151
|
Gibert JM, Mouchel-Vielh E, De Castro S, Peronnet F. Phenotypic Plasticity through Transcriptional Regulation of the Evolutionary Hotspot Gene tan in Drosophila melanogaster. PLoS Genet 2016; 12:e1006218. [PMID: 27508387 PMCID: PMC4980059 DOI: 10.1371/journal.pgen.1006218] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/02/2016] [Indexed: 11/18/2022] Open
Abstract
Phenotypic plasticity is the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions. Phenotypic plasticity can be adaptive. Furthermore, it is thought to facilitate evolution. Although phenotypic plasticity is a widespread phenomenon, its molecular mechanisms are only beginning to be unravelled. Environmental conditions can affect gene expression through modification of chromatin structure, mainly via histone modifications, nucleosome remodelling or DNA methylation, suggesting that phenotypic plasticity might partly be due to chromatin plasticity. As a model of phenotypic plasticity, we study abdominal pigmentation of Drosophila melanogaster females, which is temperature sensitive. Abdominal pigmentation is indeed darker in females grown at 18°C than at 29°C. This phenomenon is thought to be adaptive as the dark pigmentation produced at lower temperature increases body temperature. We show here that temperature modulates the expression of tan (t), a pigmentation gene involved in melanin production. t is expressed 7 times more at 18°C than at 29°C in female abdominal epidermis. Genetic experiments show that modulation of t expression by temperature is essential for female abdominal pigmentation plasticity. Temperature modulates the activity of an enhancer of t without modifying compaction of its chromatin or level of the active histone mark H3K27ac. By contrast, the active mark H3K4me3 on the t promoter is strongly modulated by temperature. The H3K4 methyl-transferase involved in this process is likely Trithorax, as we show that it regulates t expression and the H3K4me3 level on the t promoter and also participates in female pigmentation and its plasticity. Interestingly, t was previously shown to be involved in inter-individual variation of female abdominal pigmentation in Drosophila melanogaster, and in abdominal pigmentation divergence between Drosophila species. Sensitivity of t expression to environmental conditions might therefore give more substrate for selection, explaining why this gene has frequently been involved in evolution of pigmentation. Environmental conditions can strongly modulate the phenotype produced by a particular genotype. This process, called phenotypic plasticity, has major implications in medicine and agricultural sciences, and is thought to facilitate evolution. Phenotypic plasticity is observed in many animals and plants but its mechanisms are only partially understood. As a model of phenotypic plasticity, we study the effect of temperature on female abdominal pigmentation in the fruit fly Drosophila melanogaster. Here we show that temperature affects female abdominal pigmentation by modulating the expression of tan (t), a gene involved in melanin production, in female abdominal epidermis. This effect is mediated at least partly by a particular regulatory sequence of t, the t_MSE enhancer. However we detected no modulation of chromatin structure of t_MSE by temperature. By contrast, the level of the active chromatin mark H3K4me3 on the t promoter is strongly increased at lower temperature. We show that the H3K4 methyl-transferase Trithorax is involved in female abdominal pigmentation and its plasticity and regulates t expression and H3K4me3 level on the t promoter. Several studies have linked t to pigmentation evolution within and between Drosophila species. Our results suggest that sensitivity of t expression to temperature might facilitate its role in pigmentation evolution.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, Equipe “Contrôle épigénétique de l’homéostasie et de la plasticité du développement”, Paris, France
- * E-mail: (JMG); (EMV)
| | - Emmanuèle Mouchel-Vielh
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, Equipe “Contrôle épigénétique de l’homéostasie et de la plasticité du développement”, Paris, France
- * E-mail: (JMG); (EMV)
| | - Sandra De Castro
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, Equipe “Contrôle épigénétique de l’homéostasie et de la plasticité du développement”, Paris, France
| | - Frédérique Peronnet
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, Equipe “Contrôle épigénétique de l’homéostasie et de la plasticité du développement”, Paris, France
| |
Collapse
|
152
|
Division of labor in complex societies: a new age of conceptual expansion and integrative analysis. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2147-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
153
|
Giraldo YM, Rusakov A, Diloreto A, Kordek A, Traniello JFA. Age, worksite location, neuromodulators, and task performance in the ant Pheidole dentata. Behav Ecol Sociobiol 2016; 70:1441-1455. [PMID: 28042198 DOI: 10.1007/s00265-016-2153-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Social insect workers modify task performance according to age-related schedules of behavioral development, and/or changing colony labor requirements based on flexible responses that may be independent of age. Using known-age minor workers of the ant Pheidole dentata throughout 68% of their 140-day laboratory lifespan, we asked whether workers found inside or outside the nest differed in task performance and if behaviors were correlated with and/or causally linked to changes in brain serotonin (5HT) and dopamine (DA). Our results suggest that task performance patterns of individually assayed minors collected at these two spatially different worksites were independent of age. Outside-nest minors displayed significantly higher levels of predatory behavior and greater activity than inside-nest minors, but these groups did not differ in brood care or phototaxis. We examined the relationship of 5HT and DA to these behaviors in known-age minors by quantifying individual brain titers. Both monoamines did not increase significantly from 20 to 95 days of age. DA did not appear to directly regulate worksite location, although titers were significantly higher in outside-nest than inside-nest workers. Pharmacological depletion of 5HT did not affect nursing, predation, phototaxis or activity. Our results suggest that worker task capabilities are independent of age beyond 20 days, and only predatory behavior can be consistently predicted by spatial location. This could reflect worker flexibility or variability in the behavior of individuals collected at each location, which could be influenced by complex interactions between age, worksite location, social interactions, neuromodulators, and other environmental and internal regulators of behavior.
Collapse
Affiliation(s)
| | - Adina Rusakov
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Adrianna Kordek
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
154
|
Maleszka R. Epigenetic code and insect behavioural plasticity. CURRENT OPINION IN INSECT SCIENCE 2016; 15:45-52. [PMID: 27436731 DOI: 10.1016/j.cois.2016.03.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 06/06/2023]
Abstract
Although the nature of the genetic control of adaptive behaviours in insects is a major unresolved problem it is now understood that epigenetic mechanisms, bound by genetic constraints, are prime drivers of brain plasticity arising from both developmental and experience-dependent events. With the recent advancements in methylomics and emerging analyses of histones and non-protein-coding RNAs, insect epigenetics is well positioned to ask more direct questions and importantly, address them experimentally. To achieve rapid progress, insect epigenetics needs to focus on mechanistic explanations of epigenomic dynamics and move beyond low-depth genome-wide analyses to cell-type specific epigenomics. One topic of a high priority is the impact of sequence variants on generating differential methylation patterns and their contribution to behavioural plasticity.
Collapse
Affiliation(s)
- Ryszard Maleszka
- The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
155
|
Sebé-Pedrós A, Ballaré C, Parra-Acero H, Chiva C, Tena JJ, Sabidó E, Gómez-Skarmeta JL, Di Croce L, Ruiz-Trillo I. The Dynamic Regulatory Genome of Capsaspora and the Origin of Animal Multicellularity. Cell 2016; 165:1224-1237. [PMID: 27114036 PMCID: PMC4877666 DOI: 10.1016/j.cell.2016.03.034] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 02/03/2016] [Accepted: 03/18/2016] [Indexed: 12/16/2022]
Abstract
The unicellular ancestor of animals had a complex repertoire of genes linked to multicellular processes. This suggests that changes in the regulatory genome, rather than in gene innovation, were key to the origin of animals. Here, we carry out multiple functional genomic assays in Capsaspora owczarzaki, the unicellular relative of animals with the largest known gene repertoire for transcriptional regulation. We show that changing chromatin states, differential lincRNA expression, and dynamic cis-regulatory sites are associated with life cycle transitions in Capsaspora. Moreover, we demonstrate conservation of animal developmental transcription-factor networks and extensive network interconnection in this premetazoan organism. In contrast, however, Capsaspora lacks animal promoter types, and its regulatory sites are small, proximal, and lack signatures of animal enhancers. Overall, our results indicate that the emergence of animal multicellularity was linked to a major shift in genome cis-regulatory complexity, most notably the appearance of distal enhancer regulation.
Collapse
Affiliation(s)
- Arnau Sebé-Pedrós
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - Cecilia Ballaré
- Center for Genomic Regulation, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Helena Parra-Acero
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Cristina Chiva
- Center for Genomic Regulation, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Carretera de Utrera Km1, 41013 Sevilla, Spain
| | - Eduard Sabidó
- Center for Genomic Regulation, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Carretera de Utrera Km1, 41013 Sevilla, Spain
| | - Luciano Di Croce
- Center for Genomic Regulation, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, Pg Lluis Companys 23, 08010 Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, Pg Lluis Companys 23, 08010 Barcelona, Spain; Departament de Genètica, Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
156
|
Gehring KB, Heufelder K, Feige J, Bauer P, Dyck Y, Ehrhardt L, Kühnemund J, Bergmann A, Göbel J, Isecke M, Eisenhardt D. Involvement of phosphorylated Apis mellifera CREB in gating a honeybee's behavioral response to an external stimulus. Learn Mem 2016; 23:195-207. [PMID: 27084927 PMCID: PMC4836635 DOI: 10.1101/lm.040964.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/23/2016] [Indexed: 11/24/2022]
Abstract
The transcription factor cAMP-response element-binding protein (CREB) is involved in neuronal plasticity. Phosphorylation activates CREB and an increased level of phosphorylated CREB is regarded as an indicator of CREB-dependent transcriptional activation. In honeybees(Apis mellifera)we recently demonstrated a particular high abundance of the phosphorylated honeybee CREB homolog (pAmCREB) in the central brain and in a subpopulation of mushroom body neurons. We hypothesize that these high pAmCREB levels are related to learning and memory formation. Here, we tested this hypothesis by analyzing brain pAmCREB levels in classically conditioned bees and bees experiencing unpaired presentations of conditioned stimulus (CS) and unconditioned stimulus (US). We demonstrate that both behavioral protocols display differences in memory formation but do not alter the level of pAmCREB in bee brains directly after training. Nevertheless, we report that bees responding to the CS during unpaired stimulus presentations exhibit higher levels of pAmCREB than nonresponding bees. In addition, Trichostatin A, a histone deacetylase inhibitor that is thought to enhance histone acetylation by CREB-binding protein, increases the bees' CS responsiveness. We conclude that pAmCREB is involved in gating a bee's behavioral response driven by an external stimulus.
Collapse
Affiliation(s)
- Katrin B Gehring
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Karin Heufelder
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Janina Feige
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Paul Bauer
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Yan Dyck
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Lea Ehrhardt
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Johannes Kühnemund
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Anja Bergmann
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Josefine Göbel
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Marlene Isecke
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Dorothea Eisenhardt
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| |
Collapse
|
157
|
Abstract
Many exciting studies have begun to elucidate the genetics of the morphological and physiological diversity of ants, but as yet few studies have investigated the genetics of ant behavior directly. Ant genomes are marked by extreme rates of gene turnover, especially in gene families related to olfactory communication, such as the synthesis of cuticular hydrocarbons and the perception of environmental semiochemicals. Transcriptomic and epigenetic differences are apparent between reproductive and sterile females, males and females, and workers that differ in body size. Quantitative genetic approaches suggest heritability of task performance, and population genetic studies indicate a genetic association with reproductive status in some species. Gene expression is associated with behavior including foraging, response to queens attempting to join a colony, circadian patterns of task performance, and age-related changes of task. Ant behavioral genetics needs further investigation of the feedback between individual-level physiological changes and socially mediated responses to environmental conditions.
Collapse
Affiliation(s)
- D A Friedman
- Department of Biology, Stanford University, Stanford, California 94305-5020;
| | - D M Gordon
- Department of Biology, Stanford University, Stanford, California 94305-5020;
| |
Collapse
|