151
|
Zhao XQ, Bai FW. Zinc and yeast stress tolerance: Micronutrient plays a big role. J Biotechnol 2012; 158:176-83. [DOI: 10.1016/j.jbiotec.2011.06.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/20/2011] [Accepted: 06/29/2011] [Indexed: 10/18/2022]
|
152
|
Ida Y, Furusawa C, Hirasawa T, Shimizu H. Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae. J Biosci Bioeng 2012; 113:192-5. [DOI: 10.1016/j.jbiosc.2011.09.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/15/2011] [Accepted: 09/24/2011] [Indexed: 11/29/2022]
|
153
|
Lu W, Ness JE, Xie W, Zhang X, Liu F, Cai J, Minshull J, Gross RA. Biosynthesis of Monomers for Plastics from Renewable Oils. ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1105.ch006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Wenhua Lu
- Polytechnic Institute of New York University, 6 Metrotech Center, Brooklyn, NY 11201
- DNA2.0 Inc, 1430 O'Brien Drive, Menlo Park, CA 94025
| | - Jon E. Ness
- Polytechnic Institute of New York University, 6 Metrotech Center, Brooklyn, NY 11201
- DNA2.0 Inc, 1430 O'Brien Drive, Menlo Park, CA 94025
| | - Wenchun Xie
- Polytechnic Institute of New York University, 6 Metrotech Center, Brooklyn, NY 11201
- DNA2.0 Inc, 1430 O'Brien Drive, Menlo Park, CA 94025
| | - Xiaoyan Zhang
- Polytechnic Institute of New York University, 6 Metrotech Center, Brooklyn, NY 11201
- DNA2.0 Inc, 1430 O'Brien Drive, Menlo Park, CA 94025
| | - Fei Liu
- Polytechnic Institute of New York University, 6 Metrotech Center, Brooklyn, NY 11201
- DNA2.0 Inc, 1430 O'Brien Drive, Menlo Park, CA 94025
| | - Jiali Cai
- Polytechnic Institute of New York University, 6 Metrotech Center, Brooklyn, NY 11201
- DNA2.0 Inc, 1430 O'Brien Drive, Menlo Park, CA 94025
| | - Jeremy Minshull
- Polytechnic Institute of New York University, 6 Metrotech Center, Brooklyn, NY 11201
- DNA2.0 Inc, 1430 O'Brien Drive, Menlo Park, CA 94025
| | - Richard A. Gross
- Polytechnic Institute of New York University, 6 Metrotech Center, Brooklyn, NY 11201
- DNA2.0 Inc, 1430 O'Brien Drive, Menlo Park, CA 94025
| |
Collapse
|
154
|
Klimacek M, Brunsteiner M, Nidetzky B. Dynamic mechanism of proton transfer in mannitol 2-dehydrogenase from Pseudomonas fluorescens: mobile GLU292 controls proton relay through a water channel that connects the active site with bulk solvent. J Biol Chem 2011; 287:6655-67. [PMID: 22194597 PMCID: PMC3307286 DOI: 10.1074/jbc.m111.289223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The active site of mannitol 2-dehydrogenase from Pseudomonas fluorescens (PfM2DH) is connected with bulk solvent through a narrow protein channel that shows structural resemblance to proton channels utilized by redox-driven proton pumps. A key element of the PfM2DH channel is the "mobile" Glu(292), which was seen crystallographically to adopt distinct positions up and down the channel. It was suggested that the "down → up" conformational change of Glu(292) could play a proton relay function in enzymatic catalysis, through direct proton shuttling by the Glu or because the channel is opened for water molecules forming a chain along which the protons flow. We report evidence from site-directed mutagenesis (Glu(292) → Ala) substantiated by data from molecular dynamics simulations that support a role for Glu(292) as a gate in a water chain (von Grotthuss-type) mechanism of proton translocation. Occupancy of the up and down position of Glu(292) is influenced by the bonding and charge state of the catalytic acid base Lys(295), suggesting that channel opening/closing motions of the Glu are synchronized to the reaction progress. Removal of gatekeeper control in the E292A mutant resulted in a selective, up to 120-fold slowing down of microscopic steps immediately preceding catalytic oxidation of mannitol, consistent with the notion that formation of the productive enzyme-NAD(+)-mannitol complex is promoted by a corresponding position change of Glu(292), which at physiological pH is associated with obligatory deprotonation of Lys(295) to solvent. These results underscore the important role of conformational dynamics in the proton transfer steps of alcohol dehydrogenase catalysis.
Collapse
Affiliation(s)
- Mario Klimacek
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, A-8010 Graz, Austria
| | | | | |
Collapse
|
155
|
Selection of Saccharomyces pastorianus variants with improved fermentation performance under very high gravity wort conditions. Biotechnol Lett 2011; 34:365-70. [PMID: 22038548 DOI: 10.1007/s10529-011-0780-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 10/12/2011] [Indexed: 10/16/2022]
|
156
|
Akao T, Yashiro I, Hosoyama A, Kitagaki H, Horikawa H, Watanabe D, Akada R, Ando Y, Harashima S, Inoue T, Inoue Y, Kajiwara S, Kitamoto K, Kitamoto N, Kobayashi O, Kuhara S, Masubuchi T, Mizoguchi H, Nakao Y, Nakazato A, Namise M, Oba T, Ogata T, Ohta A, Sato M, Shibasaki S, Takatsume Y, Tanimoto S, Tsuboi H, Nishimura A, Yoda K, Ishikawa T, Iwashita K, Fujita N, Shimoi H. Whole-genome sequencing of sake yeast Saccharomyces cerevisiae Kyokai no. 7. DNA Res 2011; 18:423-34. [PMID: 21900213 PMCID: PMC3223075 DOI: 10.1093/dnares/dsr029] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The term ‘sake yeast’ is generally used to indicate the Saccharomyces cerevisiae strains that possess characteristics distinct from others including the laboratory strain S288C and are well suited for sake brewery. Here, we report the draft whole-genome shotgun sequence of a commonly used diploid sake yeast strain, Kyokai no. 7 (K7). The assembled sequence of K7 was nearly identical to that of the S288C, except for several subtelomeric polymorphisms and two large inversions in K7. A survey of heterozygous bases between the homologous chromosomes revealed the presence of mosaic-like uneven distribution of heterozygosity in K7. The distribution patterns appeared to have resulted from repeated losses of heterozygosity in the ancestral lineage of K7. Analysis of genes revealed the presence of both K7-acquired and K7-lost genes, in addition to numerous others with segmentations and terminal discrepancies in comparison with those of S288C. The distribution of Ty element also largely differed in the two strains. Interestingly, two regions in chromosomes I and VII of S288C have apparently been replaced by Ty elements in K7. Sequence comparisons suggest that these gene conversions were caused by cDNA-mediated recombination of Ty elements. The present study advances our understanding of the functional and evolutionary genomics of the sake yeast.
Collapse
Affiliation(s)
- Takeshi Akao
- National Research Institute of Brewing, Higashi-hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Corrales Escobosa AR, Rangel Porras RA, Meza Carmen V, Gonzalez Hernandez GA, Torres Guzman JC, Wrobel K, Wrobel K, Roncero MIG, Gutierrez Corona JF. Fusarium oxysporum Adh1 has dual fermentative and oxidative functions and is involved in fungal virulence in tomato plants. Fungal Genet Biol 2011; 48:886-95. [PMID: 21704720 DOI: 10.1016/j.fgb.2011.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 05/30/2011] [Accepted: 06/02/2011] [Indexed: 11/29/2022]
Abstract
An alcohol dehydrogenase gene, adh1, has been identified in the vascular wilt fungus Fusarium oxysporum f. sp. lycopersici. Reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that adh1 is highly expressed in mycelia grown in potato dextrose liquid medium (PDB) under hypoxic conditions, as compared to mycelia grown under aerobic conditions. One spontaneous allyl alcohol-resistant (Ally(R)) mutant exhibited insertion of an incomplete F.oxysporum transposable element, while another mutant contained a short (13 nucleotide) deletion, in both cases interrupting the coding region of the adh1 gene. These mutations caused deficiency in Adh activity due to loss of the main constitutive isoform of Adh1, as well as alteration of different physiological parameters related to carbon and energy metabolism, including the ability to use ethanol as a carbon source under aerobic conditions; impaired growth under hypoxic conditions with glucose as the carbon source; and diminished production of ethanol in glucose-containing medium. Interestingly, the adh1 mutations resulted in a significant delay in fungal disease development in tomato plants. Complementation with the wild-type adh1 allele repaired all defects caused by mutation, indicating that the product of the adh1 gene has dual enzymatic functions (fermentative and oxidative), depending on culture conditions, and is also required for full fungal virulence.
Collapse
Affiliation(s)
- Alma Rosa Corrales Escobosa
- Departamento de Biología y, DCNyE, Universidad de Guanajuato. Noria Alta s/n, Guanajuato, México 36000, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Murray DB, Haynes K, Tomita M. Redox regulation in respiring Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2011; 1810:945-58. [PMID: 21549177 DOI: 10.1016/j.bbagen.2011.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 03/16/2011] [Accepted: 04/17/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND In biological systems, redox reactions are central to most cellular processes and the redox potential of the intracellular compartment dictates whether a particular reaction can or cannot occur. Indeed the widespread use of redox reactions in biological systems makes their detailed description outside the scope of one review. SCOPE OF THE REVIEW Here we will focus on how system-wide redox changes can alter the reaction and transcriptional landscape of Saccharomyces cerevisiae. To understand this we explore the major determinants of cellular redox potential, how these are sensed by the cell and the dynamic responses elicited. MAJOR CONCLUSIONS Redox regulation is a large and complex system that has the potential to rapidly and globally alter both the reaction and transcription landscapes. Although we have a basic understanding of many of the sub-systems and a partial understanding of the transcriptional control, we are far from understanding how these systems integrate to produce coherent responses. We argue that this non-linear system self-organises, and that the output in many cases is temperature-compensated oscillations that may temporally partition incompatible reactions in vivo. GENERAL SIGNIFICANCE Redox biochemistry impinges on most of cellular processes and has been shown to underpin ageing and many human diseases. Integrating the complexity of redox signalling and regulation is perhaps one of the most challenging areas of biology. This article is part of a Special Issue entitled Systems Biology of Microorganisms.
Collapse
Affiliation(s)
- Douglas B Murray
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.
| | | | | |
Collapse
|
159
|
Biochemical characterization of ethanol-dependent reduction of furfural by alcohol dehydrogenases. Biodegradation 2011; 22:1227-37. [PMID: 21526389 DOI: 10.1007/s10532-011-9477-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
Abstract
Lignocellulosic biomass is usually converted to hydrolysates, which consist of sugars and sugar derivatives, such as furfural. Before yeast ferments sugars to ethanol, it reduces toxic furfural to non-inhibitory furfuryl alcohol in a prolonged lag phase. Bioreduction of furfural may shorten the lag phase. Cupriavidus necator JMP134 rapidly reduces furfural with a Zn-dependent alcohol dehydrogenase (FurX) at the expense of ethanol (Li et al. 2011). The mechanism of the ethanol-dependent reduction of furfural by FurX and three homologous alcohol dehydrogenases was investigated. The reduction consisted of two individual reactions: ethanol-dependent reduction of NAD(+) to NADH and then NADH-dependent reduction of furfural to furfuryl alcohol. The kinetic parameters of the coupled reaction and the individual reactions were determined for the four enzymes. The data indicated that limited NADH was released in the coupled reaction. The enzymes had high affinities for NADH (e.g., K ( d ) of 0.043 μM for the FurX-NADH complex) and relatively low affinities for NAD(+) (e.g., K ( d ) of 87 μM for FurX-NAD(+)). The kinetic data suggest that the four enzymes are efficient "furfural reductases" with either ethanol or NADH as the reducing power. The standard free energy change (ΔG°') for ethanol-dependent reduction of furfural was determined to be -1.1 kJ mol(-1). The physiological benefit for ethanol-dependent reduction of furfural is likely to replace toxic and recalcitrant furfural with less toxic and more biodegradable acetaldehyde.
Collapse
|
160
|
Marisco G, Saito ST, Ganda IS, Brendel M, Pungartnik C. Low ergosterol content in yeast adh1 mutant enhances chitin maldistribution and sensitivity to paraquat-induced oxidative stress. Yeast 2011; 28:363-73. [DOI: 10.1002/yea.1844] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 01/02/2011] [Indexed: 01/05/2023] Open
|
161
|
Elimination of glycerol and replacement with alternative products in ethanol fermentation by Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2010; 38:1427-35. [PMID: 21188613 DOI: 10.1007/s10295-010-0928-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022]
Abstract
Glycerol is a major by-product of ethanol fermentation by Saccharomyces cerevisiae and typically 2-3% of the sugar fermented is converted to glycerol. Replacing the NAD(+)-regenerating glycerol pathway in S. cerevisiae with alternative NADH reoxidation pathways may be useful to produce metabolites of biotechnological relevance. Under fermentative conditions yeast reoxidizes excess NADH through glycerol production which involves NADH-dependent glycerol-3-phosphate dehydrogenases (Gpd1p and Gpd2p). Deletion of these two genes limits fermentative activity under anaerobic conditions due to accumulation of NADH. We investigated the possibility of converting this excess NADH to NAD(+) by transforming a double mutant (gpd1∆gpd2∆) with alternative oxidoreductase genes that might restore the redox balance and produce either sorbitol or propane-1,2-diol. All of the modifications improved fermentative ability and/or growth of the double mutant strain in a self-generated anaerobic high sugar medium. However, these strain properties were not restored to the level of the parental wild-type strain. The results indicate an apparent partial NAD(+) regeneration ability and formation of significant amounts of the commodity chemicals like sorbitol or propane-1,2-diol. The ethanol yields were maintained between 46 and 48% of the sugar mixture. Other factors apart from the maintenance of the redox balance appeared to influence the growth and production of the alternative products by the genetically manipulated strains.
Collapse
|
162
|
Use of the valine biosynthetic pathway to convert glucose into isobutanol. J Ind Microbiol Biotechnol 2010; 38:1287-94. [DOI: 10.1007/s10295-010-0907-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
|
163
|
Lu W, Ness JE, Xie W, Zhang X, Minshull J, Gross RA. Biosynthesis of Monomers for Plastics from Renewable Oils. J Am Chem Soc 2010; 132:15451-5. [DOI: 10.1021/ja107707v] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wenhua Lu
- Polytechnic Institute of New York University, 6 Metrotech Center, Brooklyn, New York 11201, United States and DNA2.0 Incorporated, 1430 O’Brien Drive, Menlo Park, California 94025, United States
| | - Jon E. Ness
- Polytechnic Institute of New York University, 6 Metrotech Center, Brooklyn, New York 11201, United States and DNA2.0 Incorporated, 1430 O’Brien Drive, Menlo Park, California 94025, United States
| | - Wenchun Xie
- Polytechnic Institute of New York University, 6 Metrotech Center, Brooklyn, New York 11201, United States and DNA2.0 Incorporated, 1430 O’Brien Drive, Menlo Park, California 94025, United States
| | - Xiaoyan Zhang
- Polytechnic Institute of New York University, 6 Metrotech Center, Brooklyn, New York 11201, United States and DNA2.0 Incorporated, 1430 O’Brien Drive, Menlo Park, California 94025, United States
| | - Jeremy Minshull
- Polytechnic Institute of New York University, 6 Metrotech Center, Brooklyn, New York 11201, United States and DNA2.0 Incorporated, 1430 O’Brien Drive, Menlo Park, California 94025, United States
| | - Richard A. Gross
- Polytechnic Institute of New York University, 6 Metrotech Center, Brooklyn, New York 11201, United States and DNA2.0 Incorporated, 1430 O’Brien Drive, Menlo Park, California 94025, United States
| |
Collapse
|
164
|
Cobos R, Barreiro C, Mateos RM, Coque JJR. Cytoplasmic- and extracellular-proteome analysis of Diplodia seriata: a phytopathogenic fungus involved in grapevine decline. Proteome Sci 2010; 8:46. [PMID: 20828386 PMCID: PMC2944164 DOI: 10.1186/1477-5956-8-46] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/09/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The phytopathogenic fungus Diplodia seriata, whose genome remains unsequenced, produces severe infections in fruit trees (fruit blight) and grapevines. In this crop is recognized as one of the most prominent pathogens involved in grapevine trunk disease (or grapevine decline). This pathology can result in the death of adult plants and therefore it produces severe economical losses all around the world. To date no genes or proteins have been characterized in D. seriata that are involved in the pathogenicity process. In an effort to help identify potential gene products associated with pathogenicity and to gain a better understanding of the biology of D. seriata, we initiated a proteome-level study of the fungal mycelia and secretome. RESULTS Intracellular and secreted proteins from D. seriata collected from liquid cultures were separated using two-dimensional gel electrophoresis. About 550 cytoplasmic proteins were reproducibly present in 3 independent extractions, being 53 identified by peptide mass fingerprinting and tandem mass spectrometry. The secretome analysis showed 75 secreted proteins reproducibly present in 3 biological replicates, being 16 identified. Several of the proteins had been previously identified as virulence factors in other fungal strains, although their contribution to pathogenicity in D. seriata remained to be analyzed. When D. seriata was grown in a medium supplemented with carboxymethylcellulose, 3 proteins were up-regulated and 30 down-regulated. Within the up-regulated proteins, two were identified as alcohol dehydrogenase and mitochondrial peroxyrredoxin-1, suggesting that they could play a significant role in the pathogenicity process. As for the 30 down-regulated proteins, 9 were identified being several of them involved in carbohydrate metabolism. CONCLUSIONS This study is the first report on proteomics on D. seriata. The proteomic data obtained will be important to understand the pathogenicity process. In fact, several of the identified proteins have been reported as pathogenicity factors in other phytopathogenic fungi. Moreover, this proteomic analysis supposes a useful basis for deepening into D. seriata knowledge and will contribute to the development of the molecular biology of this fungal strain as it has been demonstrated by cloning the gene Prx1 encoding mitochondrial peroxiredoxin-1 of D. seriata (the first gene to be cloned in this microorganism; data not shown).
Collapse
Affiliation(s)
- Rebeca Cobos
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, 24071-León, Spain
- Instituto de Investigación de la Viña y el Vino, Campus de Ponferrada, Universidad de León, 24400-Ponferrada, Spain
| | - Carlos Barreiro
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Avenida Real 1, 24006-León, Spain
| | - Rosa María Mateos
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, 24071-León, Spain
- Instituto de Investigación de la Viña y el Vino, Campus de Ponferrada, Universidad de León, 24400-Ponferrada, Spain
| | - Juan-José R Coque
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, 24071-León, Spain
- Instituto de Investigación de la Viña y el Vino, Campus de Ponferrada, Universidad de León, 24400-Ponferrada, Spain
| |
Collapse
|
165
|
Suwannarangsee S, Oh DB, Seo JW, Kim CH, Rhee SK, Kang HA, Chulalaksananukul W, Kwon O. Characterization of alcohol dehydrogenase 1 of the thermotolerant methylotrophic yeast Hansenula polymorpha. Appl Microbiol Biotechnol 2010; 88:497-507. [DOI: 10.1007/s00253-010-2752-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/20/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
|
166
|
Park YC, Shaffer CEH, Bennett GN. Microbial formation of esters. Appl Microbiol Biotechnol 2009; 85:13-25. [PMID: 19714327 DOI: 10.1007/s00253-009-2170-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 12/22/2022]
Abstract
Small aliphatic esters are important natural flavor and fragrance compounds and have numerous uses as solvents and as chemical intermediates. Besides the chemical or lipase-catalyzed formation of esters from alcohols and organic acids, small volatile esters are made by several biochemical routes in microbes. This short review will cover the biosynthesis of esters from acyl-CoA and alcohol condensation, from oxidation of hemiacetals formed from aldehydes and alcohols, and from the insertion of oxygen adjacent to the carbonyl group in a straight chain or cyclic ketone by Baeyer-Villiger monooxygenases. The physiological role of the ester-forming reactions can allow degradation of ketones for use as a carbon source and may play a role in detoxification of aldehydes or recycling cofactors. The enzymes catalyzing each of these processes have been isolated and characterized, and a number of genes encoding the proteins from various microbes have been cloned and functionally expressed. The use of these ester-forming organisms or recombinant organisms expressing the appropriate genes as biocatalysts in biotechnology to make specific esters and chiral lactones has been studied in recent years.
Collapse
Affiliation(s)
- Yong Cheol Park
- Department of General Education, Kookmin University, Seoul, South Korea
| | | | | |
Collapse
|
167
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|