evaluations of sensation, comfort and mood as well as subjective and objective measures of alertness, arousal and thermoregulation following abrupt transitions in illuminance and CCT in a mild cold environment. The results revealed that effects could be uniquely attributed to changes in illuminance or CCT. No interaction effects of illuminance and CCT were found for any of these markers. Responses to the abrupt transitions in illuminance and CCT always occurred immediately and exclusively amongst the subjective measures. Most of these responses diminished over time within the 45-minute light manipulation. In this period, no responses were found for objective measures of vigilance, arousal or thermoregulation. Significant interindividual variability occurred only in the visual comfort evaluation in response to changes in the intensity of the light. The results indicate that the design of dynamic light scenarios aimed to enhance human alertness and vitality requires tailoring to the individual to create visually comfortable environments.
Collapse
Affiliation(s)
- Maaike E. Kompier
- Human-Technology Interaction, School of Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Karin C. H. J. Smolders
- Human-Technology Interaction, School of Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Yvonne A. W. de Kort
- Human-Technology Interaction, School of Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
167
|
Bonarius J, Papatsimpa C, Linnartz JP. Parameter Estimation in a Model of the Human Circadian Pacemaker Using a Particle Filter. IEEE Trans Biomed Eng 2021; 68:1305-1316. [PMID: 32970591 DOI: 10.1109/tbme.2020.3026538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE In the near future, real-time estimation of peoples unique, precise circadian clock state has the potential to improve the efficacy of medical treatments and improve human performance on a broad scale. Human-centric lighting can bring circadian-rhythm support using biodynamic lighting solutions that sync light with the time of day. We investigate a method to improve the tracking of individual's circadian processes. METHODS In literature, the human circadian physiology has been mathematically modeled using ordinary differential equations, the state of which can be tracked via the signal processing concept of a Particle Filter. We show that substantial improvements can be made if the estimator not only tracks state variables, such as the phase and amplitude of the circadian pacemaker, but also fits specific model parameters to the individual. In particular, we optimize model parameter τx, which reflects the intrinsic period of the circadian pacemaker ( τ). We show that both state and model parameters can be estimated based on minimally-invasive light exposure measurements and sleep-wake state observations. We also quantify the effect of inaccuracies in sensing. RESULTS We demonstrate improved performance by estimating τx for every individual, both with artificially created and human subject data. Prediction accuracy improves with every newly available observation. The estimated τx-s correlate well with the subjects' chronotypes, in a similar way as τ correlates. CONCLUSION Our results show that individualizing the estimation of model parameters can improve circadian state estimation accuracy. SIGNIFICANCE These findings underscore the potential improvements in personalized models over one-size fits all approaches.
Collapse
|
168
|
Figueiro MG, Leggett S. Intermittent Light Exposures in Humans: A Case for Dual Entrainment in the Treatment of Alzheimer's Disease. Front Neurol 2021; 12:625698. [PMID: 33767659 PMCID: PMC7985540 DOI: 10.3389/fneur.2021.625698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/15/2021] [Indexed: 12/26/2022] Open
Abstract
Circadian sleep disorders are common among American adults and can become especially acute among older adults, especially those living with Alzheimer's disease (AD) and mild cognitive impairment (MCI), leading to the exacerbation of symptoms and contributing to the development and advancement of the diseases. This review explores the connections between circadian sleep disorders, cognition, and neurodegenerative disease, offering insights on rapidly developing therapeutic interventions employing intermittent light stimuli for improving sleep and cognition in persons with AD and MCI. Light therapy has the potential to affect sleep and cognition via at least two pathways: (1) a regular and robust light-dark pattern reaching the retina that promotes circadian phase shifting, which can promote entrainment and (2) 40 Hz flickering light that promotes gamma-wave entrainment. While this is a new area of research, preliminary evidence shows the potential of dual circadian and gamma-wave entrainment as an important therapy not only for those with AD, but for others with cognitive impairment.
Collapse
Affiliation(s)
- Mariana G. Figueiro
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Sagan Leggett
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
169
|
Schlangen LJM, Price LLA. The Lighting Environment, Its Metrology, and Non-visual Responses. Front Neurol 2021; 12:624861. [PMID: 33746879 PMCID: PMC7970181 DOI: 10.3389/fneur.2021.624861] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
International standard CIE S 026:2018 provides lighting professionals and field researchers in chronobiology with a method to characterize light exposures with respect to non-visual photoreception and responses. This standard defines five spectral sensitivity functions that describe optical radiation for its ability to stimulate each of the five α-opic retinal photoreceptor classes that contribute to the non-visual effects of light in humans via intrinsically-photosensitive retinal ganglion cells (ipRGCs). The CIE also recently published an open-access α-opic toolbox that calculates all the quantities and ratios of the α-opic metrology in the photometric, radiometric and photon systems, based on either a measured (user-defined) spectrum or selected illuminants (A, D65, E, FL11, LED-B3) built into the toolbox. For a wide variety of ecologically-valid conditions, the melanopsin-based photoreception of ipRGCs has been shown to account for the spectral sensitivity of non-visual responses, from shifting the timing of nocturnal sleep and melatonin secretion to regulating steady-state pupil diameter. Recent findings continue to confirm that the photopigment melanopsin also plays a role in visual responses, and that melanopsin-based photoreception may have a significant influence on brightness perception and aspects of spatial vision. Although knowledge concerning the extent to which rods and cones interact with ipRGCs in driving non-visual effects is still growing, a CIE position statement recently used melanopic equivalent daylight (D65) illuminance in preliminary guidance on applying "proper light at the proper time" to manipulate non-visual responses. Further guidance on this approach is awaited from the participants of the 2nd International Workshop on Circadian and Neurophysiological Photometry (in Manchester, August 2019). The new α-opic metrology of CIE S 026 enables traceable measurements and a formal, quantitative specification of personal light exposures, photic interventions and lighting designs. Here, we apply this metrology to everyday light sources including a natural daylight time series, a range of LED lighting products and, using the toobox, to a smartphone display screen. This collection of examples suggests ways in which variations in the melanopic content of light over the day can be adopted in strategies that use light to support human health and well-being.
Collapse
Affiliation(s)
- Luc J. M. Schlangen
- Department Human-Technology Interaction, Intelligent Lighting Institute, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Luke L. A. Price
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, United Kingdom
| |
Collapse
|
170
|
Gasperetti CE, Dolsen EA, Harvey AG. The influence of intensity and timing of daily light exposure on subjective and objective sleep in adolescents with an evening circadian preference. Sleep Med 2021; 79:166-174. [PMID: 33262011 PMCID: PMC7925365 DOI: 10.1016/j.sleep.2020.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022]
Abstract
STUDY OBJECTIVES The aim of the present study is to examine the relationship between light and sleep, in adolescents with an evening circadian preference. METHODS For a period of seven days, ninety-nine adolescents wore a wrist actigraph to assess light exposure and objective sleep and completed a sleep diary to assess subjective sleep. RESULTS Lower average light intensity across the preceding 24 h was associated with a later sleep onset (p < 0.01) and a later next-day sleep offset (p < 0.05). A later time of last exposure to more than 10 lux was associated with a later sleep onset (p < 0.001) and a shorter objective total sleep time (p < 0.001), as well as a later bedtime (p < 0.001) and a shorter subjective total sleep time (p < 0.001). Furthermore, exploratory analyses found that lower average early morning light exposure (between 4 and 9 AM) was associated with later sleep onset (p < 0.05), a later next-day sleep offset (p < 0.05), and a later next-day waketime (p < 0.01), lower average afternoon light exposure (between 2 and 7 PM) was associated with a later next-day sleep offset (p < 0.05), and lower average evening light exposure (between 7 PM and 12 AM) was associated with longer subjective total sleep time (p < 0.01). CONCLUSION This study highlights the importance of light exposure, particularly the timing of light exposure, for establishing healthy patterns of sleep among adolescents with a propensity for a delayed bedtime and waketime. These findings provide additional evidence for targeting light exposure when designing interventions to improve adolescent sleep.
Collapse
Affiliation(s)
| | - Emily A Dolsen
- Department of Psychology, University of California, Berkeley, United States
| | - Allison G Harvey
- Department of Psychology, University of California, Berkeley, United States.
| |
Collapse
|
171
|
Bedroom light exposure at night and obesity in individuals with bipolar disorder: A cross-sectional analysis of the APPLE cohort. Physiol Behav 2021; 230:113281. [DOI: 10.1016/j.physbeh.2020.113281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/05/2020] [Accepted: 12/04/2020] [Indexed: 01/22/2023]
|
172
|
Gabinet NM, Portnov BA. Assessing the impacts of ALAN and noise proxies on sleep duration and quality: evidence from a nation-wide survey in Israel. Chronobiol Int 2021; 38:638-658. [PMID: 33612016 DOI: 10.1080/07420528.2021.1886111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Sleep is a reversible state that sustains physiological and psychological processes in humans. As well established, individual-level factors, such as stress, smoking, drugs, and caffeine intake, reduce sleep duration and quality. However, studies of the effect of environmental risk factors, such as artificial light at night (ALAN) and noise, on sleep have been infrequent. Using records obtained from the 2017 Social Survey of Israel and combined with ALAN satellite data and various proxies for traffic noise, the present study aimed to determine how the combination of ALAN and traffic noise impact sleep duration and quality in urban areas. The increase of road density at the place of residence reduces average sleep duration by ~4.5% (~18 min.) and increases the frequency of reported sleep difficulties by ~3.5%, all other factors held equal. Similarly, an increase in ALAN exposure reduces average sleep duration by ~3% (~12 min) and increases the frequency of reported sleep difficulties by ~11%. The study also reveals a significant interaction between the two environmental risk factors in question, with the adverse impact of ALAN on sleep quality especially pronounced in high noise exposure areas.
Collapse
Affiliation(s)
- Nahum M Gabinet
- Department of Natural Resources and Environmental Management, Faculty of Social Sciences, University of Haifa, Haifa, Israel
| | - Boris A Portnov
- Department of Natural Resources and Environmental Management, Faculty of Social Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
173
|
Chellappa SL. Individual differences in light sensitivity affect sleep and circadian rhythms. Sleep 2021; 44:zsaa214. [PMID: 33049062 PMCID: PMC7879412 DOI: 10.1093/sleep/zsaa214] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Artificial lighting is omnipresent in contemporary society with disruptive consequences for human sleep and circadian rhythms because of overexposure to light, particularly in the evening/night hours. Recent evidence shows large individual variations in circadian photosensitivity, such as melatonin suppression, due to artificial light exposure. Despite the emerging body of research indicating that the effects of light on sleep and circadian rhythms vary dramatically across individuals, recommendations for appropriate light exposure in real-life settings rarely consider such individual effects. This review addresses recently identified links among individual traits, for example, age, sex, chronotype, genetic haplotypes, and the effects of evening/night light on sleep and circadian hallmarks, based on human laboratory and field studies. Target biological mechanisms for individual differences in light sensitivity include differences occurring within the retina and downstream, such as the central circadian clock. This review also highlights that there are wide gaps of uncertainty, despite the growing awareness that individual differences shape the effects of evening/night light on sleep and circadian physiology. These include (1) why do certain individual traits differentially affect the influence of light on sleep and circadian rhythms; (2) what is the translational value of individual differences in light sensitivity in populations typically exposed to light at night, such as night shift workers; and (3) what is the magnitude of individual differences in light sensitivity in population-based studies? Collectively, the current findings provide strong support for considering individual differences when defining optimal lighting specifications, thus allowing for personalized lighting solutions that promote quality of life and health.
Collapse
Affiliation(s)
- Sarah L Chellappa
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
174
|
Chen R, Weitzner AS, McKennon LA, Fonken LK. Light at night during development in mice has modest effects on adulthood behavior and neuroimmune activation. Behav Brain Res 2021; 405:113171. [PMID: 33577883 DOI: 10.1016/j.bbr.2021.113171] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/01/2021] [Accepted: 02/04/2021] [Indexed: 11/15/2022]
Abstract
Exposure to light at night (LAN) can disrupt the circadian system, thereby altering neuroimmune reactivity and related behavior. Increased exposure to LAN affects people of all ages - and could have particularly detrimental effects during early-life and adolescence. Despite this, most research on the behavioral and physiological effects of LAN has been conducted in adult animals. Here we evaluated the effects of dim LAN during critical developmental windows on adulthood neuroimmune function and affective/sickness behaviors. Male and female C57BL/6 J mice were exposed to dim LAN [12:12 light (150 lx)/dim (15 lx) cycle] during early life (PND10-24) or adolescence (PND30-44) [control: 12:12 light (150 lx)/dark (0 lx) cycle]. Behaviors were assessed during juvenile (PND 42-44) and adult (PND60) periods. Contrary to our hypothesis, juvenile mice that were exposed to dim LAN did not exhibit changes in anxiety- or depressive-like behaviors. By adulthood, adolescent LAN-exposed female mice showed a modest anxiety-like phenotype in one behavioral task but not another. Adolescent LAN exposure also induced depressive-like behavior in a forced swim task in adulthood in both male and female mice. Additionally, developmental LAN exacerbated the hippocampal cytokine response (IL-1β) following peripheral LPS in female, but not male mice. These results suggest female mice may be more susceptible to developmental LAN than male mice: LAN female mice had a modest anxiety-like phenotype in adulthood, and upon LPS challenge, higher hippocampal IL-1β expression. Taken together, developmental LAN exposure in mice promotes a modest increase in susceptibility to anxiety- and depressive-like symptoms.
Collapse
Affiliation(s)
- Ruizhuo Chen
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA
| | - Aidan S Weitzner
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA
| | - Lara A McKennon
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
175
|
Potential Role of Melatonin as an Adjuvant for Atherosclerotic Carotid Arterial Stenosis. Molecules 2021; 26:molecules26040811. [PMID: 33557283 PMCID: PMC7914857 DOI: 10.3390/molecules26040811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/23/2022] Open
Abstract
Carotid artery stenosis (CAS) is an atherosclerotic disease characterized by a narrowing of the artery lumen and a high risk of ischemic stroke. Risk factors of atherosclerosis, including smoking, hypertension, hyperglycemia, hyperlipidemia, aging, and disrupted circadian rhythm, may potentiate atherosclerosis in the carotid artery and further reduce the arterial lumen. Ischemic stroke due to severe CAS and cerebral ischemic/reperfusion (I/R) injury after the revascularization of CAS also adversely affect clinical outcomes. Melatonin is a pluripotent agent with potent anti-inflammatory, anti-oxidative, and neuroprotective properties. Although there is a shortage of direct clinical evidence demonstrating the benefits of melatonin in CAS patients, previous studies have shown that melatonin may be beneficial for patients with CAS in terms of reducing endothelial damage, stabilizing arterial plaque, mitigating the harm from CAS-related ischemic stroke and cerebral I/R injury, and alleviating the adverse effects of the related risk factors. Additional pre-clinical and clinical are required to confirm this speculation.
Collapse
|
176
|
Bonmati-Carrion MA, Tomas-Loba A. Melatonin and Cancer: A Polyhedral Network Where the Source Matters. Antioxidants (Basel) 2021; 10:antiox10020210. [PMID: 33535472 PMCID: PMC7912767 DOI: 10.3390/antiox10020210] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Melatonin is one of the most phylogenetically conserved signals in biology. Although its original function was probably related to its antioxidant capacity, this indoleamine has been “adopted” by multicellular organisms as the “darkness signal” when secreted in a circadian manner and is acutely suppressed by light at night by the pineal gland. However, melatonin is also produced by other tissues, which constitute its extrapineal sources. Apart from its undisputed chronobiotic function, melatonin exerts antioxidant, immunomodulatory, pro-apoptotic, antiproliferative, and anti-angiogenic effects, with all these properties making it a powerful antitumor agent. Indeed, this activity has been demonstrated to be mediated by interfering with various cancer hallmarks, and different epidemiological studies have also linked light at night (melatonin suppression) with a higher incidence of different types of cancer. In 2007, the World Health Organization classified night shift work as a probable carcinogen due to circadian disruption, where melatonin plays a central role. Our aim is to review, from a global perspective, the role of melatonin both from pineal and extrapineal origin, as well as their possible interplay, as an intrinsic factor in the incidence, development, and progression of cancer. Particular emphasis will be placed not only on those mechanisms related to melatonin’s antioxidant nature but also on the recently described novel roles of melatonin in microbiota and epigenetic regulation.
Collapse
Affiliation(s)
- Maria-Angeles Bonmati-Carrion
- Chronobiology Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable, 28090 Madrid, Spain
- Correspondence: (M.-A.B.-C.); (A.T.-L.)
| | - Antonia Tomas-Loba
- Circadian Rhythm and Cancer Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain
- Correspondence: (M.-A.B.-C.); (A.T.-L.)
| |
Collapse
|
177
|
Walbeek TJ, Harrison EM, Gorman MR, Glickman GL. Naturalistic Intensities of Light at Night: A Review of the Potent Effects of Very Dim Light on Circadian Responses and Considerations for Translational Research. Front Neurol 2021; 12:625334. [PMID: 33597916 PMCID: PMC7882611 DOI: 10.3389/fneur.2021.625334] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022] Open
Abstract
In this review, we discuss the remarkable potency and potential applications of a form of light that is often overlooked in a circadian context: naturalistic levels of dim light at night (nLAN), equivalent to intensities produced by the moon and stars. It is often assumed that such low levels of light do not produce circadian responses typically associated with brighter light levels. A solid understanding of the impacts of very low light levels is complicated further by the broad use of the somewhat ambiguous term “dim light,” which has been used to describe light levels ranging seven orders of magnitude. Here, we lay out the argument that nLAN exerts potent circadian effects on numerous mammalian species, and that given conservation of anatomy and function, the efficacy of light in this range in humans warrants further investigation. We also provide recommendations for the field of chronobiological research, including minimum requirements for the measurement and reporting of light, standardization of terminology (specifically as it pertains to “dim” light), and ideas for reconsidering old data and designing new studies.
Collapse
Affiliation(s)
- Thijs J Walbeek
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States.,Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Elizabeth M Harrison
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States
| | - Michael R Gorman
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States.,Department of Psychology, University of California, San Diego, San Diego, CA, United States
| | - Gena L Glickman
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States.,Departments of Psychiatry and Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
178
|
Houser KW, Esposito T. Human-Centric Lighting: Foundational Considerations and a Five-Step Design Process. Front Neurol 2021; 12:630553. [PMID: 33584531 PMCID: PMC7873560 DOI: 10.3389/fneur.2021.630553] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
At its best, human-centric lighting considers the visual and non-visual effects of light in support of positive human outcomes. At its worst, it is a marketing phrase used to healthwash lighting products or lighting design solutions. There is no doubt that environmental lighting contributes to human health, but how might one practice human-centric lighting given both the credible potential and the implausible hype? Marketing literature is filled with promises. Technical lighting societies have summarized the science but have not yet offered design guidance. Meanwhile, designers are in the middle, attempting to distinguish credible knowledge from that which is dubious to make design decisions that affect people directly. This article is intended to: (1) empower the reader with fundamental understandings of ways in which light affects health; (2) provide a process for human-centric lighting design that can dovetail with the decision-making process that is already a part of a designer's workflow.
Collapse
Affiliation(s)
- Kevin W. Houser
- School of Civil and Construction Engineering, Oregon State University, Corvallis, OR, United States
- Advanced Lighting Team, Pacific Northwest National Laboratory, Portland, OR, United States
| | - Tony Esposito
- Lighting Research Solutions LLC, Cambridge, MA, United States
| |
Collapse
|
179
|
Noi S, Shikano A, Yamada N, Tanaka R, Tanabe K, Tsuji H. Effects of change in residence to a mountain village on children’s melatonin responses. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2019.1586098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Shingo Noi
- Faculty of Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Akiko Shikano
- Faculty of Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Naoko Yamada
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Ryo Tanaka
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kosuke Tanabe
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Hideyuki Tsuji
- NPO Corporation Greenwood Nature Experience Education Center, Nagano, Japan
| |
Collapse
|
180
|
Xiao H, Cai H, Li X. Non-visual effects of indoor light environment on humans: A review ✰. Physiol Behav 2021; 228:113195. [PMID: 33022281 DOI: 10.1016/j.physbeh.2020.113195] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022]
Abstract
As a result of the desire to improve living standards, increasing attention is paid to creating a comfortable and healthy lighting environment that contributes to human health and well-being. It is crucial to understand the effects of environmental lighting regulation on humans' physical responses and mental activities. In this review, we focus on the scientific research on light-induced non-visual effects on humans, providing a systematic review of how the quantity of light, spectral changes, time of day, and duration have effects on the circadian rhythm, alertness, and mood based on eligible literature. The key findings are as follows: (1) The increase of illuminance and correlated colour temperature (CCT) at night were both positively associated with melatonin suppression, thus affecting the circadian rhythm. Meanwhile, a high CCT is conducive to the stimulation of positive mood. (2) Blue light and high CCT light at night induced delayed phase shift, and the objective alertness was reduced under the condition of lack of blue components. (3) High illuminance was positively correlated with subjective alertness during daytime, and increased the positive mood in the morning and decreased it in the afternoon. These findings serve as an important reference for stakeholders to optimise lighting in constructed environments to improve health and well-being considering the non-visual effects above and beyond visual performance.
Collapse
Affiliation(s)
- Hui Xiao
- Department of Control Science and Engineering, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China.
| | - Huiling Cai
- Department of Control Science and Engineering, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
| | - Xuefeng Li
- Department of Control Science and Engineering, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
181
|
Sletten TL, Raman B, Magee M, Ferguson SA, Kennaway DJ, Grunstein RR, Lockley SW, Rajaratnam SMW. A Blue-Enriched, Increased Intensity Light Intervention to Improve Alertness and Performance in Rotating Night Shift Workers in an Operational Setting. Nat Sci Sleep 2021; 13:647-657. [PMID: 34079409 PMCID: PMC8163632 DOI: 10.2147/nss.s287097] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE This study examined the efficacy of a lighting intervention that increased both light intensity and short-wavelength (blue) light content to improve alertness, performance and mood in night shift workers in a chemical plant. PATIENTS AND METHODS During rostered night shifts, 28 workers (46.0±10.8 years; 27 male) were exposed to two light conditions each for two consecutive nights (~19:00-07:00 h) in a counterbalanced repeated measures design: traditional-spectrum lighting set at pre-study levels (43 lux, 4000 K) versus higher intensity, blue-enriched lighting (106 lux, 17,000 K), equating to a 4.5-fold increase in melanopic illuminance (24 to 108 melanopic illuminance). Participants completed the Karolinska Sleepiness Scale, subjective mood ratings, and the Psychomotor Vigilance Task (PVT) every 2-4 hours during the night shift. RESULTS A significant main effect of time indicated KSS, PVT mean reaction time, number of PVT lapses (reaction times > 500 ms) and subjective tension, misery and depression worsened over the course of the night shift (p<0.05). Percentage changes in KSS (p<0.05, partial η2=0.14) and PVT mean reaction time (p<0.05, partial η2=0.19) and lapses (p<0.05, partial η2=0.17) in the middle and end of night shift, expressed relative to start of shift, were significantly improved during the lighting intervention compared to the traditional lighting condition. Self-reported mood did not significantly differ between conditions (p>0.05). CONCLUSION Our findings, showing improvements in alertness and performance with exposure to blue-enriched, increased intensity light, provide support for light to be used as a countermeasure for impaired alertness in night shift work settings.
Collapse
Affiliation(s)
- Tracey L Sletten
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Bhairavi Raman
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Michelle Magee
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Sally A Ferguson
- Central Queensland University, Appleton Institute, Goodwood, SA, Australia
| | - David J Kennaway
- Robinson Research Institute, School of Medicine, Discipline of Obstetrics and Gynaecology, University of Adelaide, Adelaide, SA, Australia
| | - Ronald R Grunstein
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,Department of Respiratory & Sleep Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Steven W Lockley
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Shantha M W Rajaratnam
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia.,Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
182
|
Light in the Senior Home: Effects of Dynamic and Individual Light Exposure on Sleep, Cognition, and Well-Being. Clocks Sleep 2020; 2:557-576. [PMID: 33327499 PMCID: PMC7768397 DOI: 10.3390/clockssleep2040040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
Disrupted sleep is common among nursing home patients and is associated with cognitive decline and reduced well-being. Sleep disruptions may in part be a result of insufficient daytime light exposure. This pilot study examined the effects of dynamic “circadian” lighting and individual light exposure on sleep, cognitive performance, and well-being in a sample of 14 senior home residents. The study was conducted as a within-subject study design over five weeks of circadian lighting and five weeks of conventional lighting, in a counterbalanced order. Participants wore wrist accelerometers to track rest–activity and light profiles and completed cognitive batteries (National Institute of Health (NIH) toolbox) and questionnaires (depression, fatigue, sleep quality, lighting appraisal) in each condition. We found no significant differences in outcome variables between the two lighting conditions. Individual differences in overall (indoors and outdoors) light exposure levels varied greatly between participants but did not differ between lighting conditions, except at night (22:00–6:00), with maximum light exposure being greater in the conventional lighting condition. Pooled data from both conditions showed that participants with higher overall morning light exposure (6:00–12:00) had less fragmented and more stable rest–activity rhythms with higher relative amplitude. Rest–activity rhythm fragmentation and long sleep duration both uniquely predicted lower cognitive performance.
Collapse
|
183
|
Efficacy of light therapy for a college student sample with non-seasonal subthreshold depression: An RCT study. J Affect Disord 2020; 277:443-449. [PMID: 32871530 DOI: 10.1016/j.jad.2020.08.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND Light therapy has been successfully used to treat seasonal and non-seasonal depression, but there is limited evidence for its efficacy in subthreshold depression. This study examines the efficacy of light therapy for symptoms of depression and anxiety in non-seasonal subthreshold depression. METHODS College students with non-seasonal subthreshold depression were recruited. The participants were randomly allocated to one of the three conditions: high- (LT-5000 lux) and low-intensity (LT-500 lux) light therapy conditions and a waiting-list control condition (WLC). The primary outcome was Hamilton Depression Rating Scale (HAMD), and secondary outcomes were Beck Depression Inventory-II (BDI-II) and state anxiety inventory (SAI), which were assessed at baseline (Week 0), during the trial (Week 4), and after completion of the light therapy (Week 8). RESULTS A total of 142 participants completed the trial. The LT-5000 (effect size [d] = 1.56, 95% CI: 1.15 to 1.98) and LT-500 conditions (d = 0.84, 95% CI: 0.43 to 1.26) were significantly superior to the WLC condition. For the LT-5000, LT-500, and WLC conditions by the end of the 8-week trial, a response on the HAMD was achieved by 70.0%, 42.0% and 19.0% of the participants, and remission was achieved by 76.0%, 54.0%, and 19.0%, respectively. LIMITATIONS The subjects were not followed up regularly after completion of the trial. CONCLUSION Light therapy, both at high- and low-intensity, was efficacious in the treatment of college students with non-seasonal subthreshold depression. High-intensity light therapy was superior to low-intensity light therapy by the end of an 8-week trial.
Collapse
|
184
|
Esaki Y, Takeuchi I, Tsuboi S, Fujita K, Iwata N, Kitajima T. A double-blind, randomized, placebo-controlled trial of adjunctive blue-blocking glasses for the treatment of sleep and circadian rhythm in patients with bipolar disorder. Bipolar Disord 2020; 22:739-748. [PMID: 32276301 DOI: 10.1111/bdi.12912] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Recent studies have suggested that evening blue light exposure is associated with sleep and circadian rhythm abnormalities. This study examined the effect of blue-blocking (BB) glasses on sleep and circadian rhythm in patients with bipolar disorder (BD). METHODS We used a randomized, placebo-controlled, double-blinded design. Outpatients with BD and also with insomnia were randomly assigned to wear either orange glasses (BB) or clear ones (placebo) and were instructed to use these from 20:00 hours until bedtime for 2 weeks. The primary outcome metric was the difference in change from baseline to after intervention in sleep quality, as measured by the visual analog scale (VAS). RESULTS Forty-three patients were included in this study (BB group, 21; placebo group, 22). The change in sleep quality as per the VAS metric was not significantly different between the two groups (95% confidence interval [CI], -3.34 to 24.72; P = .13). However, the Morningness-Eveningness Questionnaire score had shifted to an advanced rhythm in the BB group and to a delayed rhythm in the placebo group, and the difference in these changes was statistically significant (95% CI, 1.69-7.45; P = .003). The change in the actigraphy sleep parameters and mood symptoms was not significantly different between the two groups. CONCLUSION Although concurrent medications may have influenced, our results suggest that BB glasses may be useful as an adjunctive treatment for circadian rhythm issues in patients with BD.
Collapse
Affiliation(s)
- Yuichi Esaki
- Department of Psychiatry, Okehazama Hospital, Toyoake, Aichi, Japan.,Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Ipei Takeuchi
- Department of Psychiatry, Okehazama Hospital, Toyoake, Aichi, Japan
| | - Soji Tsuboi
- Department of Psychiatry, Okehazama Hospital, Toyoake, Aichi, Japan
| | - Kiyoshi Fujita
- Department of Psychiatry, Okehazama Hospital, Toyoake, Aichi, Japan.,The Neuroscience Research Center, Aichi, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Tsuyoshi Kitajima
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| |
Collapse
|
185
|
Wei T, Li C, Heng Y, Gao X, Zhang G, Wang H, Zhao X, Meng Z, Zhang Y, Hou H. Association between night-shift work and level of melatonin: systematic review and meta-analysis. Sleep Med 2020; 75:502-509. [PMID: 33022488 DOI: 10.1016/j.sleep.2020.09.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUNDS Night-shift workers are exposed to nocturnal light and are more prone to circadian rhythm disorders. Although night-shift work is thought to be associated with the decrease in melatonin secretion, studies have shown inconsistent results. METHODS This systematic review and meta-analysis studied the association between night-shift work and melatonin levels. Pubmed and Embase databases were used for literature searching. The pooled standardized mean differences (SMDs) and 95% confidence intervals (CIs) were used to compare the differences between night-shift workers and the controls. RESULTS Thirty-three studies reported in 25 articles (1845 night-shift workers and 3414 controls, mean age 45.12 years) were included after a systematic literature review. Data of circulating melatonin levels and its metabolites, 6-sulfatoxymelatonin (aMT6s) in urine were collected for meta-analysis. The results showed that the first morning-void aMT6s level in night-shift workers was significantly lower than in day workers (SMD = -0.101, 95% CI = -0.179 to -0.022, P = 0.012). The level of mean 24-h urinary aMT6s was lower in night-shift workers than day workers (SMD: -0.264, 95% CI: -0.473 to -0.056, P = 0.013). Among fixed night-shift workers, the level of circulating melatonin, as well as first morning-void aMT6s was lower than that of day workers. CONCLUSION Our findings indicate that experience of night-shift work is associated with suppression of melatonin production, especially among fixed night-shift workers.
Collapse
Affiliation(s)
- Tao Wei
- School of Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Cancan Li
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Yuanyuan Heng
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Xiang Gao
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
| | - Guimei Zhang
- School of Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Huachen Wang
- School of Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Xuan Zhao
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Zixiu Meng
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Yanbo Zhang
- The Second Affiliation Hospital of Shandong First Medical University, Taian 271016, China.
| | - Haifeng Hou
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China; School of Public Health and Management, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
186
|
Circadian misalignment increases mood vulnerability in simulated shift work. Sci Rep 2020; 10:18614. [PMID: 33122670 PMCID: PMC7596056 DOI: 10.1038/s41598-020-75245-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/08/2020] [Indexed: 01/05/2023] Open
Abstract
Night shift work can associate with an increased risk for depression. As night workers experience a 'misalignment' between their circadian system and daily sleep-wake behaviors, with negative health consequences, we investigated whether exposure to circadian misalignment underpins mood vulnerability in simulated shift work. We performed randomized within-subject crossover laboratory studies in non-shift workers and shift workers. Simulated night shifts were used to induce a misalignment between the endogenous circadian pacemaker and sleep/wake cycles (circadian misalignment), while environmental conditions and food intake were controlled. Circadian misalignment adversely impacted emotional state, such that mood and well-being levels were significantly decreased throughout 4 days of continuous exposure to circadian misalignment in non-shift workers, as compared to when they were under circadian alignment (interaction of "circadian alignment condition" vs. "day", mood: p < 0.001; well-being: p < 0.001; adjusted p-values). Similarly, in shift workers, mood and well-being levels were significantly reduced throughout days of misalignment, as compared to circadian alignment (interaction of "circadian alignment condition" vs. "day", mood: p = 0.002; well-being: p = 0.002; adjusted p-values). Our findings indicate that circadian misalignment is an important biological component for mood vulnerability, and that individuals who engage in shift work are susceptible to its deleterious mood effects.
Collapse
|
187
|
van Andel E, Bijlenga D, Vogel SWN, Beekman ATF, Kooij JJS. Effects of chronotherapy on circadian rhythm and ADHD symptoms in adults with attention-deficit/hyperactivity disorder and delayed sleep phase syndrome: a randomized clinical trial. Chronobiol Int 2020; 38:260-269. [PMID: 33121289 DOI: 10.1080/07420528.2020.1835943] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The majority of adults with Attention-Deficit/Hyperactivity Disorder (ADHD) have a delayed circadian rhythm that is a characteristic of Delayed Sleep Phase Syndrome (DSPS). Treatment of DSPS may improve both the circadian rhythm and ADHD symptoms. In this three-armed randomized clinical trial, 51 adults (18-55 y) with ADHD and DSPS received sleep education and 3 weeks of (1) 0.5 mg/d placebo, (2) 0.5 mg/d melatonin, or (3) 0.5 mg/d melatonin plus 30 minutes of 10,000 lux bright light therapy (BLT) between 07:00 and 08:00 h. Placebo/melatonin conditions were double-blind. Treatment took place in the participants' naturalistic home settings. Dim-light melatonin onset (DLMO) was measured in saliva as marker of internal circadian rhythm. Melatonin or placebo administration followed individual schedules, starting 3 hours before the individual DLMO and weekly advancing by 1 h. DLMO and ADHD Rating Scale score were assessed at baseline, directly after 3-week treatment, and two weeks after the end of treatment. Results show that at baseline 77% had a DLMO after 21:00 h with an average DLMO at 23:43 h ± 1h46. Directly after treatment, melatonin had advanced DLMO by 1h28 (p = .001), and melatonin plus BLT by 1h58 (p < .001). Placebo did not affect DLMO. ADHD symptoms reduced by 14% (p = .038) directly after melatonin treatment. Placebo and melatonin plus BLT did not impact ADHD symptoms. Two weeks after end of treatment, ADHD symptoms and DLMO had returned to baseline levels. It can be concluded that low doses of melatonin advanced the circadian rhythm and reduced self-reported ADHD symptoms. Given the large number of adult ADHD patients with concurrent DSPS, treating delayed sleep with melatonin is an important component of effective ADHD treatment.
Collapse
Affiliation(s)
- Emma van Andel
- PsyQ, Expertise Center Adult ADHD , The Hague, The Netherlands
| | - Denise Bijlenga
- PsyQ, Expertise Center Adult ADHD , The Hague, The Netherlands
| | - Suzan W N Vogel
- PsyQ, Expertise Center Adult ADHD , The Hague, The Netherlands
| | - Aartjan T F Beekman
- Department of Psychiatry, Amsterdam Public Health Research Institute, VU University Medical Center , Amsterdam, The Netherlands
| | - J J Sandra Kooij
- PsyQ, Expertise Center Adult ADHD , The Hague, The Netherlands.,Department of Psychiatry, Amsterdam Public Health Research Institute, VU University Medical Center , Amsterdam, The Netherlands
| |
Collapse
|
188
|
Bais B, Kamperman AM, Bijma HH, Hoogendijk WJ, Souman JL, Knijff E, Lambregtse-van den Berg MP. Effects of bright light therapy for depression during pregnancy: a randomised, double-blind controlled trial. BMJ Open 2020; 10:e038030. [PMID: 33115894 PMCID: PMC7594358 DOI: 10.1136/bmjopen-2020-038030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Approximately 11%-13% of pregnant women suffer from depression. Bright light therapy (BLT) is a promising treatment, combining direct availability, sufficient efficacy, low costs and high safety for both mother and child. Here, we examined the effects of BLT on depression during pregnancy. DESIGN Randomised, double-blind controlled trial. SETTING Primary and secondary care in The Netherlands, from November 2016 to March 2019. PARTICIPANTS 67 pregnant women (12-32 weeks gestational age) with a DSM-5 diagnosis of depressive disorder (Diagnostic and Statistical Manual of Mental Disorders). INTERVENTIONS Participants were randomly allocated to treatment with either BLT (9000 lux, 5000 K) or dim red light therapy (DRLT, 100 lux, 2700 K), which is considered placebo. For 6 weeks, both groups were treated daily at home for 30 min on awakening. Follow-up took place weekly during the intervention, after 6 weeks of therapy, 3 and 10 weeks after treatment and 2 months postpartum. PRIMARY AND SECONDARY OUTCOME MEASURES Depressive symptoms were measured primarily with the Structured Interview Guide for the Hamilton Depression Scale-Seasonal Affective Disorder. Secondary measures were the Hamilton Rating Scale for Depression and the Edinburgh Postnatal Depression Scale. Changes in rating scale scores of these questionnaires over time were analysed using generalised linear mixed models. RESULTS Median depression scores decreased by 40.6%-53.1% in the BLT group and by 50.9%-66.7% in the DRLT group. We found no statistically significant difference in symptom change scores between BLT and DRLT. Sensitivity and post-hoc analyses did not change our findings. CONCLUSIONS Depressive symptoms of pregnant women with depression improved in both treatment arms. More research is necessary to determine whether these responses represent true treatment effects, non-specific treatment responses, placebo effects or a combination hereof. TRIAL REGISTRATION NUMBER NTR5476.
Collapse
Affiliation(s)
- Babette Bais
- Psychiatry, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Astrid M Kamperman
- Psychiatry, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Hilmar H Bijma
- Obstetrics and Gynaecology, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Witte Jg Hoogendijk
- Psychiatry, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Jan L Souman
- Lighting Applications, Signify NV, Eindhoven, Noord-Brabant, The Netherlands
| | - Esther Knijff
- Psychiatry, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Mijke P Lambregtse-van den Berg
- Psychiatry, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
- Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| |
Collapse
|
189
|
Stebelova K, Roska J, Zeman M. Impact of Dim Light at Night on Urinary 6-Sulphatoxymelatonin Concentrations and Sleep in Healthy Humans. Int J Mol Sci 2020; 21:ijms21207736. [PMID: 33086713 PMCID: PMC7588991 DOI: 10.3390/ijms21207736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
Artificial light at night can have negative effects on human wellbeing and health. It can disrupt circadian rhythms, interfere with sleep, and participate in the progress of civilisation diseases. The aim of the present study was to explore if dim artificial light during the entire night (ALAN) can affect melatonin production and sleep quality in young volunteers. We performed two experiments in real-life home-based conditions. Young volunteers (n = 33) were exposed to four nights of one lux ALAN or two nights of five lux ALAN. Melatonin production, based on 6-sulphatoxymelatonin/creatinine concentrations in urine, and sleep quality, based on actimetry, were evaluated. Exposure to ALAN one lux during the entire night did not suppress aMT6s/creatinine concentrations but did aggravate sleep quality by increasing sleep fragmentation and one-minute immobility. ALAN up to five lux reduced melatonin biosynthesis significantly and interfered with sleep quality, as evidenced by an increased percentage of one-minute immobility and a tendency of increased fragmentation index. Our results show that people are more sensitive to low illuminance during the entire night, as previously expected. ALAN can interfere with melatonin production and sleep quality in young, healthy individuals, and both processes have different sensitivities to light.
Collapse
Affiliation(s)
- Katarina Stebelova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovak; (J.R.); (M.Z.)
- Correspondence:
| | - Jan Roska
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovak; (J.R.); (M.Z.)
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovak
| | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovak; (J.R.); (M.Z.)
| |
Collapse
|
190
|
Zauner J, Plischke H, Stijnen H, Schwarz UT, Strasburger H. Influence of common lighting conditions and time-of-day on the effort-related cardiac response. PLoS One 2020; 15:e0239553. [PMID: 33027252 PMCID: PMC7540875 DOI: 10.1371/journal.pone.0239553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/08/2020] [Indexed: 11/18/2022] Open
Abstract
Melanopic stimuli trigger diverse non-image-forming effects. However, evidence of a melanopic contribution to acute effects on alertness and performance is inconclusive, especially under common lighting situations. Effects on cognitive performance are likely mediated by effort-related physiological changes. We assessed the acute effects of lighting in three scenarios, at two times of day, on effort-related changes to cardiac contraction as indexed by the cardiac pre-ejection period (PEP). In a within-subject design, twenty-seven participants performed a cognitive task thrice during a morning and a late-afternoon session. We set the lighting at 500 lux in all three lighting scenarios, measured horizontally at the desk level, but with 54 lux, 128 lux, or 241 lux melanopic equivalent daylight illuminance at the eye level. Impedance cardiography and electrocardiography measurements were used to calculate PEP, for the baseline and task period. A shorter PEP during the task represents a sympathetic heart activation and therefore increased effort. Data were analysed with linear mixed-effect models. PEP changes depended on both the light scene and time of day (p = 0.01 and p = 0.002, respectively). The highest change (sympathetic activation) occurred for the medium one of the three stimuli (128 lux) during the late-afternoon session. However, effect sizes for the singular effects were small, and only for the combined effect of light and time of day middle-sized. Performance scores or self-reported scores on alertness and task demand did not change with the light scene. In conclusion, participants reached the same performance most efficiently at both the highest and lowest melanopic setting, and during the morning session. The resulting U-shaped relation between melanopic stimulus intensity and PEP is likely not dependent solely on intrinsic ipRGC stimuli, and might be moderated by extrinsic cone input. Since lighting situations were modelled according to current integrative lighting strategies and real-life indoor light intensities, the result has implications for artificial lighting in a work environment.
Collapse
Affiliation(s)
- Johannes Zauner
- Munich University of Applied Sciences, Munich, Germany
- * E-mail:
| | | | - Hanna Stijnen
- Institute of Physics, Chemnitz University of Technology, Chemnitz, Germany
| | - Ulrich T. Schwarz
- Institute of Physics, Chemnitz University of Technology, Chemnitz, Germany
| | - Hans Strasburger
- Institute of Medical Psychology, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
191
|
Tekieh T, Lockley SW, Robinson PA, McCloskey S, Zobaer MS, Postnova S. Modeling melanopsin-mediated effects of light on circadian phase, melatonin suppression, and subjective sleepiness. J Pineal Res 2020; 69:e12681. [PMID: 32640090 DOI: 10.1111/jpi.12681] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/05/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
A physiologically based model of arousal dynamics is improved to incorporate the effects of the light spectrum on circadian phase resetting, melatonin suppression, and subjective sleepiness. To account for these nonvisual effects of light, melanopic irradiance replaces photopic illuminance that was used previously in the model. The dynamic circadian oscillator is revised according to the melanopic irradiance definition and tested against experimental circadian phase resetting dose-response and phase response data. Melatonin suppression function is recalibrated against melatonin dose-response data for monochromatic and polychromatic light sources. A new light-dependent term is introduced into the homeostatic weight component of subjective sleepiness to represent the direct alerting effect of light; the new term responds to light change in a time-dependent manner and is calibrated against experimental data. The model predictions are compared to a total of 14 experimental studies containing 26 data sets for 14 different spectral light profiles. The revised melanopic model shows on average 1.4 times lower prediction error for circadian phase resetting compared to the photopic-based model, 3.2 times lower error for melatonin suppression, and 2.1 times lower error for subjective sleepiness. Overall, incorporating melanopic irradiance allowed simulation of wavelength-dependent responses to light and could explain the majority of the observations. Moving forward, models of circadian phase resetting and the direct effects of light on alertness and sleep need to use nonvisual photoreception-based measures of light, for example, melanopic irradiance, instead of the traditionally used illuminance based on the visual system.
Collapse
Affiliation(s)
- Tahereh Tekieh
- School of Physics, University of Sydney, Sydney, NSW, Australia
- Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Vic., Australia
- Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Steven W Lockley
- Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Vic., Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Vic., Australia
| | - Peter A Robinson
- School of Physics, University of Sydney, Sydney, NSW, Australia
- Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Vic., Australia
- Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
- Centre for Translational Sleep and Circadian Neurobiology, University of Sydney, Sydney, NSW, Australia
| | - Stephen McCloskey
- School of Physics, University of Sydney, Sydney, NSW, Australia
- Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Vic., Australia
| | - M S Zobaer
- School of Physics, University of Sydney, Sydney, NSW, Australia
- Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Vic., Australia
| | - Svetlana Postnova
- School of Physics, University of Sydney, Sydney, NSW, Australia
- Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Vic., Australia
- Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
192
|
Eo YJ, Kim S, Lee KN, Kim DH, Kim C, Lee SM, Do YR. WITHDRAWN: Development of a circadian illuminometer to measure the intra-daily non-visual circadian illuminance. Biosens Bioelectron 2020. [DOI: 10.1016/j.bios.2020.112688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
193
|
Panagiotou M, Rohling JHT, Deboer T. Sleep Network Deterioration as a Function of Dim-Light-At-Night Exposure Duration in a Mouse Model. Clocks Sleep 2020; 2:308-324. [PMID: 33089206 PMCID: PMC7573811 DOI: 10.3390/clockssleep2030023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/17/2020] [Indexed: 01/03/2023] Open
Abstract
Artificial light, despite its widespread and valuable use, has been associated with deterioration of health and well-being, including altered circadian timing and sleep disturbances, particularly in nocturnal exposure. Recent findings from our lab reveal significant sleep and sleep electroencephalogram (EEG) changes owing to three months exposure to dim-light-at-night (DLAN). Aiming to further explore the detrimental effects of DLAN exposure, in the present study, we continuously recorded sleep EEG and the electromyogram for baseline 24-h and following 6-h sleep deprivation in a varied DLAN duration scheme. C57BL/6J mice were exposed to a 12:12 h light:DLAN cycle (75lux:5lux) vs. a 12:12 h light:dark cycle (75lux:0lux) for one day, one week, and one month. Our results show that sleep was already affected by a mere day of DLAN exposure with additional complications emerging with increasing DLAN exposure duration, such as the gradual delay of the daily 24-h vigilance state rhythms. We conducted detrended fluctuation analysis (DFA) on the locomotor activity data following 1-month and 3-month DLAN exposure, and a significantly less healthy rest-activity pattern, based on the decreased alpha values, was found in both conditions compared to the control light-dark. Taking into account the behavioral, sleep and the sleep EEG parameters, our data suggest that DLAN exposure, even in the shortest duration, induces deleterious effects; nevertheless, potential compensatory mechanisms render the organism partly adjustable and able to cope. We think that, for this reason, our data do not always depict linear divergence among groups, as compared with control conditions. Chronic DLAN exposure impacts the sleep regulatory system, but also brain integrity, diminishing its adaptability and reactivity, especially apparent in the sleep EEG alterations and particular low alpha values following DFA.
Collapse
Affiliation(s)
- Maria Panagiotou
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Centre, 2300 Leiden, The Netherlands; (M.P.); (J.H.T.R.)
| | - Jos H T Rohling
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Centre, 2300 Leiden, The Netherlands; (M.P.); (J.H.T.R.)
| | - Tom Deboer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Centre, 2300 Leiden, The Netherlands; (M.P.); (J.H.T.R.)
| |
Collapse
|
194
|
Moreno CRC, Wright K, Skene DJ, Louzada FM. Phenotypic plasticity of circadian entrainment under a range of light conditions. Neurobiol Sleep Circadian Rhythms 2020; 9:100055. [PMID: 32923743 PMCID: PMC7475273 DOI: 10.1016/j.nbscr.2020.100055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 11/25/2022] Open
Abstract
The response to a zeitgeber, particularly the light/dark cycle, may vary phenotypically. Phenotypic plasticity can be defined as the ability of one genome to express different phenotypes in response to environmental variation. In this opinion paper, we present some evidence that one of the most prominent effects of the introduction of electric light to the everyday life of humans is a significant increase in phenotypic plasticity and differences in interindividual phases of entrainment. We propose that the healthy limits of phenotypic plasticity have been surpassed in contemporary society.
Electric light increased phenotypic plasticity in humans and differences in interindividual phases of entrainment. Healthy limits of phenotypic plasticity have been surpassed in contemporary society. The correlation between biological time (DLMO) and behavioral time (MSFsc) is reduced in the population without access to electrical light.
Collapse
Affiliation(s)
- C R C Moreno
- School of Public Health, University of São Paulo, Brazil.,Stress Research Institute, Department of Psychology, Stockholm University, Sweden
| | - K Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, USA
| | - D J Skene
- Chronobiology, Faculty of Health & Medical Sciences, University of Surrey, UK
| | - F M Louzada
- Department of Physiology, Federal University of Paraná, Brazil
| |
Collapse
|
195
|
Sunde E, Pedersen T, Mrdalj J, Thun E, Grønli J, Harris A, Bjorvatn B, Waage S, Skene DJ, Pallesen S. Blue-Enriched White Light Improves Performance but Not Subjective Alertness and Circadian Adaptation During Three Consecutive Simulated Night Shifts. Front Psychol 2020; 11:2172. [PMID: 33013558 PMCID: PMC7462016 DOI: 10.3389/fpsyg.2020.02172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/03/2020] [Indexed: 01/28/2023] Open
Abstract
Use of blue-enriched light has received increasing interest regarding its activating and performance sustaining effects. However, studies assessing effects of such light during night work are few, and novel strategies for lighting using light emitting diode (LED) technology need to be researched. In a counterbalanced crossover design, we investigated the effects of a standard polychromatic blue-enriched white light (7000 K; ∼200 lx) compared to a warm white light (2500 K), of similar photon density (∼1.6 × 1014 photons/cm2/s), during three consecutive simulated night shifts. A total of 30 healthy participants [10 males, mean age 23.3 (SD = 2.9) years] were included in the study. Dependent variables comprised subjective alertness using the Karolinska Sleepiness Scale, a psychomotor vigilance task (PVT) and a digit symbol substitution test (DSST), all administered at five time points throughout each night shift. We also assessed dim-light melatonin onset (DLMO) before and after the night shifts, as well as participants' opinion of the light conditions. Subjective alertness and performance on the PVT and DSST deteriorated during the night shifts, but 7000 K light was more beneficial for performance, mainly in terms of fewer errors on the PVT, at the end of the first- and second- night shift, compared to 2500 K light. Blue-enriched light only had a minor impact on PVT response times (RTs), as only the fastest 10% of the RTs were significantly improved in 7000 K compared to 2500 K light. In both 7000 and 2500 K light, the DLMO was delayed in those participants with valid assessment of this parameter [n = 20 (69.0%) in 7000 K light, n = 22 (78.6%) in 2500 K light], with a mean of 2:34 (SE = 0:14) and 2:12 (SE = 0:14) hours, respectively, which was not significantly different between the light conditions. Both light conditions were positively rated, although participants found 7000 K to be more suitable for work yet evaluated 2500 K light as more pleasant. The data indicate minor, but beneficial, effects of 7000 K light compared to 2500 K light on performance during night work. Circadian adaptation did not differ significantly between light conditions, though caution should be taken when interpreting these findings due to missing data. Field studies are needed to investigate similar light interventions in real-life settings, to develop recommendations regarding illumination for night workers. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT03203538.
Collapse
Affiliation(s)
- Erlend Sunde
- Department of Psychosocial Science, University of Bergen, Bergen, Norway
| | - Torhild Pedersen
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Jelena Mrdalj
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Eirunn Thun
- Department of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Janne Grønli
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Anette Harris
- Department of Psychosocial Science, University of Bergen, Bergen, Norway
| | - Bjørn Bjorvatn
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital, Bergen, Norway
| | - Siri Waage
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital, Bergen, Norway
| | - Debra J Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Ståle Pallesen
- Department of Psychosocial Science, University of Bergen, Bergen, Norway
- Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital, Bergen, Norway
- Optentia, North-West University Vaal Triangle Campus, Vanderbijlpark, South Africa
| |
Collapse
|
196
|
Brown TM. Melanopic illuminance defines the magnitude of human circadian light responses under a wide range of conditions. J Pineal Res 2020; 69:e12655. [PMID: 32248548 DOI: 10.1111/jpi.12655] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/28/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Ocular light drives a range of nonvisual responses in humans including suppression of melatonin secretion and circadian phase resetting. These responses are driven by intrinsically photosensitive retinal ganglion cells (ipRGCs) which combine intrinsic, melanopsin-based, phototransduction with extrinsic rod/cone-mediated signals. As a result of this arrangement, it has remained unclear how best to quantify light to predict its nonvisual effects. To address this, we analysed data from nineteen different laboratory studies that measured melatonin suppression, circadian phase resetting and/or alerting responses in humans to a wide array of stimulus types, intensities and durations with or without pupil dilation. Using newly established SI-compliant metrics to quantify ipRGC-influenced responses to light, we show that melanopic illuminance consistently provides the best available predictor for responses of the human circadian system. In almost all cases, melanopic illuminance is able to fully account for differences in sensitivity to stimuli of varying spectral composition, acting to drive responses that track variations in illumination characteristic of those encountered over civil twilight (~1-1000 lux melanopic equivalent daylight illuminance). Collectively, our data demonstrate widespread utility of melanopic illuminance as a metric for predicting the circadian impact of environmental illumination. These data therefore provide strong support for the use of melanopic illuminance as the basis for guidelines that seek to regulate light exposure to benefit human health and to inform future lighting design.
Collapse
Affiliation(s)
- Timothy M Brown
- Centre for Biological Timing, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| |
Collapse
|
197
|
Stone JE, Postnova S, Sletten TL, Rajaratnam SM, Phillips AJ. Computational approaches for individual circadian phase prediction in field settings. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.coisb.2020.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
198
|
Vincent GE, Gupta CC, Sprajcer M, Vandelanotte C, Duncan MJ, Tucker P, Lastella M, Tuckwell GA, Ferguson SA. Are prolonged sitting and sleep restriction a dual curse for the modern workforce? a randomised controlled trial protocol. BMJ Open 2020; 10:e040613. [PMID: 32718927 PMCID: PMC7389768 DOI: 10.1136/bmjopen-2020-040613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Prolonged sitting and inadequate sleep are a growing concern in society and are associated with impairments to cardiometabolic health and cognitive performance. However, the combined effect of prolonged sitting and inadequate sleep on measures of health and cognitive performance are unknown. In addition, the circadian disruption caused by shiftwork may further impact workers' cardiometabolic health and cognitive performance. This protocol paper outlines the methodology for exploring the impact of simultaneous exposure to prolonged sitting, sleep restriction and circadian disruption on cardiometabolic and cognitive performance outcomes. METHODS AND ANALYSIS This between-subjects study will recruit 208 males and females to complete a 7-day in-laboratory experimental protocol (1 Adaptation Day, 5 Experimental Days and 1 Recovery Day). Participants will be allocated to one of eight conditions that include all possible combinations of the following: dayshift or nightshift, sitting or breaking up sitting and 5 hour or 9 hour sleep opportunity. On arrival to the laboratory, participants will be provided with a 9 hour baseline sleep opportunity (22:00 to 07:00) and complete five simulated work shifts (09:00 to 17:30 in the dayshift condition and 22:00 to 06:30 in the nightshift condition) followed by a 9 hour recovery sleep opportunity (22:00 to 07:00). During the work shifts participants in the sitting condition will remain seated, while participants in the breaking up sitting condition will complete 3-min bouts of light-intensity walking every 30 mins on a motorised treadmill. Sleep opportunities will be 9 hour or 5 hour. Primary outcome measures include continuously measured interstitial blood glucose, heart rate and blood pressure, and a cognitive performance and self-perceived capacity testing battery completed five times per shift. Analyses will be conducted using linear mixed models. ETHICS AND DISSEMINATION The CQUniversity Human Ethics Committee has approved this study (0000021914). All participants who have already completed the protocol have provided informed consent. Study findings will be disseminated via scientific publications and conference presentations. TRIAL REGISTRATION DETAILS This study has been registered on Australian New Zealand Clinical Trials Registry (12619001516178) and is currently in the pre-results stage.
Collapse
Affiliation(s)
- Grace E Vincent
- Appleton Institute, Central Queensland University - Adelaide Campus, Wayville, South Australia, Australia
| | - Charlotte C Gupta
- Appleton Institute, Central Queensland University - Adelaide Campus, Wayville, South Australia, Australia
| | - Madeline Sprajcer
- Appleton Institute, Central Queensland University - Adelaide Campus, Wayville, South Australia, Australia
| | - Corneel Vandelanotte
- School of Health Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| | - Mitch J Duncan
- School of Medicine & Public Health, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Physical Activity and Nutrition, The University of Newcastle, Callaghan, NSW, Australia
| | - Phil Tucker
- Psychology Department, Swansea University, Swansea, United Kingdom
- Stress Research Institute, Department of Psychology, Stocklholm University, Stockholm, Sweden
| | - Michele Lastella
- Appleton Institute, Central Queensland University - Adelaide Campus, Wayville, South Australia, Australia
| | - Georgia A Tuckwell
- Appleton Institute, Central Queensland University - Adelaide Campus, Wayville, South Australia, Australia
| | - Sally A Ferguson
- Appleton Institute, Central Queensland University - Adelaide Campus, Wayville, South Australia, Australia
| |
Collapse
|
199
|
Santhi N, Ball DM. Applications in sleep: How light affects sleep. PROGRESS IN BRAIN RESEARCH 2020; 253:17-24. [PMID: 32771123 DOI: 10.1016/bs.pbr.2020.05.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sleep is an active physiological state that plays a critical role in our physical and mental health and well-being. It is generated by a complex interplay between two oscillators, namely, the circadian oscillator and the sleep-wake homeostat. Sleep propensity is a function of wakefulness, that is, the longer one is awake the greater the homeostatic sleep pressure. Sleep onset occurs as a wake promoting circadian signal subsides, coinciding with an evening rise in melatonin and drop in core temperature. Light is one of the strongest time signals for the circadian oscillator. Poor sleep is a prevalent complaint today, attributable, in part, to our easy access to artificial light, especially after dusk. This non-visual effect of light is mediated by a multi-component photoreceptive system, consisting of rods, cones and melanopsin-expressing intrinsically-photosensitive retinal ganglion cells (ipRGC). Perhaps, with this available biological knowledge we can engineer artificial light to minimize its disruptive effect on sleep. We will highlight this by discussing circadian photoreception and its effect on sleep, in the blind population.
Collapse
Affiliation(s)
- Nayantara Santhi
- Department of Psychology, Northumbria University, Newcastle upon Tyne, England.
| | - Danny M Ball
- Institute of Cognitive Neuroscience, Department of Psychology, University College London, London, England
| |
Collapse
|
200
|
Abstract
The temporal organization of molecular and physiological processes is driven by environmental and behavioral cycles as well as by self-sustained molecular circadian oscillators. Quantification of phase, amplitude, period, and disruption of circadian oscillators is essential for understanding their contribution to sleep-wake disorders, social jet lag, interindividual differences in entrainment, and the development of chrono-therapeutics. Traditionally, assessment of the human circadian system, and the output of the SCN in particular, has required collection of long time series of univariate markers such as melatonin or core body temperature. Data were collected in specialized laboratory protocols designed to control for environmental and behavioral influences on rhythmicity. These protocols are time-consuming, expensive, and not practical for assessing circadian status in patients or in participants in epidemiologic studies. Novel approaches for assessment of circadian parameters of the SCN or peripheral oscillators have been developed. They are based on machine learning or mathematical model-informed analyses of features extracted from 1 or a few samples of high-dimensional data, such as transcriptomes, metabolomes, long-term simultaneous recording of activity, light exposure, skin temperature, and heart rate or in vitro approaches. Here, we review whether these approaches successfully quantify parameters of central and peripheral circadian oscillators as indexed by gold standard markers. Although several approaches perform well under entrained conditions when sleep occurs at night, the methods either perform worse in other conditions such as shift work or they have not been assessed under any conditions other than entrainment and thus we do not yet know how robust they are. Novel approaches for the assessment of circadian parameters hold promise for circadian medicine, chrono-therapeutics, and chrono-epidemiology. There remains a need to validate these approaches against gold standard markers, in individuals of all sexes and ages, in patient populations, and, in particular, under conditions in which behavioral cycles are displaced.
Collapse
Affiliation(s)
- Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,UK Dementia Research Institute, University of Surrey
| | - Jeanne F Duffy
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|