151
|
Ai S, Jia T, Ai W, Duan J, Liu Y, Chen J, Liu X, Yang F, Tian Y, Huang Z. Targeted delivery of doxorubicin through conjugation with EGF receptor-binding peptide overcomes drug resistance in human colon cancer cells. Br J Pharmacol 2013; 168:1719-35. [PMID: 23146125 DOI: 10.1111/bph.12055] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 10/10/2012] [Accepted: 11/01/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Induction of multidrug resistance by doxorubicin (DOX), together with non-specific toxicities, has restricted DOX-based chemotherapy. Recently, we demonstrated that DOX conjugated with an EGF receptor-binding peptide (DOX-EBP) had enhanced anticancer efficacy and reduced systemic toxicity when targeting EGF receptor-overexpressing tumours. Here we investigated whether DOX-EBP is able to overcome drug resistance and the underlying molecular mechanisms. EXPERIMENTAL APPROACH DOX-resistant SW480/DOX cells were derived from non-resistant SW480 cells by stepwise exposure to increasing concentrations of DOX, and P-glycoprotein overexpression induced by DOX was confirmed by Western blotting. Cytotoxicity and intracellular distribution of drugs were evaluated by MTT assay and fluorescence microscopy respectively. EGF receptor-mediated endocytosis was determined in EGF receptor and endocytosis inhibition assays. Drug accumulation in tumour cells and murine xenografts was determined by HPLC. KEY RESULTS The cytotoxicity and accumulation of DOX-EBP in SW480/DOX cells were almost the same as in SW480 cells, but those of free DOX were reduced. DOX-EBP accumulation was prevented by inhibitors of both EGF receptors and endocytosis, suggesting EGF receptors mediate endocytotic uptake. Tumour accumulation of DOX-EBP was significantly higher than free DOX in mice, and the levels of DOX-EBP were similar in DOX-resistant and non-resistant tumour tissues. Importantly, DOX-EBP, but not free DOX, was effective at inhibiting solid tumour growth and increased survival rate in both sensitive and resistant models. CONCLUSION AND IMPLICATIONS DOX-EBP can overcome DOX resistance of tumour cells and increase in vivo antitumour efficacy. Therefore, it has the potential to be a potent therapeutic agent for treating drug-resistant cancers.
Collapse
Affiliation(s)
- Shibin Ai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Exploiting nanotechnology to overcome tumor drug resistance: Challenges and opportunities. Adv Drug Deliv Rev 2013; 65:1731-47. [PMID: 24036273 DOI: 10.1016/j.addr.2013.09.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/15/2013] [Accepted: 09/03/2013] [Indexed: 02/06/2023]
Abstract
Tumor cells develop resistance to chemotherapeutic drugs through multiple mechanisms. Overexpression of efflux transporters is an important source of drug resistance. Efflux transporters such as P-glycoprotein reduce intracellular drug accumulation and compromise drug efficacy. Various nanoparticle-based approaches have been investigated to overcome efflux-mediated resistance. These include the use of formulation excipients that inhibit transporter activity and co-delivery of the anticancer drug with a specific inhibitor of transporter function or expression. However, the effectiveness of nanoparticles can be diminished by poor transport in the tumor tissue. Hence, adjunct therapies that improve the intratumoral distribution of nanoparticles may be vital to the successful application of nanotechnology to overcome tumor drug resistance. This review discusses the mechanisms of tumor drug resistance and highlights the opportunities and challenges in the use of nanoparticles to improve the efficacy of anticancer drugs against resistant tumors.
Collapse
|
153
|
Kumbhar DD, Pokharkar VB. Physicochemical investigations on an engineered lipid–polymer hybrid nanoparticle containing a model hydrophilic active, zidovudine. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.07.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
154
|
Xi G, Robinson E, Mania-Farnell B, Vanin EF, Shim KW, Takao T, Allender EV, Mayanil CS, Soares MB, Ho D, Tomita T. Convection-enhanced delivery of nanodiamond drug delivery platforms for intracranial tumor treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:381-91. [PMID: 23916888 DOI: 10.1016/j.nano.2013.07.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 07/16/2013] [Accepted: 07/24/2013] [Indexed: 11/28/2022]
Abstract
UNLABELLED This study examined a novel drug delivery system for treatment of malignant brain gliomas: DOX complexed with nanodiamonds (ND-Dox), and administered via convection-enhanced delivery (CED). Drug retention and toxicity were examined in glioma cell lines, and distribution, retention and toxicity were examined in normal rat parenchyma. Efficacy was assessed in a bioluminescence rodent tumor model. NDs markedly enhanced DOX uptake and retention in glioma cells. ND-Dox delivered via CED extended DOX retention and localized DOX toxicity in normal rodent parenchyma, and was significantly more efficient at killing tumor cells than uncomplexed DOX. Outcomes from this work suggest that CED of ND-Dox is a promising approach for brain tumor treatment. FROM THE CLINICAL EDITOR In this paper, nanodiamonds were utilized to enhance delivery of DOX in a preclinical glioma model using a convection-enhanced delivery method, demonstrating remarkably enhanced efficacy.
Collapse
Affiliation(s)
- Guifa Xi
- Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Falk Brain Tumor Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Development Biology Department, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Erik Robinson
- Departments of Biomedical and Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | | | - Elio Fausto Vanin
- Cancer Biology and Epigenomics Program, Ann & Robert H. Lurie Children's Hospital of Chicago Research Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kyu-Won Shim
- Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Development Biology Department, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tsurubuchi Takao
- Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Development Biology Department, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elise Victoria Allender
- Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Development Biology Department, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chandra Shekhar Mayanil
- Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Development Biology Department, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marcelo Bento Soares
- Cancer Biology and Epigenomics Program, Ann & Robert H. Lurie Children's Hospital of Chicago Research Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dean Ho
- Departments of Biomedical and Mechanical Engineering, Northwestern University, Evanston, IL, USA.
| | - Tadanori Tomita
- Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Falk Brain Tumor Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
155
|
Thanki K, Gangwal RP, Sangamwar AT, Jain S. Oral delivery of anticancer drugs: Challenges and opportunities. J Control Release 2013; 170:15-40. [DOI: 10.1016/j.jconrel.2013.04.020] [Citation(s) in RCA: 330] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 12/12/2022]
|
156
|
Ma P, Mumper RJ. Anthracycline Nano-Delivery Systems to Overcome Multiple Drug Resistance: A Comprehensive Review. NANO TODAY 2013; 8:313-331. [PMID: 23888183 PMCID: PMC3718073 DOI: 10.1016/j.nantod.2013.04.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Anthracyclines (doxorubicin, daunorubicin, and idarubicin) are very effective chemotherapeutic drugs to treat many cancers; however, the development of multiple drug resistance (MDR) is one of the major limitations for their clinical applications. Nano-delivery systems have emerged as the novel cancer therapeutics to overcome MDR. Up until now, many anthracycline nano-delivery systems have been developed and reported to effectively circumvent MDR both in-vitro and in-vivo, and some of these systems have even advanced to clinical trials, such as the HPMA-doxorubicin (HPMA-DOX) conjugate. Doxil, a DOX PEGylated liposome formulation, was developed and approved by FDA in 1995. Unfortunately, this formulation does not address the MDR problem. In this comprehensive review, more than ten types of developed anthracycline nano-delivery systems to overcome MDR and their proposed mechanisms are covered and discussed, including liposomes; polymeric micelles, conjugate and nanoparticles; peptide/protein conjugates; solid-lipid, magnetic, gold, silica, and cyclodextrin nanoparticles; and carbon nanotubes.
Collapse
Affiliation(s)
- Ping Ma
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Russell J. Mumper
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA
| |
Collapse
|
157
|
Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:474-91. [DOI: 10.1016/j.nano.2012.11.010] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 11/06/2012] [Accepted: 11/14/2012] [Indexed: 12/22/2022]
|
158
|
Senkiv YV. Action of free and polymer carrier encapsulated doxorubicin towards HCT116 cells of human colorectal carcinoma. UKRAINIAN BIOCHEMICAL JOURNAL 2013. [DOI: 10.15407/ubj85.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
159
|
Tan S, Li X, Guo Y, Zhang Z. Lipid-enveloped hybrid nanoparticles for drug delivery. NANOSCALE 2013; 5:860-872. [PMID: 23292080 DOI: 10.1039/c2nr32880a] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Recent advances in nanotechnology and material sciences have promoted the development of nanomedicine. Among the formulations developed, novel lipid-enveloped hybrid nanoparticles have attracted more attention because of their special structure, properties and clinical applicability. The hybrid nanoparticles are composed of a hydrophilic PEG shell, a nano-sized polymeric or inorganic core and a lipid mono- or bi-layer between the core and PEG shell. This kind of nanoparticle possesses both the characteristics of liposomes and nanoparticles which endows it with many advantages like long circulation, high drug loading efficiency, high stability and biocompatibility, controlled release properties, and drug cocktail delivery. This review describes the recent developments of lipid-enveloped hybrid nanoparticles in cancer treatment, including the fabrication methods, formulations and applications of these hybrid nanoparticles. We expect that the continuing development of lipid-based nanomedicine will greatly improve cancer treatment.
Collapse
Affiliation(s)
- Songwei Tan
- Tongji School of Pharmacy and National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | |
Collapse
|
160
|
Kaur J, Tikoo K. p300/CBP dependent hyperacetylation of histone potentiates anticancer activity of gefitinib nanoparticles. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1028-40. [PMID: 23384777 DOI: 10.1016/j.bbamcr.2013.01.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/09/2013] [Accepted: 01/25/2013] [Indexed: 12/31/2022]
Abstract
Gefitinib is an Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitor, approved for patients with non-small cell lung cancer (NSCLC). In this report we demonstrate that gefitinib loaded PLGA nanoparticles (GNPs), in comparison to gefitinib, exhibited higher anti-cancer activity on A549 lung carcinoma cells and A431 skin carcinoma cells. Increased inhibition of pEGFR in both the cell types explains its higher anti-cancer activity. Interestingly, gefitinib resistant, H1975 (T790M EGFR mutant) lung carcinoma cells was also found to be sensitive to GNPs. Our data shows that GNPs hyperacetylate histone H3 in these cells, either directly or indirectly, which may account for the augmented cell death. GNPs were proficient in activating histone acetyltransferases (p300/CBP), which in turn induces the expression of p21 and cell cycle arrest. Furthermore, inhibition of histone acetyltransferases by garcinol results in alleviation of cell death caused by GNPs. In addition to this, nuclear intrusion of GNPs results in the inhibition of NO production in nucleus, possibly through nuclear EGFR, which might be responsible for preventing cell proliferation in resistant cells. To best of our knowledge, we provide first evidence that GNPs potentiate cell death by activating p300/CBP histone acetyltransferases.
Collapse
Affiliation(s)
- Jasmine Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | | |
Collapse
|
161
|
Lee J, Jeong D, Seo S, Na K. Biodegradable nanogel based on all-trans retinoic acid/pullulan conjugate for anti-cancer drug delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2013. [DOI: 10.1007/s40005-013-0055-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
162
|
Kim KR, Kim DR, Lee T, Yhee JY, Kim BS, Kwon IC, Ahn DR. Drug delivery by a self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells. Chem Commun (Camb) 2013; 49:2010-2. [DOI: 10.1039/c3cc38693g] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
163
|
Mussi SV, Silva RC, Oliveira MCD, Lucci CM, Azevedo RBD, Ferreira LAM. New approach to improve encapsulation and antitumor activity of doxorubicin loaded in solid lipid nanoparticles. Eur J Pharm Sci 2013. [DOI: 10.1016/j.ejps.2012.10.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
164
|
Liu P, Shi B, Yue C, Gao G, Li P, Yi H, Li M, Wang B, Ma Y, Cai L. Dextran-based redox-responsive doxorubicin prodrug micelles for overcoming multidrug resistance. Polym Chem 2013. [DOI: 10.1039/c3py00830d] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
165
|
Ditto AJ, Shah KN, Robishaw NK, Panzner MJ, Youngs WJ, Yun YH. The Interactions between L-tyrosine based nanoparticles decorated with folic acid and cervical cancer cells under physiological flow. Mol Pharm 2012; 9:3089-98. [PMID: 22957928 DOI: 10.1021/mp300221f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many anticancer drugs have been established clinically, but their efficacy can be compromised by nonspecific toxicity and an inability to reach the desired cancerous intracellular spaces. In order to address these issues, researchers have explored the use of folic acid as a targeted moiety to increase specificity of chemotherapeutic drugs. To expand upon such research, we have conjugated folic acid to functionalized poly(ethylene glycol) and subsequently decorated the surface of l-tyrosine polyphosphate (LTP) nanoparticles. These nanoparticles possess the appropriate size (100-500 nm) for internalization as shown by scanning electron microscopy and dynamic light scattering. Under simulated physiological flow, LTP nanoparticles decorated with folic acid (targeted nanoparticles) show a 10-fold greater attachment to HeLa, a cervical cancer cell line, compared to control nanoparticles and to human dermal fibroblasts. The attachment of these targeted nanoparticles progresses at a linear rate, and the strength of this nanoparticle attachment is shown to withstand shear stresses of 3.0 dyn/cm(2). These interactions of the targeted nanoparticles to HeLa are likely a result of a receptor-ligand binding, as a competition study with free folic acid inhibits the nanoparticle attachment. Finally, the targeted nanoparticles encapsulated with a silver based drug show increased efficacy in comparison to nondecorated (plain) nanoparticles and drug alone against HeLa cells. Thus, targeted nanoparticles are a promising delivery platform for developing anticancer therapies that overexpress the folate receptors (FRs).
Collapse
Affiliation(s)
- Andrew J Ditto
- Department of Biomedical Engineering, The University of Akron, Olson Research Center, Akron, Ohio 44325-0302, United States
| | | | | | | | | | | |
Collapse
|
166
|
Zhu XM, Yuan J, Leung KCF, Lee SF, Sham KWY, Cheng CHK, Au DWT, Teng GJ, Ahuja AT, Wang YXJ. Hollow superparamagnetic iron oxide nanoshells as a hydrophobic anticancer drug carrier: intracelluar pH-dependent drug release and enhanced cytotoxicity. NANOSCALE 2012; 4:5744-54. [PMID: 22895638 DOI: 10.1039/c2nr30960b] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
With curcumin and doxorubicin (DOX) base as model drugs, intracellular delivery of hydrophobic anticancer drugs by hollow structured superparamagnetic iron oxide (SPIO) nanoshells (hydrodynamic diameter: 191.9 ± 2.6 nm) was studied in glioblastoma U-87 MG cells. SPIO nanoshell-based encapsulation provided a stable aqueous dispersion of the curcumin. After the SPIO nanoshells were internalized by U-87 MG cells, they localized at the acidic compartments of endosomes and lysosomes. In endosome/lysosome-mimicking buffers with a pH of 4.5-5.5, pH-dependent drug release was observed from curcumin or DOX loaded SPIO nanoshells (curcumin/SPIO or DOX/SPIO). Compared with the free drug, the intracellular curcumin content delivered via curcumin/SPIO was 30 fold higher. Increased intracellular drug content for DOX base delivered via DOX/SPIO was also confirmed, along with a fast intracellular DOX release that was attributed to its protonation in the acidic environment. DOX/SPIO enhanced caspase-3 activity by twofold compared with free DOX base. The concentration that induced 50% cytotoxic effect (CC(50)) was 0.05 ± 0.03 μg ml(-1) for DOX/SPIO, while it was 0.13 ± 0.02 μg ml(-1) for free DOX base. These results suggested SPIO nanoshells might be a promising intracellular carrier for hydrophobic anticancer drugs.
Collapse
Affiliation(s)
- Xiao-Ming Zhu
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Shuhendler AJ, Prasad P, Leung M, Rauth AM, Dacosta RS, Wu XY. A novel solid lipid nanoparticle formulation for active targeting to tumor α(v) β(3) integrin receptors reveals cyclic RGD as a double-edged sword. Adv Healthc Mater 2012. [PMID: 23184795 DOI: 10.1002/adhm.201200006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The overexpression of α(v) β(3) integrin receptors on tumor cells and tumor vascular endothelium makes it a useful target for imaging, chemotherapy and anti-angiogenic therapy. However integrin-targeted delivery of therapeutics by nanoparticles have provided only marginal, if any, enhancement of therapeutic effect. This work was thus focused on the development of novel α(v) β(3) -targeted near infrared light-emitting solid lipid nanoparticles (SLN) through conjugation to the α(v) β(3) integrin-specific ligand cyclic Arg-Gly-Asp (cRGD), and the assessment of the effects of α(v) β(3) targeting on nanoparticle biodistribution. Since our previously developed non-targeted "stealth" SLN showed little hepatic accumulation, unlike most reported liposomes and micelles, they served as a reference for quantifying the effects of cRGD-conjugation on tumor uptake and whole animal biodistribution of SLN. Non-targeted SLN, actively targeted (RGD-SLN) and blocked RGD-SLN were prepared to contain near infrared quantum dots for live animal imaging. They were injected intravenously to nude mice bearing xenograft orthotopic human breast tumors or dorsal window chamber breast tumors. Tumor micropharmacokinetics of various SLN formulations were determined using intravital microscopy, and whole animal biodistribution was followed over time by optical imaging. The active tumor targeting with cRGD was found to be a "double-edged sword": while the specificity of RGD-SLN accumulation in tumor blood vessels and their tumor residence time increased, their distribution in the liver, spleen, and kidneys was significantly greater than the non-targeted SLN, leaving a smaller amount of nanoparticles in the tumor tissue. Nevertheless the enhanced specificity and retention of RGD-SLN in tumor neovasculature could make this novel formulation useful for tumor neovascular-specific therapies and imaging applications.
Collapse
Affiliation(s)
- Adam J Shuhendler
- Department of Pharmaceutical Sciences, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada, M5S 3M2
| | | | | | | | | | | |
Collapse
|
168
|
Abstract
Pulmonary administration of inhalable nanoparticles (NPs) is an emerging area of interest. Dry powder inhalers may offer particular advantages for pulmonary administration of NPs. This article reviews research performed on the formulation of inhalable NPs as dry powder to achieve deep-lung deposition and enhance NP redispersibility. Moreover, the article summarizes up-to-date in vivo applications of inhalable NPs as dry powder inhalers.
Collapse
|
169
|
Wang R, Xiao R, Zeng Z, Xu L, Wang J. Application of poly(ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) block copolymers and their derivatives as nanomaterials in drug delivery. Int J Nanomedicine 2012; 7:4185-98. [PMID: 22904628 PMCID: PMC3418104 DOI: 10.2147/ijn.s34489] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Indexed: 12/14/2022] Open
Abstract
Poly(ethylene glycol)–distearoylphosphatidylethanolamine (PEG-DSPE) block copolymers are biocompatible and amphiphilic polymers that can be widely utilized in the preparation of liposomes, polymeric nanoparticles, polymer hybrid nanoparticles, solid lipid nanoparticles, lipid–polymer hybrid nanoparticles, and microemulsions. Particularly, the terminal groups of PEG can be activated and linked to various targeting ligands, which can prolong the circulation time, improve the drug bioavailability, reduce undesirable side effects, and especially target specific cells, tissues, and even the intracellular localization in organelles. This review herein aims to describe recent developments in drug carriers exploiting PEG-DSPE block copolymers and their derivatives, and the incorporation of different ligands to the end groups of PEG-DSPE to target delivery, focusing on their modification approaches, advantages, applications, and the probable associated drawbacks.
Collapse
Affiliation(s)
- Rongrong Wang
- Campus Hospital of Zhejiang University, and Research Center for Biomedicine and Health, Hangzhou Normal University, 1378 Wen Yi Xi Road, Hangzhou, Zhejiang, China. /
| | | | | | | | | |
Collapse
|
170
|
Zhao Y, Wang L, Yan M, Ma Y, Zang G, She Z, Deng Y. Repeated injection of PEGylated solid lipid nanoparticles induces accelerated blood clearance in mice and beagles. Int J Nanomedicine 2012; 7:2891-900. [PMID: 22745552 PMCID: PMC3383289 DOI: 10.2147/ijn.s30943] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Surface modification of nanocarriers with amphiphilic polymer polyethylene glycol (PEG), known as PEGylation, is regarded as a major breakthrough in the application of nanocarriers. However, PEGylated nanocarriers (including liposomes and polymeric nanoparticles) induce what is referred to as the “accelerated blood clearance (ABC) phenomenon” upon repeated injection and consequently they lose their sustained circulation characteristics. Despite this, the present authors are not aware of any reports of accelerated clearance due to repeated injection for PEGylated solid lipid nanoparticles (SLNs), another promising nanocarrier. This study investigated the pharmacokinetics of PEGylated SLNs upon repeated administration in mice; moreover, the impact of circulation time on the induction of the ABC phenomenon was studied in beagles for the first time. The ABC index, selected as the ratio of the area under the concentration-time curve from time 0 to the last measured concentration of a second injection to that of the first injection, was used to evaluate the extent of this phenomenon. Results showed that the PEGylated SLNs exhibited accelerated clearance from systemic circulation upon repeated injection, both in mice and in beagles, and the ratio for the different time intervals, which showed that the ABC index exhibited significant difference within 30 minutes following the second injection, was good enough to evaluate the magnitude of ABC. This ABC index indicated that the 10 mol% PEG SLNs with a suitable prolonged circulation time induced the most marked ABC phenomenon in this research. This study demonstrated that, like PEGylated nanocarriers such as liposomes and polymeric nanoparticles, PEGylated SLNs induced the ABC phenomenon upon repeated injection – the beagle was a valuable experimental animal for this research. Furthermore, the authors considered that a relatively extended circulation time of the initial dose may be the underlying major factor determining the induction of the ABC phenomenon.
Collapse
Affiliation(s)
- Yongxue Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
171
|
Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today 2012; 17:1044-52. [PMID: 22652342 DOI: 10.1016/j.drudis.2012.05.010] [Citation(s) in RCA: 372] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/16/2012] [Accepted: 05/21/2012] [Indexed: 01/08/2023]
Abstract
Combination therapy for the treatment of cancer is becoming more popular because it generates synergistic anticancer effects, reduces individual drug-related toxicity and suppresses multi-drug resistance through different mechanisms of action. In recent years, nanotechnology-based combination drug delivery to tumor tissues has emerged as an effective strategy by overcoming many biological, biophysical and biomedical barriers that the body stages against successful delivery of anticancer drugs. The sustained, controlled and targeted delivery of chemotherapeutic drugs in a combination approach enhanced therapeutic anticancer effects with reduced drug-associated side effects. In this article, we have reviewed the scope of various nanotechnology-based combination drug delivery approaches and also summarized the current perspective and challenges facing the successful treatment of cancer.
Collapse
|
172
|
Abdekhodaie MJ, Liu Z, Erhan SZ, Wu XY. Characterization of novel soybean-oil-based thermosensitive amphiphilic polymers for drug delivery applications. POLYM INT 2012. [DOI: 10.1002/pi.4244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
173
|
Gullotti E, Yeo Y. Beyond the imaging: limitations of cellular uptake study in the evaluation of nanoparticles. J Control Release 2012; 164:170-6. [PMID: 22568932 DOI: 10.1016/j.jconrel.2012.04.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 04/06/2012] [Accepted: 04/29/2012] [Indexed: 01/01/2023]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) conjugated to a cell-penetrating peptide, TAT, was used to increase intracellular delivery of paclitaxel (PTX) to multi-drug resistant (MDR) cells. Efficient cellular uptake of the TAT-conjugated PLGA NPs was observed; however, it did not translate to increased killing of MDR cells. An investigation of drug release kinetics in phosphate-buffered saline containing Tween 80 led us to suspect that a significant fraction of the loaded PTX was released before efficient cellular uptake could occur. These results indicate that the increased cellular uptake of NPs does not always mean an enhanced drug effect and that it is critical to control both the location of NPs and the drug release from NPs together. Based on this study, we propose that two prevalent practices in NP research be reconsidered: first, the utility of a new NP system should be tested beyond the imaging level. Second, NP release kinetics should be monitored in a medium that can reflect the complexity of biological environment rather than a simple buffered saline.
Collapse
Affiliation(s)
- Emily Gullotti
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, USA
| | | |
Collapse
|
174
|
Lin X, Gao R, Zhang Y, Qi N, Zhang Y, Zhang K, He H, Tang X. Lipid nanoparticles for chemotherapeutic applications: strategies to improve anticancer efficacy. Expert Opin Drug Deliv 2012; 9:767-81. [DOI: 10.1517/17425247.2012.685933] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
175
|
Siddiqui A, Gupta V, Liu YY, Nazzal S. Doxorubicin and MBO-asGCS oligonucleotide loaded lipid nanoparticles overcome multidrug resistance in adriamycin resistant ovarian cancer cells (NCI/ADR-RES). Int J Pharm 2012; 431:222-9. [PMID: 22562053 DOI: 10.1016/j.ijpharm.2012.04.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/11/2012] [Accepted: 04/19/2012] [Indexed: 01/28/2023]
Abstract
The objective of this study was to increase the potency of doxorubicin against adriamycin-resistant NCI/ADR-RES cells by concurrent treatment with doxorubicin and MBO-asGCS loaded solid-lipid nanoparticles (SLN). Loading doxorubicin as ion-pair complex with deoxytaurocholate into cationic and neutral SLN was investigated. Fast release and poor entrapment were observed in cationic nanoparticles, which were corrected by entrapping the complex in neutral polyoxyethylene (20) stearyl ether (Brij(®) 78)/VitE-TPGS nanoparticles. Slow doxorubicin release confirmed the influence of charge and electrolytes on the dissociation of ion-pair complexes. To evaluate antitumor activity, NCI/ADR-RES cells were treated with separate SLN: one loaded with doxorubicin and another carrying MBO-asGCS oligonucleotide. The viability of cells treated with 5 μM doxorubicin was reduced to 17.2% whereas viability was reduced to 2.5% for cells treated with both 5 μM doxorubicin SLN and 100 nM MBO-asGCS SLN. This suggested enhanced apoptosis due to sensitization and effective intracellular delivery of MBO-asGCS and doxorubicin by SLN.
Collapse
Affiliation(s)
- Akhtar Siddiqui
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | | | | | | |
Collapse
|
176
|
Yu Z, He B, Long C, Liu R, Sheng M, Wang G, Tang JZ, Gu Z. Synthesis, characterization, and drug delivery of amphiphilic poly{(lactic acid)-co-[(glycolic acid)-alt-(L-glutamic acid)]}-g-poly(ethylene glycol). Macromol Res 2012. [DOI: 10.1007/s13233-012-0055-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
177
|
The improvement of anti-proliferation activity against breast cancer cell line of thioguanine by gold nanoparticles. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0030-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
178
|
Ohara Y, Oda T, Yamada K, Hashimoto S, Akashi Y, Miyamoto R, Kobayashi A, Fukunaga K, Sasaki R, Ohkohchi N. Effective delivery of chemotherapeutic nanoparticles by depleting host Kupffer cells. Int J Cancer 2012; 131:2402-10. [DOI: 10.1002/ijc.27502] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/08/2012] [Indexed: 12/31/2022]
|
179
|
Battaglia L, Gallarate M. Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opin Drug Deliv 2012; 9:497-508. [PMID: 22439808 DOI: 10.1517/17425247.2012.673278] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Nanoparticles are rapidly developing as drug carriers because of their size-dependent properties. Lipid nanoparticles (LNPs) are widely employed in drug delivery because of the biocompatibility of the lipid matrix. AREAS COVERED Many different types of LNPs have been engineered in the last 20 years, the most important being solid lipid nanoparticles (SLNs), nanostrucured lipid carriers (NLCs), lipid-drug conjugates (LDCs) and lipid nanocapsules (LNCs). This review gives an overview of LNPs, including their physico-chemical properties and pharmacological uses. Moreover, it highlights the most important innovations in the preparation techniques of LNPs, aimed to encapsulate different molecules within the lipid matrix. Finally, it gives a short perspective on the challenges of drug delivery, which are a potential field of application for LNPs: cancer therapy, overcoming the blood-brain barrier and gene and protein delivery. EXPERT OPINION LNPs are a safe and versatile vehicles for drug and active delivery, suitable for different administration routes. New technologies have been developed for LNP preparation and studies are currently underway in order to obtain the encapsulation of different drugs and to deliver the active molecule to the site of action.
Collapse
Affiliation(s)
- Luigi Battaglia
- Università degli Studi di Torino, Dipartimento di Scienza e Tecnologia del Farmaco , via Pietro Giuria 9, Torino , Italy.
| | | |
Collapse
|
180
|
Zhu XM, Wang YXJ, Leung KCF, Lee SF, Zhao F, Wang DW, Lai JMY, Wan C, Cheng CHK, Ahuja AT. Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines. Int J Nanomedicine 2012; 7:953-64. [PMID: 22393292 PMCID: PMC3289449 DOI: 10.2147/ijn.s28316] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose To compare the cellular uptake efficiency and cytotoxicity of aminosilane (SiO2-NH2)-coated superparamagnetic iron oxide (SPIO@SiO2-NH2) nanoparticles with three other types of SPIO nanoparticles coated with SiO2 (SPIO@SiO2), dextran (SPIO@dextran), or bare SPIO in mammalian cell lines. Materials and methods Four types of monodispersed SPIO nanoparticles with a SPIO core size of 7 nm and an overall size in a range of 7–15 nm were synthesized. The mammalian cell lines of MCF-7, MDA-MB-231, HT-29, RAW264.7, L929, HepG2, PC-3, U-87 MG, and mouse mesenchymal stem cells (MSCs) were incubated with four types of SPIO nanoparticles for 24 hours in the serum-free culture medium Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 μg/mL iron concentration. The cellular uptake efficiencies of SPIO nanoparticles were compared by Prussian blue staining and intracellular iron quantification. In vitro magnetic resonance imaging of MSC pellets after SPIO labeling was performed at 3 T. The effect of each SPIO nanoparticle on the cell viability of RAW 264.7 (mouse monocyte/macrophage) cells was also evaluated. Results Transmission electron microscopy demonstrated surface coating with SiO2-NH2, SiO2, and dextran prevented SPIO nanoparticle aggregation in DMEM culture medium. MCF-7, MDA-MB-231, and HT-29 cells failed to show notable iron uptake. For all the remaining six cell lines, Prussian blue staining and intracellular iron quantification demonstrated that SPIO@ SiO2-NH2 nanoparticles had the highest cellular uptake efficiency. SPIO@SiO2-NH2, bare SPIO, and SPIO@dextran nanoparticles did not affect RAW 264.7 cell viability up to 200 μg Fe/mL, while SPIO@SiO2 reduced RAW 264.7 cell viability from 10 to 200 μg Fe/mL in a dose-dependent manner. Conclusion Cellular uptake efficiency of SPIO nanoparticles depends on both the cell type and SPIO surface characteristics. Aminosilane surface coating enhanced the cellular uptake efficiency without inducing cytotoxicity in a number of cell lines.
Collapse
Affiliation(s)
- Xiao-Ming Zhu
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR
| | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Yang F, Tang Q, Zhong X, Bai Y, Chen T, Zhang Y, Li Y, Zheng W. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. Int J Nanomedicine 2012; 7:835-44. [PMID: 22359460 PMCID: PMC3284226 DOI: 10.2147/ijn.s28278] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A simple and solution-phase method for functionalization of selenium nanoparticles (SeNPs) with Spirulina polysaccharides (SPS) has been developed in the present study. The cellular uptake and anticancer activity of SPS-SeNPs were also evaluated. Monodisperse and homogeneous spherical SPS-SeNPs with diameters ranging from 20 nm to 50 nm were achieved under optimized conditions, which were stable in the solution phase for at least 3 months. SPS surface decoration significantly enhanced the cellular uptake and cytotoxicity of SeNPs toward several human cancer cell lines. A375 human melanoma cells were found extremely susceptible to SPS-SeNPs with half maximal (50%) inhibitory concentration value of 7.94 μM. Investigation of the underlying mechanisms revealed that SPS-SeNPs inhibited cancer cell growth through induction of apoptosis, as evidenced by an increase in sub-G(1) cell population, deoxyribonucleic acid fragmentation, chromatin condensation, and phosphatidylserine translocation. Results suggest that the strategy to use SPS as a surface decorator could be an effective way to enhance the cellular uptake and anticancer efficacy of nanomaterials. SPS-SeNPs may be a potential candidate for further evaluation as a chemopreventive and chemotherapeutic agent against human cancers.
Collapse
Affiliation(s)
- Fang Yang
- Department of Chemistry, Jinan University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Novel nanostructured lipid-dextran sulfate hybrid carriers overcome tumor multidrug resistance of mitoxantrone hydrochloride. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:185-93. [DOI: 10.1016/j.nano.2011.06.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 06/02/2011] [Accepted: 06/07/2011] [Indexed: 11/21/2022]
|
183
|
Gu PF, Xu H, Sui BW, Gou JX, Meng LK, Sun F, Wang XJ, Qi N, Zhang Y, He HB, Tang X. Polymeric micelles based on poly(ethylene glycol) block poly(racemic amino acids) hybrid polypeptides: conformation-facilitated drug-loading behavior and potential application as effective anticancer drug carriers. Int J Nanomedicine 2012; 7:109-22. [PMID: 22275827 PMCID: PMC3260955 DOI: 10.2147/ijn.s27475] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Indexed: 11/23/2022] Open
Abstract
In this work, racemic hybrid polypeptides poly(ethylene glycol) (PEG)-b-poly(racemic-leucine) (PRL) copolymers with different leucine residues have been synthesized and characterized. Using docetaxel as a model molecule, the high drug-loaded spherical micelles based on PEG-PRL were prepared successfully using dialysis, with a tunable particle size from 170 nm to 250 nm obtained by changing the length of the hydrophobic blocks. Facilitated drug-loading behavior (higher drug-loading ability and easier drug-loading process) of PEG-PRL compared with their corresponding levo forms (PEG-b-poly[levo leucine]) was observed and clarified for the first time. With this facilitation, the highest drug-loading content and efficiency of PEG-PRL micelles can achieve 11.2% ± 0.4% and 67.2% ± 2.4%, respectively. All drug-loaded PEG-PRL micelles exhibit a similar release behavior with a sustained release up to 72 hours. The PEG-PRL was shown to be nontoxic against MCF-7 and human umbilical vein endothelial cells up to a concentration of 100 μg/mL, displaying a good biocompatibility. Also, the docetaxel-loaded PEG-PRL micelles were more toxic than the free drug against MCF-7 human breast cancer cells – both dose and time dependent. Therefore, these high docetaxel-loaded micelles based on racemic hybrid polypeptides appear to be a novel promising nanomedicine for anticancer therapy.
Collapse
Affiliation(s)
- Peng Fei Gu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, No 103, Wenhua Road, Shenyang, People’s Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Amado E, Kressler J. Interactions of amphiphilic block copolymers with lipid model membranes. Curr Opin Colloid Interface Sci 2011. [DOI: 10.1016/j.cocis.2011.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
185
|
You J, Zhang R, Zhang G, Zhong M, Liu Y, Van Pelt CS, Liang D, Wei W, Sood AK, Li C. Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: A platform for near-infrared light-trigged drug release. J Control Release 2011; 158:319-28. [PMID: 22063003 DOI: 10.1016/j.jconrel.2011.10.028] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 11/29/2022]
Abstract
Photothermal ablation (PTA) is an emerging technique that uses near-infrared (NIR) laser light-generated heat to destroy tumor cells. However, complete eradication of tumor cells with PTA is difficult because of uneven heat distribution in the treatment volume. We hypothesized that combining PTA with chemotherapy using a single multifunctional nanoconstruct that mediates simultaneous photothermal cell killing and drug release (photothermal-chemotherapy) would result in enhanced antitumor activity and reduced toxicity compared to chemotherapy alone. Doxorubicin (DOX) was loaded to hollow gold nanospheres (HAuNS) coated with polyethylene glycol (PEG). The pharmacokinetics and biodistribution of both DOX and HAuNS in the resulting nanoconstruct, DOX@PEG-HAuNS having different DOX:PEG:HAuNS ratios, were evaluated using dual isotope labeling techniques. The antitumor activity of DOX@PEG-HAuNS with DOX:PEG:HAuNS weight ratio of 1:3:1 (NP3) in combination with NIR laser was studied in vitro and in vivo using human MDA-MB-231 breast cancer and A2780 ovarian cancer cells. In vitro, NP3 mediated PTA of both cancer cells and DOX release upon NIR laser treatment. In vivo, NP3 showed slower clearance in blood and greater accumulation in tumors than free DOX. NP3-plus-NIR laser demonstrated greater antitumor activity than free DOX, NP3, or liposomal DOX. Moreover, NP3 displayed significantly decreased systemic toxicity compared to free DOX or liposomal DOX. Enhanced antitumor effect with NP3-plus-laser can be attributed to both the cytotoxic effect of DOX released from NP3 and the photothermal effect mediated by HAuNS. Slow release of DOX from NP3 in normal tissues contributed to reduced systemic toxicity. Photothermal-chemotherapy exemplified by a single-agent nanoconstruct NP3 is a promising approach to anticancer therapy.
Collapse
Affiliation(s)
- Jian You
- College of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 388, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Fei X, Xu W, Yue Y, Lee MK. Preparation and Characterization of Tributyrin Sub-micron Emulsion as Carrier for Paclitaxel. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2011. [DOI: 10.4333/kps.2011.41.5.295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
187
|
Ji X, Gao Y, Chen L, Zhang Z, Deng Y, Li Y. Nanohybrid systems of non-ionic surfactant inserting liposomes loading paclitaxel for reversal of multidrug resistance. Int J Pharm 2011; 422:390-7. [PMID: 22001531 DOI: 10.1016/j.ijpharm.2011.10.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 08/31/2011] [Accepted: 10/02/2011] [Indexed: 11/19/2022]
Abstract
Three new nanohybrid systems of non-ionic surfactant inserting liposomes loading paclitaxel (PTX) (NLPs) were prepared to overcome multidrug resistance (MDR) in PTX-resistance human lung cancer cell line. Three non-ionic surfactants, Solutol HS 15 (HS-15), pluronic F68 (PF-68) and cremophor EL (CrEL) were inserted into liposomes by film hydration method to form NLPs with an average size of around 110, 180 and 110 nm, respectively. There was an obvious increase of rhodamin 123 (Rh123) accumulation in A549/T cells after treated with nanohybrid systems loading Rh123 (NLRs) when compared with free Rh123 or liposomes loading Rh123 without surfactants (LRs), which indicated the significant inhibition effects of NLRs on drug efflux. The P-gp detection and ATP determination demonstrated that BNLs could not only interfere P-gp expression on the membrane of drug resistant cells, but also decrease ATP level in the cells. The cytotoxicity of NLPs against A549/T cells was higher than PTX loaded liposomes without surfactants (LPs), and the best result was achieved after treated with NLPs2. The apoptotic assay and the cell cycle analysis showed that NLPs could induce more apoptotic cells in drug resistant cells when compared with LPs. These results suggested that NLPs could overcome MDR by combination of drug delivery, P-gp inhibition and ATP depletion, and showed potential for treatment of MDR.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Adenosine Triphosphate/metabolism
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/metabolism
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Cell Cycle/drug effects
- Cell Line, Tumor
- Chemistry, Pharmaceutical
- Dose-Response Relationship, Drug
- Drug Compounding
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Glycerol/analogs & derivatives
- Glycerol/chemistry
- Humans
- Lipids/chemistry
- Liposomes
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Nanotechnology
- Paclitaxel/chemistry
- Paclitaxel/metabolism
- Paclitaxel/pharmacology
- Particle Size
- Poloxamer/chemistry
- Polyethylene Glycols/chemistry
- Rhodamine 123/metabolism
- Solubility
- Stearic Acids/chemistry
- Surface-Active Agents/chemistry
- Technology, Pharmaceutical/methods
- Time Factors
Collapse
Affiliation(s)
- Xiufeng Ji
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | | | | | | | | | | |
Collapse
|
188
|
Shen J, He Q, Gao Y, Shi J, Li Y. Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: performance and mechanism. NANOSCALE 2011; 3:4314-4322. [PMID: 21892492 DOI: 10.1039/c1nr10580a] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Multidrug resistance (MDR) is one of the major obstacles for successful chemotherapy in cancer. One of the effective approaches to overcome MDR is to use nanoparticle-mediated drug delivery to increase drug accumulation in drug resistant cancer cells. In this work, we first report that the performance and mechanism of an inorganic engineered delivery system based on mesoporous silica nanoparticles (MSNs) loading doxorubicin (DMNs) to overcome the MDR of MCF-7/ADR (a DOX-resistant and P-glycoprotein (P-gp) over-expression cancer cell line). The experimental results showed that DMNs could enhance the cellular uptake of doxorubicin (DOX) and increase the cell proliferation suppression effect of DOX against MCF-7/ADR cells. The IC(50) of DMNs against MCF-7/ADR cells was 8-fold lower than that of free DOX. However, an improved effect of DOX in DMNs against MCF-7 cells (a DOX-sensitive cancer cell line) was not found. The increased cellular uptake and nuclear accumulation of DOX delivered by DMNs in MCF-7/ADR cells was confirmed by confocal laser scanning microscopy, and could result from the down-regulation of P-gp and bypassing the efflux action by MSNs themselves. The cellular uptake mechanism of DMNs indicated that the macropinocytosis was one of the pathways for the uptake of DMNs by MCF-7/ADR cells. The in vivo biodistribution showed that DMNs induced a higher accumulation of DOX in drug resistant tumors than free DOX. These results suggested that MSNs could be an effective delivery system to overcome multidrug resistance.
Collapse
Affiliation(s)
- Jianan Shen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | | | | | | | | |
Collapse
|
189
|
Agarwal A, Agrawal H, Tiwari S, Jain S, Agrawal GP. Cationic ligand appended nanoconstructs: a prospective strategy for brain targeting. Int J Pharm 2011; 421:189-201. [PMID: 21986113 DOI: 10.1016/j.ijpharm.2011.09.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/09/2011] [Accepted: 09/27/2011] [Indexed: 12/01/2022]
Abstract
The objective of present research was to evaluate the potential of engineered solid lipid nanoparticles (SLNs) as vectors to bypass the blood brain barrier. Anti-cancer agent, doxorubicin (DOX) loaded SLNs were prepared and conjugated with cationic bovine serum albumin (CBSA). The formation of CBSA tethered and plain SLNs were characterized by FTIR, NMR, and TEM analyses. Physicochemical parameters such as particle size/polydispersity index and zeta-potential were also determined. Cellular uptake studies on HNGC-1 cell lines depicted almost six times enhanced uptake of ligand conjugated SLNs as compared to plain DOX solution. Furthermore, CBSA conjugated formulation was more cytotoxic as compared to free drug or unconjugated SLNs. Transendothelial studies showed maximum transcytosis ability of CBSA conjugated SLNs across brain capillary endothelial cells. In vivo pharmacokinetic parameters and biodistribution pattern demonstrated efficiency of the system for spatial and temporal delivery of DOX to brain tissues. Lastly, hematological, nephrotoxic as well as hepatotoxic data suggested CBSA conjugated formulations to be less immunogenic compared to plain formulations.
Collapse
Affiliation(s)
- Abhinav Agarwal
- Pharmaceutics Research Lab, Department of Pharmaceutical Sciences, Dr. H.S Gour University, Sagar 470003, MP, India
| | | | | | | | | |
Collapse
|
190
|
Xue HY, Wong HL. Solid lipid-PEI hybrid nanocarrier: an integrated approach to provide extended, targeted, and safer siRNA therapy of prostate cancer in an all-in-one manner. ACS NANO 2011; 5:7034-7047. [PMID: 21838301 DOI: 10.1021/nn201659z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Small-interfering RNA (siRNA) has a high application potential for therapeutic silencing of pathologic or drug-resistance genes. However, although recent research has led to several nonviral nucleic acid delivery systems with encouraging transfection performance, there remains a substantial gap between these systems and an ideal siRNA carrier that can be safely and effectively used for the more complex delivery tasks such as cancer management. We hypothesized that by integrating the high transfection performance of linear polyethylenimine (PEI) with the controlled release properties of solid lipid components, and complementing the resulting lipid-PEI hybrid nanocarrier (LPN) with receptor-targeting capability, multiple limitations of the conventional siRNA carriers would be simultaneously overcome. Data comparing this new hybrid system with the conventional siRNA-PEI polyplexes showed 15 to 21% less loss of siRNA, higher selectivity for prostate cancer cells over noncancerous prostate cells, and significant reduction in both acute and delayed carrier toxicity especially to the noncancerous RWPE1 cells (e.g., 71.2% of LPN-treated cells preserved proliferative capacity versus ≤30.2% in other groups). We further demonstrated sustained intracellular siRNA release from LPNs, which was shown translatable into extended in vitro and in vivo RNA-interference effects for a minimum of one week. Our findings generally support the use of LPN technology to achieve a longer-acting, less toxic, more efficient, and cancer-specific form of siRNA therapy in an "all-in-one" manner. This brings the nonviral siRNA delivery approach one important step closer to its clinical application.
Collapse
Affiliation(s)
- Hui-Yi Xue
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, USA
| | | |
Collapse
|
191
|
Abstract
BACKGROUND Ligand targeted therapy (LTT) is a powerful pharmaceutical strategy to achieve selective drug delivery to pathological cells, for both therapeutic and diagnostic purposes, with the advantage of limited side effects and toxicity. This active drug targeting approach is based on the discovery that there are receptors overexpressed on pathological cells, compared to their expression in normal tissues. PURPOSE The purpose of this article is to review recently published data on LTT with applications, both in the field of cancer therapy and other diseases. Moreover, data on LTT exploiting receptors overexpressed at cytoplasmatic level are also reviewed. METHODS Data were deduced from Medline (PubMed) and SciFinder and their selections were made with preference to papers where the most relevant receptors were involved. RESULTS Several groups have reported improved delivery of targeted nanocarriers, as compared to nontargeted ones, to pathological cells. LTT offers several advantages, but there are also limitations in the development of this strategy. Moreover, LTT have shown encouraging results in in vitro and in animal models in vivo; hence their clinical potential awaits investigation. CONCLUSION Recent studies highlight that the ligand density plays an important role in targeting efficacy. Furthermore, LTT applications in diseases different from cancer and those exploiting receptors overexpressed at cytoplasmatic level are growing.
Collapse
|
192
|
Wang YC, Wang F, Sun TM, Wang J. Redox-responsive nanoparticles from the single disulfide bond-bridged block copolymer as drug carriers for overcoming multidrug resistance in cancer cells. Bioconjug Chem 2011; 22:1939-45. [PMID: 21866903 DOI: 10.1021/bc200139n] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multidrug resistance (MDR) is a major impediment to the success of cancer chemotherapy. The intracellular accumulation of drug and the intracellular release of drug molecules from the carrier could be the most important barriers for nanoscale carriers in overcoming MDR. We demonstrated that the redox-responsive micellar nanodrug carrier assembled from the single disulfide bond-bridged block polymer of poly(ε-caprolactone) and poly(ethyl ethylene phosphate) (PCL-SS-PEEP) achieved more drug accumulation and retention in MDR cancer cells. Such drug carrier rapidly released the incorporated doxorubicin (DOX) in response to the intracellular reductive environment. It therefore significantly enhanced the cytotoxicity of DOX to MDR cancer cells. It was demonstrated that nanoparticular drug carrier with either poly(ethylene glycol) or poly(ethyl ethylene phosphate) (PEEP) shell increased the influx but decreased the efflux of DOX by the multidrug resistant MCF-7/ADR breast cancer cells, in comparison with the direct incubation of MCF-7/ADR cells with DOX, which led to high cellular retention of DOX. Nevertheless, nanoparticles bearing PEEP shell exhibited higher affinity to the cancer cells. The shell detachment of the PCL-SS-PEEP nanoparticles caused by the reduction of intracellular glutathione significantly accelerated the drug release in MCF-7/ADR cells, demonstrated by the flow cytometric analyses, which was beneficial to the entry of DOX into the nuclei of MCF-7/ADR cells. It therefore enhanced the efficiency in overcoming MDR of cancer cells, which renders the redox-responsive nanoparticles promising in cancer therapy.
Collapse
Affiliation(s)
- Yu-Cai Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China
| | | | | | | |
Collapse
|
193
|
Zhang P, Ling G, Sun J, Zhang T, Yuan Y, Sun Y, Wang Z, He Z. Multifunctional nanoassemblies for vincristine sulfate delivery to overcome multidrug resistance by escaping P-glycoprotein mediated efflux. Biomaterials 2011; 32:5524-33. [DOI: 10.1016/j.biomaterials.2011.04.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 04/06/2011] [Indexed: 12/01/2022]
|
194
|
Yousefpour P, Atyabi F, Farahani EV, Sakhtianchi R, Dinarvand R. Polyanionic carbohydrate doxorubicin-dextran nanocomplex as a delivery system for anticancer drugs: in vitro analysis and evaluations. Int J Nanomedicine 2011; 6:1487-96. [PMID: 21796249 PMCID: PMC3141874 DOI: 10.2147/ijn.s18535] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study deals with the preparation and investigation of a nanoscale delivery system for the anticancer drug doxorubicin (DOX) using its complexation with polyanionic carbohydrate dextran sulfate (DS). Dynamic light scattering, SEM, and zeta potential determination were used to characterize nanocomplexes. DOX-DS complexation was studied in the presence of ethanol as a hydrogen-bond disrupting agent, NaCl as an electrostatic shielding agent, and chitosan as a positively charged polymer. Thermodynamics of DOX-DS interaction was studied using isothermal titration calorimetry (ITC). A dialysis method was applied to investigate the release profile of DOX from DOX-DS nanocomplexes. Spherical and smooth-surfaced DOX-DS nanocomplexes (250–500 nm) with negative zeta potential were formed at a DS/DOX (w/w) ratio of 0.4–0.6, with over 90% drug encapsulation efficiency. DOX when complexed with DS showed lower fluorescence emission and 480 nm absorbance plus a 15 nm bathometric shift in its visible absorbance spectrum. Electrostatic hydrogen bonding and π-π stacking interactions are the main contributing interactions in DOX-DS complexation. Thermal analysis of DOX-DS complexation by ITC revealed that each DOX molecule binds with 3 DS glycosyl monomers. Drug release profile of nanocomplexes showed a fast DOX release followed by a slow sustained release, leading to release of 32% of entrapped DOX within 15 days. DOX-DS nanocomplexes may serve as a drug delivery system with efficient drug encapsulation and also may be taken into consideration in designing DOX controlled-release systems.
Collapse
Affiliation(s)
- Parisa Yousefpour
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
195
|
Enabling anticancer therapeutics by nanoparticle carriers: the delivery of Paclitaxel. Int J Mol Sci 2011; 12:4395-413. [PMID: 21845085 PMCID: PMC3155358 DOI: 10.3390/ijms12074395] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/09/2011] [Accepted: 06/15/2011] [Indexed: 01/05/2023] Open
Abstract
Anticancer drugs, such as paclitaxel (PTX), are indispensable for the treatment of a variety of malignancies. However, the application of most drugs is greatly limited by the low water solubility, poor permeability, or high efflux from cells. Nanoparticles have been widely investigated to enable drug delivery due to their low toxicity, sustained drug release, molecular targeting, and additional therapeutic and imaging functions. This review takes paclitaxel as an example and compares different nanoparticle-based delivery systems for their effectiveness in cancer chemotherapy.
Collapse
|
196
|
Abstract
When treating metastatic tumors, chemoresistance can cause problems. A report in this issue of Science Translational Medicine demonstrates the potential of nanodiamond carriers (2 to 8 nanometers) for treating cancers with drug-efflux-based chemoresistance. Nanodiamond-mediated delivery of the chemotherapeutic doxorubicin (Dox) allowed for prolonged activity and increased apoptosis with decreased toxicity when compared with free Dox in liver cancer cells in culture as well as in vivo in mouse liver tumors. This finding may represent a broadly applicable strategy for overcoming adenosine 5'-triphosphate (ATP)-binding cassette (ABC) drug transporter-mediated resistance during cancer chemotherapy.
Collapse
Affiliation(s)
- Timothy J Merkel
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
197
|
Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surf B Biointerfaces 2011; 85:262-9. [DOI: 10.1016/j.colsurfb.2011.02.038] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/25/2011] [Accepted: 02/25/2011] [Indexed: 11/24/2022]
|
198
|
Xiong XB, Lavasanifar A. Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and doxorubicin. ACS NANO 2011; 5:5202-5213. [PMID: 21627074 DOI: 10.1021/nn2013707] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this article we report on the development of polymeric micelles that can integrate multiple functions in one system, including the capability to accommodate a combination of therapeutic entities with different physicochemical properties (i.e., siRNA and doxorubicin; DOX), passive and active cancer targeting, cell membrane translocation, and pH-triggered drug release. A micellar system was constructed from degradable poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL) block copolymers with functional groups on both blocks. The functional group on the PCL block was used to incorporate short polyamines for complexation with siRNA or to chemically conjugate DOX via a pH-sensitive hydrazone linkage. A virus mimetic shell was conferred by attaching two ligands, i.e., the integrin αvβ3-specific ligand (RGD4C) for active cancer targeting and the cell-penetrating peptide TAT for membrane activity. This system was used to improve the efficacy of DOX in multidrug-resistant MDA-MB-435 human tumor models that overexpress P-glycoprotein (P-gp), by simultaneous intracellular delivery of DOX and siRNA against P-gp expression. The carrier was tagged with near-infrared fluorescent imaging probes to provide a means to follow the fate of the system in vivo upon intravenous administration. Dy677-labeled siRNA was also used to assess the in vivo stability of the siRNA carrier. This multifunctional polymeric micellar system was shown to be capable of DOX and siRNA delivery to their intracellular targets, leading to the inhibition of P-gp-mediated DOX resistance in vitro and targeting of αvβ3-positive tumors in vivo.
Collapse
Affiliation(s)
- Xiao-Bing Xiong
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
199
|
Jain AK, Swarnakar NK, Das M, Godugu C, Singh RP, Rao PR, Jain S. Augmented anticancer efficacy of doxorubicin-loaded polymeric nanoparticles after oral administration in a breast cancer induced animal model. Mol Pharm 2011; 8:1140-51. [PMID: 21557558 DOI: 10.1021/mp200011f] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present investigation reports an extensive evaluation of in vitro and in vivo anticancer efficacy of orally administered doxorubicin-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Dox-NPs) in a breast cancer induced animal model. Spherically shaped Dox-NPs were prepared with an entrapment efficiency and particle size of 55.40 ± 2.30% and 160.20 ± 0.99 nm, respectively, and freeze-dried with 5% trehalose using stepwise freeze-drying. Cytotoxicity, as investigated on C127I cell line, revealed insignificant differences between the IC(50) of free Dox and Dox-NPs treated cells in the first 24 h, while higher cytotoxicity was demonstrated by Dox-NPs, following 72 h of incubation. Confocal laser scanning microscopy (CLSM) imaging corroborated that nanoparticles were efficiently localized into the nuclear region of C127I cells. The cellular uptake profile of Dox-NPs revealed both time and concentration dependent increases in the Caco-2 cell uptake as compared to the free Dox solution. Further, Dox-NPs significantly suppressed the growth of breast tumor in female Sprague-Dawley (SD) rats upon oral administration. Finally, orally administered Dox-NPs showed a marked reduction in cardiotoxicity when compared with intravenously injected free Dox as also evident by the increased level of malondialdehyde (MDA), lactate dehydrogenase (LDH), and creatine phosphokinase (CK-MB) and reduced levels of glutathione (GSH) and superoxide dismutase (SOD). The reduced cardiotoxicity of orally administered Dox-NPs was also confirmed by the major histopathological changes in the heart tissue after the treatments of intravenously injected free Dox and orally delivered Dox-NPs.
Collapse
Affiliation(s)
- Amit K Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar (Mohali), Punjab 160062, India
| | | | | | | | | | | | | |
Collapse
|
200
|
Zhang X, Peng X, Yu W, Hou S, Zhao Y, Zhang Z, Huang X, Wu K. Alpha-tocopheryl succinate enhances doxorubicin-induced apoptosis in human gastric cancer cells via promotion of doxorubicin influx and suppression of doxorubicin efflux. Cancer Lett 2011; 307:174-81. [PMID: 21536373 DOI: 10.1016/j.canlet.2011.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 03/30/2011] [Accepted: 04/06/2011] [Indexed: 12/11/2022]
Abstract
Doxorubicin (DOXO), a chemotherapy drug, is widely used in clinic for treating a variety of cancers. However, the treatment eventfully fails due to drug resistance and toxicity. Therefore, a combination strategy is needed to increase efficacy and reduce toxicity of DOXO. alpha-tocopheryl succinate (α-TOS) exhibits anticancer actions in vitro and in vivo. Here, we reported that combination of DOXO+α-TOS cooperatively acted to induce apoptosis in SGC-7901 cells. α-TOS enhanced cellular level of DOXO via promotion of DOXO influx and suppression of DOXO efflux. DOXO induced MDR1 mRNA and protein expression and α-TOS inhibited this event, indicating that α-TOS suppressed DOXO efflux via inhibition of MDR1. Furthermore, combination of DOXO+α-TOS induced increased levels of Fas and Bax protein expression and cleavage of caspase-8 and caspase-9, suggesting that combination treatment induced Fas/caspase-8 and Bax mediated mitochondria dependent apoptosis. Taken together, our results demonstrated that α-TOS enhanced DOXO anticancer efficiency via promotion of DOXO influx and suppression of MDR-1 mediated DOXO efflux.
Collapse
Affiliation(s)
- Xuguang Zhang
- Department of Nutrition and Food, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | |
Collapse
|