151
|
Gold K, Gaharwar AK, Jain A. Emerging trends in multiscale modeling of vascular pathophysiology: Organ-on-a-chip and 3D printing. Biomaterials 2019; 196:2-17. [PMID: 30072038 PMCID: PMC6344330 DOI: 10.1016/j.biomaterials.2018.07.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 01/17/2023]
Abstract
Most biomedical and pharmaceutical research of the human vascular system aims to unravel the complex mechanisms that drive disease progression from molecular to organ levels. The knowledge gained can then be used to innovate diagnostic and treatment strategies which can ultimately be determined precisely for patients. Despite major advancements, current modeling strategies are often limited at identifying, quantifying, and dissecting specific cellular and molecular targets that regulate human vascular diseases. Therefore, development of multiscale modeling approaches are needed that can advance our knowledge and facilitate the design of next-generation therapeutic approaches in vascular diseases. This article critically reviews animal models, static in vitro systems, and dynamic in vitro culture systems currently used to model vascular diseases. A leading emphasis on the potential of emerging approaches, specifically organ-on-a-chip and three-dimensional (3D) printing, to recapitulate the innate human vascular physiology and anatomy is described. The applications of these approaches and future outlook in designing and screening novel therapeutics are also presented.
Collapse
Affiliation(s)
- Karli Gold
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Material Sciences, Texas A&M University, College Station, TX, 77843, USA; Center for Remote Health and Technologies and Systems, Texas A&M University, College Station, TX, 77843, USA.
| | - Abhishek Jain
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
152
|
Teng EL, Engler AJ. Mechanical influences on cardiovascular differentiation and disease modeling. Exp Cell Res 2019; 377:103-108. [PMID: 30794804 DOI: 10.1016/j.yexcr.2019.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/09/2019] [Accepted: 02/18/2019] [Indexed: 01/06/2023]
Abstract
Tissues are continuously exposed to forces in vivo, whether from fluid pressure in an artery from our blood or compressive forces on joints from our body weight. The forces that cells are exposed to arise almost immediately after conception; it is therefore important to understand how forces shape stem cell differentiation into lineage committed cells, how they help organize cells into tissues, and how forces can cause or exacerbate disease. No tissue is exempt, but cardiovascular tissues in particular are exposed to these forces. While animal models have been used extensively in the past, there is growing recognition of their limitations when modeling disease complexity or human genetics. In this mini review, we summarize current understanding of the mechanical influences on the differentiation of cardiovascular progeny, how the transduction of forces influence the onset of disease, and how engineering approaches applied to this problem have yielded systems that create mature-like human tissues in vitro in which to assess the impact of disease on cell function.
Collapse
Affiliation(s)
- Evan L Teng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, United States; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, United States
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, United States; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, United States.
| |
Collapse
|
153
|
Charbonier FW, Zamani M, Huang NF. Endothelial Cell Mechanotransduction in the Dynamic Vascular Environment. ADVANCED BIOSYSTEMS 2019; 3:e1800252. [PMID: 31328152 PMCID: PMC6640152 DOI: 10.1002/adbi.201800252] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Indexed: 12/11/2022]
Abstract
The vascular endothelial cells (ECs) that line the inner layer of blood vessels are responsible for maintaining vascular homeostasis under physiological conditions. In the presence of disease or injury, ECs can become dysfunctional and contribute to a progressive decline in vascular health. ECs are constantly exposed to a variety of dynamic mechanical stimuli, including hemodynamic shear stress, pulsatile stretch, and passive signaling cues derived from the extracellular matrix. This review describes the molecular mechanisms by which ECs perceive and interpret these mechanical signals. The translational applications of mechanosensing are then discussed in the context of endothelial-to-mesenchymal transition and engineering of vascular grafts.
Collapse
Affiliation(s)
- Frank W. Charbonier
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305
| | - Maedeh Zamani
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305
| | - Ngan F. Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305
- Stanford University, 300 Pasteur Drive, MC 5407, Stanford, CA 94305-5407, USA
| |
Collapse
|
154
|
Wang T, Dong N, Yan H, Wong SY, Zhao W, Xu K, Wang D, Li S, Qiu X. Regeneration of a neoartery through a completely autologous acellular conduit in a minipig model: a pilot study. J Transl Med 2019; 17:24. [PMID: 30634983 PMCID: PMC6330492 DOI: 10.1186/s12967-018-1763-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/31/2018] [Indexed: 12/03/2022] Open
Abstract
Background Vascular grafts are widely used as a treatment in coronary artery bypass surgery, hemodialysis, peripheral arterial bypass and congenital heart disease. Various types of synthetic and natural materials were experimented to produce tissue engineering vascular grafts. In this study, we investigated in vivo tissue engineering technology in miniature pigs to prepare decellularized autologous extracellular matrix-based grafts that could be used as vascular grafts for small-diameter vascular bypass surgery. Methods Autologous tissue conduits (3.9 mm in diameter) were fabricated by embedding Teflon tubings in the subcutaneous pocket of female miniature pigs (n = 8, body weight 25–30 kg) for 4 weeks. They were then decellularized by CHAPS decellularization solution. Heparin was covalently-linked to decellularized tissue conduits by Sulfo-NHS/EDC. We implanted these decellularized, completely autologous extracellular matrix-based grafts into the carotid arteries of miniature pigs, then sacrificed the pigs at 1 or 2 months after implantation and evaluated the patency rate and explants histologically. Results After 1 month, the patency rate was 100% (5/5) while the inner diameter of the grafts was 3.43 ± 0.05 mm (n = 5). After 2 months, the patency rate was 67% (2/3) while the inner diameter of the grafts was 2.32 ± 0.14 mm (n = 3). Histological staining confirmed successful cell infiltration, and collagen and elastin deposition in 2-month samples. A monolayer of endothelial cells was observed along the inner lumen while smooth muscle cells were dominant in the graft wall. Conclusion A completely autologous acellular conduit with excellent performance in mechanical properties can be remodeled into a neoartery in a minipig model. This proof-of-concept study in the large animal model is very encouraging and indicates that this is a highly feasible idea worthy of further study in non-human primates before clinical translation.
Collapse
Affiliation(s)
- Tao Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Thoracic and Cardiovascular Surgery, Central Hospital of Zhuzhou, Zhuzhou, 412000, Hunan, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huimin Yan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sze Yue Wong
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.,Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Wen Zhao
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.,Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Kang Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dong Wang
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.,Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Song Li
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.,Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.,Department of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xuefeng Qiu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Department of Bioengineering, University of California, Berkeley, CA, 94720, USA. .,Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
155
|
Song Y, Ren M, Wu Y, Li S, Song C, Wang F, Huang Y. The effect of different surface treatment methods on the physical, chemical and biological performances of a PGA scaffold. RSC Adv 2019; 9:20174-20184. [PMID: 35514696 PMCID: PMC9065566 DOI: 10.1039/c9ra02100k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/06/2019] [Indexed: 12/22/2022] Open
Abstract
In order to improve the adhesion between a PGA scaffold and islet cells, it is necessary to find a suitable method to modify the scaffold. In this study, the PGA scaffold surface was modified by plasma, polylysine coating and plasma combined with polylysine coating (P–P-PGA). The surface adhesion of the modified PGA scaffold was examined, and the stretchability and infiltration of the PGA scaffold were also tested. Then, the PGA scaffold treated under the optimal treatment conditions was selected to co-culture with rat islet cells, and the survival activity of the rat islet cells on the untreated PGA scaffold and the P–P-PGA scaffold was examined via the MTT method. Rhodamine staining and DAPI staining were used to detect the number of islet cells adhered to four groups of scaffolds at different culture time points. The PGA-islet graft in the leg muscle of rats was stained with HE to perform the PGA-islet graft pathological examination. The experimental results showed that when the plasma treatment power was 240 W, the processing time was 4 min; the concentration of the polylysine coating solution was 2 mg ml−1, the tensile strength of the PGA scaffold was 320.45 MPa and the amount of infiltration of the PGA scaffold by the serum medium presented the maximum value: 3.17 g g−1. The MTT survival activity test results showed that after 3 d of culture, the survival activity of the islet cells of the treated PGA scaffold culture group (2.02 ± 0.13) was significantly different from the survival activity of the islet cells of the untreated PGA scaffold culture group (1.93 ± 0.10). The survival activities of the islet cells in the experimental groups (1.60 ± 0.13, 1.40 ± 0.12) were still higher than those of the control groups (0.96 ± 013, 0.69 ± 0.09) at 15 and 21 d. The results of the rhodamine and DAPI staining showed that with the increase in culture time, the number of the adherent cells in each group increased, and the number of the adherent islet cells in the experimental group was higher than that in the untreated group. The HE staining results showed that the islet cells on the P–P-PGA scaffold were more than those on the untreated PGA scaffold. After modification of the PGA scaffold, the adhesion of the islet cells improved, which was conducive to the growth of islet cells. These results confirmed that the plasma combined with polylysine coating treatment could enhance the adhesion of the PGA scaffold surface, so that the scaffold and the islet cells exhibited better adhesion and biocompatibility, and the modified PGA scaffold (P–P-PGA) could be used as a promising islet cell scaffold. In order to improve the adhesion between a PGA scaffold and islet cells, it is necessary to find a suitable method to modify the scaffold.![]()
Collapse
Affiliation(s)
- Yimin Song
- Department of Health Medicine
- Peking Union Medical College Hospital
- Beijing 100730
- China
| | - Minghua Ren
- Surgery Department
- the Key Laboratory of Cell Transplantation of Ministry of Health of the First Affiliated Hospital of Harbin Medical University
- Harbin
- 150001 China
| | - Yadong Wu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Siyu Li
- Surgery Department
- the Key Laboratory of Cell Transplantation of Ministry of Health of the First Affiliated Hospital of Harbin Medical University
- Harbin
- 150001 China
| | - Chun Song
- Surgery Department
- the Key Laboratory of Cell Transplantation of Ministry of Health of the First Affiliated Hospital of Harbin Medical University
- Harbin
- 150001 China
| | - Fang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
| |
Collapse
|
156
|
Brugmans M, Serrero A, Cox M, Svanidze O, Schoen FJ. Morphology and mechanisms of a novel absorbable polymeric conduit in the pulmonary circulation of sheep. Cardiovasc Pathol 2019; 38:31-38. [DOI: 10.1016/j.carpath.2018.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/23/2022] Open
|
157
|
Patel S, Athirasala A, Menezes PP, Ashwanikumar N, Zou T, Sahay G, Bertassoni LE. Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications. Tissue Eng Part A 2019; 25:91-112. [PMID: 29661055 PMCID: PMC6352544 DOI: 10.1089/ten.tea.2017.0444] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/09/2018] [Indexed: 12/25/2022] Open
Abstract
The ability to control cellular processes and precisely direct cellular reprogramming has revolutionized regenerative medicine. Recent advances in in vitro transcribed (IVT) mRNA technology with chemical modifications have led to development of methods that control spatiotemporal gene expression. Additionally, there is a current thrust toward the development of safe, integration-free approaches to gene therapy for translational purposes. In this review, we describe strategies of synthetic IVT mRNA modifications and nonviral technologies for intracellular delivery. We provide insights into the current tissue engineering approaches that use a hydrogel scaffold with genetic material. Furthermore, we discuss the transformative potential of novel mRNA formulations that when embedded in hydrogels can trigger controlled genetic manipulation to regenerate tissues and organs in vitro and in vivo. The role of mRNA delivery in vascularization, cytoprotection, and Cas9-mediated xenotransplantation is additionally highlighted. Harmonizing mRNA delivery vehicle interactions with polymeric scaffolds can be used to present genetic cues that lead to precise command over cellular reprogramming, differentiation, and secretome activity of stem cells-an ultimate goal for tissue engineering.
Collapse
Affiliation(s)
- Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
| | - Avathamsa Athirasala
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
| | - Paula P. Menezes
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Postgraduate Program in Health Sciences, Department of Pharmacy, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - N. Ashwanikumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
| | - Ting Zou
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
- Department of Biomedical Engineering, Collaborative Life Science Building, Oregon Health and Science University, Portland, Oregon
| | - Luiz E. Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Department of Biomedical Engineering, Collaborative Life Science Building, Oregon Health and Science University, Portland, Oregon
- Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
158
|
Strobel HA, Qendro EI, Alsberg E, Rolle MW. Targeted Delivery of Bioactive Molecules for Vascular Intervention and Tissue Engineering. Front Pharmacol 2018; 9:1329. [PMID: 30519186 PMCID: PMC6259603 DOI: 10.3389/fphar.2018.01329] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/29/2018] [Indexed: 01/25/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death in the United States. Treatment often requires surgical interventions to re-open occluded vessels, bypass severe occlusions, or stabilize aneurysms. Despite the short-term success of such interventions, many ultimately fail due to thrombosis or restenosis (following stent placement), or incomplete healing (such as after aneurysm coil placement). Bioactive molecules capable of modulating host tissue responses and preventing these complications have been identified, but systemic delivery is often harmful or ineffective. This review discusses the use of localized bioactive molecule delivery methods to enhance the long-term success of vascular interventions, such as drug-eluting stents and aneurysm coils, as well as nanoparticles for targeted molecule delivery. Vascular grafts in particular have poor patency in small diameter, high flow applications, such as coronary artery bypass grafting (CABG). Grafts fabricated from a variety of approaches may benefit from bioactive molecule incorporation to improve patency. Tissue engineering is an especially promising approach for vascular graft fabrication that may be conducive to incorporation of drugs or growth factors. Overall, localized and targeted delivery of bioactive molecules has shown promise for improving the outcomes of vascular interventions, with technologies such as drug-eluting stents showing excellent clinical success. However, many targeted vascular drug delivery systems have yet to reach the clinic. There is still a need to better optimize bioactive molecule release kinetics and identify synergistic biomolecule combinations before the clinical impact of these technologies can be realized.
Collapse
Affiliation(s)
- Hannah A. Strobel
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Elisabet I. Qendro
- Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA, United States
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Marsha W. Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
159
|
van Kelle MAJ, Oomen PJA, Janssen-van den Broek WJT, Lopata RGP, Loerakker S, Bouten CVC. Initial scaffold thickness affects the emergence of a geometrical and mechanical equilibrium in engineered cardiovascular tissues. J R Soc Interface 2018; 15:rsif.2018.0359. [PMID: 30429259 DOI: 10.1098/rsif.2018.0359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/16/2018] [Indexed: 01/22/2023] Open
Abstract
In situ cardiovascular tissue-engineering can potentially address the shortcomings of the current replacement therapies, in particular, their inability to grow and remodel. In native tissues, it is widely accepted that physiological growth and remodelling occur to maintain a homeostatic mechanical state to conserve its function, regardless of changes in the mechanical environment. A similar homeostatic state should be reached for tissue-engineered (TE) prostheses to ensure proper functioning. For in situ tissue-engineering approaches obtaining such a state greatly relies on the initial scaffold design parameters. In this study, it is investigated if the simple scaffold design parameter initial thickness, influences the emergence of a mechanical and geometrical equilibrium state in in vitro TE constructs, which resemble thin cardiovascular tissues such as heart valves and arteries. Towards this end, two sample groups with different initial thicknesses of myofibroblast-seeded polycaprolactone-bisurea constructs were cultured for three weeks under dynamic loading conditions, while tracking geometrical and mechanical changes temporally using non-destructive ultrasound imaging. A mechanical equilibrium was reached in both groups, although at different magnitudes of the investigated mechanical quantities. Interestingly, a geometrically stable state was only established in the thicker constructs, while the thinner constructs' length continuously increased. This demonstrates that reaching geometrical and mechanical stability in TE constructs is highly dependent on functional scaffold design.
Collapse
Affiliation(s)
- M A J van Kelle
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - P J A Oomen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - W J T Janssen-van den Broek
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - R G P Lopata
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - S Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands .,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - C V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
160
|
Zhu M, Wu Y, Li W, Dong X, Chang H, Wang K, Wu P, Zhang J, Fan G, Wang L, Liu J, Wang H, Kong D. Biodegradable and elastomeric vascular grafts enable vascular remodeling. Biomaterials 2018; 183:306-318. [DOI: 10.1016/j.biomaterials.2018.08.063] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023]
|
161
|
Zhang ZM, Wang BX, Ou WS, Lv YH, Li MM, Miao Z, Wang SX, Fei JC, Guo T. Administration of losartan improves aortic arterial stiffness and reduces the occurrence of acute coronary syndrome in aged patients with essential hypertension. J Cell Biochem 2018; 120:5713-5721. [PMID: 30362602 DOI: 10.1002/jcb.27856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/19/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUNDS AND AIMS Increased arterial stiffness may increase cardiovascular morbidity and mortality. Angiotensin II type 1 receptor blocker losartan is potentially useful in controlling the central blood pressure and arterial stiffness in mild to moderate essential hypertension, while the effects of losartan in aged patients with essential hypertension are not entirely investigated. METHODS The carotid-femoral arterial pulse wave velocity (PWV) was measured in aged patients with essential hypertension. RESULTS In a cross-sectional study, PWV value was significantly higher in these old patients with essential hypertension, compared with patients without essential hypertension. Logistic regression analysis indicated that age, hypertension duration, and losartan treatment are risk factors of arterial stiffness. In a perspective study, long-term administration of losartan (50 mg/d) remarkably reduced PWV in aged patients with essential hypertension. In a longitudinal study, PWV is an independent predictor of the occurrence of acute coronary syndrome (ACS) in elderly patients with essential hypertension by using multivariate analysis. Further, the ACS occurrence was reduced by long-term administration of losartan in aged patients with essential hypertension, compared with the old hypertensive patients without taking losartan. CONCLUSION Losartan treatment is a negative risk factor of arterial stiffness and reduces the risk of ACS in aged patients with essential hypertension.
Collapse
Affiliation(s)
- Zhi-Mian Zhang
- Department of Cardiology, The Center of Health Examination, Qilu Hospital, Shandong University, Jinan, China
| | - Bing-Xiang Wang
- Department of Orthopedics, Provincial Hospital of Shandong, Jinan, China
| | - Wen-Sheng Ou
- Department of Liver Disease, Chenzhou No.1 People s Hospital, Chenzhou, China
| | - Yan-Hong Lv
- Department of Cardiology, The Center of Health Examination, Qilu Hospital, Shandong University, Jinan, China
| | - Ming-Min Li
- Department of Cardiology, The Center of Health Examination, Qilu Hospital, Shandong University, Jinan, China
| | - Zhang Miao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Shuang-Xi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Jian-Chun Fei
- Department of Anaesthesia, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
162
|
Ran X, Ye Z, Fu M, Wang Q, Wu H, Lin S, Yin T, Hu T, Wang G. Design, Preparation, and Performance of a Novel Bilayer Tissue-Engineered Small-Diameter Vascular Graft. Macromol Biosci 2018; 19:e1800189. [PMID: 30259649 DOI: 10.1002/mabi.201800189] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/22/2018] [Indexed: 01/20/2023]
Abstract
In clinical practice, the need for small-diameter vascular grafts continues to increase. Decellularized xenografts are commonly used for vascular reconstructive procedures. Here, porcine coronary arteries are decellularized, which destroys the extracellular matrix structure, leading to the decrease of vascular strength and the increase of vascular permeability. A bilayer tissue-engineered vascular graft (BTEV) is fabricated by electrospinning poly(l-lactide-co-carprolactone)/gelatin outside of the decellularized vessels and functionalized by immobilizing heparin, which increases the biomechanical strength and anticoagulant activity of decellularized vessels. The biosafety and efficacy of the heparin-modified BTEVs (HBTEVs) are verified by implanting in rat models. HBTEVs remain patent and display no expansion or aneurism. After 4 weeks of implantation, a cell monolayer in the internal surface and a dense middle layer have formed, and the mechanical properties of regenerated vessels are similar to those of rat abdominal aorta. Therefore, HBTEVs can be used for rapid remodeling of small-diameter blood vessels.
Collapse
Affiliation(s)
- Xiaolin Ran
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, China
| | - Zhiyi Ye
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, China
| | - Meiling Fu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, China
| | - Qilong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, China
| | - Haide Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, China
| | - Song Lin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, China
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, China
| | - Tingzhang Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, China
| |
Collapse
|
163
|
Human Pluripotent Stem Cells to Engineer Blood Vessels. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 163:147-168. [PMID: 29090328 DOI: 10.1007/10_2017_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Development of pluripotent stem cells (PSCs) is a remarkable scientific advancement that allows scientists to harness the power of regenerative medicine for potential treatment of disease using unaffected cells. PSCs provide a unique opportunity to study and combat cardiovascular diseases, which continue to claim the lives of thousands each day. Here, we discuss the differentiation of PSCs into vascular cells, investigation of the functional capabilities of the derived cells, and their utilization to engineer microvascular beds or vascular grafts for clinical application. Graphical Abstract Human iPSCs generated from patients are differentiated toward ECs and perivascular cells for use in disease modeling, microvascular bed development, or vascular graft fabrication.
Collapse
|
164
|
Goins A, Ramaswamy V, Lichlyter D, Webb A, Allen JB. Fabrication of a bilayer scaffold for small diameter vascular applications. J Biomed Mater Res A 2018; 106:2850-2862. [DOI: 10.1002/jbm.a.36473] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/16/2018] [Accepted: 05/24/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Allison Goins
- University of Florida, Department of Materials Science and Engineering; Gainesville, FL United States
- University of Florida, Institute for Cell and Tissue Science and Engineering; Gainesville, FL United States
| | - Vidhya Ramaswamy
- Mayo Clinic Division of Cardiovascular Disease, Department of Cardiovascular Research; Rochester, Minnesota United States
| | - Darcy Lichlyter
- University of Florida, Department of Materials Science and Engineering; Gainesville, FL United States
| | - Antonio Webb
- University of Florida, Department of Materials Science and Engineering; Gainesville, FL United States
| | - Josephine B. Allen
- University of Florida, Department of Materials Science and Engineering; Gainesville, FL United States
- University of Florida, Institute for Cell and Tissue Science and Engineering; Gainesville, FL United States
| |
Collapse
|
165
|
Strobel HA, Hookway TA, Piola M, Fiore GB, Soncini M, Alsberg E, Rolle MW. Assembly of Tissue-Engineered Blood Vessels with Spatially Controlled Heterogeneities. Tissue Eng Part A 2018; 24:1492-1503. [PMID: 29724157 DOI: 10.1089/ten.tea.2017.0492] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tissue-engineered human blood vessels may enable in vitro disease modeling and drug screening to accelerate advances in vascular medicine. Existing methods for tissue-engineered blood vessel (TEBV) fabrication create homogenous tubes not conducive to modeling the focal pathologies characteristic of certain vascular diseases. We developed a system for generating self-assembled human smooth muscle cell (SMC) ring units, which were fused together into TEBVs. The goal of this study was to assess the feasibility of modular assembly and fusion of ring building units to fabricate spatially controlled, heterogeneous tissue tubes. We first aimed to enhance fusion and reduce total culture time, and determined that reducing ring preculture duration improved tube fusion. Next, we incorporated electrospun polymer ring units onto tube ends as reinforced extensions, which allowed us to cannulate tubes after only 7 days of fusion, and culture tubes with luminal flow in a custom bioreactor. To create focal heterogeneities, we incorporated gelatin microspheres into select ring units during self-assembly, and fused these rings between ring units without microspheres. Cells within rings maintained their spatial position along tissue tubes after fusion. Because tubes fabricated from primary SMCs did not express contractile proteins, we also fabricated tubes from human mesenchymal stem cells, which expressed smooth muscle alpha actin and SM22-α. This work describes a platform approach for creating modular TEBVs with spatially defined structural heterogeneities, which may ultimately be applied to mimic focal diseases such as intimal hyperplasia or aneurysm.
Collapse
Affiliation(s)
- Hannah A Strobel
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| | - Tracy A Hookway
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts.,2 The Gladstone Institute of Cardiovascular Disease , San Francisco, California.,3 Department of Biomedical Engineering, Binghamton University , Binghamton, New York
| | - Marco Piola
- 4 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano , Milan, Italy
| | | | - Monica Soncini
- 4 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano , Milan, Italy
| | - Eben Alsberg
- 5 Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio.,6 Department of Orthopedic Surgery, Case Western Reserve University , Cleveland, Ohio
| | - Marsha W Rolle
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| |
Collapse
|
166
|
Prim DA, Mohamed MA, Lane BA, Poblete K, Wierzbicki MA, Lessner SM, Shazly T, Eberth JF. Comparative mechanics of diverse mammalian carotid arteries. PLoS One 2018; 13:e0202123. [PMID: 30096185 PMCID: PMC6086448 DOI: 10.1371/journal.pone.0202123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/27/2018] [Indexed: 01/07/2023] Open
Abstract
The prevalence of diverse animal models as surrogates for human vascular pathologies necessitate a comprehensive understanding of the differences that exist between species. Comparative passive mechanics are presented here for the common carotid arteries taken from bovine, porcine, ovine, leporine, murine-rat, and murine-mouse specimens. Data is generated using a scalable biaxial mechanical testing device following consistent circumferential (pressure-diameter) and axial (force-length) testing protocols. The structural mechanical response of carotids under equivalent loading, quantified by the deformed inner radius, deformed wall thickness, lumen area compliance and axial force, varies significantly among species but generally follows allometric scaling. Conversely, descriptors of the local mechanical response within the deformed arterial wall, including mean circumferential stress, mid-wall circumferential stretch, and mean axial stress, are relatively consistent across species. Unlike the larger animals studied, the diameter distensibility curves of murine specimens are non-monotonic and have a significantly higher value at 100 mmHg. Taken together, our results provide baseline structural and mechanical information for carotid arteries across a broad range of common animal models.
Collapse
Affiliation(s)
- David A. Prim
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States of America
| | - Mohamed A. Mohamed
- Cullen College of Engineering, Biomedical Engineering Department, University of Houston, Houston, TX, United States of America
| | - Brooks A. Lane
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States of America
| | - Kelley Poblete
- College of Health Sciences, Physical Therapy Program, Texas Women’s University, Houston, TX, United States of America
| | - Mark A. Wierzbicki
- Dwight Look College of Engineering, Biomedical Engineering Department, Texas A&M University, College Station, TX, United States of America
| | - Susan M. Lessner
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States of America
- School of Medicine, Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC, United States of America
| | - Tarek Shazly
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States of America
- College of Engineering and Computing, Mechanical Engineering Department, University of South Carolina, Columbia, SC, United States of America
| | - John F. Eberth
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States of America
- School of Medicine, Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC, United States of America
- * E-mail:
| |
Collapse
|
167
|
Stowell CET, Wang Y. Quickening: Translational design of resorbable synthetic vascular grafts. Biomaterials 2018; 173:71-86. [PMID: 29772461 PMCID: PMC6492619 DOI: 10.1016/j.biomaterials.2018.05.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/19/2018] [Accepted: 05/03/2018] [Indexed: 12/17/2022]
Abstract
Traditional tissue-engineered vascular grafts have yet to gain wide clinical use. The difficulty of scaling production of these cell- or biologic-based products has hindered commercialization. In situ tissue engineering bypasses such logistical challenges by using acellular resorbable scaffolds. Upon implant, the scaffolds become remodeled by host cells. This review describes the scientific and translational advantages of acellular, synthetic vascular grafts. It surveys in vivo results obtained with acellular synthetics over their fifty years of technological development. Finally, it discusses emerging principles, highlights strategic considerations for designers, and identifies questions needing additional research.
Collapse
Affiliation(s)
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, USA.
| |
Collapse
|
168
|
Syedain ZH, Graham ML, Dunn TB, O'Brien T, Johnson SL, Schumacher RJ, Tranquillo RT. A completely biological "off-the-shelf" arteriovenous graft that recellularizes in baboons. Sci Transl Med 2018; 9:9/414/eaan4209. [PMID: 29093182 DOI: 10.1126/scitranslmed.aan4209] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/16/2017] [Accepted: 09/08/2017] [Indexed: 01/29/2023]
Abstract
Prosthetic arteriovenous grafts (AVGs) conventionally used for hemodialysis are associated with inferior primary patency rates and increased risk of infection compared with autogenous vein grafts. We tissue-engineered an AVG grown from neonatal human dermal fibroblasts entrapped in bovine fibrin gel that is then decellularized. This graft is both "off-the-shelf" (nonliving) and completely biological. Grafts that are 6 mm in diameter and about 15 cm in length were evaluated in a baboon model of hemodialysis access in an axillary-cephalic or axillary-brachial upper arm AVG construction procedure. Daily antiplatelet therapy was given. Grafts underwent both ultrasound assessment and cannulation at 1, 2, 3, and 6 months and were then explanted for analysis. Excluding grafts with cephalic vein outflow that rapidly clotted during development of the model, 3- and 6-month primary patency rates were 83% (5 of 6) and 60% (3 of 5), respectively. At explant, patent grafts were found to be extensively recellularized (including smoothelin-positive smooth muscle cells with a developing endothelium on the luminal surface). We observed no calcifications, loss of burst strength, or outflow stenosis, which are common failure modes of other graft materials. There was no overt immune response. We thus demonstrate the efficacy of an off-the-shelf AVG that is both acellular and completely biological.
Collapse
Affiliation(s)
- Zeeshan H Syedain
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Melanie L Graham
- Preclinical Research Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ty B Dunn
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy O'Brien
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sandra L Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert J Schumacher
- Center for Translational Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert T Tranquillo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA. .,Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
169
|
In Vivo Performance of Decellularized Vascular Grafts: A Review Article. Int J Mol Sci 2018; 19:ijms19072101. [PMID: 30029536 PMCID: PMC6073319 DOI: 10.3390/ijms19072101] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022] Open
Abstract
Due to poor vessel quality in patients with cardiovascular diseases, there has been an increased demand for small-diameter tissue-engineered blood vessels that can be used as replacement grafts in bypass surgery. Decellularization techniques to minimize cellular inflammation have been applied in tissue engineering research for the development of small-diameter vascular grafts. The biocompatibility of allogenic or xenogenic decellularized matrices has been evaluated in vitro and in vivo. Both short-term and long-term preclinical studies are crucial for evaluation of the in vivo performance of decellularized vascular grafts. This review offers insight into the various preclinical studies that have been performed using decellularized vascular grafts. Different strategies, such as surface-modified, recellularized, or hybrid vascular grafts, used to improve neoendothelialization and vascular wall remodeling, are also highlighted. This review provides information on the current status and the future development of decellularized vascular grafts.
Collapse
|
170
|
Cunnane EM, Weinbaum JS, O'Brien FJ, Vorp DA. Future Perspectives on the Role of Stem Cells and Extracellular Vesicles in Vascular Tissue Regeneration. Front Cardiovasc Med 2018; 5:86. [PMID: 30018970 PMCID: PMC6037696 DOI: 10.3389/fcvm.2018.00086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
Vascular tissue engineering is an area of regenerative medicine that attempts to create functional replacement tissue for defective segments of the vascular network. One approach to vascular tissue engineering utilizes seeding of biodegradable tubular scaffolds with stem (and/or progenitor) cells wherein the seeded cells initiate scaffold remodeling and prevent thrombosis through paracrine signaling to endogenous cells. Stem cells have received an abundance of attention in recent literature regarding the mechanism of their paracrine therapeutic effect. However, very little of this mechanistic research has been performed under the aegis of vascular tissue engineering. Therefore, the scope of this review includes the current state of TEVGs generated using the incorporation of stem cells in biodegradable scaffolds and potential cell-free directions for TEVGs based on stem cell secreted products. The current generation of stem cell-seeded vascular scaffolds are based on the premise that cells should be obtained from an autologous source. However, the reduced regenerative capacity of stem cells from certain patient groups limits the therapeutic potential of an autologous approach. This limitation prompts the need to investigate allogeneic stem cells or stem cell secreted products as therapeutic bases for TEVGs. The role of stem cell derived products, particularly extracellular vesicles (EVs), in vascular tissue engineering is exciting due to their potential use as a cell-free therapeutic base. EVs offer many benefits as a therapeutic base for functionalizing vascular scaffolds such as cell specific targeting, physiological delivery of cargo to target cells, reduced immunogenicity, and stability under physiological conditions. However, a number of points must be addressed prior to the effective translation of TEVG technologies that incorporate stem cell derived EVs such as standardizing stem cell culture conditions, EV isolation, scaffold functionalization with EVs, and establishing the therapeutic benefit of this combination treatment.
Collapse
Affiliation(s)
- Eoghan M Cunnane
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Justin S Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
171
|
Chartrain NA, Williams CB, Whittington AR. A review on fabricating tissue scaffolds using vat photopolymerization. Acta Biomater 2018; 74:90-111. [PMID: 29753139 DOI: 10.1016/j.actbio.2018.05.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 04/23/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
Vat Photopolymerization (stereolithography, SLA), an Additive Manufacturing (AM) or 3D printing technology, holds particular promise for the fabrication of tissue scaffolds for use in regenerative medicine. Unlike traditional tissue scaffold fabrication techniques, SLA is capable of fabricating designed scaffolds through the selective photopolymerization of a photopolymer resin on the micron scale. SLA offers unprecedented control over scaffold porosity and permeability, as well as pore size, shape, and interconnectivity. Perhaps even more significantly, SLA can be used to fabricate vascular networks that may encourage angio and vasculogenesis. Fulfilling this potential requires the development of new photopolymers, the incorporation of biochemical factors into printed scaffolds, and an understanding of the effects scaffold geometry have on cell viability, proliferation, and differentiation. This review compares SLA to other scaffold fabrication techniques, highlights significant advances in the field, and offers a perspective on the field's challenges and future directions. STATEMENT OF SIGNIFICANCE Engineering de novo tissues continues to be challenging due, in part, to our inability to fabricate complex tissue scaffolds that can support cell proliferation and encourage the formation of developed tissue. The goal of this review is to first introduce the reader to traditional and Additive Manufacturing scaffold fabrication techniques. The bulk of this review will then focus on apprising the reader of current research and provide a perspective on the promising use of vat photopolymerization (stereolithography, SLA) for the fabrication of complex tissue scaffolds.
Collapse
Affiliation(s)
- Nicholas A Chartrain
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Christopher B Williams
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Abby R Whittington
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
172
|
Maina RM, Barahona MJ, Finotti M, Lysyy T, Geibel P, D'Amico F, Mulligan D, Geibel JP. Generating vascular conduits: from tissue engineering to three-dimensional bioprinting. Innov Surg Sci 2018; 3:203-213. [PMID: 31579784 PMCID: PMC6604577 DOI: 10.1515/iss-2018-0016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/04/2018] [Indexed: 12/25/2022] Open
Abstract
Vascular disease - including coronary artery disease, carotid artery disease, and peripheral vascular disease - is a leading cause of morbidity and mortality worldwide. The standard of care for restoring patency or bypassing occluded vessels involves using autologous grafts, typically the saphenous veins or internal mammary arteries. Yet, many patients who need life- or limb-saving procedures have poor outcomes, and a third of patients who need vascular intervention have multivessel disease and therefore lack appropriate vasculature to harvest autologous grafts from. Given the steady increase in the prevalence of vascular disease, there is great need for grafts with the biological and mechanical properties of native vessels that can be used as vascular conduits. In this review, we present an overview of methods that have been employed to generate suitable vascular conduits, focusing on the advances in tissue engineering methods and current three-dimensional (3D) bioprinting methods. Tissue-engineered vascular grafts have been fabricated using a variety of approaches such as using preexisting scaffolds and acellular organic compounds. We also give an extensive overview of the novel use of 3D bioprinting as means of generating new vascular conduits. Different strategies have been employed in bioprinting, and the use of cell-based inks to create de novo structures offers a promising solution to bridge the gap of paucity of optimal donor grafts. Lastly, we provide a glimpse of our work to create scaffold-free, bioreactor-free, 3D bioprinted vessels from a combination of rat vascular smooth muscle cells and fibroblasts that remain patent and retain the tensile and mechanical strength of native vessels.
Collapse
Affiliation(s)
- Renee M Maina
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Maria J Barahona
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Michele Finotti
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA.,University of Padua, Transplantation and Hepatobiliary Surgery, Padua, Italy
| | - Taras Lysyy
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Peter Geibel
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Francesco D'Amico
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA.,University of Padua, Transplantation and Hepatobiliary Surgery, Padua, Italy
| | - David Mulligan
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - John P Geibel
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
173
|
Abstract
The therapeutic replacement of diseased tubular tissue is hindered by the availability and suitability of current donor, autologous and synthetically derived protheses. Artificially created, tissue engineered, constructs have the potential to alleviate these concerns with reduced autoimmune response, high anatomical accuracy, long-term patency and growth potential. The advent of 3D bioprinting technology has further supplemented the technological toolbox, opening up new biofabrication research opportunities and expanding the therapeutic potential of the field. In this review, we highlight the challenges facing those seeking to create artificial tubular tissue with its associated complex macro- and microscopic architecture. Current biofabrication approaches, including 3D printing techniques, are reviewed and future directions suggested.
Collapse
|
174
|
Guazzo R, Gardin C, Bellin G, Sbricoli L, Ferroni L, Ludovichetti FS, Piattelli A, Antoniac I, Bressan E, Zavan B. Graphene-Based Nanomaterials for Tissue Engineering in the Dental Field. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E349. [PMID: 29783786 PMCID: PMC5977363 DOI: 10.3390/nano8050349] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
The world of dentistry is approaching graphene-based nanomaterials as substitutes for tissue engineering. Apart from its exceptional mechanical strength, electrical conductivity and thermal stability, graphene and its derivatives can be functionalized with several bioactive molecules. They can also be incorporated into different scaffolds used in regenerative dentistry, generating nanocomposites with improved characteristics. This review presents the state of the art of graphene-based nanomaterial applications in the dental field. We first discuss the interactions between cells and graphene, summarizing the available in vitro and in vivo studies concerning graphene biocompatibility and cytotoxicity. We then highlight the role of graphene-based nanomaterials in stem cell control, in terms of adhesion, proliferation and differentiation. Particular attention will be given to stem cells of dental origin, such as those isolated from dental pulp, periodontal ligament or dental follicle. The review then discusses the interactions between graphene-based nanomaterials with cells of the immune system; we also focus on the antibacterial activity of graphene nanomaterials. In the last section, we offer our perspectives on the various opportunities facing the use of graphene and its derivatives in associations with titanium dental implants, membranes for bone regeneration, resins, cements and adhesives as well as for tooth-whitening procedures.
Collapse
Affiliation(s)
- Riccardo Guazzo
- Department of Neurosciences, Institute of Clinical Dentistry, University of Padova, 35128 Padova, Italy.
| | - Chiara Gardin
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
- Maria Pia Hospital, GVM Care & Research, 10132 Torino, Italy.
| | - Gloria Bellin
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
- Maria Pia Hospital, GVM Care & Research, 10132 Torino, Italy.
| | - Luca Sbricoli
- Department of Neurosciences, Institute of Clinical Dentistry, University of Padova, 35128 Padova, Italy.
| | - Letizia Ferroni
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
- Maria Pia Hospital, GVM Care & Research, 10132 Torino, Italy.
| | | | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Iulian Antoniac
- Department Materials Science and Engineering, University Politehnica of Bucharest, 060032 Bucharest, Romania.
| | - Eriberto Bressan
- Department of Neurosciences, Institute of Clinical Dentistry, University of Padova, 35128 Padova, Italy.
| | - Barbara Zavan
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
- Maria Cecilia Hospital, GVM Care & Research, 48033 Ravenna, Italy.
| |
Collapse
|
175
|
Wang N, Peng Y, Zheng W, Tang L, Cheng S, Yang J, Liu S, Zhang W, Jiang X. A Strategy for Rapid Construction of Blood Vessel-Like Structures with Complex Cell Alignments. Macromol Biosci 2018; 18:e1700408. [DOI: 10.1002/mabi.201700408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/05/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Nuoxin Wang
- School of Life Science and Technology; Harbin Institute of Technology; 2 Yikuang Road, Nangang District Harbin 150001 China
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; 11 Beiyitiao, Zhongguancun, Haidian District Beijing 100190 China
| | - Yunhu Peng
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; 11 Beiyitiao, Zhongguancun, Haidian District Beijing 100190 China
- Department of Chemical and Biomolecular Engineering; North Carolina State University; NC 27695 USA
| | - Wenfu Zheng
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; 11 Beiyitiao, Zhongguancun, Haidian District Beijing 100190 China
| | - Lixue Tang
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; 11 Beiyitiao, Zhongguancun, Haidian District Beijing 100190 China
| | - Shiyu Cheng
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; 11 Beiyitiao, Zhongguancun, Haidian District Beijing 100190 China
| | - Junchuan Yang
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; 11 Beiyitiao, Zhongguancun, Haidian District Beijing 100190 China
| | - Shaoqin Liu
- School of Life Science and Technology; Harbin Institute of Technology; 2 Yikuang Road, Nangang District Harbin 150001 China
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; 11 Beiyitiao, Zhongguancun, Haidian District Beijing 100190 China
| | - Wei Zhang
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; 11 Beiyitiao, Zhongguancun, Haidian District Beijing 100190 China
| | - Xingyu Jiang
- School of Life Science and Technology; Harbin Institute of Technology; 2 Yikuang Road, Nangang District Harbin 150001 China
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; 11 Beiyitiao, Zhongguancun, Haidian District Beijing 100190 China
- University of Chinese Academy of Sciences; 19 A Yuquan Road, Shijingshan District Beijing 100049 China
| |
Collapse
|
176
|
Carrabba M, Madeddu P. Current Strategies for the Manufacture of Small Size Tissue Engineering Vascular Grafts. Front Bioeng Biotechnol 2018; 6:41. [PMID: 29721495 PMCID: PMC5916236 DOI: 10.3389/fbioe.2018.00041] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/23/2018] [Indexed: 01/12/2023] Open
Abstract
Occlusive arterial disease, including coronary heart disease (CHD) and peripheral arterial disease (PAD), is the main cause of death, with an annual mortality incidence predicted to rise to 23.3 million worldwide by 2030. Current revascularization techniques consist of angioplasty, placement of a stent, or surgical bypass grafting. Autologous vessels, such as the saphenous vein and internal thoracic artery, represent the gold standard grafts for small-diameter vessels. However, they require invasive harvesting and are often unavailable. Synthetic vascular grafts represent an alternative to autologous vessels. These grafts have shown satisfactory long-term results for replacement of large- and medium-diameter arteries, such as the carotid or common femoral artery, but have poor patency rates when applied to small-diameter vessels, such as coronary arteries and arteries below the knee. Considering the limitations of current vascular bypass conduits, a tissue-engineered vascular graft (TEVG) with the ability to grow, remodel, and repair in vivo presents a potential solution for the future of vascular surgery. Here, we review the different methods that research groups have been investigating to create TEVGs in the last decades. We focus on the techniques employed in the manufacturing process of the grafts and categorize the approaches as scaffold-based (synthetic, natural, or hybrid) or self-assembled (cell-sheet, microtissue aggregation and bioprinting). Moreover, we highlight the attempts made so far to translate this new strategy from the bench to the bedside.
Collapse
Affiliation(s)
- Michele Carrabba
- School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
177
|
Abstract
New technologies and science have contributed to improved surgical outcomes in patients with congenital cardiovascular diseases. However, current materials display shortcomings, such as risk of infection and lack of growth capacity when applied to the pediatric patient population. Tissue engineering has the potential to address these limitations as the ideal tissue engineered vascular graft (TEVG) would be durable, biocompatible, nonthrombogenic, and ultimately remodel into native tissue. The traditional TEVG paradigm consists of a scaffold, cell source, and the integration of the scaffold and cells via seeding. The subsequent remodeling process is driven by cellular adhesion and proliferation, as well as, biochemical and mechanical signaling. Clinical trials have displayed encouraging results, but graft stenosis is observed as a frequent complication. Recent investigations have suggested that a host's immune response plays a vital role in neotissue formation. Current and future studies will focus on modulating host immunity as a means of reducing the incidence of stenosis.
Collapse
Affiliation(s)
- Toshihiro Shoji
- The Tissue Engineering Program and Center for Cardiovascular and Pulmonary Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Toshiharu Shinoka
- The Tissue Engineering Program and Center for Cardiovascular and Pulmonary Research, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
178
|
Baseline mapping of Lassa fever virology, epidemiology and vaccine research and development. NPJ Vaccines 2018; 3:11. [PMID: 29581897 PMCID: PMC5861057 DOI: 10.1038/s41541-018-0049-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/12/2018] [Accepted: 02/16/2018] [Indexed: 01/14/2023] Open
Abstract
Lassa fever (LF) is a zoonotic disease associated with acute and potentially fatal hemorrhagic illness caused by the Lassa virus (LASV), a member of the family Arenaviridae. It is generally assumed that a single infection with LASV will produce life-long protective immunity. This suggests that protective immunity induced by vaccination is an achievable goal and that cell-mediated immunity may play a more important role in protection, at least following natural infection. Seropositive individuals in endemic regions have been shown to have LASV-specific T cells recognizing epitopes for nucleocapsid protein (NP) and glycoprotein precursor (GPC), suggesting that these will be important vaccine immunogens. The role of neutralizing antibodies in protective immunity is still equivocal as recent studies suggest a role for neutralizing antibodies. There is extensive genetic heterogeneity among LASV strains that is of concern in the development of assays to detect and identify all four LASV lineages. Furthermore, the gene disparity may complicate the synthesis of effective vaccines that will provide protection across multiple lineages. Non-human primate models of LASV infection are considered the gold standard for recapitulation of human LF. The most promising vaccine candidates to date are the ML29 (a live attenuated reassortant of Mopeia and LASV), vesicular stomatitis virus (VSV) and vaccinia-vectored platforms based on their ability to induce protection following single doses, high rates of survival following challenge, and the use of live virus platforms. To date no LASV vaccine candidates have undergone clinical evaluation.
Collapse
|
179
|
Casalini S, Bortolotti CA, Leonardi F, Biscarini F. Self-assembled monolayers in organic electronics. Chem Soc Rev 2018; 46:40-71. [PMID: 27722675 DOI: 10.1039/c6cs00509h] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-assembly is possibly the most effective and versatile strategy for surface functionalization. Self-assembled monolayers (SAMs) can be formed on (semi-)conductor and dielectric surfaces, and have been used in a variety of technological applications. This work aims to review the strategy behind the design and use of self-assembled monolayers in organic electronics, discuss the mechanism of interaction of SAMs in a microscopic device, and highlight the applications emerging from the integration of SAMs in an organic device. The possibility of performing surface chemistry tailoring with SAMs constitutes a versatile approach towards the tuning of the electronic and morphological properties of the interfaces relevant to the response of an organic electronic device. Functionalisation with SAMs is important not only for imparting stability to the device or enhancing its performance, as sought at the early stages of development of this field. SAM-functionalised organic devices give rise to completely new types of behavior that open unprecedented applications, such as ultra-sensitive label-free biosensors and SAM/organic transistors that can be used as robust experimental gauges for studying charge tunneling across SAMs.
Collapse
Affiliation(s)
- Stefano Casalini
- Life Sciences Department, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy.
| | - Carlo Augusto Bortolotti
- Life Sciences Department, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy. and Consiglio Nazionale delle Ricerche (CNR), Institute for Nanosciences, Via Campi 213/a, 41125 Modena, Italy
| | - Francesca Leonardi
- Consiglio Nazionale delle Ricerche (CNR), Institute for Nanostructured Materials (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Fabio Biscarini
- Life Sciences Department, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy. and Consiglio Nazionale delle Ricerche (CNR), Institute for Nanostructured Materials (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
180
|
Onwuka E, King N, Heuer E, Breuer C. The Heart and Great Vessels. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031922. [PMID: 28289246 DOI: 10.1101/cshperspect.a031922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cardiovascular disease is the leading cause of mortality worldwide. We have made large strides over the past few decades in management, but definitive therapeutic options to address this health-care burden are still limited. Given the ever-increasing need, much effort has been spent creating engineered tissue to replaced diseased tissue. This article gives a general overview of this work as it pertains to the development of great vessels, myocardium, and heart valves. In each area, we focus on currently studied methods, limitations, and areas for future study.
Collapse
Affiliation(s)
- Ekene Onwuka
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205.,College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Nakesha King
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205.,College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Eric Heuer
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | - Christopher Breuer
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205.,College of Medicine, The Ohio State University, Columbus, Ohio 43210.,Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio 43205
| |
Collapse
|
181
|
Song HHG, Rumma RT, Ozaki CK, Edelman ER, Chen CS. Vascular Tissue Engineering: Progress, Challenges, and Clinical Promise. Cell Stem Cell 2018; 22:340-354. [PMID: 29499152 PMCID: PMC5849079 DOI: 10.1016/j.stem.2018.02.009] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although the clinical demand for bioengineered blood vessels continues to rise, current options for vascular conduits remain limited. The synergistic combination of emerging advances in tissue fabrication and stem cell engineering promises new strategies for engineering autologous blood vessels that recapitulate not only the mechanical properties of native vessels but also their biological function. Here we explore recent bioengineering advances in creating functional blood macro and microvessels, particularly featuring stem cells as a seed source. We also highlight progress in integrating engineered vascular tissues with the host after implantation as well as the exciting pre-clinical and clinical applications of this technology.
Collapse
Affiliation(s)
- H-H Greco Song
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Rowza T Rumma
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - C Keith Ozaki
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elazer R Edelman
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Cardiology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Christopher S Chen
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
182
|
Prediction of circumferential compliance and burst strength of polymeric vascular grafts. J Mech Behav Biomed Mater 2018; 79:332-340. [DOI: 10.1016/j.jmbbm.2017.12.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 11/18/2022]
|
183
|
Gu W, Hong X, Potter C, Qu A, Xu Q. Mesenchymal stem cells and vascular regeneration. Microcirculation 2018; 24. [PMID: 27681821 DOI: 10.1111/micc.12324] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/20/2016] [Indexed: 12/22/2022]
Abstract
In recent years, MSCs have emerged as a promising therapeutic cell type in regenerative medicine. They hold great promise for treating cardiovascular diseases, such as myocardial infarction and limb ischemia. MSCs may be utilized in both cell-based therapy and vascular graft engineering to restore vascular function, thereby providing therapeutic benefits to patients. The efficacy of MSCs lies in their multipotent differentiation ability toward vascular smooth muscle cells, endothelial cells and other cell types, as well as their capacity to secrete various trophic factors, which are potent in promoting angiogenesis, inhibiting apoptosis and modulating immunoreaction. Increasing our understanding of the mechanisms of MSC involvement in vascular regeneration will be beneficial in boosting present therapeutic approaches and developing novel ones to treat cardiovascular diseases. In this review, we aim to summarize current progress in characterizing the in vivo identity of MSCs, to discuss mechanisms involved in cell-based therapy utilizing MSCs, and to explore current and future strategies for vascular regeneration.
Collapse
Affiliation(s)
- Wenduo Gu
- Cardiovascular Division, King's College London BHF Centre, London, UK
| | - Xuechong Hong
- Cardiovascular Division, King's College London BHF Centre, London, UK
| | - Claire Potter
- Cardiovascular Division, King's College London BHF Centre, London, UK
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| | - Qingbo Xu
- Cardiovascular Division, King's College London BHF Centre, London, UK
| |
Collapse
|
184
|
Filipe EC, Santos M, Hung J, Lee BS, Yang N, Chan AH, Ng MK, Rnjak-Kovacina J, Wise SG. Rapid Endothelialization of Off-the-Shelf Small Diameter Silk Vascular Grafts. JACC Basic Transl Sci 2018; 3:38-53. [PMID: 30062193 PMCID: PMC6058932 DOI: 10.1016/j.jacbts.2017.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022]
Abstract
Synthetic vascular grafts for small diameter revascularization are lacking. Clinically available conduits expanded polytetrafluorethylene and Dacron fail acutely due to thrombosis and in the longer term from neointimal hyperplasia. We report the bioengineering of a cell-free, silk-based vascular graft. In vitro we demonstrate strong, elastic silk conduits that support rapid endothelial cell attachment and spreading while simultaneously resisting blood clot and fibrin network formation. In vivo rat studies show complete graft patency at all time points, rapid endothelialization, and stabilization and contraction of neointimal hyperplasia. These studies show the potential of silk as an off-the-shelf small diameter vascular graft.
Collapse
Affiliation(s)
- Elysse C. Filipe
- Applied Materials Group, The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Miguel Santos
- Applied Materials Group, The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Juichien Hung
- Applied Materials Group, The Heart Research Institute, Sydney, New South Wales, Australia
| | - Bob S.L. Lee
- Applied Materials Group, The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Nianji Yang
- Applied Materials Group, The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Alex H.P. Chan
- Applied Materials Group, The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Martin K.C. Ng
- Applied Materials Group, The Heart Research Institute, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales–Sydney, Sydney, New South Wales, Australia
| | - Steven G. Wise
- Applied Materials Group, The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
185
|
Damian DD, Price K, Arabagi S, Berra I, Machaidze Z, Manjila S, Shimada S, Fabozzo A, Arnal G, Van Story D, Goldsmith JD, Agoston AT, Kim C, Jennings RW, Ngo PD, Manfredi M, Dupont PE. In vivo tissue regeneration with robotic implants. Sci Robot 2018; 3:3/14/eaaq0018. [DOI: 10.1126/scirobotics.aaq0018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Dana D. Damian
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- University of Sheffield, Sheffield S13JD, UK
| | - Karl Price
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Slava Arabagi
- Helbling Precision Engineering, Cambridge, MA 02142, USA
| | - Ignacio Berra
- National Pediatric Hospital J.P. Garrahan, Buenos Aires 01712, Argentina
| | - Zurab Machaidze
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sunil Manjila
- McLaren Bay Neurosurgery Associates, Bay City, MI 48706, USA
| | | | | | - Gustavo Arnal
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David Van Story
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Agoston T. Agoston
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chunwoo Kim
- Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | | | - Peter D. Ngo
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Manfredi
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pierre E. Dupont
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
186
|
Cheema U, Hadjipanayi E, Tamimi N, Alp B, Mudera V, Brown RA. Identification of Key Factors in Deep O2 Cell Perfusion for Vascular Tissue Engineering. Int J Artif Organs 2018; 32:318-28. [DOI: 10.1177/039139880903200602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood vessel engineering requires an understanding of the parameters governing the survival of resident vascular smooth muscle cells. We have developed an in vitro, collagen-based 3D model of vascular media to examine the correlation of cell density, O2 requirements, and viability. Dense collagen sheets (100 μxm) seeded with porcine pulmonary artery smooth muscle cells (PASMCs) at low or high (11.6 or 23.2x106 cells/mL) densities were spiraled around a mandrel to create tubular constructs and cultured for up to 6 days in vitro, under both static and dynamic perfusion conditions. Real-time in situ monitoring showed that within 24 hours core O2 tension dropped from 140 mmHg to 20 mmHg and 80 mmHg for high and low cell density static cultures, respectively, with no significant cell death associated with the lowest O2 tension. A significant reduction in core O2 tension to 60 mmHg was achieved by increasing the O2 diffusion distance of low cell density constructs by 33% (p<0.05). After 6 days of static, high cell density culture, viability significantly decreased in the core (55%), with little effect at the surface (75%), whereas dynamic perfusion in a re-circulating bioreactor (1 ml/min) significantly improved core viability (70%, p<0.05), largely eliminating the problem. This study has identified key parameters dictating vascular smooth muscle cell behavior in 3D engineered tissue culture.
Collapse
Affiliation(s)
- Umber Cheema
- University College London, Division of Surgical and Interventional Sciences, Institute of Orthopaedics and Musculoskeletal Sciences, Tissue Repair and Engineering Centre, Stanmore Campus, London - UK
| | - Ektoras Hadjipanayi
- University College London, Division of Surgical and Interventional Sciences, Institute of Orthopaedics and Musculoskeletal Sciences, Tissue Repair and Engineering Centre, Stanmore Campus, London - UK
| | - Noor Tamimi
- University College London, Division of Surgical and Interventional Sciences, Institute of Orthopaedics and Musculoskeletal Sciences, Tissue Repair and Engineering Centre, Stanmore Campus, London - UK
| | - Burcak Alp
- University College London, Division of Surgical and Interventional Sciences, Institute of Orthopaedics and Musculoskeletal Sciences, Tissue Repair and Engineering Centre, Stanmore Campus, London - UK
| | - Vivek Mudera
- University College London, Division of Surgical and Interventional Sciences, Institute of Orthopaedics and Musculoskeletal Sciences, Tissue Repair and Engineering Centre, Stanmore Campus, London - UK
| | - Robert A. Brown
- University College London, Division of Surgical and Interventional Sciences, Institute of Orthopaedics and Musculoskeletal Sciences, Tissue Repair and Engineering Centre, Stanmore Campus, London - UK
| |
Collapse
|
187
|
Recent Progress in Vascular Tissue-Engineered Blood Vessels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:123-144. [PMID: 30471030 DOI: 10.1007/978-981-13-0445-3_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease is the number one cause of death in the U.S and results in the loss of approximately one million lives and more than 400 billion U.S. dollars for treatments every year. Recently, tissue engineered blood vessels have been studied and developed as promising replacements for treatment with autologous veins. Here, we summarize the cell sources and methods to make tissue-engineered blood vessels (TEBVs), the recent progress in TEBV related research, and also the recent progress in TEBV related clinical studies.
Collapse
|
188
|
Tebyanian H, Karami A, Motavallian E, Aslani J, Samadikuchaksaraei A, Arjmand B, Nourani MR. A Comparative Study of Rat Lung Decellularization by Chemical Detergents for Lung Tissue Engineering. Open Access Maced J Med Sci 2017; 5:859-865. [PMID: 29362610 PMCID: PMC5771286 DOI: 10.3889/oamjms.2017.179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Lung disease is the most common cause of death in the world. The last stage of pulmonary diseases is lung transplantation. Limitation and shortage of donor organs cause to appear tissue engineering field. Decellularization is a hope for producing intact ECM in the development of engineered organs. AIM The goal of the decellularization process is to remove cellular and nuclear material while retaining lung three-dimensional and molecular proteins. Different concentration of detergents was used for finding the best approach in lung decellularization. MATERIAL AND METHODS In this study, three-time approaches (24, 48 and 96 h) with four detergents (CHAPS, SDS, SDC and Triton X-100) were used for decellularizing rat lungs for maintaining of three-dimensional lung architecture and ECM protein composition which have significant roles in differentiation and migration of stem cells. This comparative study determined that variable decellularization approaches can cause significantly different effects on decellularized lungs. RESULTS Results showed that destruction was increased with increasing the detergent concentration. Single detergent showed a significant reduction in maintaining of three-dimensional of lung and ECM proteins (Collagen and Elastin). But, the best methods were mixed detergents of SDC and CHAPS in low concentration in 48 and 96 h decellularization. CONCLUSION Decellularized lung tissue can be used in the laboratory to study various aspects of pulmonary biology and physiology and also, these results can be used in the continued improvement of engineered lung tissue.
Collapse
Affiliation(s)
- Hamid Tebyanian
- Division of Tissue Engineering and Regenerative Medicine, Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Research Center for Prevention of Oral and Dental Disease, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Karami
- Division of Tissue Engineering and Regenerative Medicine, Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Research Center for Prevention of Oral and Dental Disease, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ebrahim Motavallian
- Department of General Surgery, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Aslani
- Department of General Surgery, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Cellular-Molecular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Nourani
- Division of Tissue Engineering and Regenerative Medicine, Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
189
|
Wang H, Cui J, Zheng Z, Shi Q, Sun T, Liu X, Huang Q, Fukuda T. Assembly of RGD-Modified Hydrogel Micromodules into Permeable Three-Dimensional Hollow Microtissues Mimicking in Vivo Tissue Structures. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41669-41679. [PMID: 29130303 DOI: 10.1021/acsami.7b10960] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fabricated microscale tissues that replicate in vivo architectures have shown huge potential in regenerative medicine and drug discovery. Owing to the spatial organization of cell-encapsulated hydrogel microstructures, three-dimensional (3D) tissue structures have been broadly applied as novel pathological or pharmacological models. However, the spatial reorganization of arbitrary microstructures with tissue-specific shapes into 3D in vitro microtissues that mimic the physiological morphology and nutrient diffusion of native tissues presents a major challenge. Here, we develop a versatile method that engineers permeable 3D microtissues into tissue-specific microscopic architectures. The customized, arbitrarily shaped hollow micromodules are prepared by photocopolymerizing poly(ethylene glycol) diacrylate (PEGDA) with acryloyl-PEG-Arg-Gly-Asp-Ser (RGDS). These micromodules are spatially reorganized and self-aligned by a facile assembly process based on hydrodynamic interactions, forming an integrated geometry with tissue-specific morphology and a vessel-mimetic lumen. The RGD linkages create cell-adhesive structures in the PEGDA hydrogel, greatly increasing the long-term cell viability in 3D microtissue cultures. Meanwhile, the mechanical properties for fast cell spreading inside the microstructures can be optimized by modulating the PEGDA concentration. The 3D microtissues, with their different geometries and permeable tubular lumens, maintained cell proliferation over 14 days. The cell viabilities exceeded 98%. We anticipate that our method will regenerate complex tissues with physiological importance in future tissue engineering.
Collapse
Affiliation(s)
- Huaping Wang
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology , 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Juan Cui
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology , 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Zhiqiang Zheng
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology , 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Qing Shi
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology , 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Tao Sun
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology , 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Xiaoming Liu
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology , 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Qiang Huang
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology , 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Toshio Fukuda
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology , 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| |
Collapse
|
190
|
Luo J, Qin L, Kural MH, Schwan J, Li X, Bartulos O, Cong XQ, Ren Y, Gui L, Li G, Ellis MW, Li P, Kotton DN, Dardik A, Pober JS, Tellides G, Rolle M, Campbell S, Hawley RJ, Sachs DH, Niklason LE, Qyang Y. Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering. Biomaterials 2017; 147:116-132. [PMID: 28942128 PMCID: PMC5638652 DOI: 10.1016/j.biomaterials.2017.09.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/05/2017] [Accepted: 09/17/2017] [Indexed: 12/18/2022]
Abstract
Development of autologous tissue-engineered vascular constructs using vascular smooth muscle cells (VSMCs) derived from human induced pluripotent stem cells (iPSCs) holds great potential in treating patients with vascular disease. However, preclinical, large animal iPSC-based cellular and tissue models are required to evaluate safety and efficacy prior to clinical application. Herein, swine iPSC (siPSC) lines were established by introducing doxycycline-inducible reprogramming factors into fetal fibroblasts from a line of inbred Massachusetts General Hospital miniature swine that accept tissue and organ transplants without immunosuppression within the line. Highly enriched, functional VSMCs were derived from siPSCs based on addition of ascorbic acid and inactivation of reprogramming factor via doxycycline withdrawal. Moreover, siPSC-VSMCs seeded onto biodegradable polyglycolic acid (PGA) scaffolds readily formed vascular tissues, which were implanted subcutaneously into immunodeficient mice and showed further maturation revealed by expression of the mature VSMC marker, smooth muscle myosin heavy chain. Finally, using a robust cellular self-assembly approach, we developed 3D scaffold-free tissue rings from siPSC-VSMCs that showed comparable mechanical properties and contractile function to those developed from swine primary VSMCs. These engineered vascular constructs, prepared from doxycycline-inducible inbred siPSCs, offer new opportunities for preclinical investigation of autologous human iPSC-based vascular tissues for patient treatment.
Collapse
Affiliation(s)
- Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Lingfeng Qin
- Department of Surgery, Yale University, New Haven, CT 06520, USA
| | - Mehmet H Kural
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Jonas Schwan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - Xia Li
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Oscar Bartulos
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Xiao-Qiang Cong
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Cardiology, Bethune First Hospital of Jilin University, ChangChun, 130021, China
| | - Yongming Ren
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Liqiong Gui
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Guangxin Li
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, 110122, China
| | - Matthew W Ellis
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06519, USA
| | - Peining Li
- Department of Genetics, Yale University, New Haven, CT 06519, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Alan Dardik
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jordan S Pober
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - George Tellides
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marsha Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Stuart Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - Robert J Hawley
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02129, USA
| | - David H Sachs
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Laura E Niklason
- Yale Stem Cell Center, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
191
|
Liu RH, Ong CS, Fukunishi T, Ong K, Hibino N. Review of Vascular Graft Studies in Large Animal Models. TISSUE ENGINEERING PART B-REVIEWS 2017; 24:133-143. [PMID: 28978267 DOI: 10.1089/ten.teb.2017.0350] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As the incidence of cardiovascular disease continues to climb worldwide, there is a corresponding increase in demand for surgical interventions involving vascular grafts. The current gold standard for vascular grafts is autologous vessels, an option often excluded due to disease circumstances. As a result, many patients must resort to prosthetic options. While widely available, prosthetic grafts have been demonstrated to have inferior patency rates compared with autologous grafts due to inflammation and thrombosis. In an attempt to overcome these limitations, many different materials for constructing vascular grafts, from modified synthetic nondegradable polymers to biodegradable polymers, have been explored, many of which have entered the translational stage of research. This article reviews these materials in the context of large animal models, providing an outlook on the preclinical potential of novel biomaterials as well as the future direction of vascular graft research.
Collapse
Affiliation(s)
- Rui Han Liu
- 1 Division of Cardiac Surgery, The Johns Hopkins Hospital , Baltimore, Maryland
| | - Chin Siang Ong
- 1 Division of Cardiac Surgery, The Johns Hopkins Hospital , Baltimore, Maryland
| | - Takuma Fukunishi
- 1 Division of Cardiac Surgery, The Johns Hopkins Hospital , Baltimore, Maryland
| | - Kingsfield Ong
- 2 Department of Cardiac, Thoracic and Vascular Surgery, National University Health System , Singapore, Singapore
| | - Narutoshi Hibino
- 1 Division of Cardiac Surgery, The Johns Hopkins Hospital , Baltimore, Maryland
| |
Collapse
|
192
|
Dash BC, Levi K, Schwan J, Luo J, Bartulos O, Wu H, Qiu C, Yi T, Ren Y, Campbell S, Rolle MW, Qyang Y. Tissue-Engineered Vascular Rings from Human iPSC-Derived Smooth Muscle Cells. Stem Cell Reports 2017; 7:19-28. [PMID: 27411102 PMCID: PMC4945325 DOI: 10.1016/j.stemcr.2016.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/08/2016] [Accepted: 05/08/2016] [Indexed: 12/21/2022] Open
Abstract
There is an urgent need for an efficient approach to obtain a large-scale and renewable source of functional human vascular smooth muscle cells (VSMCs) to establish robust, patient-specific tissue model systems for studying the pathogenesis of vascular disease, and for developing novel therapeutic interventions. Here, we have derived a large quantity of highly enriched functional VSMCs from human induced pluripotent stem cells (hiPSC-VSMCs). Furthermore, we have engineered 3D tissue rings from hiPSC-VSMCs using a facile one-step cellular self-assembly approach. The tissue rings are mechanically robust and can be used for vascular tissue engineering and disease modeling of supravalvular aortic stenosis syndrome. Our method may serve as a model system, extendable to study other vascular proliferative diseases for drug screening. Thus, this report describes an exciting platform technology with broad utility for manufacturing cell-based tissues and materials for various biomedical applications.
Collapse
Affiliation(s)
- Biraja C Dash
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA; Department of Surgery (Plastic), Yale University, New Haven, CT 06520, USA
| | - Karen Levi
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Jonas Schwan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Jiesi Luo
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA
| | - Oscar Bartulos
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA
| | - Hongwei Wu
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA; Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Caihong Qiu
- Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA
| | - Ting Yi
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA
| | - Yongming Ren
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA
| | - Stuart Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Marsha W Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Yibing Qyang
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Pathology, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
193
|
Zhao L, Sundaram S, Le AV, Huang AH, Zhang J, Hatachi G, Beloiartsev A, Caty MG, Yi T, Leiby K, Gard A, Kural MH, Gui L, Rocco KA, Sivarapatna A, Calle E, Greaney A, Urbani L, Maghsoudlou P, Burns A, DeCoppi P, Niklason LE. Engineered Tissue-Stent Biocomposites as Tracheal Replacements. Tissue Eng Part A 2017; 22:1086-97. [PMID: 27520928 DOI: 10.1089/ten.tea.2016.0132] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Here we report the creation of a novel tracheal construct in the form of an engineered, acellular tissue-stent biocomposite trachea (TSBT). Allogeneic or xenogeneic smooth muscle cells are cultured on polyglycolic acid polymer-metal stent scaffold leading to the formation of a tissue comprising cells, their deposited collagenous matrix, and the stent material. Thorough decellularization then produces a final acellular tubular construct. Engineered TSBTs were tested as end-to-end tracheal replacements in 11 rats and 3 nonhuman primates. Over a period of 8 weeks, no instances of airway perforation, infection, stent migration, or erosion were observed. Histological analyses reveal that the patent implants remodel adaptively with native host cells, including formation of connective tissue in the tracheal wall and formation of a confluent, columnar epithelium in the graft lumen, although some instances of airway stenosis were observed. Overall, TSBTs resisted collapse and compression that often limit the function of other decellularized tracheal replacements, and additionally do not require any cells from the intended recipient. Such engineered TSBTs represent a model for future efforts in tracheal regeneration.
Collapse
Affiliation(s)
- Liping Zhao
- 2 Department of Anesthesiology, Yale University , New Haven, Connecticut
| | - Sumati Sundaram
- 1 Department of Biomedical Engineering, Yale University , New Haven, Connecticut.,2 Department of Anesthesiology, Yale University , New Haven, Connecticut
| | - Andrew V Le
- 2 Department of Anesthesiology, Yale University , New Haven, Connecticut
| | - Angela H Huang
- 1 Department of Biomedical Engineering, Yale University , New Haven, Connecticut
| | - Jiasheng Zhang
- 3 Department of Internal Medicine Cardiology, Yale University , New Haven, Connecticut
| | - Go Hatachi
- 2 Department of Anesthesiology, Yale University , New Haven, Connecticut
| | - Arkadi Beloiartsev
- 2 Department of Anesthesiology, Yale University , New Haven, Connecticut
| | - Michael G Caty
- 4 Section of Pediatric Surgery, Yale University , New Haven, Connecticut
| | - Tai Yi
- 5 Nationwide Children's Hospital Research Institute , Columbus, Ohio
| | - Katherine Leiby
- 1 Department of Biomedical Engineering, Yale University , New Haven, Connecticut
| | - Ashley Gard
- 1 Department of Biomedical Engineering, Yale University , New Haven, Connecticut
| | - Mehmet H Kural
- 2 Department of Anesthesiology, Yale University , New Haven, Connecticut
| | - Liqiong Gui
- 2 Department of Anesthesiology, Yale University , New Haven, Connecticut
| | - Kevin A Rocco
- 2 Department of Anesthesiology, Yale University , New Haven, Connecticut
| | - Amogh Sivarapatna
- 1 Department of Biomedical Engineering, Yale University , New Haven, Connecticut
| | - Elizabeth Calle
- 1 Department of Biomedical Engineering, Yale University , New Haven, Connecticut
| | - Allison Greaney
- 1 Department of Biomedical Engineering, Yale University , New Haven, Connecticut
| | - Luca Urbani
- 6 UCL Institute of Child Health and Great Ormond Street Hospital , UCL, London, United Kingdom
| | - Panagiotis Maghsoudlou
- 6 UCL Institute of Child Health and Great Ormond Street Hospital , UCL, London, United Kingdom
| | - Alan Burns
- 6 UCL Institute of Child Health and Great Ormond Street Hospital , UCL, London, United Kingdom .,7 Department of Clinical Genetics, Erasmus Medical Center , Rotterdam, The Netherlands
| | - Paolo DeCoppi
- 6 UCL Institute of Child Health and Great Ormond Street Hospital , UCL, London, United Kingdom
| | - Laura E Niklason
- 1 Department of Biomedical Engineering, Yale University , New Haven, Connecticut.,2 Department of Anesthesiology, Yale University , New Haven, Connecticut
| |
Collapse
|
194
|
Huang AH, Balestrini JL, Udelsman BV, Zhou KC, Zhao L, Ferruzzi J, Starcher BC, Levene MJ, Humphrey JD, Niklason LE. Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries. Tissue Eng Part C Methods 2017; 22:524-33. [PMID: 27108525 DOI: 10.1089/ten.tec.2015.0309] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Tissue-engineered blood vessels (TEVs) are typically produced using the pulsatile, uniaxial circumferential stretch to mechanically condition and strengthen the arterial grafts. Despite improvements in the mechanical integrity of TEVs after uniaxial conditioning, these tissues fail to achieve critical properties of native arteries such as matrix content, collagen fiber orientation, and mechanical strength. As a result, uniaxially loaded TEVs can result in mechanical failure, thrombus, or stenosis on implantation. In planar tissue equivalents such as artificial skin, biaxial loading has been shown to improve matrix production and mechanical properties. To date however, multiaxial loading has not been examined as a means to improve mechanical and biochemical properties of TEVs during culture. Therefore, we developed a novel bioreactor that utilizes both circumferential and axial stretch that more closely simulates loading conditions in native arteries, and we examined the suture strength, matrix production, fiber orientation, and cell proliferation. After 3 months of biaxial loading, TEVs developed a formation of mature elastic fibers that consisted of elastin cores and microfibril sheaths. Furthermore, the distinctive features of collagen undulation and crimp in the biaxial TEVs were absent in both uniaxial and static TEVs. Relative to the uniaxially loaded TEVs, tissues that underwent biaxial loading remodeled and realigned collagen fibers toward a more physiologic, native-like organization. The biaxial TEVs also showed increased mechanical strength (suture retention load of 303 ± 14.53 g, with a wall thickness of 0.76 ± 0.028 mm) and increased compliance. The increase in compliance was due to combinatorial effects of mature elastic fibers, undulated collagen fibers, and collagen matrix orientation. In conclusion, biaxial stretching is a potential means to regenerate TEVs with improved matrix production, collagen organization, and mechanical properties.
Collapse
Affiliation(s)
- Angela H Huang
- 1 Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University , New Haven, Connecticut
| | - Jenna L Balestrini
- 1 Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University , New Haven, Connecticut
| | | | - Kevin C Zhou
- 1 Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University , New Haven, Connecticut
| | - Liping Zhao
- 2 School of Medicine, Yale University , New Haven, Connecticut
| | - Jacopo Ferruzzi
- 1 Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University , New Haven, Connecticut
| | - Barry C Starcher
- 3 Department of Biochemistry, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Michael J Levene
- 1 Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University , New Haven, Connecticut
| | - Jay D Humphrey
- 1 Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University , New Haven, Connecticut
| | - Laura E Niklason
- 1 Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University , New Haven, Connecticut.,2 School of Medicine, Yale University , New Haven, Connecticut
| |
Collapse
|
195
|
Popryadukhin PV, Popov GI, Yukina GY, Dobrovolskaya IP, Ivan'kova EM, Vavilov VN, Yudin VE. Tissue-Engineered Vascular Graft of Small Diameter Based on Electrospun Polylactide Microfibers. Int J Biomater 2017; 2017:9034186. [PMID: 29250114 PMCID: PMC5698825 DOI: 10.1155/2017/9034186] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/22/2017] [Accepted: 09/27/2017] [Indexed: 11/17/2022] Open
Abstract
Tubular vascular grafts 1.1 mm in diameter based on poly(L-lactide) microfibers were obtained by electrospinning. X-ray diffraction and scanning electron microscopy data demonstrated that the samples treated at T = 70°C for 1 h in the fixed state on a cylindrical mandrel possessed dense fibrous structure; their degree of crystallinity was approximately 44%. Strength and deformation stability of these samples were higher than those of the native blood vessels; thus, it was possible to use them in tissue engineering as bioresorbable vascular grafts. The experiments on including implantation into rat abdominal aorta demonstrated that the obtained vascular grafts did not cause pathological reactions in the rats; in four weeks, inner side of the grafts became completely covered with endothelial cells, and fibroblasts grew throughout the wall. After exposure for 12 weeks, resorption of PLLA fibers started, and this process was completed in 64 weeks. Resorbed synthetic fibers were replaced by collagen and fibroblasts. At that time, the blood vessel was formed; its neointima and neoadventitia were close to those of the native vessel in structure and composition.
Collapse
Affiliation(s)
- P. V. Popryadukhin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy Pr. 31, Saint-Petersburg 199004, Russia
- Peter the Great Saint-Petersburg State Polytechnical University, Polytechnicheskaya Str. 29, Saint-Petersburg 194064, Russia
| | - G. I. Popov
- Pavlov First Saint-Petersburg State Medical University, Leo Tolstoy Str. 6-8, Saint-Petersburg 197022, Russia
| | - G. Yu. Yukina
- Pavlov First Saint-Petersburg State Medical University, Leo Tolstoy Str. 6-8, Saint-Petersburg 197022, Russia
| | - I. P. Dobrovolskaya
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy Pr. 31, Saint-Petersburg 199004, Russia
- Peter the Great Saint-Petersburg State Polytechnical University, Polytechnicheskaya Str. 29, Saint-Petersburg 194064, Russia
| | - E. M. Ivan'kova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy Pr. 31, Saint-Petersburg 199004, Russia
- Peter the Great Saint-Petersburg State Polytechnical University, Polytechnicheskaya Str. 29, Saint-Petersburg 194064, Russia
| | - V. N. Vavilov
- Pavlov First Saint-Petersburg State Medical University, Leo Tolstoy Str. 6-8, Saint-Petersburg 197022, Russia
| | - V. E. Yudin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy Pr. 31, Saint-Petersburg 199004, Russia
- Peter the Great Saint-Petersburg State Polytechnical University, Polytechnicheskaya Str. 29, Saint-Petersburg 194064, Russia
| |
Collapse
|
196
|
Mashhour A, Weymann A. Herstellung kardiovaskulären Gewebes aus dezellularisiertem biologischem Material. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2017. [DOI: 10.1007/s00398-017-0158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
197
|
Tseng YC, Roan JN, Ho YC, Lin CC, Yeh ML. An in vivo study on endothelialized vascular grafts produced by autologous biotubes and adipose stem cells (ADSCs). JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:166. [PMID: 28914400 DOI: 10.1007/s10856-017-5986-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Currently, commercial synthetic vascular grafts made from Dacron and ePTFE for small-diameter, vascular applications (<6 mm) show limited reendothelization and are less compliant, often resulting in thrombosis and intimal hyperplasia. Although good blood compatibility can be achieved in autologous arteries and veins, the number of high quality harvest sites is limited, and the grafts are size-mismatched for use in the fistula or cardiovascular bypass surgery; thus, alternative small graft substitutes must be developed. A biotube is an in vivo, tissue-engineered approach for the growth of autologous grafts through the subcutaneous implantation of an inert rod through the inflammation process. In the present study, we embedded silicone rods with a diameter of 2 mm into the dorsal subcutaneous tissue of rabbits for 4 weeks to grow biotubes. The formation of functional endothelium cells aligned on the inner wall surface was achieved by seeding with adipose stem cells (ADSCs). The ADSCs-seeded biotubes were implanted into the carotid artery of rabbits for more than 1 month, and the patency rates and remodeling of endothelial cells were observed by angiography and fluorescence staining, respectively. Finally, the mechanical properties of the biotube were also evaluated. The fluorescence staining results showed that the ADSCs differentiated not only into endothelia cells but also into smooth muscle cells. Moreover, the patency of the ADSCs-seeded biotube remained high for at least 5 months. These small-sized ADSCs-seeded vascular biotubes may decrease the rate of intimal hyperplasia during longer implantation times and have potential clinical applications in the future.
Collapse
Affiliation(s)
- Yu Chieh Tseng
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jun Neng Roan
- Institute of clinical medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Cardiovascular Surger, Department of Surgery, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Ying Chiang Ho
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chih Chan Lin
- Department of Medical Research, Laboratory Animal Center, Chi-Mei Medical Center, Tainan, Taiwan
| | - Ming Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
198
|
Liguori GR, Jeronimus BF, de Aquinas Liguori TT, Moreira LFP, Harmsen MC. * Ethical Issues in the Use of Animal Models for Tissue Engineering: Reflections on Legal Aspects, Moral Theory, Three Rs Strategies, and Harm-Benefit Analysis. Tissue Eng Part C Methods 2017; 23:850-862. [PMID: 28756735 DOI: 10.1089/ten.tec.2017.0189] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Animal experimentation requires a solid and rational moral foundation. Objective and emphatic decision-making and protocol evaluation by researchers and ethics committees remain a difficult and sensitive matter. This article presents three perspectives that facilitate a consideration of the minimally acceptable standard for animal experiments, in particular, in tissue engineering (TE) and regenerative medicine. First, we review the boundaries provided by law and public opinion in America and Europe. Second, we review contemporary moral theory to introduce the Neo-Rawlsian contractarian theory to objectively evaluate the ethics of animal experiments. Third, we introduce the importance of available reduction, replacement, and refinement strategies, which should be accounted for in moral decision-making and protocol evaluation of animal experiments. The three perspectives are integrated into an algorithmic and graphic harm-benefit analysis tool based on the most relevant aspects of animal models in TE. We conclude with a consideration of future avenues to improve animal experiments.
Collapse
Affiliation(s)
- Gabriel R Liguori
- 1 Lab for Cardiovascular Regenerative Medicine Research Group (CAVAREM), Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen , Groningen, the Netherlands .,2 Laboratory of Cardiovascular Surgery and Circulation Pathophysiology (LIM-11), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bertus F Jeronimus
- 3 Department of Developmental Psychology, University of Groningen , Groningen, the Netherlands .,4 Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), University of Groningen, University Medical Center Groningen , Groningen, the Netherlands
| | - Tácia T de Aquinas Liguori
- 1 Lab for Cardiovascular Regenerative Medicine Research Group (CAVAREM), Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen , Groningen, the Netherlands .,2 Laboratory of Cardiovascular Surgery and Circulation Pathophysiology (LIM-11), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Luiz Felipe P Moreira
- 2 Laboratory of Cardiovascular Surgery and Circulation Pathophysiology (LIM-11), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Martin C Harmsen
- 1 Lab for Cardiovascular Regenerative Medicine Research Group (CAVAREM), Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen , Groningen, the Netherlands
| |
Collapse
|
199
|
Ju YM, Ahn H, Arenas-Herrera J, Kim C, Abolbashari M, Atala A, Yoo JJ, Lee SJ. Electrospun vascular scaffold for cellularized small diameter blood vessels: A preclinical large animal study. Acta Biomater 2017. [PMID: 28642016 DOI: 10.1016/j.actbio.2017.06.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The strategy of vascular tissue engineering is to create a vascular substitute by combining autologous vascular cells with a tubular-shaped biodegradable scaffold. We have previously developed a novel electrospun bilayered vascular scaffold that provides proper biological and biomechanical properties as well as structural configuration. In this study, we investigated the clinical feasibility of a cellularized vascular scaffold in a preclinical large animal model. We fabricated the cellularized vascular construct with autologous endothelial progenitor cell (EPC)-derived endothelial cells (ECs) and smooth muscle cells (SMCs) followed by a pulsatile bioreactor preconditioning. This fully cellularized vascular construct was tested in a sheep carotid arterial interposition model. After preconditioning, confluent and mature EC and SMC layers in the scaffold were achieved. The cellularized constructs sustained the structural integrity with a high degree of graft patency without eliciting an inflammatory response over the course of the 6-month period in sheep. Moreover, the matured EC coverage on the lumen and a thick smooth muscle layer were formed at 6months after transplantation. We demonstrated that electrospun bilayered vascular scaffolds in conjunction with autologous vascular cells may be a clinically applicable alternative to traditional prosthetic vascular graft substitutes. STATEMENT OF SIGNIFICANCE This study demonstrates the utility of tissue engineering to provide platform technologies for rehabilitation of patients recovering from severe, devastating cardiovascular diseases. The long-term goal is to provide alternatives to vascular grafting using bioengineered blood vessels derived from an autologous cell source with a functionalized vascular scaffold. This novel bilayered vascular construct for engineering blood vessels is designed to offer "off-the-shelf" availability for clinical translation.
Collapse
Affiliation(s)
- Young Min Ju
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Hyunhee Ahn
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Juan Arenas-Herrera
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Cheil Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Mehran Abolbashari
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
200
|
Jones RS, Chang PH, Perahia T, Harmon KA, Junor L, Yost MJ, Fan D, Eberth JF, Goodwin RL. Design and Fabrication of a Three-Dimensional In Vitro System for Modeling Vascular Stenosis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2017; 23:859-871. [PMID: 28712382 DOI: 10.1017/s1431927617012302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Vascular stenosis, the abnormal narrowing of blood vessels, arises from defective developmental processes or atherosclerosis-related adult pathologies. Stenosis triggers a series of adaptive cellular responses that induces adverse remodeling, which can progress to partial or complete vessel occlusion with numerous fatal outcomes. Despite its severity, the cellular interactions and biophysical cues that regulate this pathological progression are poorly understood. Here, we report the design and fabrication of a three-dimensional (3D) in vitro system to model vascular stenosis so that specific cellular interactions and responses to hemodynamic stimuli can be investigated. Tubular cellularized constructs (cytotubes) were produced, using a collagen casting system, to generate a stenotic arterial model. Fabrication methods were developed to create cytotubes containing co-cultured vascular cells, where cell viability, distribution, morphology, and contraction were examined. Fibroblasts, bone marrow primary cells, smooth muscle cells (SMCs), and endothelial cells (ECs) remained viable during culture and developed location- and time-dependent morphologies. We found cytotube contraction to depend on cellular composition, where SMC-EC co-cultures adopted intermediate contractile phenotypes between SMC- and EC-only cytotubes. Our fabrication approach and the resulting artery model can serve as an in vitro 3D culture system to investigate vascular pathogenesis and promote the tissue engineering field.
Collapse
Affiliation(s)
- Rebecca S Jones
- 1Biomedical Engineering Program,College of Engineering and Computing,University of South Carolina,Columbia,SC 29208,USA
| | - Pin H Chang
- 1Biomedical Engineering Program,College of Engineering and Computing,University of South Carolina,Columbia,SC 29208,USA
| | - Tzlil Perahia
- 2Department of Cell Biology and Anatomy,School of Medicine,University of South Carolina,Columbia,SC 29209,USA
| | - Katrina A Harmon
- 2Department of Cell Biology and Anatomy,School of Medicine,University of South Carolina,Columbia,SC 29209,USA
| | - Lorain Junor
- 2Department of Cell Biology and Anatomy,School of Medicine,University of South Carolina,Columbia,SC 29209,USA
| | - Michael J Yost
- 3Department of Surgery,Medical University of South Carolina,Charleston,SC 29425,USA
| | - Daping Fan
- 1Biomedical Engineering Program,College of Engineering and Computing,University of South Carolina,Columbia,SC 29208,USA
| | - John F Eberth
- 1Biomedical Engineering Program,College of Engineering and Computing,University of South Carolina,Columbia,SC 29208,USA
| | - Richard L Goodwin
- 4Department of Biomedical Sciences,School of Medicine,University of South Carolina,Greenville,SC 29605,USA
| |
Collapse
|