151
|
Blecharz KG, Frey D, Schenkel T, Prinz V, Bedini G, Krug SM, Czabanka M, Wagner J, Fromm M, Bersano A, Vajkoczy P. Autocrine release of angiopoietin-2 mediates cerebrovascular disintegration in Moyamoya disease. J Cereb Blood Flow Metab 2017; 37:1527-1539. [PMID: 27381827 PMCID: PMC5453470 DOI: 10.1177/0271678x16658301] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Moyamoya disease is a rare steno-occlusive cerebrovascular disorder often resulting in hemorrhagic and ischemic strokes. Although sharing the same ischemic stimulus with atherosclerotic cerebrovascular disease, Moyamoya disease is characterized by a highly instable cerebrovascular system which is prone to rupture due to pathological neovascularization. To understand the molecular mechanisms underlying this instability, angiopoietin-2 gene expression was analyzed in middle cerebral artery lesions obtained from Moyamoya disease and atherosclerotic cerebrovascular disease patients. Angiopoietin-2 was significantly up-regulated in Moyamoya vessels, while serum concentrations of soluble angiopoietins were not changed. For further evaluations, cerebral endothelial cells incubated with serum from these patients in vitro were applied. In contrast to atherosclerotic cerebrovascular disease serum, Moyamoya disease serum induced an angiopoietin-2 overexpression and secretion, accompanied by loss of endothelial integrity. These effects were absent or inverse in endothelial cells of non-brain origin suggesting brain endothelium specificity. The destabilizing effects on brain endothelial cells to Moyamoya disease serum were partially suppressed by the inhibition of angiopoietin-2. Our findings define brain endothelial cells as the potential source of vessel-destabilizing factors inducing the high plasticity state and disintegration in Moyamoya disease in an autocrine manner. We also provide new insights into Moyamoya disease pathophysiology that may be helpful for preventive treatment strategies in future.
Collapse
Affiliation(s)
- Kinga G Blecharz
- 1 Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Frey
- 2 Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Schenkel
- 1 Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vincent Prinz
- 2 Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gloria Bedini
- 3 Laboratory of Cellular Neurobiology, Neurology Unit, UCV, Milan, Italy.,4 Neurological Institute "C. Besta", Milan, Italy
| | - Susanne M Krug
- 5 Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus Czabanka
- 2 Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Josephin Wagner
- 1 Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Fromm
- 5 Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Bersano
- 6 Neurology Unit, UCV, Milan, Italy.,7 Neurological Institute "C. Besta", IRCCS Foundation, Milan, Italy
| | - Peter Vajkoczy
- 1 Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,2 Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,8 Center of Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
152
|
Xu HL, Yu WZ, Lu CT, Li XK, Zhao YZ. Delivery of growth factor-based therapeutics in vascular diseases: Challenges and strategies. Biotechnol J 2017; 12. [PMID: 28296342 DOI: 10.1002/biot.201600243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/27/2017] [Accepted: 02/09/2017] [Indexed: 12/18/2022]
Abstract
Either cardiovascular or peripheral vascular diseases have become the major cause of morbidity and mortality worldwide. Recently, growth factors therapeutics, whatever administrated in form of exogenous growth factors or their relevant genes have been discovered to be an effective strategy for the prevention and therapy of vascular diseases, because of their promoting angiogenesis. Besides, as an alternative, stem cell-based therapy has been also developed in view of their paracrine-mediated effect or ability of differentiation toward angiogenesis-related cells under assistance of growth factors. Despite of being specific and potent, no matter growth factors or stem cells-based therapy, their full clinical transformation is limited from bench to bedside. In this review, the potential choices of therapeutic modes based on types of different growth factors or stem cells were firstly summarized for vascular diseases. The confronted various challenges such as lack of non-invasive delivery method, the physiochemical challenge, the short half-life time, and poor cell survival, were carefully analyzed for these therapeutic modes. Various strategies to overcome these limitations are put forward from the perspective of drug delivery. The expertised design of a suitable delivery form will undoubtedly provide valuable insight into their clinical application in the regenerative medicine.
Collapse
Affiliation(s)
- He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Wen-Ze Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Cui-Tao Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Xiao-Kun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China.,Collaborative Innovation Center of Biomedical Science by Wenzhou University & Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| |
Collapse
|
153
|
Stone OA, Carter JG, Lin PC, Paleolog E, Machado MJC, Bates DO. Differential regulation of blood flow-induced neovascularization and mural cell recruitment by vascular endothelial growth factor and angiopoietin signalling. J Physiol 2017; 595:1575-1591. [PMID: 27868196 PMCID: PMC5330904 DOI: 10.1113/jp273430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/15/2016] [Indexed: 12/24/2022] Open
Abstract
KEY POINTS Combining nitric oxide (NO)-mediated increased blood flow with angiopoietin-1-Tie2 receptor signalling induces arteriolargenesis - the formation of arterioles from capillaries - in a model of physiological angiogenesis. This NO-Tie-mediated arteriolargenesis requires endogenous vascular endothelial growth factor (VEGF) signalling. Inhibition of VEGF signalling increases pericyte coverage in microvessels. Together these findings indicate that generation of functional neovasculature requires close titration of NO-Tie2 signalling and localized VEGF induction, suggesting that the use of exogenous VEGF expression as a therapeutic for neovascularization may not be successful. ABSTRACT Signalling through vascular endothelial growth factor (VEGF) receptors and the tyrosine kinase with IgG and EGF domains-2 (Tie2) receptor by angiopoietins is required in combination with blood flow for the formation of a functional vascular network. We tested the hypothesis that VEGF and angiopoietin-1 (Ang1) contribute differentially to neovascularization induced by nitric oxide (NO)-mediated vasodilatation, by comparing the phenotype of new microvessels in the mesentery during induction of vascular remodelling by over-expression of endothelial nitric oxide synthase in the fat pad of the adult rat mesentery during inhibition of angiopoietin signalling with soluble Tie2 (sTie2) and VEGF signalling with soluble Fms-like tyrosine kinase receptor-1 (sFlt1). We found that NO-mediated angiogenesis was blocked by inhibition of VEGF with sFlt1 (from 881 ± 98% increase in functional vessel area to 279 ± 72%) and by inhibition of angiopoietin with sTie2 (to 337 ± 67%). Exogenous angiopoietin-1 was required to induce arteriolargenesis (8.6 ± 1.3% of vessels with recruitment of vascular smooth muscle cells; VSMCs) in the presence of enhanced flow. sTie2 and sFlt1 both inhibited VSMC recruitment (both 0%), and VEGF inhibition increased pericyte recruitment to newly formed vessels (from 27 ± 2 to 54 ± 3% pericyte ensheathment). We demonstrate that a fine balance of VEGF and angiopoietin signalling is required for the formation of a functional vascular network. Endogenous VEGF signalling prevents excess neovessel pericyte coverage, and is required for VSMC recruitment during increased nitric oxide-mediated vasodilatation and angiopoietin signalling (NO-Tie-mediated arteriogenesis). Therapeutic vascular remodelling paradigms may therefore require treatments that modulate blood flow to utilize endogenous VEGF, in combination with exogenous Ang1, for effective neovascularization.
Collapse
Affiliation(s)
- Oliver A Stone
- Microvascular Research Laboratories, Bristol Heart Institute, School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - James G Carter
- Microvascular Research Laboratories, Bristol Heart Institute, School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - P Charles Lin
- Center for Cancer Research, National Institute of Cancer, Frederick, MD, 2170, USA
| | - Ewa Paleolog
- Kennedy Institute of Rheumatology, University of Oxford, 65 Aspenlea Road, Hammersmith, London, UK
| | - Maria J C Machado
- Microvascular Research Laboratories, Bristol Heart Institute, School of Physiology and Pharmacology, University of Bristol, Bristol, UK.,Cancer Biology, Division of Oncology, School of Clinical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - David O Bates
- Microvascular Research Laboratories, Bristol Heart Institute, School of Physiology and Pharmacology, University of Bristol, Bristol, UK.,Cancer Biology, Division of Oncology, School of Clinical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
154
|
Flugelman MY, Halak M, Yoffe B, Schneiderman J, Rubinstein C, Bloom AI, Weinmann E, Goldin I, Ginzburg V, Mayzler O, Hoffman A, Koren B, Gershtein D, Inbar M, Hutoran M, Tsaba A. Phase Ib Safety, Two-Dose Study of MultiGeneAngio in Patients with Chronic Critical Limb Ischemia. Mol Ther 2017; 25:816-825. [PMID: 28143739 DOI: 10.1016/j.ymthe.2016.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/10/2016] [Accepted: 12/15/2016] [Indexed: 01/22/2023] Open
Abstract
Critical limb ischemia (CLI) is the most severe presentation of peripheral arterial disease. We developed cell-based therapy entailing intra-arterial injection of autologous venous endothelial cells (ECs) modified to express angiopoietin 1, combined with autologous venous smooth muscle cells (SMCs) modified to express vascular endothelial growth factor. This combination promoted arteriogenesis in animal models and was safe in patients with limiting claudication. In an open-label, phase Ib study, we assessed the safety and efficacy of this therapy in CLI patients who failed or were unsuitable for surgery or intravascular intervention. Of 23 patients enrolled, 18 with rest pain or non-healing ulcers (Rutherford categories 4 and 5) were treated according to protocol, and 5 with significant tissue loss (Rutherford 6) were treated under compassionate treatment. Patients were assigned randomly to receive 1 × 107 or 5 × 107 (EC-to-SMC ratio, 1:1) of the cell combination. One-year amputation-free survival rate was 72% (13/18) for Rutherford 4 and 5 patients; all 5 patients with Rutherford 6 underwent amputation. Of the 12 with unhealing ulcers at dosing, 6 had complete healing and 2 others had >66% reduction in ulcer size. Outcomes did not differ between the dose groups. No severe adverse events were observed related to the therapy.
Collapse
Affiliation(s)
- Moshe Y Flugelman
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, Haifa 3436212, Israel; Rappaport Faculty of Medicine, Technion IIT, Haifa 3200003, Israel; VESSL Therapeutics Ltd., Haifa 3436212, Israel.
| | - Moshe Halak
- Department of Vascular Surgery, Chaim Sheba Medical Center, Ramat Gan 5265601, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Boris Yoffe
- Department of General and Vascular Surgery, Barzilai Medical Center, Ashkelon 7830604, Israel; The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8499000, Israel
| | - Jacob Schneiderman
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Chen Rubinstein
- Departments of Vascular Surgery and Radiology, Hadassah University Hospital, Jerusalem 91120, Israel
| | - Allan-Isaac Bloom
- Departments of Vascular Surgery and Radiology, Hadassah University Hospital, Jerusalem 91120, Israel
| | - Eran Weinmann
- Department of Vascular Surgery, Kaplan Medical Center, Rehovot 76100, Israel
| | - Ilya Goldin
- Department of Vascular Surgery, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Victor Ginzburg
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8499000, Israel; Department of Vascular Surgery, Soroka Medical Center, Beer-Sheva 8410101, Israel
| | - Olga Mayzler
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8499000, Israel; Department of Vascular Surgery, Soroka Medical Center, Beer-Sheva 8410101, Israel
| | - Aaron Hoffman
- Rappaport Faculty of Medicine, Technion IIT, Haifa 3200003, Israel; Department of Vascular Surgery, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Belly Koren
- VESSL Therapeutics Ltd., Haifa 3436212, Israel
| | | | | | | | - Adili Tsaba
- Rappaport Faculty of Medicine, Technion IIT, Haifa 3200003, Israel; VESSL Therapeutics Ltd., Haifa 3436212, Israel
| |
Collapse
|
155
|
Rufaihah AJ, Johari NA, Vaibavi SR, Plotkin M, Di Thien DT, Kofidis T, Seliktar D. Dual delivery of VEGF and ANG-1 in ischemic hearts using an injectable hydrogel. Acta Biomater 2017; 48:58-67. [PMID: 27756647 DOI: 10.1016/j.actbio.2016.10.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 01/08/2023]
Abstract
Acute myocardial infarction (MI) caused by ischemia is the most common cause of cardiac dysfunction. While growth factor therapy is promising, the retention in the highly vascularized myocardium is limited and prevents sustained activation needed for adequate cellular responses. Here, we demonstrated the use of polyethylene glycol-fibrinogen (PF) hydrogels for sustained dual delivery of vascular endothelial growth factor (VEGF) and angiopoietin-1 (ANG-1) to enhance myocardial repair and function. VEGF and ANG-1 were incorporated in PF hydrogels and their in vitro characteristics were studied. Acute MI was generated in a rodent model with rats randomly assigned to 4 groups; sham, saline, PF and PF-VEGF-ANG1 (n=10 each group). Saline or hydrogel was injected in infarct and peri-infarct areas of the myocardium. After 4weeks, myocardial function was assessed using echocardiography. Tissue samples were harvested for Hematoxylin and Eosin, Masson Trichrome and capillary staining to assess the extent of fibrotic scar and arteriogenesis. Both VEGF and ANG-1 were released in a sustained and controlled manner over 30days. PF-VEGF-ANG1 treated animals showed the best improvement in cardiac function, highest degree of cardiac muscle preservation, and arteriogenesis. This study demonstrates that PF hydrogels can simultaneously provide mechanical support to attenuate adverse myocardial remodelling, and a pro-angiogenic benefit from the sustained VEGF and ANG1 delivery that culminates in a restorative effect following MI. The utility of this synergistic, biomaterial-based growth factor delivery may have clinical implications in the prevention of post-MI cardiac dysfunction. STATEMENT OF SIGNIFICANCE Acute myocardial infarction (MI) caused by ischemia is the most common cause of cardiac dysfunction. Here, we demonstrated the use of polyethylene glycol-fibrinogen (PF) hydrogels for sustained dual delivery of vascular endothelial growth factor (VEGF) and angiopoietin-1 (ANG-1) to enhance myocardial repair and function. Treated animals showed the best improvement in cardiac function, highest degree of cardiac muscle preservation, and arteriogenesis. This study demonstrates that PF hydrogels can simultaneously provide mechanical support to attenuate adverse myocardial remodelling, and a pro-angiogenic benefit from the sustained VEGF and ANG1 delivery that culminates in a restorative effect following MI.
Collapse
|
156
|
Miller JW, Bagheri S, Vavvas DG. Advances in Age-related Macular Degeneration Understanding and Therapy. ACTA ACUST UNITED AC 2017; 10:119-130. [PMID: 29142592 PMCID: PMC5683729 DOI: 10.17925/usor.2017.10.02.119] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While the development of anti-vascular endothelial growth factor (anti-VEGF) as a therapy for neovascular age-related macular degeneration (AMD) was a great success, the pathologic processes underlying dry AMD that eventually leads to photoreceptor dysfunction, death, and vision loss remain elusive to date, with a lack of effective therapies and increasing prevalence of the disease. There is an overwhelming need to improve the classification system of AMD, to increase our understanding of cell death mechanisms involved in both neovascular and non-neovascular AMD, and to develop better biomarkers and clinical endpoints to eventually be able to identify better therapeutic targets—especially early in the disease process. There is no doubt that it is a matter of time before progress will be made and better therapies will be developed for non-neovascular AMD.
Collapse
Affiliation(s)
- Joan W Miller
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, US
| | - Saghar Bagheri
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, US
| | - Demetrios G Vavvas
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, US
| |
Collapse
|
157
|
Ganesan MK, Finsterwalder R, Leb H, Resch U, Neumüller K, de Martin R, Petzelbauer P. Three-Dimensional Coculture Model to Analyze the Cross Talk Between Endothelial and Smooth Muscle Cells. Tissue Eng Part C Methods 2017; 23:38-49. [PMID: 27923320 PMCID: PMC5240006 DOI: 10.1089/ten.tec.2016.0299] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022] Open
Abstract
The response of blood vessels to physiological and pathological stimuli partly depends on the cross talk between endothelial cells (EC) lining the luminal side and smooth muscle cells (SMC) building the inner part of the vascular wall. Thus, the in vitro analysis of the pathophysiology of blood vessels requires coculture systems of EC and SMC. We have developed and validated a modified three-dimensional sandwich coculture (3D SW-CC) of EC and SMC using open μ-Slides with a thin glass bottom allowing direct imaging. The culture dish comprises an intermediate plate to minimize the meniscus resulting in homogenous cell distribution. Human umbilical artery SMC were sandwiched between coatings of rat tail collagen I. Following SMC quiescence, human umbilical vein EC were seeded on top of SMC and cultivated until confluence. By day 7, EC had formed a confluent monolayer and continuous vascular endothelial (VE)-cadherin-positive cell/cell contacts. Below, spindle-shaped SMC had formed parallel bundles and showed increased calponin expression compared to day 1. EC and SMC were interspaced by a matrix consisting of laminin, collagen IV, and perlecan. Basal messenger RNA (mRNA) expression levels of E-selectin, angiopoietin-1, calponin, and intercellular adhesion molecule 1 (ICAM-1) of the 3D SW-CC was comparable to that of a freshly isolated mouse inferior vena cava. Addition of tumor necrosis factor alpha (TNF α) to the 3D SW-CC induced E-selectin and ICAM-1 mRNA and protein induction, comparable to the EC and SMC monolayers. In contrast, the addition of activated platelets induced a significantly delayed but more pronounced activation in the 3D SW-CC compared to EC and SMC monolayers. Thus, this 3D SW-CC permits analyzing the cross talk between EC and SMC that mediate cellular quiescence as well as the response to complex activation signals.
Collapse
Affiliation(s)
- Minu Karthika Ganesan
- Skin and Endothelium Research Division (SERD), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Richard Finsterwalder
- Skin and Endothelium Research Division (SERD), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Heide Leb
- Skin and Endothelium Research Division (SERD), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Ulrike Resch
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Karin Neumüller
- Skin and Endothelium Research Division (SERD), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Rainer de Martin
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelium Research Division (SERD), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
158
|
Abstract
The glomerulus is a highly specialized microvascular bed that filters blood to form primary urinary filtrate. It contains four cell types: fenestrated endothelial cells, specialized vascular support cells termed podocytes, perivascular mesangial cells, and parietal epithelial cells. Glomerular cell-cell communication is critical for the development and maintenance of the glomerular filtration barrier. VEGF, ANGPT, EGF, SEMA3A, TGF-β, and CXCL12 signal in paracrine fashions between the podocytes, endothelium, and mesangium associated with the glomerular capillary bed to maintain filtration barrier function. In this review, we summarize the current understanding of these signaling pathways in the development and maintenance of the glomerulus and the progression of disease.
Collapse
Affiliation(s)
- Christina S Bartlett
- Feinberg Cardiovascular Research Institute and Division of Nephrology and Hypertension, Northwestern University, Chicago, Illinois 60611; ,
| | - Marie Jeansson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 751 85, Sweden;
| | - Susan E Quaggin
- Feinberg Cardiovascular Research Institute and Division of Nephrology and Hypertension, Northwestern University, Chicago, Illinois 60611; ,
| |
Collapse
|
159
|
Abstract
Tie2 is a tyrosine kinase receptor located predominantly on vascular endothelial cells that plays a central role in vascular stability. Angiopoietin-1 (Angpt1), produced by perivascular cells, binds, clusters, and activates Tie2, leading to Tie2 autophosphorylation and downstream signaling. Activated Tie2 increases endothelial cell survival, adhesion, and cell junction integrity, thereby stabilizing the vasculature. Angiopoietin-2 (Angpt2) and vascular endothelial-protein tyrosine phosphatase (VE-PTP) are negative regulators increased by hypoxia; they inactivate Tie2, destabilizing the vasculature and increasing responsiveness to vascular endothelial growth factor (VEGF) and other inflammatory cytokines that stimulate vascular leakage and neovascularization. AKB-9778 is a small-molecule antagonist of VE-PTP which increases phosphorylation of Tie2 even in the presence of high Angpt2 levels. In preclinical studies, AKB-9778 reduced VEGF-induced leakage and ocular neovascularization (NV) and showed additive benefit when combined with VEGF suppression. In two clinical trials in diabetic macular edema (DME) patients, subcutaneous injections of AKB-9778 were safe and provided added benefit to VEGF suppression. Preliminary data suggest that AKB-9778 monotherapy improves diabetic retinopathy. These data suggest that Tie2 activation may be a valuable strategy to treat or prevent diabetic retinopathy.
Collapse
Affiliation(s)
- Peter A Campochiaro
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Wilmer Eye Institute, The Johns Hopkins School of Medicine, 815 Maumenee, 600 N. Wolfe Street, Baltimore, MD, 21287-9277, USA.
| | - Kevin G Peters
- Aerpio Therapeutics, 9987 Carver Road, Cincinnati, OH, USA
| |
Collapse
|
160
|
Caporali A, Martello A, Miscianinov V, Maselli D, Vono R, Spinetti G. Contribution of pericyte paracrine regulation of the endothelium to angiogenesis. Pharmacol Ther 2016; 171:56-64. [PMID: 27742570 DOI: 10.1016/j.pharmthera.2016.10.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During physiological development and after a stressor event, vascular cells communicate with each other to evoke new vessel formation-a process known as angiogenesis. This communication occurs via direct contact and via paracrine release of proteins and nucleic acids, both in a free form or encapsulated into micro-vesicles. In diseases with an altered angiogenic response, such as cancer and diabetic vascular complications, it becomes of paramount importance to tune the cell communication process. Endothelial cell growth and migration are essential processes for new vessel formation, and pericytes, together with some classes of circulating monocytes, are important endothelial regulators. The interaction between pericytes and the endothelium is facilitated by their anatomical apposition, which involves endothelial cells and pericytes sharing the same basement membrane. However, the role of pericytes is not fully understood. The characteristics and the function of tissue-specific pericytesis are the focus of this review. Factors involved in the cross-talk between these cell types and the opportunities afforded by micro-RNA and micro-vesicle techniques are discussed. Targeting these mechanisms in pathological conditions, in which the vessel response is altered, is considered in relation to identification of new therapies for restoring the blood flow.
Collapse
Affiliation(s)
- A Caporali
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - A Martello
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - V Miscianinov
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - D Maselli
- IRCCS MultiMedica, Milan, Italy; Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - R Vono
- IRCCS MultiMedica, Milan, Italy
| | | |
Collapse
|
161
|
Identification of HIF-2α-regulated genes that play a role in human microvascular endothelial sprouting during prolonged hypoxia in vitro. Angiogenesis 2016; 20:39-54. [PMID: 27699500 PMCID: PMC5306362 DOI: 10.1007/s10456-016-9527-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/28/2016] [Indexed: 12/24/2022]
Abstract
During prolonged hypoxic conditions, endothelial cells change their gene expression to adjust to the low oxygen environment. This process is mainly regulated by the hypoxia-inducible factors, HIF-1α and HIF-2α. Although endothelial cells do not form sprouts during prolonged hypoxic culturing, silencing of HIF-2α partially restores sprout formation. The present study identifies novel HIF-2α-target genes that may regulate endothelial sprouting during prolonged hypoxia. The gene expression profile of primary human microvascular endothelial cells (hMVECs) that were cultured at 20 % oxygen was compared to hMVECs that were cultured at 1 % oxygen for 14 days by using genome-wide RNA-sequencing. The differentially regulated genes in hypoxia were compared to the genes that were differentially regulated upon silencing of HIF-2α in hypoxia. Surprisingly, KEGG pathway analysis showed that metabolic pathways were enriched within genes upregulated in response to hypoxia and enriched within genes downregulated upon HIF-2α silencing. Moreover, 51 HIF-2α-regulated genes were screened for their role in endothelial sprouting in hypoxia, of which four genes ARRDC3, MME, PPARG and RALGPS2 directly influenced endothelial sprouting during prolonged hypoxic culturing. The manipulation of specific downstream targets of HIF-2α provides a new, but to be further evaluated, perspective for restoring reduced neovascularization in several pathological conditions, such as diabetic ulcers or other chronic wounds, for improvement of vascularization of implanted tissue-engineered scaffolds.
Collapse
|
162
|
Ochoa-Callejero L, Pozo-Rodrigálvarez A, Martínez-Murillo R, Martínez A. Lack of adrenomedullin in mouse endothelial cells results in defective angiogenesis, enhanced vascular permeability, less metastasis, and more brain damage. Sci Rep 2016; 6:33495. [PMID: 27640364 PMCID: PMC5027589 DOI: 10.1038/srep33495] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/26/2016] [Indexed: 12/28/2022] Open
Abstract
Adrenomedullin (AM) is a vasodilating peptide involved in the regulation of circulatory homeostasis and in the pathophysiology of certain cardiovascular diseases. AM plays critical roles in blood vessels, including regulation of vascular stability and permeability. To elucidate the autocrine/paracrine function of AM in endothelial cells (EC) in vivo, a conditional knockout of AM in EC (AM(EC-KO)) was used. The amount of vascularization of the matrigel implants was lower in AM(EC-KO) mice indicating a defective angiogenesis. Moreover, ablation of AM in EC revealed increased vascular permeability in comparison with wild type (WT) littermates. In addition, AM(EC-KO) lungs exhibited significantly less tumor growth than littermate WT mice using a syngeneic model of metastasis. Furthermore, following middle cerebral artery permanent occlusion, there was a significant infarct size decrease in animals lacking endothelial AM when compared to their WT counterparts. AM is an important regulator of EC function, angiogenesis, tumorigenesis, and brain response to ischemia. Studies of AM should bring novel approaches to the treatment of vascular diseases.
Collapse
Affiliation(s)
- Laura Ochoa-Callejero
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), C/Piqueras 98, 26006-Logroño. Spain
| | - Andrea Pozo-Rodrigálvarez
- Neurovascular Research Group, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Av. Doctor Arce 37, 28002-Madrid. Spain
| | - Ricardo Martínez-Murillo
- Neurovascular Research Group, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Av. Doctor Arce 37, 28002-Madrid. Spain
| | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), C/Piqueras 98, 26006-Logroño. Spain
| |
Collapse
|
163
|
Kim M, Allen B, Korhonen EA, Nitschké M, Yang HW, Baluk P, Saharinen P, Alitalo K, Daly C, Thurston G, McDonald DM. Opposing actions of angiopoietin-2 on Tie2 signaling and FOXO1 activation. J Clin Invest 2016; 126:3511-25. [PMID: 27548529 DOI: 10.1172/jci84871] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 06/24/2016] [Indexed: 01/12/2023] Open
Abstract
Angiopoietin-2 (ANG2) regulates blood vessel remodeling in many pathological conditions through differential effects on Tie2 signaling. While ANG2 competes with ANG1 to inhibit Tie2, it can paradoxically also promote Tie2 phosphorylation (p-Tie2). A related paradox is that both inactivation and overactivation of Tie2 can result in vascular remodeling. Here, we reconciled these opposing actions of ANG2 by manipulating conditions that govern its actions in the vasculature. ANG2 drove vascular remodeling during Mycoplasma pulmonis infection by acting as a Tie2 antagonist, which led to p-Tie2 suppression, forkhead box O1 (FOXO1) activation, increased ANG2 expression, and vessel leakiness. These changes were exaggerated by anti-Tie2 antibody, inhibition of PI3K signaling, or ANG2 overexpression and were reduced by anti-ANG2 antibody or exogenous ANG1. In contrast, under pathogen-free conditions, ANG2 drove vascular remodeling by acting as an agonist, promoting high p-Tie2, low FOXO1 activation, and no leakage. Tie1 activation was strong under pathogen-free conditions, but infection or TNF-α led to Tie1 inactivation by ectodomain cleavage and promoted the Tie2 antagonist action of ANG2. Together, these data indicate that ANG2 activation of Tie2 supports stable enlargement of normal nonleaky vessels, but reduction of Tie1 in inflammation leads to ANG2 antagonism of Tie2 and initiates a positive feedback loop wherein FOXO1-driven ANG2 expression promotes vascular remodeling and leakage.
Collapse
|
164
|
Barron L, Gharib SA, Duffield JS. Lung Pericytes and Resident Fibroblasts: Busy Multitaskers. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2519-31. [PMID: 27555112 DOI: 10.1016/j.ajpath.2016.07.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023]
Abstract
Pericytes, resident fibroblasts, and mesenchymal stem cells are poorly described cell populations. They have recently been characterized in much greater detail in rodent lungs and have been shown to play important roles in development, homeostasis, response to injury and pathogens, as well as recovery from damage. These closely related mesenchymal cell populations form extensive connections to the lung's internal structure, as well as its internal and external surfaces. They generate and remodel extracellular matrix, coregulate the vasculature, help maintain and restore the epithelium, and act as sentries for the immune system. In this review, we revisit these functions in light of significant advances in characterizing and tracking lung fibroblast populations in rodents. Lineage tracing experiments have mapped the heritage, identified functions that discriminate lung pericytes from resident fibroblasts, identified a subset of mesenchymal stem cells, and shown these populations to be the predominant progenitors of pathological fibroblasts and myofibroblasts in lung diseases. These findings point to the importance of resident lung mesenchymal populations as therapeutic targets in acute lung injury as well as fibrotic and degenerative diseases. Far from being passive and quiescent, pericytes and resident fibroblasts are busily sensing and responding, through diverse mechanisms, to changes in lung health and function.
Collapse
Affiliation(s)
- Luke Barron
- Department of Research and Development, Biogen, Cambridge, Massachusetts
| | - Sina A Gharib
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington
| | - Jeremy S Duffield
- Department of Research and Development, Biogen, Cambridge, Massachusetts; Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington.
| |
Collapse
|
165
|
Chhokar V, Tucker AL. Angiogenesis: Basic Mechanisms and Clinical Applications. Semin Cardiothorac Vasc Anesth 2016. [DOI: 10.1177/108925320300700304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The development and maintenance of an adequate vascular supply is critical for the viability of normal and neoplastic tissues. Angiogenesis, the development of new blood vessels from preexisting capillary networks, plays an important role in a number of physiologic and pathologic processes, including reproduction, wound repair, inflammatory diseases, and tumor growth. Angiogenesis involves sequential steps that are triggered in response to angiogenic growth factors released by inflammatory, mesenchymal, or tumor cells that act as ligands for endothelial cell receptor tyrosine kinases. Stimulated endothelial cells detach from neighboring cells and migrate, proliferate, and form tubes. The immature tubes are subsequently invested and stabilized by pericytes or smooth muscle cells. Angiogenesis depends upon complex interactions among various classes of molecules, including adhesion molecules, proteases, structural proteins, cell surface receptors, and growth factors. The therapeutic manipulation of angiogenesis targeted against ischemic and neoplastic diseases has been investigated in preclinical animal models and in clinical trials. Proangiogenic trials that have stimulated vessel growth in ischemic coronary or peripheral tissues through expression, delivery, or stimulated release of growth factors have shown efficacy in animal models and mixed results in human clinical trials. Antiangiogenic trials have used strategies to block the function of molecules critical for new vessel growth or maturation in the treatment of a variety of malignancies, mostly with results less encouraging than those seen in preclinical models. Pro-and antiangiogenic clinical trials demonstrate that strategies for optimal drug delivery, dosing schedules, patient selection, and endpoint measurements need further investigation and refinement before the therapeutic manipulation of angiogenesis will realize its full clinical potential.
Collapse
Affiliation(s)
- Vikram Chhokar
- Department of Internal Medicine, Salem VA Health System, Roanoke, Virginia
| | - Amy L. Tucker
- Department of Internal Medicine, Cardiovascular Division; Cardiovascular Research Center; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
166
|
HIF-2α Expression Regulates Sprout Formation into 3D Fibrin Matrices in Prolonged Hypoxia in Human Microvascular Endothelial Cells. PLoS One 2016; 11:e0160700. [PMID: 27490118 PMCID: PMC4973926 DOI: 10.1371/journal.pone.0160700] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/22/2016] [Indexed: 11/20/2022] Open
Abstract
Background During short-term hypoxia, Hypoxia Inducible Factors (particular their subunits HIF-1α and HIF-2α) regulate the expression of many genes including the potent angiogenesis stimulator VEGF. However, in some pathological conditions chronic hypoxia occurs and is accompanied by reduced angiogenesis. Objectives We investigated the effect of prolonged hypoxia on the proliferation and sprouting ability of human microvascular endothelial cells and the involvement of the HIFs and Dll4/Notch signaling. Methods and Results Human microvascular endothelial cells (hMVECs), cultured at 20% oxygen for 14 days and seeded on top of 3D fibrin matrices, formed sprouts when stimulated with VEGF-A/TNFα. In contrast, hMVECs precultured at 1% oxygen for 14 days were viable and proliferative, but did not form sprouts into fibrin upon VEGF-A/TNFα stimulation at 1% oxygen. Silencing of HIF-2α with si-RNA partially restored the inhibition of endothelial sprouting, whereas HIF-1α or HIF-3α by si-RNA had no effect. No involvement of Dll4/Notch pathway in the inhibitory effect on endothelial sprouting by prolonged hypoxia was found. In addition, hypoxia decreased the production of urokinase-type plasminogen activator (uPA), needed for migration and invasion, without a significant effect on its inhibitor PAI-1. This was independent of HIF-2α, as si-HIF-2α did not counteract uPA reduction. Conclusion Prolonged culturing of hMVECs at 1% oxygen inhibited endothelial sprouting into fibrin. Two independent mechanisms contribute. Silencing of HIF-2α with si-RNA partially restored the inhibition of endothelial sprouting pointing to a HIF-2α-dependent mechanism. In addition, reduction of uPA contributed to reduced endothelial tube formation in a fibrin matrix during prolonged hypoxia.
Collapse
|
167
|
Campochiaro PA, Khanani A, Singer M, Patel S, Boyer D, Dugel P, Kherani S, Withers B, Gambino L, Peters K, Brigell M. Enhanced Benefit in Diabetic Macular Edema from AKB-9778 Tie2 Activation Combined with Vascular Endothelial Growth Factor Suppression. Ophthalmology 2016; 123:1722-1730. [DOI: 10.1016/j.ophtha.2016.04.025] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 12/21/2022] Open
|
168
|
Abstract
Diabetic nephropathy is the main cause of end-stage renal failure in the Western world. In diabetes, metabolic and haemodynamic perturbations disrupt the integrity of the glomerular filtration barrier, leading to ultrastructural alterations of the glomeruli, including podocyte foot process fusion and detachment, glomerular basement membrane thickening, reduced endothelial cell glycocalyx, and mesangial extracellular matrix accumulation and glomerulosclerosis, ultimately leading to albuminuria and end-stage renal disease. Many vascular growth factors, such as angiopoietins, are implicated in glomerular biology. In normal physiology angiopoietins regulate the function of the glomerular filtration barrier. When they are dysregulated, however, as they are in diabetes, they drive the cellular mechanisms that mediate diabetic glomerular pathology. Modulation of angiopoietins expression and signalling has been proposed as a tool to correct the cellular mechanisms involved in the pathophysiology of diabetic microvascular disease, such as retinopathy in humans. Future work might evaluate whether this novel therapeutic approach should be extended to diabetic kidney disease.
Collapse
Affiliation(s)
- Luigi Gnudi
- Unit for Metabolic Medicine, Cardiovascular Division, Faculty of Life Science & Medicine, King's College London, 3rd Floor Franklin-Wilkins Building, Waterloo Campus, Stamford Street, London, SE1 9RT, UK.
| |
Collapse
|
169
|
Singh S, Manson SR, Lee H, Kim Y, Liu T, Guo Q, Geminiani JJ, Austin PF, Chen YM. Tubular Overexpression of Angiopoietin-1 Attenuates Renal Fibrosis. PLoS One 2016; 11:e0158908. [PMID: 27454431 PMCID: PMC4959721 DOI: 10.1371/journal.pone.0158908] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/23/2016] [Indexed: 01/22/2023] Open
Abstract
Emerging evidence has highlighted the pivotal role of microvasculature injury in the development and progression of renal fibrosis. Angiopoietin-1 (Ang-1) is a secreted vascular growth factor that binds to the endothelial-specific Tie2 receptor. Ang-1/Tie2 signaling is critical for regulating blood vessel development and modulating vascular response after injury, but is dispensable in mature, quiescent vessels. Although dysregulation of vascular endothelial growth factor (VEGF) signaling has been well studied in renal pathologies, much less is known about the role of the Ang-1/Tie2 pathway in renal interstitial fibrosis. Previous studies have shown contradicting effects of overexpressing Ang-1 systemically on renal tubulointerstitial fibrosis when different engineered forms of Ang-1 are used. Here, we investigated the impact of site-directed expression of native Ang-1 on the renal fibrogenic process and peritubular capillary network by exploiting a conditional transgenic mouse system [Pax8-rtTA/(TetO)7 Ang-1] that allows increased tubular Ang-1 production in adult mice. Using a murine unilateral ureteral obstruction (UUO) fibrosis model, we demonstrate that targeted Ang-1 overexpression attenuates myofibroblast activation and interstitial collagen I accumulation, inhibits the upregulation of transforming growth factor β1 and subsequent phosphorylation of Smad 2/3, dampens renal inflammation, and stimulates the growth of peritubular capillaries in the obstructed kidney. Our results suggest that Ang-1 is a potential therapeutic agent for targeting microvasculature injury in renal fibrosis without compromising the physiologically normal vasculature in humans.
Collapse
Affiliation(s)
- Sudhir Singh
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Scott R. Manson
- Division of Urology, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Heedoo Lee
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Yeawon Kim
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Tuoen Liu
- Oncology Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Qiusha Guo
- Division of Urology, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Julio J. Geminiani
- Division of Urology, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Paul F. Austin
- Division of Urology, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Ying Maggie Chen
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
170
|
Bersini S, Yazdi IK, Talò G, Shin SR, Moretti M, Khademhosseini A. Cell-microenvironment interactions and architectures in microvascular systems. Biotechnol Adv 2016; 34:1113-1130. [PMID: 27417066 DOI: 10.1016/j.biotechadv.2016.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 07/02/2016] [Accepted: 07/09/2016] [Indexed: 02/06/2023]
Abstract
In the past decade, significant advances have been made in the design and optimization of novel biomaterials and microfabrication techniques to generate vascularized tissues. Novel microfluidic systems have facilitated the development and optimization of in vitro models for exploring the complex pathophysiological phenomena that occur inside a microvascular environment. To date, most of these models have focused on engineering of increasingly complex systems, rather than analyzing the molecular and cellular mechanisms that drive microvascular network morphogenesis and remodeling. In fact, mutual interactions among endothelial cells (ECs), supporting mural cells and organ-specific cells, as well as between ECs and the extracellular matrix, are key driving forces for vascularization. This review focuses on the integration of materials science, microengineering and vascular biology for the development of in vitro microvascular systems. Various approaches currently being applied to study cell-cell/cell-matrix interactions, as well as biochemical/biophysical cues promoting vascularization and their impact on microvascular network formation, will be identified and discussed. Finally, this review will explore in vitro applications of microvascular systems, in vivo integration of transplanted vascularized tissues, and the important challenges for vascularization and controlling the microcirculatory system within the engineered tissues, especially for microfabrication approaches. It is likely that existing models and more complex models will further our understanding of the key elements of vascular network growth, stabilization and remodeling to translate basic research principles into functional, vascularized tissue constructs for regenerative medicine applications, drug screening and disease models.
Collapse
Affiliation(s)
- Simone Bersini
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Iman K Yazdi
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Giuseppe Talò
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Matteo Moretti
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy; Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, Lugano, Switzerland; Swiss Institute for Regenerative Medicine, Lugano, Switzerland; Cardiocentro Ticino, Lugano, Switzerland.
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia; College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
171
|
Hall AP. Review of the Pericyte during Angiogenesis and its Role in Cancer and Diabetic Retinopathy. Toxicol Pathol 2016; 34:763-75. [PMID: 17162534 DOI: 10.1080/01926230600936290] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Anthony P Hall
- AstraZeneca R&D Alderley Park, Safety Assessment UK, Mereside, Alderley Park, Macclesfield, SK10 4TG Cheshire, England.
| |
Collapse
|
172
|
Lemos DR, Marsh G, Huang A, Campanholle G, Aburatani T, Dang L, Gomez I, Fisher K, Ligresti G, Peti-Peterdi J, Duffield JS. Maintenance of vascular integrity by pericytes is essential for normal kidney function. Am J Physiol Renal Physiol 2016; 311:F1230-F1242. [PMID: 27335372 PMCID: PMC5210201 DOI: 10.1152/ajprenal.00030.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/13/2016] [Indexed: 01/28/2023] Open
Abstract
Pericytes are tissue-resident mesenchymal progenitor cells anatomically associated with the vasculature that have been shown to participate in tissue regeneration. Here, we tested the hypothesis that kidney pericytes, derived from FoxD1+ mesodermal progenitors during embryogenesis, are necessary for postnatal kidney homeostasis. Diphtheria toxin delivery to FoxD1Cre::RsDTR transgenic mice resulted in selective ablation of >90% of kidney pericytes but not other cell lineages. Abrupt increases in plasma creatinine, blood urea nitrogen, and albuminuria within 96 h indicated acute kidney injury in pericyte-ablated mice. Loss of pericytes led to a rapid accumulation of neutral lipid vacuoles, swollen mitochondria, and apoptosis in tubular epithelial cells. Pericyte ablation led to endothelial cell swelling, reduced expression of vascular homeostasis markers, and peritubular capillary loss. Despite the observed injury, no signs of the acute inflammatory response were observed. Pathway enrichment analysis of genes expressed in kidney pericytes in vivo identified basement membrane proteins, angiogenic factors, and factors regulating vascular tone as major regulators of vascular function. Using novel microphysiological devices, we recapitulated human kidney peritubular capillaries coated with pericytes and showed that pericytes regulate permeability, basement membrane deposition, and microvascular tone. These findings suggest that through the active support of the microvasculature, pericytes are essential to adult kidney homeostasis.
Collapse
Affiliation(s)
- Dario R Lemos
- Research and Development, Biogen, Cambridge, Massachusetts
| | - Graham Marsh
- Research and Development, Biogen, Cambridge, Massachusetts
| | - Angela Huang
- Research and Development, Biogen, Cambridge, Massachusetts
| | - Gabriela Campanholle
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Takahide Aburatani
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Lan Dang
- Research and Development, Biogen, Cambridge, Massachusetts
| | - Ivan Gomez
- Research and Development, Biogen, Cambridge, Massachusetts
| | - Ken Fisher
- Nortis Incorporated, Seattle, Washington; and
| | | | - Janos Peti-Peterdi
- Department of Physiology, University of Southern California, Los Angeles, California
| | - Jeremy S Duffield
- Research and Development, Biogen, Cambridge, Massachusetts; .,Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
173
|
Molecular Changes Associated with the Protective Effects of Angiopoietin-1 During Blood-Brain Barrier Breakdown Post-Injury. Mol Neurobiol 2016; 54:4232-4242. [DOI: 10.1007/s12035-016-9973-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/09/2016] [Indexed: 11/30/2022]
|
174
|
Otowa Y, Moriwaki K, Sano K, Shirakabe M, Yonemura S, Shibuya M, Rossant J, Suda T, Kakeji Y, Hirashima M. Flt1/VEGFR1 heterozygosity causes transient embryonic edema. Sci Rep 2016; 6:27186. [PMID: 27251772 PMCID: PMC4890026 DOI: 10.1038/srep27186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/16/2016] [Indexed: 11/13/2022] Open
Abstract
Vascular endothelial growth factor-A is a major player in vascular development and a potent vascular permeability factor under physiological and pathological conditions by binding to a decoy receptor Flt1 and its primary receptor Flk1. In this study, we show that Flt1 heterozygous (Flt1(+/-)) mouse embryos grow up to adult without life-threatening abnormalities but exhibit a transient embryonic edema around the nuchal and back regions, which is reminiscent of increased nuchal translucency in human fetuses. Vascular permeability is enhanced and an intricate infolding of the plasma membrane and huge vesicle-like structures are seen in Flt1(+/-) capillary endothelial cells. Flk1 tyrosine phosphorylation is elevated in Flt1(+/-) embryos, but Flk1 heterozygosity does not suppress embryonic edema caused by Flt1 heterozygosity. When Flt1 mutants are crossed with Aspp1(-/-) mice which exhibit a transient embryonic edema with delayed formation and dysfunction of lymphatic vessels, only 5.7% of Flt1(+/-); Aspp1(-/-) mice survive, compared to expected ratio (25%). Our results demonstrate that Flt1 heterozygosity causes a transient embryonic edema and can be a risk factor for embryonic lethality in combination with other mutations causing non-lethal vascular phenotype.
Collapse
Affiliation(s)
- Yasunori Otowa
- Division of Vascular Biology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Kazumasa Moriwaki
- Division of Vascular Biology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Keigo Sano
- Division of Vascular Biology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Masanori Shirakabe
- Division of Vascular Biology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Shigenobu Yonemura
- Ultrastructural Research Team, RIKEN Center for Life Science Technologies, 2-3-3, Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, 270-1 Shinmachi, Takasaki, Gunma 370-1393, Japan
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, Ontario, M5G0A4 Canada
| | - Toshio Suda
- Cancer Science Institute, National University of Singapore, Center for Translational Medicine, 14 Medical Drive, #12-01, 117599, Singapore
- International Research Center for Medical Sciences, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811, Japan
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Masanori Hirashima
- Division of Vascular Biology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| |
Collapse
|
175
|
Lu WH, Shi YX, Ma ZL, Wang G, Liu L, Chuai M, Song X, Münsterberg A, Cao L, Yang X. Proper autophagy is indispensable for angiogenesis during chick embryo development. Cell Cycle 2016; 15:1742-54. [PMID: 27163719 DOI: 10.1080/15384101.2016.1184803] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
People have known that autophagy plays a very important role in many physiological and pathological events. But the role of autophagy on embryonic angiogenesis still remains obscure. In this study, we demonstrated that Atg7, Atg8 and Beclin1 were expressed in the plexus vessels of angiogenesis at chick yolk sac membrane and chorioallantoic membrane. Interfering in autophagy with autophagy inducer or inhibitor could restrict the angiogenesis in vivo, which might be driven by the disorder of angiogenesis-related gene expressions, and also lead to embryonic hemorrhage, which was due to imperfection cell junctions in endothelial cells including abnormal expressions of tight junction, adheren junction and desmosome genes. Using HUVECs, we revealed that cell viability and migration ability changed with the alteration of cell autophagy exposed to RAPA or 3-MA. Interestingly, tube formation assay showed that HUVECs ability of tube formation altered with the change of Atg5, Atg7 and Atg8 manipulated by the transfection of their corresponding siRNA or plasmids. Moreover, the lost cell polarity labeled by F-actin and the absenced β-catenin in RAPA-treated and 3-MA-treated cell membrane implied intracellular cytoskeleton alteration was induced by the activation and depression of autophagy. Taken together, our current experimental data reveal that autophagy is really involved in regulating angiogenesis during embryo development.
Collapse
Affiliation(s)
- Wen-Hui Lu
- a Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College , Jinan University , Guangzhou , China
| | - Yu-Xun Shi
- a Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College , Jinan University , Guangzhou , China
| | - Zheng-Lai Ma
- a Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College , Jinan University , Guangzhou , China
| | - Guang Wang
- a Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College , Jinan University , Guangzhou , China
| | - Langxia Liu
- b Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering , Jinan University , Guangzhou , China
| | - Manli Chuai
- c Division of Cell and Developmental Biology , University of Dundee , Dundee , UK
| | - Xiaoyu Song
- d Key Laboratory of Medical Cell Biology , China Medical University , Shenyang , China
| | - Andrea Münsterberg
- e School of Biological Sciences , University of East Anglia , Norwich , UK
| | - Liu Cao
- d Key Laboratory of Medical Cell Biology , China Medical University , Shenyang , China
| | - Xuesong Yang
- a Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College , Jinan University , Guangzhou , China
| |
Collapse
|
176
|
Overexpression of Latent TGFβ Binding Protein 4 in Muscle Ameliorates Muscular Dystrophy through Myostatin and TGFβ. PLoS Genet 2016; 12:e1006019. [PMID: 27148972 PMCID: PMC4858180 DOI: 10.1371/journal.pgen.1006019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/08/2016] [Indexed: 01/06/2023] Open
Abstract
Latent TGFβ binding proteins (LTBPs) regulate the extracellular availability of latent TGFβ. LTBP4 was identified as a genetic modifier of muscular dystrophy in mice and humans. An in-frame insertion polymorphism in the murine Ltbp4 gene associates with partial protection against muscular dystrophy. In humans, nonsynonymous single nucleotide polymorphisms in LTBP4 associate with prolonged ambulation in Duchenne muscular dystrophy. To better understand LTBP4 and its role in modifying muscular dystrophy, we created transgenic mice overexpressing the protective murine allele of LTBP4 specifically in mature myofibers using the human skeletal actin promoter. Overexpression of LTBP4 protein was associated with increased muscle mass and proportionally increased strength compared to age-matched controls. In order to assess the effects of LTBP4 in muscular dystrophy, LTBP4 overexpressing mice were bred to mdx mice, a model of Duchenne muscular dystrophy. In this model, increased LTBP4 led to greater muscle mass with proportionally increased strength, and decreased fibrosis. The increase in muscle mass and reduction in fibrosis were similar to what occurs when myostatin, a related TGFβ family member and negative regulator of muscle mass, was deleted in mdx mice. Supporting this, we found that myostatin forms a complex with LTBP4 and that overexpression of LTBP4 led to a decrease in myostatin levels. LTBP4 also interacted with TGFβ and GDF11, a protein highly related to myostatin. These data identify LTBP4 as a multi-TGFβ family ligand binding protein with the capacity to modify muscle disease through overexpression. Muscular dystrophy is a genetic disease with muscle weakness, replacement of muscle tissue with fibrosis, and premature death. The gene for latent TGFβ binding protein 4 (LTBP4) was previously found to modify muscular dystrophy in both mice and humans with variants that confer protection from disease. In order to better understand this modifier gene, the protective version of LTBP4 was overexpressed specifically in the skeletal muscles of mice. Increased levels of LTBP4 protein resulted in increased muscle mass. Overexpression of LTBP4 in a mouse model of Duchenne muscular dystrophy alleviated many disease-associated features producing larger muscles, increased strength, and reduced fibrosis in muscle. LTBP4 formed a complex with myostatin, a protein that when inhibited leads to muscle growth. In LTBP4-overexpressing mice, active myostatin protein was decreased. This study shows that LTBP4 modifies muscular dystrophy based on its ability to scaffold and regulate multiple TGFβ family members including myostatin.
Collapse
|
177
|
Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling. Acta Neuropathol 2016; 131:753-73. [PMID: 26932603 PMCID: PMC4835530 DOI: 10.1007/s00401-016-1551-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 12/20/2022]
Abstract
The homeostasis of the central nervous system is maintained by the blood-brain barrier (BBB). Angiopoietins (Ang-1/Ang-2) act as antagonizing molecules to regulate angiogenesis, vascular stability, vascular permeability and lymphatic integrity. However, the precise role of angiopoietin/Tie2 signaling at the BBB remains unclear. We investigated the influence of Ang-2 on BBB permeability in wild-type and gain-of-function (GOF) mice and demonstrated an increase in permeability by Ang-2, both in vitro and in vivo. Expression analysis of brain endothelial cells from Ang-2 GOF mice showed a downregulation of tight/adherens junction molecules and increased caveolin-1, a vesicular permeability-related molecule. Immunohistochemistry revealed reduced pericyte coverage in Ang-2 GOF mice that was supported by electron microscopy analyses, which demonstrated defective intra-endothelial junctions with increased vesicles and decreased/disrupted glycocalyx. These results demonstrate that Ang-2 mediates permeability via paracellular and transcellular routes. In patients suffering from stroke, a cerebrovascular disorder associated with BBB disruption, Ang-2 levels were upregulated. In mice, Ang-2 GOF resulted in increased infarct sizes and vessel permeability upon experimental stroke, implicating a role of Ang-2 in stroke pathophysiology. Increased permeability and stroke size were rescued by activation of Tie2 signaling using a vascular endothelial protein tyrosine phosphatase inhibitor and were independent of VE-cadherin phosphorylation. We thus identified Ang-2 as an endothelial cell-derived regulator of BBB permeability. We postulate that novel therapeutics targeting Tie2 signaling could be of potential use for opening the BBB for increased CNS drug delivery or tighten it in neurological disorders associated with cerebrovascular leakage and brain edema.
Collapse
|
178
|
Laube M, Stolzing A, Thome UH, Fabian C. Therapeutic potential of mesenchymal stem cells for pulmonary complications associated with preterm birth. Int J Biochem Cell Biol 2016; 74:18-32. [PMID: 26928452 DOI: 10.1016/j.biocel.2016.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/22/2022]
Abstract
Preterm infants frequently suffer from pulmonary complications resulting in significant morbidity and mortality. Physiological and structural lung immaturity impairs perinatal lung transition to air breathing resulting in respiratory distress. Mechanical ventilation and oxygen supplementation ensure sufficient oxygen supply but enhance inflammatory processes which might lead to the establishment of a chronic lung disease called bronchopulmonary dysplasia (BPD). Current therapeutic options to prevent or treat BPD are limited and have salient side effects, highlighting the need for new therapeutic approaches. Mesenchymal stem cells (MSCs) have demonstrated therapeutic potential in animal models of BPD. This review focuses on MSC-based therapeutic approaches to treat pulmonary complications and critically compares results obtained in BPD models. Thereby bottlenecks in the translational systems are identified that are preventing progress in combating BPD. Notably, current animal models closely resemble the so-called "old" BPD with profound inflammation and injury, whereas clinical improvements shifted disease pathology towards a "new" BPD in which arrest of lung maturation predominates. Future studies need to evaluate the utility of MSC-based therapies in animal models resembling the "new" BPD though promising in vitro evidence suggests that MSCs do possess the potential to stimulate lung maturation. Furthermore, we address the mode-of-action of MSC-based therapies with regard to lung development and inflammation/fibrosis. Their therapeutic efficacy is mainly attributed to an enhancement of regeneration and immunomodulation due to paracrine effects. In addition, we discuss current improvement strategies by genetic modifications or precondition of MSCs to enhance their therapeutic efficacy which could also prove beneficial for BPD therapies.
Collapse
Affiliation(s)
- Mandy Laube
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany.
| | - Alexandra Stolzing
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Loughborough University, Wolfson School of Mechanical and Manufacturing Engineering, Centre for Biological Engineering, Loughborough, UK.
| | - Ulrich H Thome
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany.
| | - Claire Fabian
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
179
|
Abstract
A new therapeutic approach to a complex and dire disease-sepsis-targets a signaling molecule in the vasculature (Hanet al, this issue).
Collapse
Affiliation(s)
- Samir M Parikh
- Center for Vascular Biology Research and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
180
|
Dowlati A, Vlahovic G, Natale RB, Rasmussen E, Singh I, Hwang YC, Rossi J, Bass MB, Friberg G, Pickett CA. A Phase I, First-in-Human Study of AMG 780, an Angiopoietin-1 and -2 Inhibitor, in Patients with Advanced Solid Tumors. Clin Cancer Res 2016; 22:4574-84. [PMID: 27076631 DOI: 10.1158/1078-0432.ccr-15-2145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/18/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE To assess the toxicity, pharmacokinetics, tumor vascular response, tumor response, and pharmacodynamics of AMG 780, a mAb designed to inhibit the interaction between angiopoietin-1 and -2 and the Tie2 receptor. EXPERIMENTAL DESIGN This was a phase I dose-escalation study of patients with advanced solid tumors refractory to standard treatment without previous antiangiogenic treatment. AMG 780 was administered by intravenous infusion every 2 weeks in doses from 0.1 to 30 mg/kg. The primary endpoints were incidences of dose-limiting toxicity (DLT) and adverse events (AE), and pharmacokinetics. Secondary endpoints included tumor response, changes in tumor volume and vascularity, and anti-AMG 780 antibody formation. RESULTS Forty-five patients were enrolled across nine dose cohorts. Three patients had DLTs (0.6, 10, and 30 mg/kg), none of which prevented dose escalation. At 30 mg/kg, no MTD was reached. Pharmacokinetics of AMG 780 were dose proportional; median terminal elimination half-life was 8 to 13 days. No anti-AMG 780 antibodies were detected. At week 5, 6 of 16 evaluable patients had a >20% decrease in volume transfer constant (K(trans)), suggesting reduced capillary blood flow/permeability. The most frequent AEs were hypoalbuminemia (33%), peripheral edema (29%), decreased appetite (27%), and fatigue (27%). Among 35 evaluable patients, none had an objective response; 8 achieved stable disease. CONCLUSIONS AMG 780 could be administered at doses up to 30 mg/kg every 2 weeks in patients with advanced solid tumors. AMG 780 treatment resulted in tumor vascular effects in some patients. AEs were in line with toxicity associated with antiangiopoietin treatment. Clin Cancer Res; 22(18); 4574-84. ©2016 AACR.
Collapse
Affiliation(s)
- Afshin Dowlati
- Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, Ohio.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Lambert NG, Zhang X, Rai RR, Uehara H, Choi S, Carroll LS, Das SK, Cahoon JM, Kirk BH, Bentley BM, Ambati BK. Subretinal AAV2.COMP-Ang1 suppresses choroidal neovascularization and vascular endothelial growth factor in a murine model of age-related macular degeneration. Exp Eye Res 2016; 145:248-257. [PMID: 26775053 PMCID: PMC5862038 DOI: 10.1016/j.exer.2016.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 12/21/2015] [Accepted: 01/12/2016] [Indexed: 11/17/2022]
Abstract
To assess whether Tie2-mediated vascular stabilization ameliorates neovascular age-related macular degeneration (AMD), we investigated the impact of adeno-associated virus-mediated gene therapy with cartilage oligomeric matrix protein angiopoietin-1 (AAV2.COMP-Ang1) on choroidal neovascularization (CNV), vascular endothelial growth factor (VEGF), and hypoxia-inducible factor (HIF) in a mouse model of the disease. We treated mice with subretinal injections of AAV2.COMP-Ang1 or control (AAV2.AcGFP, AAV2.LacZ, and phosphate-buffered saline). Subretinal AAV2 localization and plasmid protein expression was verified in the retinal pigment epithelium (RPE)/choroid of mice treated with all AAV2 constructs. Laser-assisted simulation of neovascular AMD was performed and followed by quantification of HIF, VEGF, and CNV in each experimental group. We found that AAV2.COMP-Ang1 was associated with a significant reduction in VEGF levels (29-33%, p < 0.01) and CNV volume (60-70%, p < 0.01), without a concomitant decrease in HIF1-α, compared to all controls. We concluded that a) AAV2 is a viable vector for delivering COMP-Ang1 to subretinal tissues, b) subretinal COMP-Ang1 holds promise as a prospective treatment for neovascular AMD, and c) although VEGF suppression in the RPE/choroid may be one mechanism by which AAV2.COMP-Ang1 reduces CNV, this therapeutic effect may be hypoxia-independent. Taken together, these findings suggest that AAV2.COMP-Ang1 has potential to serve as an alternative or complementary option to anti-VEGF agents for the long-term amelioration of neovascular AMD.
Collapse
Affiliation(s)
| | - Xiaohui Zhang
- Ambati Lab, John A. Moran Eye Center, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Ruju R Rai
- Ambati Lab, John A. Moran Eye Center, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Hironori Uehara
- Ambati Lab, John A. Moran Eye Center, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Susie Choi
- Ambati Lab, John A. Moran Eye Center, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Lara S Carroll
- Ambati Lab, John A. Moran Eye Center, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Subrata K Das
- Ambati Lab, John A. Moran Eye Center, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Judd M Cahoon
- Ambati Lab, John A. Moran Eye Center, Salt Lake City, UT, USA
| | - Brian H Kirk
- Ambati Lab, John A. Moran Eye Center, Salt Lake City, UT, USA
| | | | - Balamurali K Ambati
- Ambati Lab, John A. Moran Eye Center, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
182
|
Schwarzrock C. Collaboration in the presence of cerebral edema: The complications of steroids. Surg Neurol Int 2016; 7:S185-9. [PMID: 27114853 PMCID: PMC4825348 DOI: 10.4103/2152-7806.179228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/09/2016] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Brain tumor patients often present with neurological changes in the presence of cerebral edema. High-dose dexamethasone is often required for symptom management in brain tumor patients. There are limitations in the foundational research that support the recommendations for appropriate prescribing of dexamethasone. Understanding these limitations can help prescribers and care teams collaborate to better manage this unique patient population as well as identify areas for further research. METHODS Evidence-based clinical practice guidelines for the management of adult brain tumor patients were reviewed from several certifying organizations. A complex database search and literature review was completed regarding relevant evidence used within these guidelines and for any supporting literature. The search was limited to MEDLINE, Cumulative Index to Nursing and Allied Health, Cochrane Library, and the National Guideline Clearinghouse using keywords. Each selected evidence-based guideline underwent appraisal using the Johns Hopkins Evidence-based Practice Model. RESULTS All clinical practice guidelines identified recommendations for appropriate dosing and tapering of dexamethasone. The management of steroid-induced side effects was addressed in two of the reviewed guidelines. Only one guideline identified specific nursing interventions for monitoring steroid-related side effects. No guideline addressed interval timing of provider or nursing-based interventions as well as the role of collaboration between provider and nurse in monitoring for steroid toxicities. CONCLUSIONS More high-quality, well-controlled studies are needed around dexamethasone dosing for the management of cerebral edema. Clinical practice guidelines need to encompass both the prescriber and nursing-based interventions. Collaboration between disciplines is a necessity when monitoring and managing steroid-induced toxicities in brain tumor patients. Future evidence-based guidelines need recommendations for appropriate interval screening tests and quantifiable tools needed to aid in monitoring steroid-induced complications.
Collapse
Affiliation(s)
- Camille Schwarzrock
- John Nasseff Neuroscience Specialty Clinic, Part of Allina Health, 225 North Smith Avenue, Suite 500, St. Paul, MN 55102, USA
| |
Collapse
|
183
|
Impact of angiopoietin-1 and -2 on clinical course of idiopathic pulmonary fibrosis. Respir Med 2016; 114:18-26. [PMID: 27109807 DOI: 10.1016/j.rmed.2016.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/17/2016] [Accepted: 03/03/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Angiopoietin (Ang) -1 and -2 are glycoproteins that play roles in vascular development, angiogenesis, and lung vascular permeability. Although the serum concentrations of Ang-1 and -2 have been evaluated in patients with sepsis, those in patients with idiopathic pulmonary fibrosis (IPF) have received less attention. OBJECTIVE To elucidate the clinical significance of Ang-1 and -2 in patients with IPF. METHODS Seventy-five patients with IPF were retrospectively studied. Serum concentrations of Ang-1 and -2 at diagnosis of IPF were measured by enzyme-linked immunosorbent assay. The relationships of the Ang-1 and -2 concentrations with pulmonary function test results, high-resolution computed tomography findings, histologic findings, occurrence of acute exacerbation of IPF (AE-IPF), and prognosis were evaluated. RESULTS The median patient age was 68 year-old and the median observation period was 44 months. IPF patients with high Ang-2 concentrations showed a significantly lower forced vital capacity (FVC) (2.28 vs. 2.69 L, respectively; p = 0.047) and lower percent diffusion lung capacity for carbon monoxide (%DLCO) (61.4 vs. 81.4%, respectively; p = 0.015) than patients with low Ang-2 concentrations. Serum Ang-2 concentrations were negatively correlated with %DLCO (r = -0.375, p = 0.021) and the change in %FVC in 12 months (r = -0.348, p = 0.043). The Ang-2 concentration was significantly higher in several patients with AE-IPF than in patients in stable condition (p = 0.011). Finally, patients with high Ang-2 concentrations showed a significantly worse prognosis than those with low Ang-2 concentrations (log-rank p = 0.039). Multivariate analysis showed that the serum Ang-2 concentration, but not the Ang-1 concentration, was a significant prognostic factor in patients with IPF (hazard ratio 1.439, p = 0.028). CONCLUSION Increases in the serum Ang-2 concentration were associated with disease progression and poor prognosis in patients with IPF.
Collapse
|
184
|
Park-Windhol C, D'Amore PA. Disorders of Vascular Permeability. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:251-81. [PMID: 26907525 DOI: 10.1146/annurev-pathol-012615-044506] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endothelial barrier maintains vascular and tissue homeostasis and modulates many physiological processes, such as angiogenesis. Vascular barrier integrity can be disrupted by a variety of soluble permeability factors, and changes in barrier function can exacerbate tissue damage during disease progression. Understanding endothelial barrier function is critical for vascular homeostasis. Many of the signaling pathways promoting vascular permeability can also be triggered during disease, resulting in prolonged or uncontrolled vascular leak. It is believed that recovery of the normal vasculature requires diminishing this hyperpermeable state. Although the molecular mechanisms governing vascular leak have been studied over the last few decades, recent advances have identified new therapeutic targets that have begun to show preclinical and clinical promise. These approaches have been successfully applied to an increasing number of disease conditions. New perspectives regarding how vascular leak impacts the progression of various diseases are highlighted in this review.
Collapse
Affiliation(s)
- Cindy Park-Windhol
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts 02114; , .,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| | - Patricia A D'Amore
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts 02114; , .,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115.,Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
185
|
Gene control of tyrosine kinase TIE2 and vascular manifestations of infections. Proc Natl Acad Sci U S A 2016; 113:2472-7. [PMID: 26884170 DOI: 10.1073/pnas.1519467113] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ligands of the endothelial-enriched tunica interna endothelial cell kinase 2 (Tie2) are markedly imbalanced in severe infections associated with vascular leakage, yet regulation of the receptor itself has been understudied in this context. Here, we show that TIE2 gene expression may constitute a novel vascular barrier control mechanism in diverse infections. Tie2 expression declined rapidly in wide-ranging models of leak-associated infections, including anthrax, influenza, malaria, and sepsis. Forced Tie2 suppression sufficed to attenuate barrier function and sensitize endothelium to permeability mediators. Rapid reduction of pulmonary Tie2 in otherwise healthy animals attenuated downstream kinase signaling to the barrier effector vascular endothelial (VE)-cadherin and induced vascular leakage. Compared with wild-type littermates, mice possessing one allele of Tie2 suffered more severe vascular leakage and higher mortality in two different sepsis models. Common genetic variants that influence TIE2 expression were then sought in the HapMap3 cohort. Remarkably, each of the three strongest predicted cis-acting SNPs in HapMap3 was also associated with the risk of acute respiratory distress syndrome (ARDS) in an intensive care unit cohort of 1,614 subjects. The haplotype associated with the highest TIE2 expression conferred a 28% reduction in the risk of ARDS independent of other major clinical variables, including disease severity. In contrast, the most common haplotype was associated with both the lowest TIE2 expression and 31% higher ARDS risk. Together, the results implicate common genetic variation at the TIE2 locus as a determinant of vascular leak-related clinical outcomes from common infections, suggesting new tools to identify individuals at unusual risk for deleterious complications of infection.
Collapse
|
186
|
Phanthanawiboon S, Limkittikul K, Sakai Y, Takakura N, Saijo M, Kurosu T. Acute Systemic Infection with Dengue Virus Leads to Vascular Leakage and Death through Tumor Necrosis Factor-α and Tie2/Angiopoietin Signaling in Mice Lacking Type I and II Interferon Receptors. PLoS One 2016; 11:e0148564. [PMID: 26844767 PMCID: PMC4742241 DOI: 10.1371/journal.pone.0148564] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/19/2016] [Indexed: 12/31/2022] Open
Abstract
Severe dengue is caused by host responses to viral infection, but the pathogenesis remains unknown. This is, in part, due to the lack of suitable animal models. Here, we report a non-mouse-adapted low-passage DENV-3 clinical isolate, DV3P12/08, derived from recently infected patients. DV3P12/08 caused a lethal systemic infection in type I and II IFN receptor KO mice (IFN-α/β/γR KO mice), which have the C57/BL6 background. Infection with DV3P12/08 induced a cytokine storm, resulting in severe vascular leakage (mainly in the liver, kidney and intestine) and organ damage, leading to extensive hemorrhage and rapid death. DV3P12/08 infection triggered the release of large amounts of TNF-α, IL-6, and MCP-1. Treatment with a neutralizing anti-TNF-α antibody (Ab) extended survival and reduced liver damage without affecting virus production. Anti-IL-6 neutralizing Ab partly prolonged mouse survival. The anti-TNF-α Ab suppressed IL-6, MCP-1, and IFN-γ levels, suggesting that the severe response to infection was triggered by TNF-α. High levels of TNF-α mRNA were expressed in the liver and kidneys, but not in the small intestine, of infected mice. Conversely, high levels of IL-6 mRNA were expressed in the intestine. Importantly, treatment with Angiopoietin-1, which is known to stabilize blood vessels, prolonged the survival of DV3P12/08-infected mice. Taken together, the results suggest that an increased level of TNF-α together with concomitant upregulation of Tie2/Angiopoietin signaling have critical roles in severe dengue infection.
Collapse
Affiliation(s)
| | - Kriengsak Limkittikul
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yusuke Sakai
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Nobuyuki Takakura
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Shinjyuku, Tokyo, Japan
| | - Takeshi Kurosu
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
187
|
Almubarak S, Nethercott H, Freeberg M, Beaudon C, Jha A, Jackson W, Marcucio R, Miclau T, Healy K, Bahney C. Tissue engineering strategies for promoting vascularized bone regeneration. Bone 2016; 83:197-209. [PMID: 26608518 PMCID: PMC4911893 DOI: 10.1016/j.bone.2015.11.011] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/06/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023]
Abstract
This review focuses on current tissue engineering strategies for promoting vascularized bone regeneration. We review the role of angiogenic growth factors in promoting vascularized bone regeneration and discuss the different therapeutic strategies for controlled/sustained growth factor delivery. Next, we address the therapeutic uses of stem cells in vascularized bone regeneration. Specifically, this review addresses the concept of co-culture using osteogenic and vasculogenic stem cells, and how adipose derived stem cells compare to bone marrow derived mesenchymal stem cells in the promotion of angiogenesis. We conclude this review with a discussion of a novel approach to bone regeneration through a cartilage intermediate, and discuss why it has the potential to be more effective than traditional bone grafting methods.
Collapse
Affiliation(s)
- Sarah Almubarak
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Hubert Nethercott
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Marie Freeberg
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Caroline Beaudon
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Amit Jha
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Wesley Jackson
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Kevin Healy
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Chelsea Bahney
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States.
| |
Collapse
|
188
|
García-Lucio J, Argemi G, Tura-Ceide O, Diez M, Paul T, Bonjoch C, Coll-Bonfill N, Blanco I, Barberà JA, Musri MM, Peinado VI. Gene expression profile of angiogenic factors in pulmonary arteries in COPD: relationship with vascular remodeling. Am J Physiol Lung Cell Mol Physiol 2016; 310:L583-92. [PMID: 26801565 DOI: 10.1152/ajplung.00261.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/15/2016] [Indexed: 11/22/2022] Open
Abstract
Pulmonary vessel remodeling in chronic obstructive pulmonary disease (COPD) involves changes in smooth muscle cell proliferation, which are highly dependent on the coordinated interaction of angiogenic-related growth factors. The purpose of the study was to investigate, in isolated pulmonary arteries (PA) from patients with COPD, the gene expression of 46 genes known to be modulators of the angiogenic process and/or involved in smooth muscle cell proliferation and to relate it to vascular remodeling. PA segments were isolated from 29 patients and classified into tertiles, according to intimal thickness. After RNA extraction, the gene expression was assessed by RT-PCR using TaqMan low-density arrays. The univariate analysis only showed upregulation of angiopoietin-2 (ANGPT-2) in remodeled PA (P < 0.05). The immunohistochemical expression of ANGPT-2 correlated with intimal enlargement (r = 0.42, P < 0.05). However, a combination of 10 factors in a multivariate discriminant analysis model explained up to 96% of the classification of the arteries. A network analysis of 46 genes showed major decentralization. In this network, the metalloproteinase-2 (MMP-2) was shown to be the bridge between intimal enlargement and fibrogenic factors. In COPD patients, plasma levels of ANGPT-2 were higher in current smokers or those with pulmonary hypertension. We conclude that an imbalance in ANGPT-2, combined with related factors such as VEGF, β-catenin, and MMP-2, may partially explain the structural derangements of the arterial wall. MMP-2 may act as a bridge channeling actions from the main fibrogenic factors.
Collapse
Affiliation(s)
- Jéssica García-Lucio
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; and
| | - Gemma Argemi
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; and
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; and Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Marta Diez
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; and
| | - Tanja Paul
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; and
| | - Cristina Bonjoch
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; and
| | - Nuria Coll-Bonfill
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; and
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; and Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Joan A Barberà
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; and Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Melina M Musri
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; and
| | - Victor I Peinado
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; and Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| |
Collapse
|
189
|
Mammoto T, Chen Z, Jiang A, Jiang E, Ingber DE, Mammoto A. Acceleration of Lung Regeneration by Platelet-Rich Plasma Extract through the Low-Density Lipoprotein Receptor-Related Protein 5-Tie2 Pathway. Am J Respir Cell Mol Biol 2016; 54:103-13. [PMID: 26091161 PMCID: PMC5455682 DOI: 10.1165/rcmb.2015-0045oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis, the growth of new blood vessels, plays a key role in organ development, homeostasis, and regeneration. The cooperation of multiple angiogenic factors, rather than a single factor, is required for physiological angiogenesis. Recently, we have reported that soluble platelet-rich plasma (PRP) extract, which contains abundant angiopoietin-1 and multiple other angiogenic factors, stimulates angiogenesis and maintains vascular integrity in vitro and in vivo. In this report, we have demonstrated that mouse PRP extract increases phosphorylation levels of the Wnt coreceptor low-density lipoprotein receptor-related protein 5 (LRP5) and thereby activates angiogenic factor receptor Tie2 in endothelial cells (ECs) and accelerates EC sprouting and lung epithelial cell budding in vitro. PRP extract also increases phosphorylation levels of Tie2 in the mouse lungs and accelerates compensatory lung growth and recovery of exercise capacity after unilateral pneumonectomy in mice, whereas soluble Tie2 receptor or Lrp5 knockdown attenuates the effects of PRP extract. Because human PRP extract is generated from autologous peripheral blood and can be stored at -80°C, our findings may lead to the development of novel therapeutic interventions for various angiogenesis-related lung diseases and to the improvement of strategies for lung regeneration.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Zhao Chen
- Department of Medicine, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Amanda Jiang
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elisabeth Jiang
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Donald E. Ingber
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts; and
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts
| | - Akiko Mammoto
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
190
|
Abstract
Kidney glomeruli ultrafilter blood to generate urine and they are dysfunctional in a variety of kidney diseases. There are two key vascular growth factor families implicated in glomerular biology and function, namely the vascular endothelial growth factors (VEGFs) and the angiopoietins (Angpt). We present examples showing not only how these molecules help generate and maintain healthy glomeruli but also how they drive disease when their expression is dysregulated. Finally, we review how manipulating VEGF and Angpt signalling may be used to treat glomerular disease.
Collapse
|
191
|
Verma SK, Molitoris BA. Renal endothelial injury and microvascular dysfunction in acute kidney injury. Semin Nephrol 2015; 35:96-107. [PMID: 25795503 DOI: 10.1016/j.semnephrol.2015.01.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The kidney is comprised of heterogeneous cell populations that function together to perform a number of tightly controlled, complex and interdependent processes. Renal endothelial cells contribute to vascular tone, regulation of blood flow to local tissue beds, modulation of coagulation and inflammation, and vascular permeability. Both ischemia and sepsis have profound effects on the renal endothelium, resulting in microvascular dysregulation resulting in continued ischemia and further injury. In recent years, the concept of the vascular endothelium as an organ that is both the source of and target for inflammatory injury has become widely appreciated. Here we revisit the renal endothelium in the light of ever evolving molecular advances.
Collapse
Affiliation(s)
- Sudhanshu Kumar Verma
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, The Roudebush VA Medical Center, Indiana Center for Biological Microscopy, Indianapolis, IN
| | - Bruce A Molitoris
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, The Roudebush VA Medical Center, Indiana Center for Biological Microscopy, Indianapolis, IN.
| |
Collapse
|
192
|
Zinter MS, Spicer A, Orwoll BO, Alkhouli M, Dvorak CC, Calfee CS, Matthay MA, Sapru A. Plasma angiopoietin-2 outperforms other markers of endothelial injury in prognosticating pediatric ARDS mortality. Am J Physiol Lung Cell Mol Physiol 2015; 310:L224-31. [PMID: 26660787 DOI: 10.1152/ajplung.00336.2015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/06/2015] [Indexed: 01/06/2023] Open
Abstract
Angiopoietin-2 (Ang-2) is a key mediator of pulmonary vascular permeability. This study tested the association between plasma Ang-2 and mortality in pediatric acute respiratory distress syndrome (ARDS), with stratification for prior hematopoietic cellular transplantation (HCT), given the severe, yet poorly understood, ARDS phenotype of this subgroup. We enrolled 259 children <18 years of age with ARDS; 25 had prior HCT. Plasma Ang-2, von Willebrand Factor antigen (vWF), and vascular endothelial growth factor (VEGF) were measured on ARDS days 1 and 3 and correlated with patient outcomes. Day 1 and day 3 Ang-2 levels were associated with mortality independent of age, sex, race, and P/F ratio [odds ratio (OR) 3.7, 95% CI 1.1-11.5, P = 0.027; and OR 10.2, 95% confidence interval (CI) 2.2-46.5, P = 0.003, for each log10 increase in Ang-2]. vWF was associated with mortality (P = 0.027), but VEGF was not. The association between day 1 Ang-2 and mortality was independent of levels of both vWF and VEGF (OR 3.6, 95% CI 1.1-12.1, P = 0.039, for each log10 increase in Ang-2). 45% of the cohort had a rising Ang-2 between ARDS day 1 and 3 (adjusted mortality OR 3.3, 95% CI 1.2-9.2, P = 0.026). HCT patients with a rising Ang-2 had 70% mortality compared with 13% mortality for those without (OR 16.3, 95% CI 1.3-197.8, P = 0.028). Elevated plasma levels of Ang-2 were associated with mortality independent of vWF and VEGF. A rising Ang-2 between days 1 and 3 was strongly associated with mortality, particularly in pediatric HCT patients, suggesting vulnerability to ongoing endothelial damage.
Collapse
Affiliation(s)
- Matt S Zinter
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, University of California, San Francisco, California; University of California, San Francisco, Benioff Children's Hospital, San Francisco, California
| | - Aaron Spicer
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, University of California, San Francisco, California; University of California, San Francisco, Benioff Children's Hospital, San Francisco, California
| | - Benjamin O Orwoll
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, University of California, San Francisco, California; University of California, San Francisco, Benioff Children's Hospital, San Francisco, California
| | - Mustafa Alkhouli
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, University of California, San Francisco, California; University of California, San Francisco, Benioff Children's Hospital, San Francisco, California
| | - Christopher C Dvorak
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, School of Medicine, University of California, San Francisco, California; University of California, San Francisco, Benioff Children's Hospital, San Francisco, California
| | - Carolyn S Calfee
- Division of Pulmonary and Critical Care Medicine, Departments of Anesthesia and Medicine, University of California, San Francisco, California; Cardiovascular Research Institute, University of California, San Francisco, California; and
| | - Michael A Matthay
- Division of Pulmonary and Critical Care Medicine, Departments of Anesthesia and Medicine, University of California, San Francisco, California; Cardiovascular Research Institute, University of California, San Francisco, California; and
| | - Anil Sapru
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, University of California, San Francisco, California; University of California, San Francisco, Benioff Children's Hospital, San Francisco, California
| |
Collapse
|
193
|
Papadopoulos KP, Kelley RK, Tolcher AW, Razak ARA, Van Loon K, Patnaik A, Bedard PL, Alfaro AA, Beeram M, Adriaens L, Brownstein CM, Lowy I, Kostic A, Trail PA, Gao B, DiCioccio AT, Siu LL. A Phase I First-in-Human Study of Nesvacumab (REGN910), a Fully Human Anti-Angiopoietin-2 (Ang2) Monoclonal Antibody, in Patients with Advanced Solid Tumors. Clin Cancer Res 2015; 22:1348-55. [PMID: 26490310 DOI: 10.1158/1078-0432.ccr-15-1221] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/25/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Nesvacumab (REGN910) is a fully human immunoglobulin G1 (IgG1) monoclonal antibody that specifically binds and inactivates the Tie2 receptor ligand Ang2 with high affinity, but shows no binding to Ang1. The main objectives of this trial were to determine the safety, tolerability, dose-limiting toxicities (DLT), and recommended phase II dose (RP2D) of nesvacumab. EXPERIMENTAL DESIGN Nesvacumab was administered intravenously every two weeks with dose escalations from 1 to 20 mg/kg in patients with advanced solid tumors. RESULTS A total of 47 patients were treated with nesvacumab. No patients in the dose escalation phase experienced DLTs, therefore a maximum tolerated dose (MTD) was not reached. The most common nesvacumab-related adverse events were fatigue (23.4%), peripheral edema (21.3%), decreased appetite, and diarrhea (each 10.6%; all grade ≤ 2). Nesvacumab was characterized by linear kinetics and had a terminal half-life of 6.35 to 9.66 days in a dose-independent manner. Best response by RECIST 1.1 in 43 evaluable patients included 1 partial response (adrenocortical carcinoma) of 24 weeks duration. Two patients with hepatocellular carcinoma had stable disease (SD) > 16 weeks, with tumor regression and >50% decrease in α-fetoprotein. Analyses of putative angiogenesis biomarkers in serum and tumor biopsies were uninformative for treatment duration. CONCLUSIONS Nesvacumab safety profile was acceptable at all dose levels tested. Preliminary antitumor activity was observed in patients with treatment-refractory advanced solid tumors. On the basis of cumulative safety, antitumor activity, pharmacokinetic and pharmacodynamic data, the 20 mg/kg dose was determined to be the RP2D.
Collapse
Affiliation(s)
| | - Robin Kate Kelley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Anthony W Tolcher
- South Texas Accelerated Research Therapeutics (START), San Antonio, Texas
| | | | - Katherine Van Loon
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Amita Patnaik
- South Texas Accelerated Research Therapeutics (START), San Antonio, Texas
| | | | - Ariceli A Alfaro
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Muralidhar Beeram
- South Texas Accelerated Research Therapeutics (START), San Antonio, Texas
| | | | | | - Israel Lowy
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Ana Kostic
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | - Bo Gao
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | |
Collapse
|
194
|
A Designed Angiopoietin-1 Variant, Dimeric CMP-Ang1 Activates Tie2 and Stimulates Angiogenesis and Vascular Stabilization in N-glycan Dependent Manner. Sci Rep 2015; 5:15291. [PMID: 26478188 PMCID: PMC4609988 DOI: 10.1038/srep15291] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/22/2015] [Indexed: 01/09/2023] Open
Abstract
Angiopoietin-1 (Ang1), a potential growth factor for therapeutic angiogenesis and vascular stabilization, is known to specifically cluster and activate Tie2 in high oligomeric forms, which is a unique and essential process in this ligand-receptor interaction. However, highly oligomeric native Ang1 and Ang1 variants are difficult to produce, purify, and store in a stable and active form. To overcome these limitations, we developed a simple and active dimeric CMP-Ang1 by replacing the N-terminal of native Ang1 with the coiled-coil domain of cartilage matrix protein (CMP) bearing mutations in its cysteine residues. This dimeric CMP-Ang1 effectively increased the migration, survival, and tube formation of endothelial cells via Tie2 activation. Furthermore, dimeric CMP-Ang1 induced angiogenesis and suppressed vascular leakage in vivo. Despite its dimeric structure, the potencies of such Tie2-activation-induced effects were comparable to those of a previously engineered protein, COMP-Ang1. We also revealed that these effects of dimeric CMP-Ang1 were affected by specified N-glycosylation in its fibrinogen-like domain. Taken together, our results indicate that dimeric CMP-Ang1 is capable of activating Tie2 and stimulating angiogenesis in N-glycan dependent manner.
Collapse
|
195
|
Ho MSH, Mei SHJ, Stewart DJ. The Immunomodulatory and Therapeutic Effects of Mesenchymal Stromal Cells for Acute Lung Injury and Sepsis. J Cell Physiol 2015; 230:2606-17. [PMID: 25913273 DOI: 10.1002/jcp.25028] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 12/20/2022]
Abstract
It is increasingly recognized that immunomodulation represents an important mechanism underlying the benefits of many stem cell therapies, rather than the classical paradigm of transdifferentiation and cell replacement. In the former paradigm, the beneficial effects of cell therapy result from paracrine mechanism(s) and/or cell-cell interaction as opposed to direct engraftment and repair of diseased tissue and/or dysfunctional organs. Depending on the cell type used, components of the secretome, including microRNA (miRNA) and extracellular vesicles, may be able to either activate or suppress the immune system even without direct immune cell contact. Mesenchymal stromal cells (MSCs), also referred to as mesenchymal stem cells, are found not only in the bone marrow, but also in a wide variety of organs and tissues. In addition to any direct stem cell activities, MSCs were the first stem cells recognized to modulate immune response, and therefore they will be the focus of this review. Specifically, MSCs appear to be able to effectively attenuate acute and protracted inflammation via interactions with components of both innate and adaptive immune systems. To date, this capacity has been exploited in a large number of preclinical studies and MSC immunomodulatory therapy has been attempted with various degrees of success in a relatively large number of clinical trials. Here, we will explore the various mechanism employed by MSCs to effect immunosuppression as well as review the current status of its use to treat excessive inflammation in the context of acute lung injury (ALI) and sepsis in both preclinical and clinical settings.
Collapse
Affiliation(s)
- Mirabelle S H Ho
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario
| | - Shirley H J Mei
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario
| | - Duncan J Stewart
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario
| |
Collapse
|
196
|
Wevers NR, de Vries HE. Morphogens and blood-brain barrier function in health and disease. Tissue Barriers 2015; 4:e1090524. [PMID: 27141417 DOI: 10.1080/21688370.2015.1090524] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/26/2015] [Accepted: 08/30/2015] [Indexed: 12/22/2022] Open
Abstract
The microvasculature of the brain forms a protective blood-brain barrier (BBB) that ensures a homeostatic environment for the central nervous system (CNS), which is essential for optimal brain functioning. The barrier properties of the brain endothelial cells are maintained by cells surrounding the capillaries, such as astrocytes and pericytes. Together with the endothelium and a basement membrane, these supporting cells form the neurovascular unit (NVU). Accumulating evidence indicates that the supporting cells of the NVU release a wide variety of soluble factors that induce and control barrier properties in a concentration-dependent manner. The current review provides a comprehensive overview of how such factors, called morphogens, influence BBB integrity and functioning. Since impaired BBB function is apparent in numerous CNS disorders and is often associated with disease severity, we also discuss the potential therapeutic value of these morphogens, as they may represent promising therapies for a wide variety of CNS disorders.
Collapse
Affiliation(s)
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology; Neuroscience Campus Amsterdam, VU University Medical Center ; Amsterdam, The Netherlands
| |
Collapse
|
197
|
Durham JT, Dulmovits BM, Cronk SM, Sheets AR, Herman IM. Pericyte chemomechanics and the angiogenic switch: insights into the pathogenesis of proliferative diabetic retinopathy? Invest Ophthalmol Vis Sci 2015; 56:3441-59. [PMID: 26030100 DOI: 10.1167/iovs.14-13945] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To establish the regulatory roles that pericytes have in coordinating retinal endothelial cell (EC) growth and angiogenic potential. METHODS Pericytes were derived from donor diabetic (DHuRP) or normal (NHuRP) human retinae, and characterized using vascular markers, coculture, contraction, morphogenesis, and proliferation assays. To investigate capillary "cross-talk," pericyte-endothelial coculture growth, and connexin-43 (Cx43) expression assays were performed. Paracrine effects were examined via treating EC with pericyte-derived conditioned media (CM) in proliferation, angiogenesis, and angiocrine assays. The effects of sphingosine 1-phosphate (S1P) were assessed using receptor antagonists. RESULTS The DHuRP exhibit unique proliferative and morphologic properties, reflecting distinctive cytoskeletal and isoactin expression patterns. Unlike NHuRP, DHuRP are unable to sustain EC growth arrest in coculture and display reduced Cx43 expression. Further, CM from DHuRP (DPCM) markedly stimulates EC proliferation and tube formation. Treatment with S1P receptor antagonists mitigates DPCM growth-promotion in EC and S1P-mediated pericyte contraction. Angiocrine assays on normal and diabetic pericyte secretomes reveal factors involved in angiogenic control, inflammation, and metabolism. CONCLUSIONS Effects from the diabetic microenvironment appear sustainable in cell culture: pericytes derived from diabetic donor eyes seemingly possess a "metabolic memory" in vitro, which may be linked to original donor health status. Diabetes- and pericyte-dependent effects on EC growth and angiogenesis may reflect alterations in bioactive lipid, angiocrine, and chemomechanical signaling. Altogether, our results suggest that diabetes alters pericyte contractile phenotype and cytoskeletal signaling, which ultimately may serve as a key, initiating event required for retinal endothelial reproliferation, angiogenic activation, and the pathological neovascularization accompanying proliferative diabetic retinopathy.
Collapse
|
198
|
Gingipains from the Periodontal Pathogen Porphyromonas gingivalis Play a Significant Role in Regulation of Angiopoietin 1 and Angiopoietin 2 in Human Aortic Smooth Muscle Cells. Infect Immun 2015; 83:4256-65. [PMID: 26283334 DOI: 10.1128/iai.00498-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/11/2015] [Indexed: 12/24/2022] Open
Abstract
Angiopoietin 1 (Angpt1) and angiopoietin 2 (Angpt2) are the ligands of tyrosine kinase (Tie) receptors, and they play important roles in vessel formation and the development of inflammatory diseases, such as atherosclerosis. Porphyromonas gingivalis is a Gram-negative periodontal bacterium that is thought to contribute to the progression of cardiovascular disease. The aim of this study was to investigate the role of P. gingivalis infection in the modulation of Angpt1 and Angpt2 in human aortic smooth muscle cells (AoSMCs). We exposed AoSMCs to wild-type (W50 and 381), gingipain mutant (E8 and K1A), and fimbrial mutant (DPG-3 and KRX-178) P. gingivalis strains and to different concentrations of tumor necrosis factor (TNF). The atherosclerosis risk factor TNF was used as a positive control in this study. We found that P. gingivalis (wild type, K1A, DPG3, and KRX178) and TNF upregulated the expression of Angpt2 and its transcription factor ETS1, respectively, in AoSMCs. In contrast, Angpt1 was inhibited by P. gingivalis and TNF. However, the RgpAB mutant E8 had no effect on the expression of Angpt1, Angpt2, or ETS1 in AoSMCs. The results also showed that ETS1 is critical for P. gingivalis induction of Angpt2. Exposure to Angpt2 protein enhanced the migration of AoSMCs but had no effect on proliferation. This study demonstrates that gingipains are crucial to the ability of P. gingivalis to markedly increase the expressed Angpt2/Angpt1 ratio in AoSMCs, which determines the regulatory role of angiopoietins in angiogenesis and their involvement in the development of atherosclerosis. These findings further support the association between periodontitis and cardiovascular disease.
Collapse
|
199
|
Jerebtsova M, Das JR, Tang P, Wong E, Ray PE. Angiopoietin-1 prevents severe bleeding complications induced by heparin-like drugs and fibroblast growth factor-2 in mice. Am J Physiol Heart Circ Physiol 2015; 309:H1314-25. [PMID: 26276817 DOI: 10.1152/ajpheart.00373.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/22/2015] [Indexed: 02/05/2023]
Abstract
Critically ill children can develop bleeding complications when treated with heparin-like drugs. These events are usually attributed to the anticoagulant activity of these drugs. However, previous studies showed that fibroblast growth factor-2 (FGF-2), a heparin-binding growth factor released in the circulation of these patients, could precipitate intestinal hemorrhages in mice treated with the heparin-like drug pentosan polysulfate (PPS). Yet very little is known about how FGF-2 induces bleeding complications in combination with heparin-like drugs. Here, we examined the mechanisms by which circulating FGF-2 induces intestinal hemorrhages in mice treated with PPS. We used a well-characterized mouse model of intestinal hemorrhages induced by FGF-2 plus PPS. Adult FVB/N mice were infected with adenovirus carrying Lac-Z or a secreted form of recombinant human FGF-2, and injected with PPS, at doses that do not induce bleeding complications per se. Mice treated with FGF-2 in combination with PPS developed an intestinal inflammatory reaction that increased the permeability and disrupted the integrity of submucosal intestinal vessels. These changes, together with the anticoagulant activity of PPS, induced lethal hemorrhages. Moreover, a genetically modified form of the endothelial ligand angiopoietin-1 (Ang-1*), which has powerful antipermeability and anti-inflammatory activity, prevented the lethal bleeding complications without correcting the anticoagulant status of these mice. These findings define new mechanisms through which FGF-2 and Ang-1* modulate the outcome of intestinal bleeding complications induced by PPS in mice and may have wider clinical implications for critically ill children treated with heparin-like drugs.
Collapse
Affiliation(s)
- Marina Jerebtsova
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, District of Columbia
| | - Jharna R Das
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, District of Columbia
| | - Pingtao Tang
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, District of Columbia
| | - Edward Wong
- Division of Laboratory Medicine, Children's National Medical Center, Washington, District of Columbia; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Patricio E Ray
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, District of Columbia; Division of Nephrology, Children's National Medical Center, Washington, District of Columbia; and Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
200
|
Tallawi M, Rosellini E, Barbani N, Cascone MG, Rai R, Saint-Pierre G, Boccaccini AR. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. J R Soc Interface 2015; 12:20150254. [PMID: 26109634 PMCID: PMC4528590 DOI: 10.1098/rsif.2015.0254] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/19/2015] [Indexed: 12/11/2022] Open
Abstract
The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed.
Collapse
Affiliation(s)
- Marwa Tallawi
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Elisabetta Rosellini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
| | - Niccoletta Barbani
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
| | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
| | - Ranjana Rai
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Guillaume Saint-Pierre
- Inspiralia, Materials Laboratory, C/Faraday 7, Lab 3.02, Campus de Cantoblanco, Madrid 28049, Spain
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|