151
|
Antika LD, Lee EJ, Kim YH, Kang MK, Park SH, Kim DY, Oh H, Choi YJ, Kang YH. Dietary phlorizin enhances osteoblastogenic bone formation through enhancing β-catenin activity via GSK-3β inhibition in a model of senile osteoporosis. J Nutr Biochem 2017; 49:42-52. [PMID: 28866105 DOI: 10.1016/j.jnutbio.2017.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/30/2017] [Accepted: 07/24/2017] [Indexed: 01/21/2023]
Abstract
Osteoporosis is one of the most prevalent forms of age-related bone diseases. Increased bone loss with advancing age has become a grave public health concern. This study examined whether phlorizin and phloretin, dihydrochalcones in apple peels, inhibited senile osteoporosis through enhancing osteoblastogenic bone formation in cell-based and aged mouse models. Submicromolar phloretin and phlorizin markedly stimulated osteoblast differentiation of MC3T3-E1 cells with increased transcription of Runx2 and osteocalcin. Senescence-accelerated resistant mouse strain prone-6 (SAMP6) mice were orally supplemented with 10 mg/kg phlorizin and phloretin daily for 12 weeks. Male senescence-accelerated resistant mouse strain R1 mice were employed as a nonosteoporotic age-matched control. Oral administration of ploretin and phorizin boosted bone mineralization in all the bones of femur, tibia and vertebra of SAMP6. In particular, phlorizin reduced serum RANKL/OPG ratio and diminished TRAP-positive osteoclasts in trabecular bones of SAMP6. Additionally, treating phlorizin to SAMP6 inhibited the osteoporotic resorption in distal femoral bones through up-regulating expression of BMP-2 and collagen-1 and decreasing production of matrix-degrading cathepsin K and MMP-9. Finally, phlorizin and phloretin antagonized GSK-3β induction and β-catenin phosphorylation in osteoblasts and aged mouse bones. Therefore, phlorizin and phloretin were potential therapeutic agents encumbering senile osteoporosis through promoting bone-forming osteoblastogenesis via modulation of GSK-3β/β-catenin-dependent signaling.
Collapse
Affiliation(s)
- Lucia Dwi Antika
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Eun-Jung Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Yun-Ho Kim
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Min-Kyung Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Sin-Hye Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Dong Yeon Kim
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Hyeongjoo Oh
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Yean-Jung Choi
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea.
| |
Collapse
|
152
|
Huang J, Chen L. IL-1β inhibits osteogenesis of human bone marrow-derived mesenchymal stem cells by activating FoxD3/microRNA-496 to repress wnt signaling. Genesis 2017; 55. [PMID: 28509407 DOI: 10.1002/dvg.23040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Jian Huang
- Department of Orthopaedics; Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University; 67 Dongchang west Road Liaocheng Shandong 252000 People's Republic of China
| | - Liang Chen
- Department of Orthopaedics; Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University; 67 Dongchang west Road Liaocheng Shandong 252000 People's Republic of China
| |
Collapse
|
153
|
Sun X, Wang H, Huang W, Yu H, Shen T, Song M, Han Y, Li Y, Zhu Y. Inhibition of bone formation in rats by aluminum exposure via Wnt/β-catenin pathway. CHEMOSPHERE 2017; 176:1-7. [PMID: 28249195 DOI: 10.1016/j.chemosphere.2017.02.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 01/20/2017] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
The previous research found that aluminum trichloride (AlCl3) inhibited rat osteoblastic differentiation through inactivation of Wnt/β-catenin signaling pathway in vitro. On that basis, the experiment in vivo was conducted in this study. Rats were orally exposed to 0 (control group) and 0.4 g/L AlCl3 (AlCl3-treated group) for 30, 60, 90 or 120 days, respectively. We found that mRNA expressions of type I collagen and insulin-like growth factor-1, mRNA and protein expressions of Runx2 and survivin, ratio of p-GSK3β/GSK3β and protein expression of β-catenin were all decreased, whereas the mRNA and protein expressions Dkk1 and sFRP1 and the mRNA expressions and activity of Caspase-3 were increased in the AlCl3-treated group compared with the control group with time prolonged. These results suggest that AlCl3 inhibits bone formation and induces bone impairment by inhibiting the Wnt/β-catenin signaling pathway in young growing rats.
Collapse
Affiliation(s)
- Xudong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Haoran Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Wanyue Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hongyan Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tongtong Shen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Yanzhu Zhu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| |
Collapse
|
154
|
Abraityte A, Vinge LE, Askevold ET, Lekva T, Michelsen AE, Ranheim T, Alfsnes K, Fiane A, Aakhus S, Lunde IG, Dahl CP, Aukrust P, Christensen G, Gullestad L, Yndestad A, Ueland T. Wnt5a is elevated in heart failure and affects cardiac fibroblast function. J Mol Med (Berl) 2017; 95:767-777. [PMID: 28357477 DOI: 10.1007/s00109-017-1529-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 12/17/2022]
Abstract
Wnt signaling is dysregulated in heart failure (HF) and may promote cardiac hypertrophy, fibrosis, and inflammation. Blocking the Wnt ligand Wnt5a prevents HF in animal models. However, the role of Wnt5a in human HF and its functions in cardiac cells remain unclear. Here, we investigated Wnt5a regulation in HF patients and its effects on primary mouse and human cardiac fibroblasts. Serum Wnt5a was elevated in HF patients and associated with hemodynamic, neurohormonal, and clinical measures of disease severity. In failing human hearts, Wnt5a protein correlated with interleukin (IL)-6 and tissue inhibitor of metalloproteinase (TIMP)-1. Wnt5a messenger RNA (mRNA) levels were markedly upregulated in failing myocardium and both mRNA and protein levels declined following left ventricular assist device therapy. In primary mouse and human cardiac fibroblasts, recombinant Wnt5a dose-dependently upregulated mRNA and protein release of IL-6 and TIMP-1. Wnt5a did not affect β-catenin levels, but activated extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. Importantly, inhibition of ERK1/2 activation attenuated Wnt5a-induced release of IL-6 and TIMP-1. In conclusion, our results show that Wnt5a is elevated in the serum and myocardium of HF patients and is associated with measures of progressive HF. Wnt5a induces IL-6 and TIMP-1 in cardiac fibroblasts, which might promote myocardial inflammation and fibrosis, and thereby contribute to HF progression. KEY MESSAGES • Wnt5a is elevated in serum and myocardium of HF patients and is associated with measures of progressive HF. • In cardiac fibroblasts, Wnt5a upregulates interleukin (IL)-6 and tissue inhibitor of metalloproteinase (TIMP)-1 through the ERK pathway. • Wnt5a-mediated effects might promote myocardial inflammation and fibrosis, and thereby contribute to HF progression.
Collapse
Affiliation(s)
- Aurelija Abraityte
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway. .,Center for Heart Failure Research, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.
| | - Leif E Vinge
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway.,Center for Heart Failure Research, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.,Department of Medicine, Diakonhjemmet Hospital, Postboks 23 Vinderen, 0319, Oslo, Norway
| | - Erik T Askevold
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway.,Center for Heart Failure Research, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway
| | - Annika E Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway
| | - Trine Ranheim
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway
| | - Katrine Alfsnes
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway
| | - Arnt Fiane
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.,Department of Cardiothoracic Surgery, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway
| | - Svend Aakhus
- Department of Cardiology, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway.,Department of Circulation and Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Postboks 8905 NTNU, Faculty of Medicine, 7491, Trondheim, Norway
| | - Ida G Lunde
- Center for Heart Failure Research, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.,Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Postboks 4956 Nydalen, 0424, Oslo, Norway
| | - Christen P Dahl
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway.,Center for Heart Failure Research, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.,Department of Cardiology, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.,K. G. Jebsen Inflammation Research Center, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway.,K. G. Jebsen Thrombosis Research and Expertise Center, The Arctic University of Norway, Postboks 6050 Langnes, 9037, Tromsø, Norway
| | - Geir Christensen
- Center for Heart Failure Research, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.,Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Postboks 4956 Nydalen, 0424, Oslo, Norway
| | - Lars Gullestad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.,Center for Heart Failure Research, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.,Department of Cardiology, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.,Center for Heart Failure Research, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.,K. G. Jebsen Inflammation Research Center, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.,K. G. Jebsen Thrombosis Research and Expertise Center, The Arctic University of Norway, Postboks 6050 Langnes, 9037, Tromsø, Norway
| |
Collapse
|
155
|
Melatonin attenuates titanium particle-induced osteolysis via activation of Wnt/β-catenin signaling pathway. Acta Biomater 2017; 51:513-525. [PMID: 28088671 DOI: 10.1016/j.actbio.2017.01.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 12/28/2022]
Abstract
Wear debris-induced inhibition of bone regeneration and extensive bone resorption were common features in peri-prosthetic osteolysis (PPO). Here, we investigated the effect of melatonin on titanium particle-stimulated osteolysis in a murine calvariae model and mouse-mesenchymal-stem cells (mMSCs) culture system. Melatonin inhibited titanium particle-induced osteolysis and increased bone formation at osteolytic sites, confirmed by radiological and histomorphometric data. Furthermore, osteoclast numbers decreased dramatically in the low- and high-melatonin administration mice, as respectively, compared with the untreated animals. Melatonin alleviated titanium particle-induced depression of osteoblastic differentiation and mineralization in mMSCs. Mechanistically, melatonin was found to reduce the degradation of β-catenin, levels of which were decreased in presence of titanium particles both in vivo and in vitro. To further ensure whether the protective effect of melatonin was mediated by the Wnt/β-catenin signaling pathway, ICG-001, a selective β-catenin inhibitor, was added to the melatonin-treated groups and was found to attenuate the effect of melatonin on mMSC mineralization. We also demonstrated that melatonin modulated the balance between receptor activator of nuclear factor kappa-B ligand and osteoprotegerin via activation of Wnt/β-catenin signaling pathway. These findings strongly suggest that melatonin represents a promising candidate in the treatment of PPO. STATEMENT OF SIGNIFICANCE Peri-prosthetic osteolysis, initiated by wear debris-induced inhibition of bone regeneration and extensive bone resorption, is the leading cause for implant failure and reason for revision surgery. In the current study, we demonstrated for the first time that melatonin can induce bone regeneration and reduce bone resorption at osteolytic sites caused by titanium-particle stimulation. These effects might be mediated by activating Wnt/β-catenin signaling pathway and enhancing osteogenic differentiation. Meanwhile, the ability of melatonin to modulate the balance between receptor activator of nuclear factor kappa-B ligand and osteoprotegerin mediated by Wnt/β-catenin signaling pathway, thereby suppressing osteoclastogenesis, may be implicated in the protective effects of melatonin on titanium-particle-induced bone resorption. These results suggested that melatonin can be considered as a promising therapeutic agent for the prevention and treatment of peri-prosthetic osteolysis.
Collapse
|
156
|
Cappariello A, Ponzetti M, Rucci N. The "soft" side of the bone: unveiling its endocrine functions. Horm Mol Biol Clin Investig 2017; 28:5-20. [PMID: 27107839 DOI: 10.1515/hmbci-2016-0009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/12/2016] [Indexed: 12/27/2022]
Abstract
Bone has always been regarded as a merely structural tissue, a "hard" scaffold protecting all of its "soft" fellows, while they did the rest of the work. In the last few decades this concept has totally changed, and new findings are starting to portray bone as a very talkative tissue that is capable not only of being regulated, but also of regulating other organs. In this review we aim to discuss the endocrine regulation that bone has over whole-body homeostasis, with emphasis on energy metabolism, male fertility, cognitive functions and phosphate (Pi) metabolism. These delicate tasks are mainly carried out by two known hormones, osteocalcin (Ocn) and fibroblast growth factor 23 (FGF23) and possibly other hormones that are yet to be found. The extreme plasticity and dynamicity of bone allows a very fine tuning over the actions these hormones exert, portraying this tissue as a full-fledged endocrine organ, in addition to its classical roles. In conclusion, our findings suggest that bone also has a "soft side", and is daily taking care of our entire organism in ways that were unknown until the last few years.
Collapse
|
157
|
Sugiyama T, Oda H. Osteoporosis Therapy: Bone Modeling during Growth and Aging. Front Endocrinol (Lausanne) 2017; 8:46. [PMID: 28337176 PMCID: PMC5343005 DOI: 10.3389/fendo.2017.00046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/24/2017] [Indexed: 01/06/2023] Open
Affiliation(s)
- Toshihiro Sugiyama
- Department of Orthopaedic Surgery, Saitama Medical University, Saitama, Japan
- *Correspondence: Toshihiro Sugiyama,
| | - Hiromi Oda
- Department of Orthopaedic Surgery, Saitama Medical University, Saitama, Japan
| |
Collapse
|
158
|
MiR-148a the epigenetic regulator of bone homeostasis is increased in plasma of osteoporotic postmenopausal women. Wien Klin Wochenschr 2016; 128:519-526. [PMID: 27900532 DOI: 10.1007/s00508-016-1141-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/10/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Osteoporosis is a prevalent skeletal disorder characterized by reduced bone mineral density and microarchitectural deterioration of bone tissue, resulting in bone fragility and low-trauma fractures. Imaging techniques are routinely used to detect low bone mass; however, they are unable to identify deterioration of bone quality. Recently, microRNAs have emerged as regulators of bone remodelling and potentially also as a new class of sensitive biomarkers of bone health to aid in diagnosis and treatment monitoring of osteoporosis. METHODS To identify new plasma-based biomarkers associated with osteoporosis we analyzed microRNAs isolated from plasma samples of 74 postmenopausal women divided into osteoporotic (N = 17) and control groups (N = 57). A prior microRNA screening was performed where a few showed promise for further analysis. Quantitative polymerase chain reaction was used to investigate differences in expression of let-7d-5p, let-7e-5p, miR-30d-5p, miR-30e-5p, miR-126-3p, miR-148a-3p, miR-199a-3p, miR-423-5p and miR-574-5p between the two groups. Furthermore, correlation analysis between microRNA expression levels and patient bone mineral density measurements and fracture risk assessment tool (FRAX) as well as trabecular bone scores were performed. RESULTS Expression of miR-148a-3p was significantly higher (p = 0.042) in the osteoporotic patient group compared to the controls. In addition, we identified correlations between miR-126-3p (ρ = 0.253, p = 0.032) and 423-5p (ρ = -0.230, p = 0.049) and parameters of bone quality and quantity. CONCLUSION The results from our study, together with the functional role of miR-148a-3p in bone suggest that this microRNA could be considered as a potential new plasma-based biomarker for pathological changes associated with osteoporosis.
Collapse
|
159
|
Yan L, Du Q, Yao J, Liu R. ROR2 inhibits the proliferation of gastric carcinoma cells via activation of non-canonical Wnt signaling. Exp Ther Med 2016; 12:4128-4134. [PMID: 28101190 DOI: 10.3892/etm.2016.3883] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 06/23/2016] [Indexed: 12/12/2022] Open
Abstract
Gastric carcinoma is one of the most common human cancers and has a poor prognosis. Receptor tyrosine kinase-like orphan receptor 2 (ROR2), which is a non-canonical receptor of the Wnt signaling pathway, has been reported to be deregulated in numerous types of human cancers, including gastric carcinoma. However, the exact role of ROR2 in the regulation of the malignant phenotypes of gastric carcinoma, as well as the underlying molecular mechanism, remains largely unclear. The present study demonstrated that ROR2 was recurrently downregulated in gastric carcinoma tissues, as compared with their matched adjacent normal tissues. Furthermore, the expression levels of ROR2 were reduced in several common gastric carcinoma cell lines, as compared with normal gastric epithelial cells. Gastric carcinoma cells were transfected with ROR2 plasmids, and it was demonstrated that restoration of ROR2 expression significantly inhibited the proliferation and induced the apoptosis of gastric carcinoma cells by a Wnt5a-independent mechanism. In addition, it was observed that ROR2-overexpressing cells accumulated in the G0/G1 phase; thus suggesting that overexpression of ROR2 induced cell cycle arrest at the G0/G1 phase. An investigation of the underlying mechanism demonstrated that activation of the non-canonical Wnt signaling pathway inhibited canonical Wnt signal transduction, as demonstrated by the decreased level of β-catenin in nuclei, as well as the reduced expression levels of c-Myc. The results of the present study indicated a tumor suppressive role for ROR2 in gastric carcinoma growth in vitro, and suggested that ROR2 may be used as a molecular target for the treatment of gastric carcinoma.
Collapse
Affiliation(s)
- Likun Yan
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Qingguo Du
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Jianfeng Yao
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Ruiting Liu
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
160
|
Differential Effects of Inflammation on Bone and Response to Biologics in Rheumatoid Arthritis and Spondyloarthritis. Curr Rheumatol Rep 2016; 18:72. [DOI: 10.1007/s11926-016-0620-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
161
|
Zhang W, Wang S, Yin H, Chen E, Xue D, Zheng Q, Gao X, Pan Z. Dihydromyricetin enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells in vitro partially via the activation of Wnt/β-catenin signaling pathway. Fundam Clin Pharmacol 2016; 30:596-606. [PMID: 27469984 DOI: 10.1111/fcp.12225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/06/2016] [Accepted: 07/26/2016] [Indexed: 01/06/2023]
Abstract
Substantial evidence has demonstrated that the decreased osteogenic differentiation of bone mesenchymal stem cells (BMSCs) is closely related to bone metabolic diseases. Thus, it is very important to develop several potentially useful therapeutic agents to enhance BMSC osteogenesis. Flavonoids show promise in enhancing bone mass. Dihydromyricetin (DMY), a type of flavonoid, has not yet been investigated regarding its effects on BMSC osteogenesis. To investigate the effects of DMY on osteogenesis, human BMSCs were induced with or without DMY. We found that DMY (0.1-50 μm) exhibited no cytotoxic effect on proliferation, but increased alkaline phosphatase activity, osteoblast-specific gene expression, and mineral deposition. It also enhanced active β-catenin expression and reduced dickkopf-1(DKK1) and sclerostin expression. The Wnt/β-catenin signaling pathway inhibitor (DKK1 and β-catenin-specific siRNA) decreased the enhanced bone mineral formation caused by DMY. Taken together, these findings reveal that DMY enhances osteogenic differentiation of human BMSCs partly through Wnt/β-catenin in vitro.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Shengdong Wang
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Houfa Yin
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Erman Chen
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Deting Xue
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Qiang Zheng
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Xiang Gao
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhijun Pan
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| |
Collapse
|
162
|
Wang JH, Zhang Y, Li HY, Liu YY, Sun T. Dickkopf-1 negatively regulates the expression of osteoprotegerin, a key osteoclastogenesis inhibitor, by sequestering Lrp6 in primary and metastatic lytic bone lesions. Medicine (Baltimore) 2016; 95:e3767. [PMID: 27310953 PMCID: PMC4998439 DOI: 10.1097/md.0000000000003767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recently, an inverse role for Wnt signaling in the development of osteoclasts in the bone was demonstrated. In the present study, we examined whether there is a commonality in the mechanism of bone resorption and lysis that occur in a diverse set of bone metastatic lesions, as well as in primary bone lesions. Compared with control bone tissue and bone biopsies from patients with nonmetastatic primary tumors (i.e., breast carcinoma, lung adenocarcinoma, and prostate carcinoma), patients with bone metastatic lesions from the three aforementioned primary tumors, as well as osteolytic lesions obtained from the bone biopsies of patients with multiple myeloma, demonstrated an upregulated expression of the glycoprotein Dickkopf-1 at both the mRNA and protein levels. Additionally, by coimmunoprecipitation, Dickkopf-1 pulled-down low-density lipoprotein receptor-related protein 6 (Lrp6), which is a key downstream effector of the Wnt signaling pathway. The expression of Lrp6 was unaltered in the osteometastatic lesions. This negative regulation was associated with a lowered expression of osteoprotegerin in the osteometastatic lesions, an observation that was previously reported to promote osteoclastogenesis. These findings provide a common mechanism for the inverse relationship between the Wnt signaling pathway and the development of primary or metastatic bone lesions. Pharmacological modulation of the Wnt signaling pathway might benefit the clinical management of primary and metastatic bone lesions.
Collapse
Affiliation(s)
- Jian-Hang Wang
- Trauma Department of Orthopedics, Yantaishan Hospital, Yantai, Shandong, China
| | - Yuanjin Zhang
- Department of Orthopedics, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Hong-Yan Li
- Trauma Department of Orthopedics, Yantaishan Hospital, Yantai, Shandong, China
| | - Yun-Yan Liu
- Trauma Department of Orthopedics, Yantaishan Hospital, Yantai, Shandong, China
| | - Tao Sun
- Trauma Department of Orthopedics, Yantaishan Hospital, Yantai, Shandong, China
| |
Collapse
|
163
|
Zheng CM, Zheng JQ, Wu CC, Lu CL, Shyu JF, Yung-Ho H, Wu MY, Chiu IJ, Wang YH, Lin YF, Lu KC. Bone loss in chronic kidney disease: Quantity or quality? Bone 2016; 87:57-70. [PMID: 27049042 DOI: 10.1016/j.bone.2016.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/18/2016] [Accepted: 03/28/2016] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) patients experience bone loss and fracture because of a specific CKD-related systemic disorder known as CKD-mineral bone disorder (CKD-MBD). The bone turnover, mineralization, and volume (TMV) system describes the morphological bone lesions in renal osteodystrophy related to CKD-MBD. Bone turnover and bone volume are defined as high, normal, or low, and bone mineralization is classified as normal or abnormal. All types of bone histology related to TMV are responsible for both bone quantity and bone quality losses in CKD patients. This review focuses on current bone quantity and bone quality losses in CKD patients and finally discusses potential therapeutic measures.
Collapse
Affiliation(s)
- Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Jin-Quan Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan; Division of Pulmonary and Critical Care, Department of Critical Care Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Lin Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Jia-Fwu Shyu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Hsu Yung-Ho
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Mei-Yi Wu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - I-Jen Chiu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan
| | - Yuan-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yuh-Feng Lin
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Kuo-Cheng Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan; Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City,Taiwan.
| |
Collapse
|
164
|
Cárdenas-García M, González-Pérez PP, Montagna S, Cortés OS, Caballero EH. Modeling Intercellular Communication as a Survival Strategy of Cancer Cells: An In Silico Approach on a Flexible Bioinformatics Framework. Bioinform Biol Insights 2016; 10:5-18. [PMID: 26997867 PMCID: PMC4790585 DOI: 10.4137/bbi.s38075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 12/13/2022] Open
Abstract
Intercellular communication is very important for cell development and allows a group of cells to survive as a population. Cancer cells have a similar behavior, presenting the same mechanisms and characteristics of tissue formation. In this article, we model and simulate the formation of different communication channels that allow an interaction between two cells. This is a first step in order to simulate in the future processes that occur in healthy tissue when normal cells surround a cancer cell and to interrupt the communication, thus preventing the spread of malignancy into these cells. The purpose of this study is to propose key molecules, which can be targeted to allow us to break the communication between cancer cells and surrounding normal cells. The simulation is carried out using a flexible bioinformatics platform that we developed, which is itself based on the metaphor chemistry-based model.
Collapse
Affiliation(s)
| | - Pedro P. González-Pérez
- Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - Sara Montagna
- Dipartimento di Informatica – Scienza e Ingegneria, Università degli Studi di Bologna, Bologna, Italia
| | - Oscar Sánchez Cortés
- Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana, Ciudad de México, México
| | | |
Collapse
|
165
|
Costantini A, Mäkitie O. Value of rare low bone mass diseases for osteoporosis genetics. BONEKEY REPORTS 2016; 5:773. [PMID: 26793304 PMCID: PMC4704609 DOI: 10.1038/bonekey.2015.143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022]
Abstract
Osteoporosis presents as increased susceptibility to fractures due to bone loss and compromised bone microstructure. Osteoporosis mainly affects the elderly population, but it is increasingly recognized that compromised bone health with low bone mass and increased fractures may have its onset already in childhood. In such cases, genetic component is likely to contribute more than lifestyle factors to disease onset. During the last decade, our understanding of the genetic determinants of osteoporosis has significantly increased through family studies, candidate gene studies and genome-wide association studies (GWASs). GWASs have led to identification of several genetic loci associated with osteoporosis. A valuable contribution to the research field has been made through studies involving families with childhood-onset rare bone diseases such as osteogenesis imperfecta, osteoporosis-pseudoglioma syndrome and various other skeletal dysplasias with reduced bone mass. Some genes involved in rare low bone mass diseases, such as LRP5 and WNT1, participate in the Wnt/β-catenin pathway, and their discovery has underscored the importance of this pathway for normal skeletal health. The still continuing discovery of gene defects underlying various low bone mass phenotypes contributes to our understanding of normal bone metabolism and enables development of new therapies for osteoporosis.
Collapse
Affiliation(s)
- Alice Costantini
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
166
|
Felber K, Elks PM, Lecca M, Roehl HH. Expression of osterix Is Regulated by FGF and Wnt/β-Catenin Signalling during Osteoblast Differentiation. PLoS One 2015; 10:e0144982. [PMID: 26689368 PMCID: PMC4686927 DOI: 10.1371/journal.pone.0144982] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/26/2015] [Indexed: 01/24/2023] Open
Abstract
Osteoblast differentiation from mesenchymal cells is regulated by multiple signalling pathways. Here we have analysed the roles of Fibroblast Growth Factor (FGF) and canonical Wingless-type MMTV integration site (Wnt/β-Catenin) signalling pathways on zebrafish osteogenesis. We have used transgenic and chemical interference approaches to manipulate these pathways and have found that both pathways are required for osteoblast differentiation in vivo. Our analysis of bone markers suggests that these pathways act at the same stage of differentiation to initiate expression of the osteoblast master regulatory gene osterix (osx). We use two independent approaches that suggest that osx is a direct target of these pathways. Firstly, we manipulate signalling and show that osx gene expression responds with similar kinetics to that of known transcriptional targets of the FGF and Wnt pathways. Secondly, we have performed ChIP with transcription factors for both pathways and our data suggest that a genomic region in the first intron of osx mediates transcriptional activation. Based upon these data, we propose that FGF and Wnt/β-Catenin pathways act in part by directing transcription of osx to promote osteoblast differentiation at sites of bone formation.
Collapse
Affiliation(s)
- Katharina Felber
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Philip M. Elks
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Maria Lecca
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Henry H. Roehl
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
- * E-mail:
| |
Collapse
|
167
|
Sun X, Cao Z, Zhang Q, Liu S, Xu F, Che J, Zhu Y, Li Y, Pan C, Liang W. Aluminum trichloride impairs bone and downregulates Wnt/β-catenin signaling pathway in young growing rats. Food Chem Toxicol 2015; 86:154-62. [DOI: 10.1016/j.fct.2015.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/16/2015] [Accepted: 10/10/2015] [Indexed: 11/16/2022]
|
168
|
Huang J, Shi Y, Li H, Tan D, Yang M, Wu X. Knockdown of receptor tyrosine kinase-like orphan receptor 2 inhibits cell proliferation and colony formation in osteosarcoma cells by inducing arrest in cell cycle progression. Oncol Lett 2015; 10:3705-3711. [PMID: 26788194 DOI: 10.3892/ol.2015.3797] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 08/13/2015] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma (OS) is the most common malignant tumor of the bone, with a high mortality rate and poor prognosis. Receptor tyrosine kinase-like orphan receptor 2 (ROR2) has been reported to be dysregulated in human malignancies. More recently, ROR2 has been demonstrated to promote OS cell migration and invasion. However, the role of ROR2 in the regulation of OS cell proliferation, as well as the underlying molecular mechanism, remains unclear. The present study aimed to investigate the underlying mechanism of ROR2 in osteosarcoma growth. Reverse transcription-quantitative polymerase chain reaction analysis and western blot analysis were used to examine the mRNA and protein expression. MTT assay, colony formation assay and cell cycle analysis were conducted to explore the function of ROR2 in osteosarcoma cells. In the present study, the expression of ROR2 was found to be frequently upregulated in OS tissues compared with matched adjacent normal tissues. It was also upregulated in the OS cell lines Saos-2, MG-63 and U-2 OS, relative to normal osteoblast hFOB 1.19 cells. Knockdown of ROR2 expression by transfection with ROR2-specific siRNA markedly inhibited the proliferation and colony formation of OS cells. Data from the cell cycle distribution assay revealed an accumulation of ROR2-knockdown cells in the G0/G1 phase, indicating that knockdown of ROR2 leads to an arrest in cell cycle progression. Mechanistic investigation revealed that the protein levels of c-myc, a target gene of the Wnt signaling, as well as cyclin D1, cyclin E and cyclin-dependent kinase 4 were markedly reduced in the ROR2-knockdown OS cells, suggesting that the inhibitory effect of ROR2 knockdown on OS cell proliferation is associated with the Wnt signaling pathway. In summary, the current study indicates an important role for ROR2 in the proliferation of OS cells. Therefore, ROR2 may be a promising therapeutic target in OS.
Collapse
Affiliation(s)
- Jianjun Huang
- The Second Department of Orthopedics, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Ying Shi
- Teaching and Research Department of Pathology and Pathophysiology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Hui Li
- Department of Immunology and Microbiology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Dunyong Tan
- Department of Immunology and Microbiology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Meisongzhu Yang
- Teaching and Research Department of Pathology and Pathophysiology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Xiang Wu
- The Second Department of Orthopedics, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, P.R. China
| |
Collapse
|
169
|
Affiliation(s)
- A G Nilsson
- Department of Endocrinology, Sahlgrenska University Hospital, Göteborg, Sweden.,Geriatric Medicine, Institute of Medicine, Sahlgrenska Academy, Mölndal, Göteborg, Sweden
| |
Collapse
|