151
|
Verma SS, Yajima WR, Rahman MH, Shah S, Liu JJ, Ekramoddoullah AKM, Kav NNV. A cysteine-rich antimicrobial peptide from Pinus monticola (PmAMP1) confers resistance to multiple fungal pathogens in canola (Brassica napus). PLANT MOLECULAR BIOLOGY 2012; 79:61-74. [PMID: 22351159 DOI: 10.1007/s11103-012-9895-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 02/10/2012] [Indexed: 05/21/2023]
Abstract
Canola (Brassica napus), an agriculturally important oilseed crop, can be significantly affected by diseases such as sclerotinia stem rot, blackleg, and alternaria black spot resulting in significant loss of crop productivity and quality. Cysteine-rich antimicrobial peptides isolated from plants have emerged as a potential resource for protection of plants against phytopathogens. Here we report the significance of an antimicrobial peptide, PmAMP1, isolated from western white pine (Pinus monticola), in providing canola with resistance against multiple phytopathogenic fungi. The cDNA encoding PmAMP1 was successfully incorporated into the genome of B. napus, and it's in planta expression conferred greater protection against Alternaria brassicae, Leptosphaeria maculans and Sclerotinia sclerotiorum. In vitro experiments with proteins extracted from transgenic canola expressing Pm-AMP1 demonstrated its inhibitory activity by reducing growth of fungal hyphae. In addition, the in vitro synthesized peptide also inhibited the growth of the fungi. These results demonstrate that generating transgenic crops expressing PmAMP1 may be an effective and versatile method to protect susceptible crops against multiple phytopathogens.
Collapse
Affiliation(s)
- Shiv S Verma
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB T6G 2P5, Canada
| | | | | | | | | | | | | |
Collapse
|
152
|
Visser M, Stephan D, Jaynes J, Burger J. A transient expression assay for the in planta efficacy screening of an antimicrobial peptide against grapevine bacterial pathogens. Lett Appl Microbiol 2012; 54:543-51. [DOI: 10.1111/j.1472-765x.2012.03244.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
153
|
Dandekar AM, Gouran H, Ibáñez AM, Uratsu SL, Agüero CB, McFarland S, Borhani Y, Feldstein PA, Bruening G, Nascimento R, Goulart LR, Pardington PE, Chaudhary A, Norvell M, Civerolo E, Gupta G. An engineered innate immune defense protects grapevines from Pierce disease. Proc Natl Acad Sci U S A 2012; 109:3721-5. [PMID: 22355130 PMCID: PMC3309795 DOI: 10.1073/pnas.1116027109] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We postulated that a synergistic combination of two innate immune functions, pathogen surface recognition and lysis, in a protein chimera would lead to a robust class of engineered antimicrobial therapeutics for protection against pathogens. In support of our hypothesis, we have engineered such a chimera to protect against the gram-negative Xylella fastidiosa (Xf), which causes diseases in multiple plants of economic importance. Here we report the design and delivery of this chimera to target the Xf subspecies fastidiosa (Xff), which causes Pierce disease in grapevines and poses a great threat to the wine-growing regions of California. One domain of this chimera is an elastase that recognizes and cleaves MopB, a conserved outer membrane protein of Xff. The second domain is a lytic peptide, cecropin B, which targets conserved lipid moieties and creates pores in the Xff outer membrane. A flexible linker joins the recognition and lysis domains, thereby ensuring correct folding of the individual domains and synergistic combination of their functions. The chimera transgene is fused with an amino-terminal signal sequence to facilitate delivery of the chimera to the plant xylem, the site of Xff colonization. We demonstrate that the protein chimera expressed in the xylem is able to directly target Xff, suppress its growth, and significantly decrease the leaf scorching and xylem clogging commonly associated with Pierce disease in grapevines. We believe that similar strategies involving protein chimeras can be developed to protect against many diseases caused by human and plant pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Luiz R. Goulart
- Medical Microbiology and Immunology Department, University of California, Davis, CA 95616
| | - Paige E. Pardington
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545; and
| | - Anu Chaudhary
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545; and
| | - Meghan Norvell
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545; and
| | - Edwin Civerolo
- US Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Science Center, Parlier, CA 93648
| | - Goutam Gupta
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545; and
| |
Collapse
|
154
|
Hammami I, Jaouadi B, Bacha AB, Rebai A, Bejar S, Nesme X, Rhouma A. Bacillus subtilis bacteriocin Bac 14B with a broad inhibitory spectrum: Purification, amino acid sequence analysis, and physicochemical characterization. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-010-0401-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
155
|
Zhao J, Guo L, Zeng H, Yang X, Yuan J, Shi H, Xiong Y, Chen M, Han L, Qiu D. Purification and characterization of a novel antimicrobial peptide from Brevibacillus laterosporus strain A60. Peptides 2012; 33:206-11. [PMID: 22244810 DOI: 10.1016/j.peptides.2012.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 01/02/2012] [Accepted: 01/02/2012] [Indexed: 11/25/2022]
Abstract
A novel antimicrobial peptide, with molecular mass of 1602.0469Da, produced by Brevibacillus laterosporus strain A60 was isolated and purified from the soil of mango plants. The purification procedure consisted of ammonium sulfate precipitation, cation exchange chromatography on an HiTrap SP HP column, thin layer chromatography and High Performance Liquid Chromatography (HPLC) on C18 reversed-phase column. After the four isolation procedures, one peptide with antimicrobial activity was obtained and named BL-A60. The determination of the complete amino acid sequences of this peptide showed that it contains eleven amino acid residues, L-Y-K-L-V-K-V-V-L-N-M, and a choline connected to the N-terminal and a tenuazonic acid modified of the C-terminal. This peptide shows relatively low identification to other antimicrobial peptides from bacteria. Purified BL-A60 showed high pH and thermal stability and a strong inhibition of different stages of the life cycle of Phytophthora capsici, including mycelial growth, sporangia formation and cystospore germination, with EC(50) values of 7.89, 0.60 and 21.96 μg ml(-1), respectively.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 12 Zhongguancun South Street, Beijing 100081, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Güell I, Micaló L, Cano L, Badosa E, Ferre R, Montesinos E, Bardají E, Feliu L, Planas M. Peptidotriazoles with antimicrobial activity against bacterial and fungal plant pathogens. Peptides 2012; 33:9-17. [PMID: 22198367 DOI: 10.1016/j.peptides.2011.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/07/2011] [Accepted: 12/07/2011] [Indexed: 12/31/2022]
Abstract
We designed and prepared peptidotriazoles based on the antimicrobial peptide BP100 (LysLysLeuPheLysLysIleLeuLysTyrLeu-NH(2)) by introducing a triazole ring in the peptide backbone or onto the side chain of a selected residue. These compounds were screened for their in vitro growth inhibition of bacterial and fungal phytopathogens, and for their cytotoxic effects on eukaryotic cells and tobacco leaves. Their proteolytic susceptibility was also analyzed. The antibacterial activity and the hemolysis were influenced by the amino acid that was modified with the triazole as well as by the absence of presence of a substituent in this heterocyclic ring. We identified sequences active against the bacteria Xanthomonas axonopodis pv. vesicatoria, Erwinia amylovora, Pseudomonas syringae pv. syringae (MIC of 1.6-12.5 μM), and against the fungi Fusarium oxysporum (MIC<6.2-12.5 μM) with low hemolytic activity (0-23% at 50 μM), high stability to protease digestion and no phytotoxicity. These peptidotriazoles constitute good candidates to design new antimicrobial agents.
Collapse
Affiliation(s)
- Imma Güell
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, E-17071 Girona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
López-García B, San Segundo B, Coca M. Antimicrobial Peptides as a Promising Alternative for Plant Disease Protection. ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1095.ch013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- B. López-García
- CRAG-Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Edificio CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | - B. San Segundo
- CRAG-Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Edificio CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | - M. Coca
- CRAG-Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Edificio CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
158
|
Montesinos E, Badosa E, Cabrefiga J, Planas M, Feliu L, Bardají E. Antimicrobial Peptides for Plant Disease Control. From Discovery to Application. ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1095.ch012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, 17071 Girona, Spain
- LIPPSO, Department of Chemistry; University of Girona, Campus Montilivi, 17071 Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, 17071 Girona, Spain
- LIPPSO, Department of Chemistry; University of Girona, Campus Montilivi, 17071 Girona, Spain
| | - Jordi Cabrefiga
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, 17071 Girona, Spain
- LIPPSO, Department of Chemistry; University of Girona, Campus Montilivi, 17071 Girona, Spain
| | - Marta Planas
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, 17071 Girona, Spain
- LIPPSO, Department of Chemistry; University of Girona, Campus Montilivi, 17071 Girona, Spain
| | - Lidia Feliu
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, 17071 Girona, Spain
- LIPPSO, Department of Chemistry; University of Girona, Campus Montilivi, 17071 Girona, Spain
| | - Eduard Bardají
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, 17071 Girona, Spain
- LIPPSO, Department of Chemistry; University of Girona, Campus Montilivi, 17071 Girona, Spain
| |
Collapse
|
159
|
Zeriouh H, Romero D, Garcia-Gutierrez L, Cazorla FM, de Vicente A, Perez-Garcia A. The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1540-1552. [PMID: 22066902 DOI: 10.1094/mpmi-06-11-0162] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The antibacterial potential of four strains of Bacillus subtilis, UMAF6614, UMAF6619, UMAF6639, and UMAF8561, previously selected on the basis of their antifungal activity and efficacy against cucurbit powdery mildew, was examined. Among these strains, UMAF6614 and UMAF6639 showed the highest antibacterial activity in vitro, especially against Xanthomonas campestris pv. cucurbitae and Pectobacterium carotovorum subsp. carotovorum. These strains produced the three families of lipopeptide antibiotics known in Bacillus spp.: surfactins, iturins, and fengycins. Using thin-layer chromatography analysis and direct bioautography, the antibacterial activity could be associated with iturin lipopeptides. This result was confirmed by mutagenesis analysis using lipopeptide-defective mutants. The antibacterial activity was practically abolished in iturin-deficient mutants, whereas the fengycin mutants retained certain inhibitory capabilities. Analyses by fluorescence and transmission electron microscopy revealed the cytotoxic effect of these compounds at the bacterial plasma membrane level. Finally, biological control assays on detached melon leaves demonstrated the ability of UMAF6614 and UMAF6639 to suppress bacterial leaf spot and soft rot; accordingly, the biocontrol activity was practically abolished in mutants deficient in iturin biosynthesis. Taken together, our results highlight the potential of these B. subtilis strains as biocontrol agents against fungal and bacterial diseases of cucurbits and the versatility of iturins as antifungal and antibacterial compounds.
Collapse
|
160
|
Sooriyaarachchi S, Jaber E, Covarrubias AS, Ubhayasekera W, Asiegbu FO, Mowbray SL. Expression and β-glucan binding properties of Scots pine (Pinus sylvestris L.) antimicrobial protein (Sp-AMP). PLANT MOLECULAR BIOLOGY 2011; 77:33-45. [PMID: 21584858 DOI: 10.1007/s11103-011-9791-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 05/09/2011] [Indexed: 05/30/2023]
Abstract
Scots pine (Pinus sylvestris) secretes a number of small, highly-related, disulfide-rich proteins (Sp-AMPs) in response to challenges with fungal pathogens such as Heterobasidion annosum, although their biological role has been unknown. Here, we examined the expression patterns of these genes, as well as the structure and function of the encoded proteins. Northern blots and quantitative real time PCR showed increased levels of expression that are sustained during the interactions of host trees with pathogens, but not non-pathogens, consistent with a function in conifer tree defenses. Furthermore, the genes were up-regulated after treatment with salicylic acid and an ethylene precursor, 1-aminocyclopropane-1-carboxylic-acid, but neither methyl jasmonate nor H(2)O(2) induced expression, indicating that Sp-AMP gene expression is independent of the jasmonic acid signaling pathways. The cDNA encoding one of the proteins was cloned and expressed in Pichia pastoris. The purified protein had antifungal activity against H. annosum, and caused morphological changes in its hyphae and spores. It was directly shown to bind soluble and insoluble β-(1,3)-glucans, specifically and with high affinity. Furthermore, addition of exogenous glucan is linked to higher levels of Sp-AMP expression in the conifer. Homology modeling and sequence comparisons suggest that a conserved patch on the surface of the globular Sp-AMP is a carbohydrate-binding site that can accommodate approximately four sugar units. We conclude that these proteins belong to a new family of antimicrobial proteins (PR-19) that are likely to act by binding the glucans that are a major component of fungal cell walls.
Collapse
Affiliation(s)
- Sanjeewani Sooriyaarachchi
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, Biomedical Center, 75124 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
161
|
Susi P, Aktuganov G, Himanen J, Korpela T. Biological control of wood decay against fungal infection. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2011; 92:1681-1689. [PMID: 21440981 DOI: 10.1016/j.jenvman.2011.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 01/18/2011] [Accepted: 03/06/2011] [Indexed: 05/30/2023]
Abstract
Wood (timber) is an important raw material for various purposes, and having biological composition it is susceptible to deterioration by various agents. The history of wood protection by impregnation with synthetic chemicals is almost two hundred years old. However, the ever-increasing public concern and the new environmental regulations on the use of chemicals have created the need for the development and the use of alternative methods for wood protection. Biological wood protection by antagonistic microbes alone or in combination with (bio)chemicals, is one of the most promising ways for the environmentally sound wood protection. The most effective biocontrol antagonists belong to genera Trichoderma, Gliocladium, Bacillus, Pseudomonas and Streptomyces. They compete for an ecological niche by consuming available nutrients as well as by secreting a spectrum of biochemicals effective against various fungal pathogens. The biochemicals include cell wall-degrading enzymes, siderophores, chelating iron and a wide variety of volatile and non-volatile antibiotics. In this review, the nature and the function of the antagonistic microbes in wood protection are discussed.
Collapse
Affiliation(s)
- Petri Susi
- Institute of Microbiology and Pathology, Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | | | | | | |
Collapse
|
162
|
Semlali A, Leung KP, Curt S, Rouabhia M. Antimicrobial decapeptide KSL-W attenuates Candida albicans virulence by modulating its effects on Toll-like receptor, human β-defensin, and cytokine expression by engineered human oral mucosa. Peptides 2011; 32:859-67. [PMID: 21291939 DOI: 10.1016/j.peptides.2011.01.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/23/2011] [Accepted: 01/24/2011] [Indexed: 12/31/2022]
Abstract
We investigated the toxicity of synthetic antimicrobial decapeptide KSL-W on normal human gingival epithelial cell cultures, its effect on Candida albicans adhesion and growth, and the activation of epithelial cell innate immunity. Our results indicate that KSL-W had no toxic effect on cell adhesion or growth, suggesting its safe use with human cells. Pre-treating C. albicans with KSL-W attenuated the yeast's virulence as demonstrated by its reduced adhesion and growth on engineered human oral mucosa epithelium and the subsequent decreased expression of some innate defense molecules by targeted epithelial cells. Indeed, the expression of Toll-like receptors and human β-defensins was reduced in tissues infected with KSL-W-treated Candida. Proinflammatory cytokine secretion (IL-1β and IL-6) by the epithelial cells was also regulated by KSL-W in a manner similar to that of antifungal molecule amphotericin B. These findings therefore show that KSL-W is safe for use with human cells and is able to attenuate Candida virulence by modulating its effects on host innate immunity. This study proposes the potential application of KSL-W peptide as an alternative antifungal agent.
Collapse
Affiliation(s)
- A Semlali
- Oral Ecology Research Group, Faculty of Dentistry, Laval University, Quebec, QC, Canada
| | | | | | | |
Collapse
|
163
|
Ribeiro SM, Almeida RG, Pereira CAA, Moreira JS, Pinto MFS, Oliveira AC, Vasconcelos IM, Oliveira JTA, Santos MO, Dias SC, Franco OL. Identification of a Passiflora alata Curtis dimeric peptide showing identity with 2S albumins. Peptides 2011; 32:868-74. [PMID: 20955745 DOI: 10.1016/j.peptides.2010.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/09/2010] [Accepted: 10/11/2010] [Indexed: 10/18/2022]
Abstract
Antifungal proteins and peptides, essential compounds for plant defense, have been isolated from several tissues of various plants. These proteins could be used as a natural alternative to control phytopathogenic fungi. In this report a heterodimeric antifungal protein named Pa-AFP1, showing higher identity with the 2S albumin family, was purified by using 70-100% ammonium sulfate saturation and further purification steps such as anionic exchange Q-Sepharose chromatography associated with HPLC reversed-phase C4 chromatography. Analysis by Tricine-SDS-PAGE revealed two peptidic molecular masses of approximately 4500 Da and 7000 Da, in the presence of β-mercaptoethanol, while by removing the reducing agent a single protein with molecular mass of about 11,500 Da was obtained. Moreover, dimer mass was confirmed by MALDI-TOF analyses (11,569.76 Da). The antifungal protein, named Pa-AFP1, efficiently inhibited the growth of filamentous fungi Colletotrichum gloeosporioides, and was added to a short list of 2S albumins with antimicrobial properties. Otherwise, this same peptide showed no activity toward bacteria and yeasts. In summary, this compound could be used in the future to develop biotechnological products for the control of phytopathogenic fungi.
Collapse
Affiliation(s)
- Suzana M Ribeiro
- Centro de Análise Proteômicas e Bioquímicas de Brasília, Universidade Católica de Brasília, Brasília, DF, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Moreira JS, Almeida RG, Tavares LS, Santos MO, Viccini LF, Vasconcelos IM, Oliveira JTA, Raposo NRB, Dias SC, Franco OL. Identification of botryticidal proteins with similarity to NBS-LRR proteins in rosemary pepper (Lippia sidoides Cham.) flowers. Protein J 2011; 30:32-8. [PMID: 21210197 DOI: 10.1007/s10930-010-9299-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Heavy agricultural losses are closely related to attacks by insect-pests and phytopathogens such as bacteria and fungi. Among them, the fungus Botrytis cinerea can cause gray mold in more than 200 different species of plants, and is considered a challenging problem for agribusiness. Fungicides are commonly used to control this pathogen because they are fast-working and easy to apply. However, the continuous use of fungicides may promote the selection of resistant fungi and can also cause profound contamination in ecosystems. Aiming to find alternative strategies to solve these problems, several studies have focused on searching for plant proteins and peptides with antifungal activities (AFPs). With this in mind, this report shows the isolation and characterization of two novels antifungal proteins from flowers of rosemary pepper (Lippia sidoides Cham.) with 10 and 15 kDa. Isolation was performed by using an Octyl-Sepharose hydrophobic column. In vitro bioassays indicated that isolated proteins were able to inhibit B. cinerea development, but were not effective against all bacteria tested. Moreover, N-termini sequences indicate that both proteins showed sequence homology with NBS-LRR R proteins with a lower molecular mass, suggesting possible protein fragmentation. Data reported here could help in the development of biotechnological products for crop protection against phytopathogenic fungi in the near future.
Collapse
Affiliation(s)
- João S Moreira
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN Quadra 916, Módulo B, Av. W5 Norte 70. 790-160 Asa Norte, Brasília, DF-Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Improvement of the efficacy of linear undecapeptides against plant-pathogenic bacteria by incorporation of D-amino acids. Appl Environ Microbiol 2011; 77:2667-75. [PMID: 21335383 DOI: 10.1128/aem.02759-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A set of 31 undecapeptides, incorporating 1 to 11 d-amino acids and derived from the antimicrobial peptide BP100 (KKLFKKILKYL-NH(2)), was designed and synthesized. This set was evaluated for inhibition of growth of the plant-pathogenic bacteria Erwinia amylovora, Pseudomonas syringae pv. syringae, and Xanthomonas axonopodis pv. vesicatoria, hemolysis, and protease degradation. Two derivatives were as active as BP100, and 10 peptides displayed improved activity, with the all-d isomer being the most active. Twenty-six peptides were less hemolytic than BP100, and all peptides were more stable against protease degradation. Plant extracts inhibited the activity of BP100 as well as that of the d-isomers. Ten derivatives incorporating one d-amino acid each were tested in an infectivity inhibition assay with the three plant-pathogenic bacteria by using detached pear and pepper leaves and pear fruits. All 10 peptides studied were active against E. amylovora, 6 displayed activity against P. syringae pv. syringae, and 2 displayed activity against X. axonopodis pv. vesicatoria. Peptides BP143 (KKLFKKILKYL-NH(2)) and BP145 (KKLFKKILKYL-NH(2)), containing one d-amino acid at positions 4 and 2 (underlined), respectively, were evaluated in whole-plant assays for the control of bacterial blight of pepper and pear and fire blight of pear. Peptide BP143 was as effective as streptomycin in the three pathosystems, was more effective than BP100 against bacterial blight of pepper and pear, and equally effective against fire blight of pear.
Collapse
|
166
|
Rippa S, Eid M, Formaggio F, Toniolo C, Béven L. Hypersensitive-like response to the pore-former peptaibol alamethicin in Arabidopsis thaliana. Chembiochem 2011; 11:2042-9. [PMID: 20818637 DOI: 10.1002/cbic.201000262] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In Arabidopsis thaliana cell cultures, the peptaibol alamethicin induced a form of active cell death that was associated with cell shrinkage and DNA fragmentation. The transfer of mature A. thaliana plants from a peptide-free medium to a medium containing a moderate concentration of alamethicin caused the development of lesions in leaves after a few days. These lesions were characterized by cell death, deposition of callose, production of autofluorescent phenolic compounds, and transcription of defense genes, just like in the hypersensitive response to a pathogen attack. The induction of defense-like responses in Arabidopsis by other membrane-disrupting peptides was also evaluated. The peptides selected for comparison included the natural antimicrobial melittin and the peptaibol ampullosporin A, as well as synthetic analogues of the peptaibols cervinin and trichogin. The response amplitude in A. thaliana increased with the peptaibol's ability to permeabilize biological membranes through a pore-forming mechanism and was strongly associated with their content in the helicogenic α-aminoisobutyric acid residue.
Collapse
Affiliation(s)
- Sonia Rippa
- Université de Technologie de Compiègne, UMR CNRS 6022 Génie Enzymatique et Cellulaire, Compiègne Cedex, France
| | | | | | | | | |
Collapse
|
167
|
Natalio F, André R, Pihan SA, Humanes M, Wever R, Tremel W. V2O5 nanowires with an intrinsic iodination activity leading to the formation of self-assembled melanin-like biopolymers. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11811k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
168
|
Aidemark M, Tjellström H, Sandelius AS, Stålbrand H, Andreasson E, Rasmusson AG, Widell S. Trichoderma viride cellulase induces resistance to the antibiotic pore-forming peptide alamethicin associated with changes in the plasma membrane lipid composition of tobacco BY-2 cells. BMC PLANT BIOLOGY 2010; 10:274. [PMID: 21156059 PMCID: PMC3017840 DOI: 10.1186/1471-2229-10-274] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 12/14/2010] [Indexed: 05/24/2023]
Abstract
BACKGROUND Alamethicin is a membrane-active peptide isolated from the beneficial root-colonising fungus Trichoderma viride. This peptide can insert into membranes to form voltage-dependent pores. We have previously shown that alamethicin efficiently permeabilises the plasma membrane, mitochondria and plastids of cultured plant cells. In the present investigation, tobacco cells (Nicotiana tabacum L. cv Bright Yellow-2) were pre-treated with elicitors of defence responses to study whether this would affect permeabilisation. RESULTS Oxygen consumption experiments showed that added cellulase, already upon a limited cell wall digestion, induced a cellular resistance to alamethicin permeabilisation. This effect could not be elicited by xylanase or bacterial elicitors such as flg22 or elf18. The induction of alamethicin resistance was independent of novel protein synthesis. Also, the permeabilisation was unaffected by the membrane-depolarising agent FCCP. As judged by lipid analyses, isolated plasma membranes from cellulase-pretreated tobacco cells contained less negatively charged phospholipids (PS and PI), yet higher ratios of membrane lipid fatty acid to sterol and to protein, as compared to control membranes. CONCLUSION We suggest that altered membrane lipid composition as induced by cellulase activity may render the cells resistant to alamethicin. This induced resistance could reflect a natural process where the plant cells alter their sensitivity to membrane pore-forming agents secreted by Trichoderma spp. to attack other microorganisms, and thus adding to the beneficial effect that Trichoderma has for plant root growth. Furthermore, our data extends previous reports on artificial membranes on the importance of lipid packing and charge for alamethicin permeabilisation to in vivo conditions.
Collapse
Affiliation(s)
- Mari Aidemark
- Department of Biology, Lund University, Sölvegatan 35, SE-223 62 LUND, Sweden
| | - Henrik Tjellström
- Plant Biology Department, Michigan State University, East Lansing, 48824, MI, USA
- Department of Plant and Environmental Sciences, Göteborg University, P.O. Box 461, SE-405 30 Göteborg, Sweden
| | - Anna Stina Sandelius
- Department of Plant and Environmental Sciences, Göteborg University, P.O. Box 461, SE-405 30 Göteborg, Sweden
| | - Henrik Stålbrand
- Department of Biochemistry, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish Agricultural University, P.O. Box 102, SE-230 53 Alnarp, Sweden
| | - Allan G Rasmusson
- Department of Biology, Lund University, Sölvegatan 35, SE-223 62 LUND, Sweden
| | - Susanne Widell
- Department of Biology, Lund University, Sölvegatan 35, SE-223 62 LUND, Sweden
| |
Collapse
|
169
|
López-García B, Gandía M, Muñoz A, Carmona L, Marcos JF. A genomic approach highlights common and diverse effects and determinants of susceptibility on the yeast Saccharomyces cerevisiae exposed to distinct antimicrobial peptides. BMC Microbiol 2010; 10:289. [PMID: 21078184 PMCID: PMC2996382 DOI: 10.1186/1471-2180-10-289] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 11/15/2010] [Indexed: 11/21/2022] Open
Abstract
Background The mechanism of action of antimicrobial peptides (AMP) was initially correlated with peptide membrane permeation properties. However, recent evidences indicate that action of a number of AMP is more complex and involves specific interactions at cell envelopes or with intracellular targets. In this study, a genomic approach was undertaken on the model yeast Saccharomyces cerevisiae to characterize the antifungal effect of two unrelated AMP. Results Two differentiated peptides were used: the synthetic cell-penetrating PAF26 and the natural cytolytic melittin. Transcriptomic analyses demonstrated distinctive gene expression changes for each peptide. Quantitative RT-PCR confirmed differential expression of selected genes. Gene Ontology (GO) annotation of differential gene lists showed that the unique significant terms shared by treatment with both peptides were related to the cell wall (CW). Assays with mutants lacking CW-related genes including those of MAPK signaling pathways revealed genes having influence on sensitivity to peptides. Fluorescence microscopy and flow cytometry demonstrated PAF26 interaction with cells and internalization that correlated with cell killing in sensitive CW-defective mutants such as Δecm33 or Δssd1. GO annotation also showed differential responses between peptides, which included ribosomal biogenesis, ARG genes from the metabolism of amino groups (specifically induced by PAF26), or the reaction to unfolded protein stress. Susceptibility of deletion mutants confirmed the involvement of these processes. Specifically, mutants lacking ARG genes from the metabolism of arginine pathway were markedly more resistant to PAF26 and had a functional CW. In the deletant in the arginosuccinate synthetase (ARG1) gene, PAF26 interaction occurred normally, thus uncoupling peptide interaction from cell killing. The previously described involvement of the glycosphingolipid gene IPT1 was extended to the peptides studied here. Conclusions Reinforcement of CW is a general response common after exposure to distinct AMP, and likely contributes to shield cells from peptide interaction. However, a weakened CW is not necessarily indicative of a higher sensitivity to AMP. Additional processes modulate susceptibility to specific peptides, exemplified in the involvement of the metabolism of amino groups in the case of PAF26. The relevance of the response to unfolded protein stress or the sphingolipid biosynthesis, previously reported for other unrelated AMP, was also independently confirmed.
Collapse
Affiliation(s)
- Belén López-García
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), CSIC, Burjassot, Valencia, Spain
| | | | | | | | | |
Collapse
|
170
|
Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M. Natural functions of lipopeptides fromBacillusandPseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 2010; 34:1037-62. [DOI: 10.1111/j.1574-6976.2010.00221.x] [Citation(s) in RCA: 719] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
171
|
Characterization of a new bacteriocin, Carocin D, from Pectobacterium carotovorum subsp. carotovorum Pcc21. Appl Environ Microbiol 2010; 76:7541-9. [PMID: 20870796 DOI: 10.1128/aem.03103-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two different bacteriocins, carotovoricin and carocin S1, had been found in Pectobacterium carotovorum subsp. carotovorum, which causes soft-rot disease in diverse plants. Previously, we reported that the particular strain Pcc21, producing only one high-molecular-weight bacteriocin, carried a new antibacterial activity against the indicator strain Pcc3. Here, we report that this new antibacterial activity is due to a new bacteriocin produced by strain Pcc21 and named carocin D. Carocin D is encoded by the caroDK gene located in the genomic DNA together with the caroDI gene, which seems to encode an immunity protein. N-terminal amino acid sequences of purified carocin D were determined by Edman degradation. In comparison with the primary translation product of caroDK, it was found that 8 amino acids are missing at the N terminus. This finding proved that carocin D is synthesized as a precursor peptide and that 8 amino acids are removed from its N terminus during maturation. Carocin D has two putative translocation domains; the N-terminal and C-terminal domains are homologous to those of Escherichia coli colicin E3 and Pseudomonas aeruginosa S-type pyocin, respectively. When caroDK and caroDI genes were transformed into carocin D-sensitive bacteria such as Pcc3, the bacteria became resistant to this bacteriocin. Carocin D has one putative DNase domain at the extreme C terminus and showed DNase activity in vitro. This bacteriocin had slight tolerance to heat but not to proteases. The caroDK gene was present in only 5 of 54 strains of P. carotovorum subsp. carotovorum. These results indicate that carocin D is a third bacteriocin found in P. carotovorum subsp. carotovorum, and this bacteriocin can be readily expressed in carocin D-sensitive nonpathogenic bacteria, which may have high potential as a biological control agent in the field.
Collapse
|
172
|
Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S. Biofuels from algae: challenges and potential. BIOFUELS 2010; 1:763-784. [PMID: 21833344 PMCID: PMC3152439 DOI: 10.4155/bfs.10.44] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality.
Collapse
Affiliation(s)
- Michael Hannon
- San Diego Center for Algal Biotechnology, University of California San Diego, Division of Biology, La Jolla, CA, USA
| | - Javier Gimpel
- San Diego Center for Algal Biotechnology, University of California San Diego, Division of Biology, La Jolla, CA, USA
| | - Miller Tran
- San Diego Center for Algal Biotechnology, University of California San Diego, Division of Biology, La Jolla, CA, USA
| | - Beth Rasala
- San Diego Center for Algal Biotechnology, University of California San Diego, Division of Biology, La Jolla, CA, USA
| | - Stephen Mayfield
- San Diego Center for Algal Biotechnology, University of California San Diego, Division of Biology, La Jolla, CA, USA
- Author for correspondence: Tel.: +1 858 822 7745;
| |
Collapse
|
173
|
Vassilevski AA, Kozlov SA, Grishin EV. Molecular diversity of spider venom. BIOCHEMISTRY (MOSCOW) 2010; 74:1505-34. [PMID: 20210706 DOI: 10.1134/s0006297909130069] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spider venom, a factor that has played a decisive role in the evolution of one of the most successful groups of living organisms, is reviewed. Unique molecular diversity of venom components including substances of variable structure (from simple low molecular weight compounds to large multidomain proteins) with different functions is considered. Special attention is given to the structure, properties, and biosynthesis of toxins of polypeptide nature.
Collapse
Affiliation(s)
- A A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
174
|
Gadermaier G, Jahn-Schmid B, Vogel L, Egger M, Himly M, Briza P, Ebner C, Vieths S, Bohle B, Ferreira F. Targeting the cysteine-stabilized fold of Art v 1 for immunotherapy of Artemisia pollen allergy. Mol Immunol 2010; 47:1292-8. [DOI: 10.1016/j.molimm.2009.11.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/22/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
|
175
|
Todorova S, Kozhuharova L. Characteristics and antimicrobial activity of Bacillus subtilis strains isolated from soil. World J Microbiol Biotechnol 2009; 26:1207-16. [PMID: 24026925 DOI: 10.1007/s11274-009-0290-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 12/14/2009] [Indexed: 11/30/2022]
Abstract
Antagonistic Bacillus strains were isolated from soil and analyzed for the purpose of determining whether they could be used as natural biological agents. Primary in vitro screening for antagonism of the isolates was performed against five phytopathogenic mould fungi. Strains TS 01 and ZR 02 exhibited the most pronounced inhibitory effects. They were identified as Bacillus subtilis on the basis of their morphological, cultural and physiology-biochemical properties as well as their hierarchical cluster analysis conducted by means of computer program SPSS. The antimicrobial activity of the strains from cultural medium and sterile filtrate were determined in vitro against a great number of predominantly phytopathogenic fungi and bacteria. TS 01 and ZR 02 strains exhibited very broad and at the same time degree varying antibiotic spectra of activities against both Gram-positive and Gram-negative microorganisms. Many of them were tested against sensitivity to the antimicrobial action of B. subtilis for the very first time. B. subtilis TS 01 and ZR 02 showed highest antifungal activity (sterile zone in diameter over 37 mm) against Alternaria solani, Botrytis cinerea, Monilia linhartiana 869, Phytophthora cryptogea 759/1 and Rhizoctonia sp. The most sensitive bacterial species were found to be Pseudomonas syringae pv. tomato Ro and Xanthomonas campestris with sterile zones 48.0 and 50.0 mm in diameter, respectively. The latter draws a conclusion that the isolated and identified Bacillus subtilis strains are promising natural biocontrol agents and should be further studied and tested for control of numerous plant diseases.
Collapse
Affiliation(s)
- Sevdalina Todorova
- Department of Biotechnology and Food Technology, Rousse University, Razgrad Branch 47 "Aprilsko Vustanie" Blvd, P.O.Box 110, Razgrad, 7200, Bulgaria,
| | | |
Collapse
|
176
|
Antifungal Activity of Leaf Essential Oil and Extracts of Metasequoia glyptostroboides Miki ex Hu. J AM OIL CHEM SOC 2009. [DOI: 10.1007/s11746-009-1500-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
177
|
Production of the biotechnologically relevant AFP from Aspergillus giganteus in the yeast Pichia pastoris. Protein Expr Purif 2009; 70:206-10. [PMID: 19896535 DOI: 10.1016/j.pep.2009.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 11/23/2022]
Abstract
The mould Aspergillus giganteus produces a basic, low molecular weight protein (AFP) showing in vitro and in vivo antifungal properties against important plant pathogens. AFP is secreted as an inactive precursor containing an amino-terminal extension of six amino acids (lf-AFP) which is later removed to produce the active protein. The molecular basis to explain this behavior and the features that determine the fungal specificity of this protein are not completely solved. In this work, the mature AFP (AFP *) and a version of AFP with an extended amino-terminal (proAFP) have been cloned and produced in the yeast Pichia pastoris. The two proteins have been purified to homogeneity and characterized from structural and functional points of view. Recombinant AFP * produced is practically indistinguishable from the natural fungal protein in terms of its spectroscopic and antifungal properties while proAFP is mostly inactive under identical assay conditions. The availability of an active AFP protein produced in P. pastoris will permit investigation of the mode of action and targeting specificity of AFP by using site-directed mutagenesis approaches.
Collapse
|
178
|
Brotman Y, Makovitzki A, Shai Y, Chet I, Viterbo A. Synthetic ultrashort cationic lipopeptides induce systemic plant defense responses against bacterial and fungal pathogens. Appl Environ Microbiol 2009; 75:5373-9. [PMID: 19542326 PMCID: PMC2725461 DOI: 10.1128/aem.00724-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Accepted: 06/16/2009] [Indexed: 11/20/2022] Open
Abstract
A new family of synthetic, membrane-active, ultrashort lipopeptides composed of only four amino acids linked to fatty acids was tested for the ability to induce systemic resistance and defense responses in plants. We found that two peptides wherein the third residue is a d-enantiomer (italic), C16-KKKK and C16-KLLK, can induce medium alkalinization of tobacco suspension-cultured cells and expression of defense-related genes in cucumber and Arabidopsis seedlings. Moreover, these compounds can prime systemic induction of antimicrobial compounds in cucumber leaves similarly to the plant-beneficial fungus Trichoderma asperellum T203 and provide systemic protection against the phytopathogens Botrytis cinerea B05, Pseudomonas syringae pv. lachrimans, and P. syringae pv. tomato DC3000. Thus, short cationic lipopeptides are a new category of compounds with potentially high utility in the induction of systemic resistance in plants.
Collapse
Affiliation(s)
- Yariv Brotman
- Department of Plant Pathology and Microbiology, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
179
|
Pelegrini PB, Farias LR, Saude ACM, Costa FT, Bloch C, Silva LP, Oliveira AS, Gomes CEM, Sales MP, Franco OL. A Novel Antimicrobial Peptide from Crotalaria pallida Seeds with Activity Against Human and Phytopathogens. Curr Microbiol 2009; 59:400-4. [DOI: 10.1007/s00284-009-9451-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 03/31/2009] [Accepted: 06/25/2009] [Indexed: 10/20/2022]
|
180
|
Sporicidal activity of synthetic antifungal undecapeptides and control of Penicillium rot of apples. Appl Environ Microbiol 2009; 75:5563-9. [PMID: 19617390 DOI: 10.1128/aem.00711-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antifungal activity of cecropin A(2-8)-melittin(6-9) hybrid undecapeptides, previously reported as active against plant pathogenic bacteria, was studied. A set of 15 sequences was screened in vitro against Fusarium oxysporum, Penicillium expansum, Aspergillus niger, and Rhizopus stolonifer. Most compounds were highly active against F. oxysporum (MIC < 2.5 microM) but were less active against the other fungi. The best peptides were studied for their sporicidal activity and for Sytox green uptake in F. oxysporum microconidia. A significant inverse linear relationship was observed between survival and fluorescence, indicating membrane disruption. Next, we evaluated the in vitro activity against P. expansum of a 125-member peptide library with the general structure R-X(1)KLFKKILKX(10)L-NH(2), where X(1) and X(10) corresponded to amino acids with various degrees of hydrophobicity and hydrophilicity and R included different N-terminal derivatizations. Fifteen sequences with MICs below 12.5 muM were identified. The most active compounds were BP21 {Ac,F,V} and BP34 {Ac,L,V} (MIC < 6.25 microM), where the braces denote R, X(1), and X(10) positions and where Ac is an acetyl group. The peptides had sporicidal activity against P. expansum conidia. Seven of these peptides were tested in vivo by evaluating their preventative effect of inhibition of P. expansum infection in apple fruits. The peptide Ts-FKLFKKILKVL-NH(2) (BP22), where Ts is a tosyl group, was the most active with an average efficacy of 56% disease reduction, which was slightly lower than that of a commercial formulation of the fungicide imazalil.
Collapse
|
181
|
Kim JY, Park SC, Hwang I, Cheong H, Nah JW, Hahm KS, Park Y. Protease inhibitors from plants with antimicrobial activity. Int J Mol Sci 2009; 10:2860-2872. [PMID: 19582234 PMCID: PMC2705521 DOI: 10.3390/ijms10062860] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/20/2009] [Accepted: 06/20/2009] [Indexed: 11/22/2022] Open
Abstract
Antimicrobial proteins (peptides) are known to play important roles in the innate host defense mechanisms of most living organisms, including plants, insects, amphibians and mammals. They are also known to possess potent antibiotic activity against bacteria, fungi, and even certain viruses. Recently, the rapid emergence of microbial pathogens that are resistant to currently available antibiotics has triggered considerable interest in the isolation and investigation of the mode of action of antimicrobial proteins (peptides). Plants produce a variety of proteins (peptides) that are involved in the defense against pathogens and invading organisms, including ribosome-inactivating proteins, lectins, protease inhibitors and antifungal peptides (proteins). Specially, the protease inhibitors can inhibit aspartic, serine and cysteine proteinases. Increased levels of trypsin and chymotrypsin inhibitors correlated with the plants resistance to the pathogen. Usually, the purification of antimicrobial proteins (peptides) with protease inhibitor activity was accomplished by salt-extraction, ultrafiltration and C18 reverse phase chromatography, successfully. We discuss the relation between antimicrobial and anti-protease activity in this review. Protease inhibitors from plants potently inhibited the growth of a variety of pathogenic bacterial and fungal strains and are therefore excellent candidates for use as the lead compounds for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Jin-Young Kim
- Research Center for Proteineous Materials, Chosun University, Gwangju 501-759, Korea; E-Mails:
(J.-Y.K.);
(S.-C.P.);
(K.-S.H.)
| | - Seong-Cheol Park
- Research Center for Proteineous Materials, Chosun University, Gwangju 501-759, Korea; E-Mails:
(J.-Y.K.);
(S.-C.P.);
(K.-S.H.)
| | - Indeok Hwang
- Department of Biotechnology and BK21 Research Team for Protein Activity Control, Chosun University, Gwangju 501-759, Korea; E-Mails:
(I.H.);
(H.C.)
| | - Hyeonsook Cheong
- Department of Biotechnology and BK21 Research Team for Protein Activity Control, Chosun University, Gwangju 501-759, Korea; E-Mails:
(I.H.);
(H.C.)
| | - Jae-Woon Nah
- Department of Polymer Science and Engineering, Sunchon National University, 315 Maegok, Suncheon, Korea; E-Mail:
(J.-W.N.)
| | - Kyung-Soo Hahm
- Research Center for Proteineous Materials, Chosun University, Gwangju 501-759, Korea; E-Mails:
(J.-Y.K.);
(S.-C.P.);
(K.-S.H.)
- Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju 501-759, Korea
| | - Yoonkyung Park
- Research Center for Proteineous Materials, Chosun University, Gwangju 501-759, Korea; E-Mails:
(J.-Y.K.);
(S.-C.P.);
(K.-S.H.)
- Department of Biotechnology and BK21 Research Team for Protein Activity Control, Chosun University, Gwangju 501-759, Korea; E-Mails:
(I.H.);
(H.C.)
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +82-62-230-6854; Fax: +82-62-227-8345
| |
Collapse
|
182
|
Brito-Arga L, Moguel-Sal F, Zamudio F, Gonzalez-E T, Islas-Flor I. Characterization of a Capsicum chinense Seed Peptide Fraction with Broad Antibacterial Activity. ACTA ACUST UNITED AC 2009. [DOI: 10.3923/ajb.2009.77.87] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
183
|
|
184
|
Ferre R, Melo MN, Correia AD, Feliu L, Bardají E, Planas M, Castanho M. Synergistic effects of the membrane actions of cecropin-melittin antimicrobial hybrid peptide BP100. Biophys J 2009; 96:1815-27. [PMID: 19254540 DOI: 10.1016/j.bpj.2008.11.053] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 11/17/2008] [Indexed: 11/17/2022] Open
Abstract
BP100 (KKLFKKILKYL-NH(2)) is a short cecropin A-melittin hybrid peptide, obtained through a combinatorial chemistry approach, which is highly effective in inhibiting both the in vitro and in vivo growth of economically important plant pathogenic Gram-negatives. The intrinsic Tyr fluorescence of BP100 was taken advantage of to study the peptide's binding affinity and damaging effect on phospholipid bilayers modeling the bacterial and mammalian cytoplasmic membranes. In vitro cytotoxic effects of this peptide were also studied on mammalian fibroblast cells. Results show a stronger selectivity of BP100 toward anionic bacterial membrane models as indicated by the high obtained partition constants, one order of magnitude greater than for the neutral mammalian membrane models. For the anionic systems, membrane saturation was observed at high peptide/lipid ratios and found to be related with BP100-induced vesicle permeabilization, membrane electroneutrality, and vesicle aggregation. Occurrence of BP100 translocation was unequivocally detected at both high and low peptide/lipid ratios using a novel and extremely simple method. Moreover, cytotoxicity against mammalian models was reached at a concentration considerably higher than the minimum inhibitory concentration. Our findings unravel the relationships among the closely coupled processes of charge neutralization, permeabilization, and translocation in the mechanism of action of antimicrobial peptides.
Collapse
Affiliation(s)
- Rafael Ferre
- Laboratori d'Innovació en Processos i Productes de Síntesi Orgànica, Departament de Química, Universitat de Girona, Girona, Spain
| | | | | | | | | | | | | |
Collapse
|
185
|
Cary J, Rajasekaran K, Yu J, Brown R, Bhatnagar D, Cleveland T. Transgenic approaches for pre-harvest control of mycotoxin contamination in crop plants. WORLD MYCOTOXIN J 2009. [DOI: 10.3920/wmj2009.1138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycotoxins are fungal metabolites that can contaminate food and feed crops worldwide and are responsible for toxic effects in animals and humans that consume contaminated commodities. Regulatory guidelines and limits for mycotoxins have been set by the US Food and Drug Administration (FDA) and food safety agencies of other countries for both import and export of affected commodities. Mycotoxin contamination of foods and feeds can also cause serious economic hardships to producers, processors, and the consumer. Therefore, there has been a concerted effort by researchers worldwide to develop strategies for the effective control of mycotoxin contamination of crops, particularly at the pre-harvest stage. Strategies currently being utilised to combat pre-harvest mycotoxin contamination include: (1) use of non-toxigenic biocontrol strains; (2) improved agricultural practices; (3) application of agrochemicals; (4) plant breeding for resistance; and (5) genetic engineering of resistance genes into crop plants. This article highlights research on the genetic engineering of plants for resistance to invasion by mycotoxigenic fungi as well as detoxification of mycotoxins. Emphasis is placed on the most economically relevant fungi and the mycotoxins they produce. These include aflatoxins produced mainly by Aspergillus flavus and A. parasiticus, trichothecenes produced mainly by Fusarium graminearum, and to a lesser extent, fumonisins produced by F. verticillioides. Information is also presented on the use of genomics and proteomics technologies as a means of identifying genes and proteins that can be utilised in transgenic approaches to control the growth of mycotoxigenic fungi and the mycotoxins that they produce in food and feed crops.
Collapse
Affiliation(s)
- J. Cary
- Southern Regional Research Center, ARS, USDA, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA
| | - K. Rajasekaran
- Southern Regional Research Center, ARS, USDA, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA
| | - J. Yu
- Southern Regional Research Center, ARS, USDA, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA
| | - R. Brown
- Southern Regional Research Center, ARS, USDA, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA
| | - D. Bhatnagar
- Southern Regional Research Center, ARS, USDA, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA
| | - T. Cleveland
- Southern Regional Research Center, ARS, USDA, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA
| |
Collapse
|
186
|
Bengtson P, Bastviken D, de Boer W, Oberg G. Possible role of reactive chlorine in microbial antagonism and organic matter chlorination in terrestrial environments. Environ Microbiol 2009; 11:1330-9. [PMID: 19453612 DOI: 10.1111/j.1462-2920.2009.01915.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several studies have demonstrated that extensive formation of organically bound chlorine occurs both in soil and in decaying plant material. Previous studies suggest that enzymatic formation of reactive chlorine outside cells is a major source. However, the ecological role of microbial-induced extracellular chlorination processes remains unclear. In the present paper, we assess whether or not the literature supports the hypothesis that extracellular chlorination is involved in direct antagonism against competitors for the same resources. Our review shows that it is by no means rare that biotic processes create conditions that render biocidal concentrations of reactive chlorine compounds, which suggest that extracellular production of reactive chlorine may have an important role in antagonistic microbial interactions. To test the validity, we searched the UniprotPK database for microorganisms that are known to produce haloperoxidases. It appeared that many of the identified haloperoxidases from terrestrial environments are originating from organisms that are associated with living plants or decomposing plant material. The results of the in silico screening were supported by various field and laboratory studies on natural chlorination. Hence, the ability to produce reactive chlorine seems to be especially common in environments that are known for antibiotic-mediated competition for resources (interference competition). Yet, the ability to produce haloperoxidases is also recorded, for example, for plant endosymbionts and parasites, and there is little or no empirical evidence that suggests that these organisms are antagonistic.
Collapse
Affiliation(s)
- Per Bengtson
- Department of Microbial Ecology, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
187
|
Akerey B, Le-Lay C, Fliss I, Subirade M, Rouabhia M. In vitro efficacy of nisin Z against Candida albicans adhesion and transition following contact with normal human gingival cells. J Appl Microbiol 2009; 107:1298-307. [PMID: 19486401 DOI: 10.1111/j.1365-2672.2009.04312.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AIM To investigate the nisin Z innocuity using normal human gingival fibroblast and epithelial cell cultures, and its synergistic effect with these gingival cells against Candida albicans adhesion and transition from blastospore to hyphal form. METHODS AND RESULTS Cells were cultured to 80% confluence and infected with C. albicans in the absence or presence of various concentrations of nisin Z. Our results indicate that only high concentrations of nisin Z promoted gingival cell detachment and differentiation. Determination of the LD(50) showed that the fibroblasts were able to tolerate up to 80 microg ml(-1) for 24 h, dropping thereafter to 62 mug ml(-1) after 72 h of contact, compared to 160 microg ml(-1) after 24 h, and 80 microg ml(-1) after 72 h recorded by the gingival epithelial cells which displayed a greater resistance to nisin Z. The use of nisin Z even at low concentration (25 microg ml(-1)) at appropriate concentrations with gingival cells significantly reduced C. albicans adhesion to gingival monolayer cultures and inhibited the yeast's transition. CONCLUSION These findings show that when used at non-toxic levels for human cells, nisin Z can be effective against C. albicans adhesion and transition and may synergistically interact with gingival cells for an efficient resistance against C. albicans. SIGNIFICANCE AND IMPACT OF THE STUDY This study suggests the potential usefulness of nisin Z as an antifungal agent, when used in an appropriate range.
Collapse
Affiliation(s)
- B Akerey
- Groupe de recherché en écologie buccale, Pavillon de Médecine dentaire, Université Laval, Québec G1K 7P4., Canada
| | | | | | | | | |
Collapse
|
188
|
Galgóczy L, Vágvölgyi C. Antifungal peptides secreted by filamentous fungi as promising new agents in human therapy. Future Microbiol 2009; 4:261-3. [PMID: 19327111 DOI: 10.2217/fmb.09.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- László Galgóczy
- Department of Microbiology, Faculty of Sciences & Informatics, University of Szeged, Közép fasor 52, H-6726, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Sciences & Informatics, University of Szeged, Közép fasor 52, H-6726, Hungary
| |
Collapse
|
189
|
Kacem M, Kazouz F, Merabet C, Rezki M, De Lajudie P, Bekki A. Antimicrobial activity of Rhizobium sp. strains against Pseudomonas savastanoi, the agent responsible for the olive knot disease in Algeria. GRASAS Y ACEITES 2009. [DOI: 10.3989/gya.074808] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
190
|
Girlanda M, Bianciotto V, Cappellazzo GA, Casieri L, Bergero R, Martino E, Luppi AM, Perotto S. Interactions between engineered tomato plants expressing antifungal enzymes and nontarget fungi in the rhizosphere and phyllosphere. FEMS Microbiol Lett 2008; 288:9-18. [PMID: 18778277 DOI: 10.1111/j.1574-6968.2008.01306.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The introduction of genetically modified (GM) plants in agroecosystems raises concern about possible effects on nontarget species. The impact of a tomato line transformed for constitutive expression of tobacco beta-1,3-glucanase and chitinase on indigenous nonpathogenic fungi was investigated. In greenhouse experiments, no significant differences were found in the colonization by arbuscular mycorrhizal fungi. Diversity indices computed from over 20 500 colonies of culturable rhizosphere and phyllosphere saprotrophic microfungi, assigned to 165 species (plus > 80 sterile morphotypes), showed no significant differences between GM and wild-type plants. Differences were found by discriminant analysis in both the rhizosphere and the phyllosphere, but such effects were minor compared with those linked to different plant growth stages.
Collapse
|
191
|
Le Lay C, Akerey B, Fliss I, Subirade M, Rouabhia M. Nisin Z inhibits the growth ofCandida albicansand its transition from blastospore to hyphal form. J Appl Microbiol 2008; 105:1630-9. [DOI: 10.1111/j.1365-2672.2008.03908.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
192
|
Montesinos E, Bardají E. Synthetic antimicrobial peptides as agricultural pesticides for plant-disease control. Chem Biodivers 2008; 5:1225-37. [PMID: 18649311 DOI: 10.1002/cbdv.200890111] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is a need of antimicrobial compounds in agriculture for plant-disease control, with low toxicity and reduced negative environmental impact. Antimicrobial peptides are produced by living organisms and offer strong possibilities in agriculture because new compounds can be developed based on natural structures with improved properties of activity, specificity, biodegradability, and toxicity. Design of new molecules has been achieved using combinatorial-chemistry procedures coupled to high-throughput screening systems and data processing with design-of-experiments (DOE) methodology to obtain QSAR equation models and optimized compounds. Upon selection of best candidates with low cytotoxicity and moderate stability to protease digestion, anti-infective activity has been evaluated in plant-pathogen model systems. Suitable compounds have been submitted to acute toxicity testing in higher organisms and exhibited a low toxicity profile in a mouse model. Large-scale production can be achieved by solution organic or chemoenzymatic procedures in the case of very small peptides, but, in many cases, production can be performed by biotechnological methods using genetically modified microorganisms (fermentation) or transgenic crops (plant biofactories).
Collapse
Affiliation(s)
- Emilio Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Campus Montilivi, E-18071 Girona.
| | | |
Collapse
|
193
|
Charnley M, Moir AJG, Douglas CWI, Haycock JW. Anti-microbial action of melanocortin peptides and identification of a novel X-Pro-D/L-Val sequence in Gram-positive and Gram-negative bacteria. Peptides 2008; 29:1004-9. [PMID: 18355945 DOI: 10.1016/j.peptides.2008.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 02/01/2008] [Accepted: 02/07/2008] [Indexed: 01/28/2023]
Abstract
The melanocortin peptides alpha-MSH, Lys-Pro-Val and Lys-Pro-D-Val are known to be potent anti-inflammatory agents; however their role as antibacterial peptides is less clear. The aim of this study was to determine whether these peptides displayed antibacterial properties, and specifically whether the Lys-Pro-D-Val tripeptide was more potent than Lys-Pro-Val, consistent with their anti-inflammatory actions. alpha-MSH, Ac-Lys-Pro-D-Val-NH2 and Ac-Lys-Pro-Val-NH2 were found to be antibacterial against both Gram-positive and Gram-negative bacteria (Staphylococcus aureus and Escherichia coli) over a broad range of concentrations compared to a control peptide, Ac-Ala-Ala-Ala-NH2. However, the relative potency of alpha-MSH, Ac-Lys-Pro-D-Val-NH2, Ac-Lys-Pro-Val-NH2 did not differ. Furthermore, it was found that the cationic charge on the lysine residue was not required for activity as a variant peptide Ac-Ala-Pro-D-Val-NH2 was also antibacterial. We therefore describe a novel X-Pro-D/L-Val peptide sequence with similarity to the short melanocortin peptides, which possess antibacterial activity. The combined anti-inflammatory and antibacterial action of such peptides may also have potential value therapeutically.
Collapse
Affiliation(s)
- Mirren Charnley
- Department of Engineering Materials, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
| | | | | | | |
Collapse
|
194
|
Holtsmark I, Eijsink VG, Brurberg MB. Bacteriocins from plant pathogenic bacteria. FEMS Microbiol Lett 2008; 280:1-7. [DOI: 10.1111/j.1574-6968.2007.01010.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
195
|
Marcos JF, Muñoz A, Pérez-Payá E, Misra S, López-García B. Identification and rational design of novel antimicrobial peptides for plant protection. ANNUAL REVIEW OF PHYTOPATHOLOGY 2008; 46:273-301. [PMID: 18439131 DOI: 10.1146/annurev.phyto.121307.094843] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Peptides and small proteins exhibiting antimicrobial activity have been isolated from many organisms ranging from insects to humans, including plants. Their role in defense is established, and their use in agriculture was already being proposed shortly after their discovery. However, some natural peptides have undesirable properties that complicate their application. Advances in peptide synthesis and high-throughput activity screening have made possible the de novo and rational design of novel peptides with improved properties. This review summarizes findings in the identification and design of short antimicrobial peptides with activity against plant pathogens, and will discuss alternatives for their heterologous production suited to plant disease control. Recent studies suggest that peptide antimicrobial action is not due solely to microbe permeation as previously described, but that more subtle factors might account for the specificity and absence of toxicity of some peptides. The elucidation of the mode of action and interaction with microbes will assist the improvement of peptide design with a view to targeting specific problems in agriculture and providing new tools for plant protection.
Collapse
Affiliation(s)
- Jose F Marcos
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos-CSIC, 46100 Burjassot, Spain.
| | | | | | | | | |
Collapse
|
196
|
Badosa E, Ferre R, Planas M, Feliu L, Besalú E, Cabrefiga J, Bardají E, Montesinos E. A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria. Peptides 2007; 28:2276-85. [PMID: 17980935 DOI: 10.1016/j.peptides.2007.09.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 09/17/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
Abstract
A 125-member library of synthetic linear undecapeptides was prepared based on a previously described peptide H-K(1)KLFKKILKF(10)L-NH(2) (BP76) that inhibited in vitro growth of the plant pathogenic bacteria Erwinia amylovora, Xanthomonas axonopodis pv. vesicatoria, and Pseudomonas syringae pv. syringae at low micromolar concentrations. Peptides were designed using a combinatorial chemistry approach by incorporating amino acids possessing various degrees of hydrophobicity and hydrophilicity at positions 1 and 10 and by varying the N-terminus. Library screening for in vitro growth inhibition identified 27, 40 and 113 sequences with MIC values below 7.5 microM against E. amylovora, P. syringae and X. axonopodis, respectively. Cytotoxicity, bactericidal activity and stability towards protease degradation of the most active peptides were also determined. Seven peptides with a good balance between antibacterial and hemolytic activities were identified. Several analogues displayed a bactericidal effect and low susceptibility to protease degradation. The most promising peptides were tested in vivo by evaluating their preventive effect of inhibition of E. amylovora infection in detached apple and pear flowers. The peptide H-KKLFKKILKYL-NH(2) (BP100) showed efficacies in flowers of 63-76% at 100 microM, being more potent than BP76 and only less effective than streptomycin, currently used for fire blight control.
Collapse
Affiliation(s)
- Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-CeRTA, University of Girona, Campus Montilivi, 17071 Girona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Muñoz A, López-García B, Marcos JF. Comparative study of antimicrobial peptides to control citrus postharvest decay caused by Penicillium digitatum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:8170-6. [PMID: 17867640 DOI: 10.1021/jf0718143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The objective of this study was to investigate and compare the in vitro efficacy and in vivo potential of eight distinct short antimicrobial peptides to control the postharvest green mold disease of oranges caused by the fungus Penicillium digitatum. The L-amino acid versions of the four peptides PAF26, PAF38, PAF40, and BM0, previously obtained by combinatorial approaches, were examined. The study included two antibacterial peptides formerly identified by rational design, BP15 and BP76, and it is demonstrated that they also have in vitro antifungal properties. The natural antimicrobial peptides melittin and indolicidin were also selected for comparison, due to their well-known properties and modes of action. In vitro and in vivo results indicated differential behaviors among peptides, regarding the inhibitory potency in growth media, selectivity against distinct microorganisms, fungicidal activity towards nongerminated conidia of P. digitatum, and efficacy in fruit inoculation assays. Interestingly, a high in vitro inhibitory activity did not necessarily associate with an effective control of fruit infection by P. digitatum. The short tryptophan-rich cationic peptides PAF26, PAF38, PAF40, and BM0 were lethal to conidia of P. digitatum, and this property is correlated with better protection in the decay control test.
Collapse
Affiliation(s)
- Alberto Muñoz
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), CSIC, Apartado de Correos 73, Burjassot, 46100 Valencia, Spain
| | | | | |
Collapse
|
198
|
Makovitzki A, Viterbo A, Brotman Y, Chet I, Shai Y. Inhibition of fungal and bacterial plant pathogens in vitro and in planta with ultrashort cationic lipopeptides. Appl Environ Microbiol 2007; 73:6629-36. [PMID: 17720828 PMCID: PMC2075073 DOI: 10.1128/aem.01334-07] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plant diseases constitute an emerging threat to global food security. Many of the currently available antimicrobial agents for agriculture are highly toxic and nonbiodegradable and cause extended environmental pollution. Moreover, an increasing number of phytopathogens develop resistance to them. Recently, we have reported on a new family of ultrashort antimicrobial lipopeptides which are composed of only four amino acids linked to fatty acids (A. Makovitzki, D. Avrahami, and Y. Shai, Proc. Natl. Acad. Sci. USA 103:15997-16002, 2006). Here, we investigated the activities in vitro and in planta and the modes of action of these short lipopeptides against plant-pathogenic bacteria and fungi. They act rapidly, at low micromolar concentrations, on the membranes of the microorganisms via a lytic mechanism. In vitro microscopic analysis revealed wide-scale damage to the microorganism's membrane, in addition to inhibition of pathogen growth. In planta potent antifungal activity was demonstrated on cucumber fruits and leaves infected with the pathogen Botrytis cinerea as well as on corn leaves infected with Cochliobolus heterostrophus. Similarly, treatment with the lipopeptides of Arabidopsis leaves infected with the bacterial leaf pathogen Pseudomonas syringae efficiently and rapidly reduced the number of bacteria. Importantly, in contrast to what occurred with many native lipopeptides, no toxicity was observed on the plant tissues. These data suggest that the ultrashort lipopeptides could serve as native-like antimicrobial agents economically feasible for use in plant protection.
Collapse
Affiliation(s)
- Arik Makovitzki
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|