151
|
Garbelotto M, Gonthier P. Biology, epidemiology, and control of Heterobasidion species worldwide. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:39-59. [PMID: 23642002 DOI: 10.1146/annurev-phyto-082712-102225] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Heterobasidion annosum sensu lato is a species complex comprising five species that are widely distributed in coniferous forests of the Northern Hemisphere and are each characterized by a distinct host preference. More than 1,700 papers have been published on these fungi in the past four decades, making them perhaps the most widely studied forest fungi. Heterobasidion species are at different levels on the saprotroph-necrotroph gradient, and the same individual can switch from one mode to the other. This offers a unique opportunity to study how genomic structure, gene expression, and genetic trade-offs may all interact with environmental factors to determine the life mode of the organism. The abilities of Heterobasidion spp. to infect stumps as saprotrophs and to spread to neighboring trees as pathogens have resulted in significant damages to timber production in managed forests. This review focuses on the current knowledge of the biology, ecology, evolution, and management of these species and is based on classical and modern studies.
Collapse
Affiliation(s)
- Matteo Garbelotto
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
152
|
Kovalchuk A, Keriö S, Oghenekaro AO, Jaber E, Raffaello T, Asiegbu FO. Antimicrobial defenses and resistance in forest trees: challenges and perspectives in a genomic era. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:221-44. [PMID: 23682916 DOI: 10.1146/annurev-phyto-082712-102307] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Molecular pathology of forest trees for a long time lagged behind parallel studies on agricultural crop pathology. Recent technological advances have significantly contributed to the observed progress in this field. The first powerful impulse was provided by the completion of the black cottonwood genome sequence in 2006. Genomes of several other important tree species will be completed within a short time. Simultaneously, application of transcriptomics and next-generation sequencing (NGS) has resulted in the rapid accumulation of a vast amount of data on molecular interactions between trees and their microbial parasites. This review provides an overview of our current knowledge about these responses of forest trees to their pathogens, highlighting the achievements of the past decade, discussing the current state of the field, and emphasizing the prospects and challenges for the near future.
Collapse
Affiliation(s)
- Andriy Kovalchuk
- Department of Forest Sciences, Forest Pathology Research Laboratory, University of Helsinki, 00014 Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
153
|
Forseth RR, Amaike S, Schwenk D, Affeldt KJ, Hoffmeister D, Schroeder FC, Keller NP. Homologe NRPS-ähnliche Genloci vermitteln eine redundante Naturstoff-Biosynthese inAspergillus flavus. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201207456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
154
|
Forseth RR, Amaike S, Schwenk D, Affeldt KJ, Hoffmeister D, Schroeder FC, Keller NP. Homologous NRPS-like gene clusters mediate redundant small-molecule biosynthesis in Aspergillus flavus. Angew Chem Int Ed Engl 2012; 52:1590-4. [PMID: 23281040 DOI: 10.1002/anie.201207456] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 11/08/2012] [Indexed: 01/12/2023]
Affiliation(s)
- Ry R Forseth
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, 1 Tower Road, Ithaca, NY 14850, USA
| | | | | | | | | | | | | |
Collapse
|
155
|
Hansson D, Menkis A, Olson K, Stenlid J, Broberg A, Karlsson M. Biosynthesis of fomannoxin in the root rotting pathogen Heterobasidion occidentale. PHYTOCHEMISTRY 2012; 84:31-39. [PMID: 22981000 DOI: 10.1016/j.phytochem.2012.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/08/2012] [Accepted: 08/13/2012] [Indexed: 06/01/2023]
Abstract
Fomannoxin is a biologically active benzohydrofuran, which has been suggested to be involved in the pathogenicity of the root rotting fungus Heterobasidion annosum sensu lato. The biosynthesis of fomannoxin was investigated through an isotopic enrichment study utilizing [1-¹³C]glucose as metabolic tracer. ¹³C NMR spectroscopic analysis revealed the labeling pattern and showed that the isoprene building block originates from the mevalonic acid pathway, whereas the aromatic motif is formed via the shikimic acid route by elimination of pyruvate from chorismic acid. A natural product, 4-hydroxy-3-(3-methylbut-2-enyl)benzaldehyde, was isolated and characterized, and was suggested to be a key intermediate in the biosynthesis of fomannoxin and related secondary metabolites previously identified from the H. annosum fungal species complex.
Collapse
Affiliation(s)
- David Hansson
- Department of Chemistry, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-75007 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
156
|
Lind M, van der Nest M, Olson Å, Brandström-Durling M, Stenlid J. A 2nd generation linkage map of Heterobasidion annosum s.l. based on in silico anchoring of AFLP markers. PLoS One 2012; 7:e48347. [PMID: 23139779 PMCID: PMC3489678 DOI: 10.1371/journal.pone.0048347] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/24/2012] [Indexed: 11/18/2022] Open
Abstract
In this study, we present a 2nd generation genetic linkage map of a cross between the North American species Heterobasidion irregulare and H. occidentale, based on the alignment of the previously published 1st generation map to the parental genomes. We anchored 216 of the original 308 AFLP markers to their respective restriction sites using an in silico-approach. The map resolution was improved by adding 146 sequence-tagged microsatellite markers and 39 sequenced gene markers. The new markers confirmed the positions of the anchored AFLP markers, fused the original 39 linkage groups together into 17, and fully expanded 12 of these to single groups covering entire chromosomes. Map coverage of the genome increased from 55.3% to 92.8%, with 96.3% of 430 markers collinearly aligned with the genome sequence. The anchored map also improved the H. irregulare assembly considerably. It identified several errors in scaffold arrangements and assisted in reducing the total number of major scaffolds from 18 to 15. This denser, more comprehensive map allowed sequence-based mapping of three intersterility loci and one mating type locus. This demonstrates the possibility to utilize an in silico procedure to convert anonymous markers into sequence-tagged ones, as well as the power of a sequence-anchored linkage map and its usefulness in the assembly of a whole genome sequence.
Collapse
Affiliation(s)
- Mårten Lind
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
157
|
Nagy NE, Kvaalen H, Fongen M, Fossdal CG, Clarke N, Solheim H, Hietala AM. The pathogenic white-rot fungus Heterobasidion parviporum responds to spruce xylem defense by enhanced production of oxalic acid. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1450-8. [PMID: 23035954 DOI: 10.1094/mpmi-02-12-0029-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pathogen challenge of tree sapwood induces the formation of reaction zones with antimicrobial properties such as elevated pH and cation content. Many fungi lower substrate pH by secreting oxalic acid, its conjugate base oxalate being a reductant as well as a chelating agent for cations. To examine the role of oxalic acid in pathogenicity of white-rot fungi, we conducted spatial quantification of oxalate, transcript levels of related fungal genes, and element concentrations in heartwood of Norway spruce challenged naturally by Heterobasidion parviporum. In the pathogen-compromised reaction zone, upregulation of an oxaloacetase gene generating oxalic acid coincided with oxalate and cation accumulation and presence of calcium oxalate crystals. The colonized inner heartwood showed trace amounts of oxalate. Moreover, fungal exposure to the reaction zone under laboratory conditions induced oxaloacetase and oxalate accumulation, whereas heartwood induced a decarboxylase gene involved in degradation of oxalate. The excess level of cations in defense xylem inactivates pathogen-secreted oxalate through precipitation and, presumably, only after cation neutralization can oxalic acid participate in lignocellulose degradation. This necessitates enhanced production of oxalic acid by H. parviporum. This study is the first to determine the true influence of white-rot fungi on oxalate crystal formation in tree xylem.
Collapse
|
158
|
Genome mining reveals the evolutionary origin and biosynthetic potential of basidiomycete polyketide synthases. Fungal Genet Biol 2012; 49:996-1003. [PMID: 23078836 DOI: 10.1016/j.fgb.2012.09.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/09/2012] [Accepted: 09/27/2012] [Indexed: 11/20/2022]
Abstract
Numerous polyketides are known from bacteria, plants, and fungi. However, only a few have been isolated from basidiomycetes. Large scale genome sequencing projects now help anticipate the capacity of basidiomycetes to synthesize polyketides. In this study, we identified and annotated 111 type I and three type III polyketide synthase (PKS) genes from 35 sequenced basidiomycete genomes. Phylogenetic analysis of PKS genes suggests that all main types of fungal iterative PKS had already evolved before the Ascomycota and Basidiomycota diverged. A comparison of genomic and metabolomic data shows that the number of polyketide genes exceeds the number of known polyketide structures by far. Exploiting these results to design degenerate PCR primers, we amplified and cloned the complete sequence of armB, a PKS gene from the melleolide producer Armillaria mellea. We expect this study will serve as a guide for future genomic mining projects to discover structurally diverse mushroom-derived polyketides.
Collapse
|
159
|
Hansson D, Menkis A, Himmelstrand K, Thelander M, Olson K, Stenlid J, Karlsson M, Broberg A. Sesquiterpenes from the conifer root rot pathogen Heterobasidion occidentale. PHYTOCHEMISTRY 2012; 82:158-165. [PMID: 22831894 DOI: 10.1016/j.phytochem.2012.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 06/26/2012] [Accepted: 06/29/2012] [Indexed: 06/01/2023]
Abstract
Investigation of the production of secondary metabolites of Heterobasidion occidentale led to the isolation and identification of six sesquiterpenes (illudolone A and B, illudolactone A and B, deoxyfomannosin A and B) along with the well-known sesquiterpene fomannosin and the previously described benzohydrofuran fomannoxin. The structures and relative configurations of the compounds were determined by 1D and 2D NMR spectroscopic analysis as well as by HRMS. Their absolute configuration and biosynthesis were suggested and discussed in relation to fomannosin. Four compounds showed growth inhibiting activity against several basidiomycetes, Phlebiopsis gigantea, Phanerochaete chrysosporium and H. occidentale, and toxicity towards the moss Physcomitrella patens. In addition, one compound displayed activity against the bacterium Variovorax paradoxus as well as against the ascomycete Fusarium oxysporum.
Collapse
Affiliation(s)
- David Hansson
- Department of Chemistry, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun 2012; 3:913. [PMID: 22735441 PMCID: PMC3621433 DOI: 10.1038/ncomms1923] [Citation(s) in RCA: 386] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/22/2012] [Indexed: 02/07/2023] Open
Abstract
Ganoderma lucidum is a widely used medicinal macrofungus in traditional Chinese medicine that creates a diverse set of bioactive compounds. Here we report its 43.3-Mb genome, encoding 16,113 predicted genes, obtained using next-generation sequencing and optical mapping approaches. The sequence analysis reveals an impressive array of genes encoding cytochrome P450s (CYPs), transporters and regulatory proteins that cooperate in secondary metabolism. The genome also encodes one of the richest sets of wood degradation enzymes among all of the sequenced basidiomycetes. In all, 24 physical CYP gene clusters are identified. Moreover, 78 CYP genes are coexpressed with lanosterol synthase, and 16 of these show high similarity to fungal CYPs that specifically hydroxylate testosterone, suggesting their possible roles in triterpenoid biosynthesis. The elucidation of the G. lucidum genome makes this organism a potential model system for the study of secondary metabolic pathways and their regulation in medicinal fungi. Ganoderma lucidum is a macrofungus in traditional Chinese medicine known to produce different bioactive compounds. In this study, the genome of G. lucidum is sequenced, making this organism a potential model system for future studies of secondary metabolic pathways and their regulation in medicinal fungi.
Collapse
|
161
|
Substrate-specific transcription of the enigmatic GH61 family of the pathogenic white-rot fungus Heterobasidion irregulare during growth on lignocellulose. Appl Microbiol Biotechnol 2012; 95:979-90. [PMID: 22718248 PMCID: PMC3405238 DOI: 10.1007/s00253-012-4206-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/21/2012] [Accepted: 05/23/2012] [Indexed: 10/28/2022]
Abstract
The GH61 represents the most enigmatic Glycoside Hydrolase family (GH) regarding enzymatic activity and importance in cellulose degradation. Heterobasidion irregulare is a necrotizing pathogen and white-rot fungus that causes enormous damages in conifer forests. The genome of H. irregulare allowed identification of ten HiGH61 genes. qRT-PCR analysis separate the HiGH61 members into two groups; one that show up regulation on lignocellulosic substrates (HiGH61A, HiGH61B, HiGH61D, HiGH61G, HiGH61H, and HiGH61I) and a second showing either down-regulation or constitutive expression (HiGH61C, HiGH61E, HiGH61F, and HiGH61J). HiGH61H showed up to 17,000-fold increase on spruce heartwood suggesting a pivotal role in cellulose decomposition during saprotrophic growth. Sequence analysis of these genes reveals that all GH61s except HiGH61G possess the conserved metal-binding motif essential for activity. The sequences also divide into groups having either an insert near the N terminus or an insert near the second catalytic histidine, which may represent extensions of the substrate-binding surface. Three of the HiGH61s encode cellulose-binding modules (CBM1). Interestingly, HiGH61H and HiGH61I having CBM1s are up-regulated on pure cellulose. There was a common substrate-specific induction patterns of the HiGH61s with several reference cellulolytic and hemicellulolytic GHs, this taken together with their low transcript levels on media lacking lignocellulose, reflect the concerted nature of cell wall polymer degradation.
Collapse
|
162
|
Hamel LP, Nicole MC, Duplessis S, Ellis BE. Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. THE PLANT CELL 2012; 24:1327-51. [PMID: 22517321 PMCID: PMC3398478 DOI: 10.1105/tpc.112.096156] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/15/2012] [Accepted: 03/28/2012] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved proteins that function as key signal transduction components in fungi, plants, and mammals. During interaction between phytopathogenic fungi and plants, fungal MAPKs help to promote mechanical and/or enzymatic penetration of host tissues, while plant MAPKs are required for activation of plant immunity. However, new insights suggest that MAPK cascades in both organisms do not operate independently but that they mutually contribute to a highly interconnected molecular dialogue between the plant and the fungus. As a result, some pathogenesis-related processes controlled by fungal MAPKs lead to the activation of plant signaling, including the recruitment of plant MAPK cascades. Conversely, plant MAPKs promote defense mechanisms that threaten the survival of fungal cells, leading to a stress response mediated in part by fungal MAPK cascades. In this review, we make use of the genomic data available following completion of whole-genome sequencing projects to analyze the structure of MAPK protein families in 24 fungal taxa, including both plant pathogens and mycorrhizal symbionts. Based on conserved patterns of sequence diversification, we also propose the adoption of a unified fungal MAPK nomenclature derived from that established for the model species Saccharomyces cerevisiae. Finally, we summarize current knowledge of the functions of MAPK cascades in phytopathogenic fungi and highlight the central role played by MAPK signaling during the molecular dialogue between plants and invading fungal pathogens.
Collapse
Affiliation(s)
- Louis-Philippe Hamel
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada.
| | | | | | | |
Collapse
|