151
|
The EGFR-ADAM17 Axis in Chronic Obstructive Pulmonary Disease and Cystic Fibrosis Lung Pathology. Mediators Inflamm 2018. [PMID: 29540993 PMCID: PMC5818912 DOI: 10.1155/2018/1067134] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) share molecular mechanisms that cause the pathological symptoms they have in common. Here, we review evidence suggesting that hyperactivity of the EGFR/ADAM17 axis plays a role in the development of chronic lung disease in both CF and COPD. The ubiquitous transmembrane protease A disintegrin and metalloprotease 17 (ADAM17) forms a functional unit with the EGF receptor (EGFR), in a feedback loop interaction labeled the ADAM17/EGFR axis. In airway epithelial cells, ADAM17 sheds multiple soluble signaling proteins by proteolysis, including EGFR ligands such as amphiregulin (AREG), and proinflammatory mediators such as the interleukin 6 coreceptor (IL-6R). This activity can be enhanced by injury, toxins, and receptor-mediated external triggers. In addition to intracellular kinases, the extracellular glutathione-dependent redox potential controls ADAM17 shedding. Thus, the epithelial ADAM17/EGFR axis serves as a receptor of incoming luminal stress signals, relaying these to neighboring and underlying cells, which plays an important role in the resolution of lung injury and inflammation. We review evidence that congenital CFTR deficiency in CF and reduced CFTR activity in chronic COPD may cause enhanced ADAM17/EGFR signaling through a defect in glutathione secretion. In future studies, these complex interactions and the options for pharmaceutical interventions will be further investigated.
Collapse
|
152
|
Hydrator Therapies for Chronic Bronchitis. Lessons from Cystic Fibrosis. Ann Am Thorac Soc 2018; 13 Suppl 2:S186-90. [PMID: 27115955 DOI: 10.1513/annalsats.201509-652kv] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Patients with the chronic bronchitis form of chronic obstructive pulmonary disease and cystic fibrosis share similar clinical features, including mucus obstruction of airways and the development of chronic/recurrent airways infections that often manifest as disease exacerbations. There is growing evidence that these diseases may have parallels in disease pathogenesis as well, including cystic fibrosis transmembrane conductance regulator dysfunction, mucus dehydration, and defective mucociliary clearance. As progress is made in the development of therapies that target the basic defects that lead to cystic fibrosis lung disease, it is possible that similar approaches could also benefit patients with chronic bronchitis. A deeper understanding of how tobacco smoke and other triggers of chronic bronchitis actually lead to disease, and exploration of the concept that therapies that restore cystic fibrosis transmembrane conductance regulator function, mucus hydration, and/or mucociliary clearance may benefit patients with chronic bronchitis, hold the prospect of significant progress in treating this prevalent disease.
Collapse
|
153
|
Therapeutic Approaches to Acquired Cystic Fibrosis Transmembrane Conductance Regulator Dysfunction in Chronic Bronchitis. Ann Am Thorac Soc 2018; 13 Suppl 2:S169-76. [PMID: 27115953 DOI: 10.1513/annalsats.201509-601kv] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease is a common cause of morbidity and a rising cause of mortality worldwide. Its rising impact indicates the ongoing unmet need for novel and effective therapies. Previous work has established a pathophysiological link between the chronic bronchitis phenotype of chronic obstructive pulmonary disease and cystic fibrosis as well as phenotypic similarities between these two airways diseases. An extensive body of evidence has established that cigarette smoke and its constituents contribute to acquired dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein in the airways, pointing to a mechanistic link with smoking-related and chronic bronchitis. Recent interest surrounding new drugs that target both mutant and wild-type CFTR channels has paved the way for a new treatment opportunity addressing the mucus defect in chronic bronchitis. We review the clinical and pathologic evidence for modulating CFTR to address acquired CFTR dysfunction and pragmatic issues surrounding clinical trials as well as a discussion of other ion channels that may represent alternative therapeutic targets.
Collapse
|
154
|
Schneider EK, McQuade RM, Carbone VC, Reyes-Ortega F, Wilson JW, Button B, Saito A, Poole DP, Hoyer D, Li J, Velkov T. The potentially beneficial central nervous system activity profile of ivacaftor and its metabolites. ERJ Open Res 2018; 4:00127-2017. [PMID: 29560360 PMCID: PMC5850045 DOI: 10.1183/23120541.00127-2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/29/2018] [Indexed: 12/26/2022] Open
Abstract
Ivacaftor-lumacaftor and ivacaftor are two new breakthrough cystic fibrosis transmembrane conductance modulators. The interactions of ivacaftor and its two metabolites hydroxymethylivacaftor (iva-M1) and ivacaftorcarboxylate (iva-M6) with neurotransmitter receptors were investigated in radioligand binding assays. Ivacaftor displayed significant affinity to the 5-hydroxytryptamine (5-HT; serotonin) 5-HT2C receptor (pKi=6.06±0.03), β3-adrenergic receptor (pKi=5.71±0.07), δ-opioid receptor (pKi=5.59±0.06) and the dopamine transporter (pKi=5.50±0.20); iva-M1 displayed significant affinity to the 5-HT2C receptor (pKi=5.81±0.04) and the muscarinic M3 receptor (pKi=5.70±0.10); iva-M6 displayed significant affinity to the 5-HT2A receptor (pKi=7.33±0.05). The in vivo central nervous system activity of ivacaftor (40 mg·kg-1 intraperitoneally for 21 days) was assessed in a chronic mouse model of depression. In the forced swim test, the ivacaftor-treated group displayed decreased immobility (52.8±7.6 s), similarly to fluoxetine (33.8±11.0 s), and increased climbing/swimming activity (181.5±9.2 s). In the open field test, ivacaftor produced higher locomotor activity than the fluoxetine group, measured both as mean number of paw touches (ivacaftor 81.1±9.6 versus fluoxetine 57.9±9.5) and total distance travelled (ivacaftor 120.6±16.8 cm versus fluoxetine 84.5±16.0 cm) in 600 s. Treatment of 23 cystic fibrosis patients with ivacaftor-lumacaftor resulted in significant improvements in quality of life (including anxiety) in all five domains of the AweScoreCF questionnaire (p=0.092-0.096). Our findings suggest ivacaftor displays potential clinical anxiolytic and stimulating properties, and may have beneficial effects on mood.
Collapse
Affiliation(s)
- Elena K. Schneider
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Dept of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Australia
| | - Rachel M. McQuade
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | | | - Felisa Reyes-Ortega
- Dept of Applied Physics, Sciences Faculty, University of Granada, Granada, Spain
| | - John W. Wilson
- Dept of Medicine, Monash University, The Alfred Hospital, Melbourne, Australia
- Cystic Fibrosis Service, The Alfred Hospital, Melbourne, Australia
| | - Brenda Button
- Dept of Medicine, Monash University, The Alfred Hospital, Melbourne, Australia
- Cystic Fibrosis Service, The Alfred Hospital, Melbourne, Australia
| | - Ayame Saito
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Daniel P. Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Daniel Hoyer
- Dept of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
- Dept of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jian Li
- Monash Biomedicine Discovery Institute, Dept of Microbiology, Monash University, Clayton, Australia
- These two authors contributed equally to this work
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Dept of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Australia
- These two authors contributed equally to this work
| |
Collapse
|
155
|
Heltshe SL, Cogen J, Ramos KJ, Goss CH. Cystic Fibrosis: The Dawn of a New Therapeutic Era. Am J Respir Crit Care Med 2017; 195:979-984. [PMID: 27710011 DOI: 10.1164/rccm.201606-1250pp] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Sonya L Heltshe
- 1 Division of Pediatric Pulmonology, Department of Pediatrics, and.,2 Cystic Fibrosis Foundation Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, Washington
| | - Jonathan Cogen
- 1 Division of Pediatric Pulmonology, Department of Pediatrics, and
| | - Kathleen J Ramos
- 3 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington; and
| | - Christopher H Goss
- 1 Division of Pediatric Pulmonology, Department of Pediatrics, and.,3 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington; and.,2 Cystic Fibrosis Foundation Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, Washington
| |
Collapse
|
156
|
Abstract
INTRODUCTION Cystic fibrosis (CF) is a genetic disorder that results in a multi-organ disease with progressive respiratory decline that ultimately leads to premature death. CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which codes for the CFTR anion channel. Established CF treatments target downstream manifestations of the primary genetic defect, including pulmonary and nutritional interventions. Areas covered: CFTR modulators are novel therapies that improve the function of CFTR, and have been approved in the past five years to mitigate the effects of several CF-disease causing mutations. This review summarizes currently approved CFTR modulators and discusses emerging modulator therapies in phase II and III clinical trials described on clinical trials.gov as of April, 2017. Results of relevant trials reported in peer-reviewed journals in Pubmed, scientific conference abstracts and sponsor press releases available as of November, 2017 are included. Expert opinion: The current scope of CF therapeutic development is robust and CFTR modulators have demonstrated significant benefit to patients with specific CFTR mutations. We anticipate that in the future healthcare providers will be faced with a different treatment paradigm, initiating CFTR-directed therapies well before the onset of progressive lung disease.
Collapse
Affiliation(s)
- Kristin M Hudock
- a Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine , University of Cincinnati , Cincinnati , OH , USA.,b Division of Pulmonary Biology, Department of Pediatrics , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| | - John Paul Clancy
- c Division of Pulmonary Medicine, Department of Pediatrics , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| |
Collapse
|
157
|
Ruffin M, Roussel L, Maillé É, Rousseau S, Brochiero E. Vx-809/Vx-770 treatment reduces inflammatory response to Pseudomonas aeruginosa in primary differentiated cystic fibrosis bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2017; 314:L635-L641. [PMID: 29351441 DOI: 10.1152/ajplung.00198.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cystic fibrosis patients exhibit chronic Pseudomonas aeruginosa respiratory infections and sustained proinflammatory state favoring lung tissue damage and remodeling, ultimately leading to respiratory failure. Loss of cystic fibrosis transmembrane conductance regulator (CFTR) function is associated with MAPK hyperactivation and increased cytokines expression, such as interleukin-8 [chemoattractant chemokine (C-X-C motif) ligand 8 (CXCL8)]. Recently, new therapeutic strategies directly targeting the basic CFTR defect have been developed, and ORKAMBI (Vx-809/Vx-770 combination) is the only Food and Drug Administration-approved treatment for CF patients homozygous for the F508del mutation. Here we aimed to determine the effect of the Vx-809/Vx-770 combination on the induction of the inflammatory response by fully differentiated primary bronchial epithelial cell cultures from CF patients carrying F508del mutations, following exposure to P. aeruginosa exoproducts. Our data unveiled that CFTR functional rescue with Vx-809/Vx-770 drastically reduces CXCL8 (as well as CXCL1 and CXCL2) transcripts and p38 MAPK phosphorylation in response to P. aeruginosa exposure through a CFTR-dependent mechanism. These results suggest that ORKAMBI has anti-inflammatory properties that could decrease lung inflammation and contribute to the observed beneficial impact of this treatment in CF patients.
Collapse
Affiliation(s)
- Manon Ruffin
- Centre de recherche du centre hospitalier de l'université de Montréal (CRCHUM) , Montréal, Québec , Canada.,Département de Médecine, Université de Montréal , Montréal, Québec , Canada
| | - Lucie Roussel
- The Meakins-Christie Laboratories at the Research Institute of the McGill University Health Center, McGill University , Montréal, Québec , Canada.,Department of Medicine, McGill University , Montréal, Québec , Canada
| | - Émilie Maillé
- Centre de recherche du centre hospitalier de l'université de Montréal (CRCHUM) , Montréal, Québec , Canada
| | - Simon Rousseau
- The Meakins-Christie Laboratories at the Research Institute of the McGill University Health Center, McGill University , Montréal, Québec , Canada.,Department of Medicine, McGill University , Montréal, Québec , Canada
| | - Emmanuelle Brochiero
- Centre de recherche du centre hospitalier de l'université de Montréal (CRCHUM) , Montréal, Québec , Canada.,Département de Médecine, Université de Montréal , Montréal, Québec , Canada
| |
Collapse
|
158
|
Harutyunyan M, Huang Y, Mun KS, Yang F, Arora K, Naren AP. Personalized medicine in CF: from modulator development to therapy for cystic fibrosis patients with rare CFTR mutations. Am J Physiol Lung Cell Mol Physiol 2017; 314:L529-L543. [PMID: 29351449 DOI: 10.1152/ajplung.00465.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cystic fibrosis (CF) is the most common life-shortening genetic disease affecting ~1 in 3,500 of the Caucasian population. CF is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. To date, more than 2,000 CFTR mutations have been identified, which produce a wide range of phenotypes. The CFTR protein, a chloride channel, is normally expressed on epithelial cells lining the lung, gut, and exocrine glands. Mutations in CFTR have led to pleiotropic effects in CF patients and have resulted in early morbidity and mortality. Research has focused on identifying small molecules, or modulators, that can restore CFTR function. In recent years, two modulators, ivacaftor (Kalydeco) and lumacaftor/ivacaftor (Orkambi), have been approved by the U.S. Food and Drug Administration to treat CF patients with certain CFTR mutations. The development of these modulators has served as proof-of-concept that targeting CFTR by modulators is a viable therapeutic option. Efforts to discover new modulators that could deliver a wider and greater clinical benefit are still ongoing. However, traditional randomized controlled trials (RCTs) require large numbers of patients and become impracticable to test the modulators' efficacy in CF patients with CFTR mutations at frequencies much lower than 1%, suggesting the need for personalized medicine in these CF patients.
Collapse
Affiliation(s)
- Misak Harutyunyan
- Department of Physiology, University of Cincinnati , Cincinnati, Ohio
| | - Yunjie Huang
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Kyu-Shik Mun
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Fanmuyi Yang
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Kavisha Arora
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Anjaparavanda P Naren
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| |
Collapse
|
159
|
Dekkers JF, Berkers G, Kruisselbrink E, Vonk A, de Jonge HR, Janssens HM, Bronsveld I, van de Graaf EA, Nieuwenhuis EES, Houwen RHJ, Vleggaar FP, Escher JC, de Rijke YB, Majoor CJ, Heijerman HGM, de Winter-de Groot KM, Clevers H, van der Ent CK, Beekman JM. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci Transl Med 2017; 8:344ra84. [PMID: 27334259 DOI: 10.1126/scitranslmed.aad8278] [Citation(s) in RCA: 391] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 06/04/2016] [Indexed: 12/15/2022]
Abstract
Identifying subjects with cystic fibrosis (CF) who may benefit from cystic fibrosis transmembrane conductance regulator (CFTR)-modulating drugs is time-consuming, costly, and especially challenging for individuals with rare uncharacterized CFTR mutations. We studied CFTR function and responses to two drugs-the prototypical CFTR potentiator VX-770 (ivacaftor/KALYDECO) and the CFTR corrector VX-809 (lumacaftor)-in organoid cultures derived from the rectal epithelia of subjects with CF, who expressed a broad range of CFTR mutations. We observed that CFTR residual function and responses to drug therapy depended on both the CFTR mutation and the genetic background of the subjects. In vitro drug responses in rectal organoids positively correlated with published outcome data from clinical trials with VX-809 and VX-770, allowing us to predict from preclinical data the potential for CF patients carrying rare CFTR mutations to respond to drug therapy. We demonstrated proof of principle by selecting two subjects expressing an uncharacterized rare CFTR genotype (G1249R/F508del) who showed clinical responses to treatment with ivacaftor and one subject (F508del/R347P) who showed a limited response to drug therapy both in vitro and in vivo. These data suggest that in vitro measurements of CFTR function in patient-derived rectal organoids may be useful for identifying subjects who would benefit from CFTR-correcting treatment, independent of their CFTR mutation.
Collapse
Affiliation(s)
- Johanna F Dekkers
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands. Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands
| | - Gitte Berkers
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands
| | - Evelien Kruisselbrink
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands. Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands
| | - Annelotte Vonk
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands. Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, 3015 CE Rotterdam, Netherlands
| | - Hettie M Janssens
- Department of Pediatric Pulmonology, Erasmus University Medical Center/Sophia Children's Hospital, 3015 CN Rotterdam, Netherlands
| | - Inez Bronsveld
- Department of Pulmonology, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Eduard A van de Graaf
- Department of Pulmonology, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Edward E S Nieuwenhuis
- Department of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands
| | - Roderick H J Houwen
- Department of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands
| | - Frank P Vleggaar
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Johanna C Escher
- Department of Pediatric Gastroenterology, Erasmus University Medical Center/Sophia Children's Hospital, 3015 CN Rotterdam, Netherlands
| | - Yolanda B de Rijke
- Department of Clinical Chemistry, Erasmus University Medical Center/Sophia Children's Hospital, 3015 CN Rotterdam, Netherlands
| | - Christof J Majoor
- Department of Respiratory Medicine, Academic Medical Center, 1105 AZ Amsterdam, Netherlands
| | - Harry G M Heijerman
- Department of Pulmonology and Cystic Fibrosis, Haga Teaching Hospital, 2545 CH The Hague, Netherlands
| | - Karin M de Winter-de Groot
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Center Utrecht, 3584 CT Utrecht, Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands. Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands. Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands.
| |
Collapse
|
160
|
Barnaby R, Koeppen K, Nymon A, Hampton TH, Berwin B, Ashare A, Stanton BA. Lumacaftor (VX-809) restores the ability of CF macrophages to phagocytose and kill Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 2017; 314:L432-L438. [PMID: 29146575 DOI: 10.1152/ajplung.00461.2017] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cystic fibrosis (CF), the most common lethal genetic disease in Caucasians, is characterized by chronic bacterial lung infection and excessive inflammation, which lead to progressive loss of lung function and premature death. Although ivacaftor (VX-770) alone and ivacaftor in combination with lumacaftor (VX-809) improve lung function in CF patients with the Gly551Asp and del508Phe mutations, respectively, the effects of these drugs on the function of human CF macrophages are unknown. Thus studies were conducted to examine the effects of lumacaftor alone and lumacaftor in combination with ivacaftor (i.e., ORKAMBI) on the ability of human CF ( del508Phe/ del508Phe) monocyte-derived macrophages (MDMs) to phagocytose and kill Pseudomonas aeruginosa. Lumacaftor alone restored the ability of CF MDMs to phagocytose and kill P. aeruginosa to levels observed in MDMs obtained from non-CF (WT-CFTR) donors. This effect contrasts with the partial (~15%) correction of del508Phe Cl- secretion of airway epithelial cells by lumacaftor. Ivacaftor reduced the ability of lumacaftor to stimulate phagocytosis and killing of P. aeruginosa. Lumacaftor had no effect on P. aeruginosa-stimulated cytokine secretion by CF MDMs. Ivacaftor (5 µM) alone and ivacaftor in combination with lumacaftor reduced secretion of several proinflammatory cytokines. The clinical efficacy of ORKAMBI may be related in part to the ability of lumacaftor to stimulate phagocytosis and killing of P. aeruginosa by macrophages.
Collapse
Affiliation(s)
- Roxanna Barnaby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Katja Koeppen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Amanda Nymon
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Brent Berwin
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Alix Ashare
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
161
|
Calvez ML, Benz N, Huguet F, Saint-Pierre A, Rouillé E, Coraux C, Férec C, Kerbiriou M, Trouvé P. Buserelin alleviates chloride transport defect in human cystic fibrosis nasal epithelial cells. PLoS One 2017; 12:e0187774. [PMID: 29145426 PMCID: PMC5690610 DOI: 10.1371/journal.pone.0187774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/25/2017] [Indexed: 11/18/2022] Open
Abstract
Cystic fibrosis (CF) is the most common autosomal recessive disease in Caucasians caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) chloride (Cl-) channel regulated by protein kinases, phosphatases, divalent cations and by protein-protein interactions. Among protein-protein interactions, we previously showed that Annexin A5 (AnxA5) binds to CFTR and is involved in the channel localization within membranes and in its Cl- channel function. The deletion of phenylalanine at position 508 (F508del) is the most common mutation in CF which leads to an altered protein (F508del-CFTR) folding with a nascent protein retained within the ER and is quickly degraded. We previously showed that AnxA5 binds to F508del-CFTR and that its increased expression due to a Gonadoliberin (GnRH) augments Cl- efflux in cells expressing F508del-CFTR. The aim of the present work was to use the GnRH analog buserelin which is already used in medicine. Human nasal epithelial cells from controls and CF patients (F508del/F508del) were treated with buserelin and we show here that the treatment alleviates Cl- channel defects in CF cells. Using proteomics we highlighted some proteins explaining this result. Finally, we propose that buserelin is a potential new pharmaceutical compound that can be used in CF and that bronchus can be targeted since we show here that they express GnRH-R.
Collapse
Affiliation(s)
- Marie-Laure Calvez
- Inserm, UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", Univ Brest, EFS, IBSAM, Brest, France
- Université de Bretagne Occidentale, Faculté de Médecine et des sciences de la santé, Brest, France
- Association G Saleun, Brest, France
| | - Nathalie Benz
- Inserm, UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", Univ Brest, EFS, IBSAM, Brest, France
- Association G Saleun, Brest, France
| | - Florentin Huguet
- Inserm, UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", Univ Brest, EFS, IBSAM, Brest, France
- Université de Bretagne Occidentale, Faculté de Médecine et des sciences de la santé, Brest, France
- Association G Saleun, Brest, France
| | - Aude Saint-Pierre
- Inserm, UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", Univ Brest, EFS, IBSAM, Brest, France
- Université de Bretagne Occidentale, Faculté de Médecine et des sciences de la santé, Brest, France
| | - Elise Rouillé
- Inserm, UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", Univ Brest, EFS, IBSAM, Brest, France
- Université de Bretagne Occidentale, Faculté de Médecine et des sciences de la santé, Brest, France
| | | | - Claude Férec
- Inserm, UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", Univ Brest, EFS, IBSAM, Brest, France
- Université de Bretagne Occidentale, Faculté de Médecine et des sciences de la santé, Brest, France
- CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
- Etablissement Français du Sang—Bretagne, Brest, France
| | - Mathieu Kerbiriou
- Inserm, UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", Univ Brest, EFS, IBSAM, Brest, France
- Université de Bretagne Occidentale, Faculté de Médecine et des sciences de la santé, Brest, France
| | - Pascal Trouvé
- Inserm, UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", Univ Brest, EFS, IBSAM, Brest, France
| |
Collapse
|
162
|
Hanrahan JW, Matthes E, Carlile G, Thomas DY. Corrector combination therapies for F508del-CFTR. Curr Opin Pharmacol 2017; 34:105-111. [PMID: 29080476 DOI: 10.1016/j.coph.2017.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/18/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
These are exciting times in the development of therapeutics for cystic fibrosis (CF). New correctors and potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR) are being developed in academic laboratories and pharmaceutical companies, and the field is just beginning to understand their mechanisms of action. Studies of CFTR modulators are also yielding insight into the general principles and strategies that can be used when developing pharmacological chaperones, a new class of drugs. Combining two or even three correctors with a potentiator is an especially promising approach which should lead to further improvements in efficacy and clinical benefit for patients.
Collapse
Affiliation(s)
- John W Hanrahan
- Department of Physiology, McGill University, Montréal, Québec H3G 1Y6, Canada; CF Translational Research Centre, McGill University, Canada; Research Institute of the McGill University Hospital Centre, Canada.
| | - Elizabeth Matthes
- Department of Physiology, McGill University, Montréal, Québec H3G 1Y6, Canada; CF Translational Research Centre, McGill University, Canada
| | - Graeme Carlile
- CF Translational Research Centre, McGill University, Canada; Department of Biochemistry, McGill University, Canada
| | - David Y Thomas
- CF Translational Research Centre, McGill University, Canada; Department of Biochemistry, McGill University, Canada
| |
Collapse
|
163
|
Jih KY, Lin WY, Sohma Y, Hwang TC. CFTR potentiators: from bench to bedside. Curr Opin Pharmacol 2017; 34:98-104. [PMID: 29073476 DOI: 10.1016/j.coph.2017.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 09/15/2017] [Accepted: 09/26/2017] [Indexed: 01/14/2023]
Abstract
One major breakthrough in cystic fibrosis research in the past decade is the development of drugs that target the root cause of the disease-dysfunctional CFTR protein. One of the compounds, Ivacaftor or Kalydeco, which has been approved for clinical use since 2012, acts by promoting the gating function of CFTR. Our recent studies have led to a gating model that features energetic coupling between nucleotide-binding domain (NBD) dimerization and gate opening/closing in CFTR's transmembrane domains (TMDs). Based on this model, we showed that ATP analogs can enhance CFTR gating by facilitating NBD dimerization, whereas Ivacaftor works by stabilizing the open channel conformation of the TMDs. This latter idea also explains the near omnipotence of Ivacaftor. Furthermore, this model identifies multiple approaches to synergistically boost the open probability of CFTR by influencing distinct molecular events that control gating conformational changes.
Collapse
Affiliation(s)
- Kang-Yang Jih
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Ying Lin
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yoshiro Sohma
- Department of Pharmacology, Keio University, Tokyo, Japan; Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Tzyh-Chang Hwang
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
164
|
Guimbellot J, Sharma J, Rowe SM. Toward inclusive therapy with CFTR modulators: Progress and challenges. Pediatr Pulmonol 2017; 52:S4-S14. [PMID: 28881097 PMCID: PMC6208153 DOI: 10.1002/ppul.23773] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/29/2017] [Indexed: 12/29/2022]
Abstract
Cystic fibrosis is caused by gene mutations that result in an abnormal Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein on the surface of cells. CFTR modulators are a novel class of drugs that directly target the molecular defect. CFTR modulators include potentiators that result in improved activity of the channel; correctors that help the protein traffic to the cell surface properly; and readthrough agents that restore full-length CFTR by suppression of premature termination codons, among other novel classes more recently established. While some of these drugs, CFTR potentiators in particular, have provided remarkable improvements for CF patients, others have yet to achieve profoundly improved outcomes, and many CF patients are not yet impacted by CFTR modulators due to lack of knowledge regarding susceptibility of their mutations to treatment. One limitation to expanding these types of therapies to the maximum number of patients with CF is the lack of rigorously validated clinical biomarkers that can determine efficacy on an individual basis, as well as few pre-clinical tools that can predict whether an individual with a rare combination of mutant alleles will respond to a particular CFTR modulator regimen. In this review, we discuss the various groups of CFTR modulators and their status in clinical development, as well as address the current literature on biomarkers, pre-clinical cell-based tools, and the role of pharmacometrics in creating therapeutic strategies to improve the lives of all patients with cystic fibrosis, regardless of their specific mutation.
Collapse
Affiliation(s)
- Jennifer Guimbellot
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Jyoti Sharma
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama
- Cell Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Steven M. Rowe
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama
- Cell Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama
- Departments of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
165
|
Guevera MT, McColley SA. The safety of lumacaftor and ivacaftor for the treatment of cystic fibrosis. Expert Opin Drug Saf 2017; 16:1305-1311. [PMID: 28846049 PMCID: PMC6209511 DOI: 10.1080/14740338.2017.1372419] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/23/2017] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Lumacaftor-ivacaftor is indicated for treatment of cystic fibrosis (CF) in patients homozygous for the Phe-508del cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations. In clinical trials, treated patients showed improved pulmonary function, reduced pulmonary exacerbations, and other benefits. This article reviews safety of this therapy. Areas covered: Safety findings in ivacaftor, lumacaftor and combined therapy trials, and reported subsequently through post-approval evaluation, were accessed by PubMed and Google searches using key words 'VX-770', 'ivacaftor', 'VX-809', and 'lumacaftor'. Transaminitis was seen in ivacaftor and combination trials. Non-congenital cataracts were seen in pre-clinical animal studies and in children taking ivacaftor and combined therapy. Dyspnea occurs in some patients taking lumacaftor and combined therapy and usually resolves without stopping treatment. Lumacaftor is a strong inducer of CYP3A while ivacaftor is a CYP3A sensitive substrate. Combination therapy can decrease systemic exposure of medications that are substrates of CYP3A, decreasing therapeutic effect. Co-administration of lumacaftor-ivacaftor with sensitive CYP3A substrates or CYP3A substrates with narrow therapeutic index is not recommended. Expert opinion: Lumacaftor-ivacaftor therapy may be associated with ocular and hepatic side effects. Specific recommendations for monitoring are available. Dyspnea occurs, especially during initiation of treatment. Potential drug interactions should be evaluated in patients taking combination therapy. The risk benefit ratio of lumacaftor-ivacaftor favors therapy.
Collapse
Affiliation(s)
- Maria Talamo Guevera
- Fellow in Pulmonary Medicine, Department of Pediatrics, Northwestern University Feinberg School of Medicine and Ann & Robert H. Lurie Children’s Hospital of Chicago
| | - Susanna A. McColley
- Professor of Pediatrics, Department of Pediatrics, Northwestern University Feinberg School of Medicine; Associate Chief Research Officer, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago
| |
Collapse
|
166
|
Yeh HI, Sohma Y, Conrath K, Hwang TC. A common mechanism for CFTR potentiators. J Gen Physiol 2017; 149:1105-1118. [PMID: 29079713 PMCID: PMC5715911 DOI: 10.1085/jgp.201711886] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/10/2017] [Indexed: 01/29/2023] Open
Abstract
VX-770 is a potentiator of the CFTR channel and an approved therapy for cystic fibrosis. Yeh et al. find that the apparent affinity of a new potentiator, GLPG1837, is state dependent and propose an allosteric modulation model to explain the potency and efficacy of CFTR potentiators. Cystic fibrosis (CF) is a channelopathy caused by loss-of-function mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a phosphorylation-activated and adenosine triphosphate (ATP)–gated chloride channel. In the past few years, high-throughput drug screening has successfully realized the first US Food and Drug Administration–approved therapy for CF, called ivacaftor (or VX-770). A more recent CFTR potentiator, GLPG1837 (N-(3-carbamoyl-5,5,7,7-tetramethyl-4,7-dihydro-5H-thieno[2,3-c]pyran-2-yl)-1H-pyrazole-3-carboxamide), has been shown to exhibit a higher efficacy than ivacaftor for the G551D mutation, yet the underlying mechanism of GLPG1837 remains unclear. Here we find that despite their differences in potency and efficacy, GLPG1837 and VX-770 potentiate CFTR gating in a remarkably similar manner. Specifically, they share similar effects on single-channel kinetics of wild-type CFTR. Their actions are independent of nucleotide-binding domain (NBD) dimerization and ATP hydrolysis, critical steps controlling CFTR’s gate opening and closing, respectively. By applying the two reagents together, we provide evidence that GLPG1837 and VX-770 likely compete for the same site, whereas GLPG1837 and the high-affinity ATP analogue 2′-deoxy-N6-(2-phenylethyl)-adenosine-5′-O-triphosphate (dPATP) work synergistically through two different sites. We also find that the apparent affinity for GLPG1837 is dependent on the open probability of the channel, suggesting a state-dependent binding of the drug to CFTR (higher binding affinity for the open state than the closed state), which is consistent with the classic mechanism for allosteric modulation. We propose a simple four-state kinetic model featuring an energetic coupling between CFTR gating and potentiator binding to explain our experimental results.
Collapse
Affiliation(s)
- Han-I Yeh
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Yoshiro Sohma
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO.,Department of Pharmaceutical Sciences, School of Pharmacy and Center for Medical Science, International University of Health and Welfare, Tochigi, Japan
| | | | - Tzyh-Chang Hwang
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| |
Collapse
|
167
|
Schneider EK, Reyes-Ortega F, Li J, Velkov T. Optimized LC-MS/MS Method for the High-throughput Analysis of Clinical Samples of Ivacaftor, Its Major Metabolites, and Lumacaftor in Biological Fluids of Cystic Fibrosis Patients. J Vis Exp 2017. [PMID: 29155707 DOI: 10.3791/56084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Defects in the cystic fibrosis trans-membrane conductance regulator (CFTR) are the cause of cystic fibrosis (CF), a disease with life-threatening pulmonary manifestations. Ivacaftor (IVA) and ivacaftor-lumacaftor (LUMA) combination are two new breakthrough CF drugs that directly modulate the activity and trafficking of the defective CFTR-protein. However, there is still a dearth of understanding on pharmacokinetic/pharmacodynamic parameters and the pharmacology of ivacaftor and lumacaftor. The HPLC-MS technique for the simultaneous analysis of the concentrations of ivacaftor, hydroxymethyl-ivacaftor, ivacaftor-carboxylate, and lumacaftor in biological fluids in patients receiving standard ivacaftor or ivacaftor-lumacaftor combination therapy has previously been developed by our group and partially validated to FDA standards. However, to allow the high-throughput analysis of a larger number of patient samples, our group has optimized the reported method through the use of a smaller pore size reverse-phase chromatography column (2.6 µm, C8 100 Å; 50 x 2.1 mm) and a gradient solvent system (0-1 min: 40% B; 1-2 min: 40-70% B; 2-2.7 min: held at 70% B; 2.7-2.8 min: 70-90% B; 2.8-4.0 min: 90% B washing; 4.0-4.1 min: 90-40% B; 4.1-6.0 min: held at 40% B) instead of an isocratic elution. The goal of this study was to reduce the HPLC-MS analysis time per sample dramatically from ~15 min to only 6 min per sample, which is essential for the analysis of a large amount of patient samples. This expedient method will be of considerable utility for studies into the exposure-response relationships of these breakthrough CF drugs.
Collapse
Affiliation(s)
- Elena K Schneider
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University
| | - Felisa Reyes-Ortega
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University; Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University;
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University;
| |
Collapse
|
168
|
Recent progress in translational cystic fibrosis research using precision medicine strategies. J Cyst Fibros 2017; 17:S52-S60. [PMID: 28986017 DOI: 10.1016/j.jcf.2017.09.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 01/17/2023]
Abstract
Significant progress has been achieved in developing precision therapies for cystic fibrosis; however, highly effective treatments that target the ion channel, CFTR, are not yet available for many patients. As numerous CFTR therapeutics are currently in the clinical pipeline, reliable screening tools capable of predicting drug efficacy to support individualized treatment plans and translational research are essential. The utilization of bronchial, nasal, and rectal tissues from individual cystic fibrosis patients for drug testing using in vitro assays such as electrophysiological measurements of CFTR activity and evaluation of fluid movement in spheroid cultures, has advanced the prediction of patient-specific responses. However, for precise prediction of drug effects, in vitro models of CFTR rescue should incorporate the inflamed cystic fibrosis airway environment and mimic the complex tissue structures of airway epithelia. Furthermore, novel assays that monitor other aspects of successful CFTR rescue such as restoration of mucus characteristics, which is important for predicting mucociliary clearance, will allow for better prognoses of successful therapies in vivo. Additional cystic fibrosis treatment strategies are being intensively explored, such as development of drugs that target other ion channels, and novel technologies including pluripotent stem cells, gene therapy, and gene editing. The multiple therapeutic approaches available to treat the basic defect in cystic fibrosis combined with relevant precision medicine models provide a framework for identifying optimal and sustained treatments that will benefit all cystic fibrosis patients.
Collapse
|
169
|
Strategies for the etiological therapy of cystic fibrosis. Cell Death Differ 2017; 24:1825-1844. [PMID: 28937684 PMCID: PMC5635223 DOI: 10.1038/cdd.2017.126] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/14/2022] Open
Abstract
Etiological therapies aim at repairing the underlying cause of cystic fibrosis (CF), which is the functional defect of the cystic fibrosis transmembrane conductance regulator (CFTR) protein owing to mutations in the CFTR gene. Among these, the F508del CFTR mutation accounts for more than two thirds of CF cases worldwide. Two somehow antinomic schools of thought conceive CFTR repair in a different manner. According to one vision, drugs should directly target the mutated CFTR protein to increase its plasma membrane expression (correctors) or improve its ion transport function (potentiators). An alternative strategy consists in modulating the cellular environment and proteostasis networks in which the mutated CFTR protein is synthesized, traffics to its final destination, the plasma membrane, and is turned over. We will analyze distinctive advantages and drawbacks of these strategies in terms of their scientific and clinical dimensions, and we will propose a global strategy for CF research and development based on a reconciliatory approach. Moreover, we will discuss the utility of preclinical biomarkers that may guide the personalized, patient-specific implementation of CF therapies.
Collapse
|
170
|
Molecular dynamics of the cryo-EM CFTR structure. Biochem Biophys Res Commun 2017; 491:986-993. [DOI: 10.1016/j.bbrc.2017.07.165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/30/2017] [Indexed: 12/11/2022]
|
171
|
Pranke IM, Hatton A, Simonin J, Jais JP, Le Pimpec-Barthes F, Carsin A, Bonnette P, Fayon M, Stremler-Le Bel N, Grenet D, Thumerel M, Mazenq J, Urbach V, Mesbahi M, Girodon-Boulandet E, Hinzpeter A, Edelman A, Sermet-Gaudelus I. Correction of CFTR function in nasal epithelial cells from cystic fibrosis patients predicts improvement of respiratory function by CFTR modulators. Sci Rep 2017; 7:7375. [PMID: 28785019 PMCID: PMC5547155 DOI: 10.1038/s41598-017-07504-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/29/2017] [Indexed: 11/09/2022] Open
Abstract
Clinical studies with modulators of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein have demonstrated that functional restoration of the mutated CFTR can lead to substantial clinical benefit. However, studies have shown highly variable patient responses. The objective of this study was to determine a biomarker predictive of the clinical response. CFTR function was assessed in vivo via nasal potential difference (NPD) and in human nasal epithelial (HNE) cultures by the response to Forskolin/IBMX and the CFTR potentiator VX-770 in short-circuit-current (∆IscF/I+V) experiments. CFTR expression was evaluated by apical membrane fluorescence semi-quantification. Isc measurements discriminated CFTR function between controls, healthy heterozygotes, patients homozygous for the severe F508del mutation and patients with genotypes leading to absent or residual function. ∆IscF/I+V correlated with CFTR cellular apical expression and NPD measurements. The CFTR correctors lumacaftor and tezacaftor significantly increased the ∆IscF/I+V response to about 25% (SEM = 4.4) of the WT-CFTR level and the CFTR apical expression to about 22% (SEM = 4.6) of the WT-CFTR level in F508del/F508del HNE cells. The level of CFTR correction in HNE cultures significantly correlated with the FEV1 change at 6 months in 8 patients treated with CFTR modulators. We provide the first evidence that correction of CFTR function in HNE cell cultures can predict respiratory improvement by CFTR modulators.
Collapse
Affiliation(s)
- Iwona M Pranke
- Inserm U1151 - CNRS UMR 8253 - team 2, Faculté de Médecine Paris Descartes, Paris, France
| | - Aurélie Hatton
- Inserm U1151 - CNRS UMR 8253 - team 2, Faculté de Médecine Paris Descartes, Paris, France
| | - Juliette Simonin
- Inserm U1151 - CNRS UMR 8253 - team 2, Faculté de Médecine Paris Descartes, Paris, France
| | - Jean Philippe Jais
- Biostatistics Department, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Françoise Le Pimpec-Barthes
- Service de Chirurgie Thoracique, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Ania Carsin
- Service de Pneumo-Pédiatrie, Hôpital de la Timonne, Marseille, France
| | | | - Michael Fayon
- Service de Pneumo-Pédiatrie, Hôpital Pellegrin, Bordeaux, France
| | | | | | - Matthieu Thumerel
- Service de Chirurgie Thoracique, Hôpital Pellegrin, Bordeaux, France
| | - Julie Mazenq
- Service de Pneumo-Pédiatrie, Hôpital de la Timonne, Marseille, France
| | - Valerie Urbach
- Inserm U1151 - CNRS UMR 8253 - team 2, Faculté de Médecine Paris Descartes, Paris, France
| | - Myriam Mesbahi
- Inserm U1151 - CNRS UMR 8253 - team 2, Faculté de Médecine Paris Descartes, Paris, France
| | - Emanuelle Girodon-Boulandet
- Service de génétique et biologie moléculaires, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Alexandre Hinzpeter
- Inserm U1151 - CNRS UMR 8253 - team 2, Faculté de Médecine Paris Descartes, Paris, France
| | - Aleksander Edelman
- Inserm U1151 - CNRS UMR 8253 - team 2, Faculté de Médecine Paris Descartes, Paris, France
| | - Isabelle Sermet-Gaudelus
- Inserm U1151 - CNRS UMR 8253 - team 2, Faculté de Médecine Paris Descartes, Paris, France.
- Cystic Fibrosis Center, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France.
| |
Collapse
|
172
|
Fajac I, Wainwright CE. New treatments targeting the basic defects in cystic fibrosis. Presse Med 2017; 46:e165-e175. [PMID: 28554723 DOI: 10.1016/j.lpm.2017.01.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/13/2016] [Accepted: 01/05/2017] [Indexed: 01/22/2023] Open
Abstract
Cystic fibrosis (CF) is a monogenic autosomal recessive disorder affecting around 75,000 individuals worldwide. It is a multi-system disease but the main morbidity and mortality is caused by chronic lung disease. Due to newborn screening, a multidisciplinary approach to care and intensive symptomatic treatment, the prognosis has dramatically improved over the last decades and there are currently more adults than children in many countries. However, CF is still a very severe disease with a current median age of life expectancy in the fourth decade of life. The disease is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene which encodes the CFTR protein, a protein kinase A-activated ATP-gated anion channel that regulates the transport of electrolytes such as chloride and bicarbonate. More than 2000 mutations have been reported, although not all of these have functional consequences. An enormous research effort and progress has been made in understanding the consequences of these mutations on the CFTR protein structure and function, and this has led to the approval of two new drug therapies that are able to bind to defective CFTR proteins and partially restore their function. They are mutation-specific therapies and available at present for specific mutations only. They are the first personalized medicine for CF with a possible disease-modifying effect. A pipeline of other compounds is under development with different mechanisms of action. It is foreseeable that new combinations of compounds will further improve the correction of CFTR function. Other strategies including premature stop codon read-through drugs, antisense oligonucleotides that correct the basic defect at the mRNA level or gene editing to restore the defective gene as well as gene therapy approaches are all in the pipeline. All these strategies are needed to develop disease-modifying therapies for all patients with CF.
Collapse
Affiliation(s)
- Isabelle Fajac
- Université Paris Descartes, Sorbonne Paris Cité, site Cochin, 24, rue du Faubourg-Saint-Jacques, 75014 Paris, France; AP-HP, hôpital Cochin, service de physiologie et explorations fonctionnelles,27, rue du Faubourg-Saint-Jacques, 75014 Paris, France.
| | - Claire E Wainwright
- University of Queensland, St Lucia Queensland 4072,Brisbane, Australia; Lady Cilento Children's Hospital, 501 Stanley St, 4101 Brisbane, QLD, Australia
| |
Collapse
|
173
|
Wang G. Mechanistic insight into the heme-independent interplay between iron and carbon monoxide in CFTR and Slo1 BK Ca channels. Metallomics 2017; 9:634-645. [PMID: 28474046 DOI: 10.1039/c7mt00065k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ion channels have been extensively reported as effectors of carbon monoxide (CO). However, the mechanisms of heme-independent CO action are still not known. Because most ion channels are heterologously expressed on human embryonic kidney cells that are cultured in Fe3+-containing media, CO may act as a small and strong iron chelator to disrupt a putative iron bridge in ion channels and thus to tune their activity. In this review CFTR and Slo1 BKCa channels are employed to discuss the possible heme-independent interplay between iron and CO. Our recent studies demonstrated a high-affinity Fe3+ site at the interface between the regulatory domain and intracellular loop 3 of CFTR. Because the binding of Fe3+ to CFTR prevents channel opening, the stimulatory effect of CO on the Cl- and HCO3- currents across the apical membrane of rat distal colon may be due to the release of inhibitive Fe3+ by CO. In contrast, CO repeatedly stimulates the human Slo1 BKCa channel opening, possibly by binding to an unknown iron site, because cyanide prohibits this heme-independent CO stimulation. Here, in silico research on recent structural data of the slo1 BKCa channels indicates two putative binuclear Fe2+-binding motifs in the gating ring in which CO may compete with protein residues to bind to either Fe2+ bowl to disrupt the Fe2+ bridge but not to release Fe2+ from the channel. Thus, these two new regulation models of CO, with iron releasing from and retaining in the ion channel, may have significant and extensive implications for other metalloproteins.
Collapse
Affiliation(s)
- Guangyu Wang
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA, USA. and Institute of Biophysical Medico-chemistry, Reno, NV, USA
| |
Collapse
|
174
|
McGarry ME, Illek B, Ly NP, Zlock L, Olshansky S, Moreno C, Finkbeiner WE, Nielson DW. In vivo and in vitro ivacaftor response in cystic fibrosis patients with residual CFTR function: N-of-1 studies. Pediatr Pulmonol 2017; 52:472-479. [PMID: 28068001 PMCID: PMC5461115 DOI: 10.1002/ppul.23659] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 01/17/2023]
Abstract
RATIONALE Ivacaftor, a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator, decreases sweat chloride concentration, and improves pulmonary function in 6% of cystic fibrosis (CF) patients with specific CFTR mutations. Ivacaftor increases chloride transport in many other CFTR mutations in non-human cells, if CFTR is in the epithelium. Some CF patients have CFTR in the epithelium with residual CFTR function. The effect of ivacaftor in these patients is unknown. METHODS This was a series of randomized, crossover N-of-1 trials of ivacaftor and placebo in CF patients ≥8 years old with potential residual CFTR function (intermediate sweat chloride concentration, pancreatic sufficient, or mild bronchiectasis on chest CT). Human nasal epithelium (HNE) was obtained via nasal brushing and cultured. Sweat chloride concentration change was the in vivo outcome. Chloride current change in HNE cultures with ivacaftor was the in vitro outcome. RESULTS Three subjects had decreased sweat chloride concentration (-14.8 to -40.8 mmol/L, P < 0.01). Two subjects had unchanged sweat chloride concentration. Two subjects had increased sweat chloride concentration (+23.8 and +27.3 mmol/L, P < 0.001); both were heterozygous for A455E and pancreatic sufficient. Only subjects with decreased sweat chloride concentration had increased chloride current in HNE cultures. CONCLUSIONS Some CF patients with residual CFTR function have decreased sweat chloride concentration with ivacaftor. Increased chloride current in HNE cultures among subjects with decreased sweat chloride concentrations may predict clinical response to ivacaftor. Ivacaftor can increase sweat chloride concentration in certain mutations with unclear clinical effect. Pediatr Pulmonol. 2017;52:472-479. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Meghan E McGarry
- Pediatric Pulmonology, Department of Pediatrics, University of California, San Francisco, California
| | - Beate Illek
- Children's Hospital Oakland Research Institute, Oakland, California
| | - Ngoc P Ly
- Pediatric Pulmonology, Department of Pediatrics, University of California, San Francisco, California
| | - Lorna Zlock
- Department of Pathology, University of California, San Francisco, California
| | - Sabrina Olshansky
- Children's Hospital Oakland Research Institute, Oakland, California.,College of Pharmacy, Touro University, Vallejo, California
| | - Courtney Moreno
- Pediatric Pulmonology, Department of Pediatrics, University of California, San Francisco, California
| | - Walter E Finkbeiner
- Department of Pathology, University of California, San Francisco, California
| | - Dennis W Nielson
- Pediatric Pulmonology, Department of Pediatrics, University of California, San Francisco, California
| |
Collapse
|
175
|
Loo TW, Clarke DM. Corrector VX-809 promotes interactions between cytoplasmic loop one and the first nucleotide-binding domain of CFTR. Biochem Pharmacol 2017; 136:24-31. [PMID: 28366727 DOI: 10.1016/j.bcp.2017.03.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
Abstract
A large number of correctors have been identified that can partially repair defects in folding, stability and trafficking of CFTR processing mutants that cause cystic fibrosis (CF). The best corrector, VX-809 (Lumacaftor), has shown some promise when used in combination with a potentiator (Ivacaftor). Understanding the mechanism of VX-809 is essential for development of better correctors. Here, we tested our prediction that VX-809 repairs folding and processing defects of CFTR by promoting interactions between the first cytoplasmic loop (CL1) of transmembrane domain 1 (TMD1) and the first nucleotide-binding domain (NBD1). To investigate whether VX-809 promoted CL1/NBD1 interactions, we performed cysteine mutagenesis and disulfide cross-linking analysis of Cys-less TMD1 (residues 1-436) and ΔTMD1 (residues 437-1480; NBD1-R-TMD2-NBD2) truncation mutants. It was found that VX-809, but not bithiazole correctors, promoted maturation (exited endoplasmic reticulum for addition of complex carbohydrate in the Golgi) of the ΔTMD1 truncation mutant only when it was co-expressed in the presence of TMD1. Expression in the presence of VX-809 also promoted cross-linking between R170C (in CL1 of TMD1 protein) and L475C (in NBD1 of the ΔTMD1 truncation protein). Expression of the ΔTMD1 truncation mutant in the presence of TMD1 and VX-809 also increased the half-life of the mature protein in cells. The results suggest that the mechanism by which VX-809 promotes maturation and stability of CFTR is by promoting CL1/NBD1 interactions.
Collapse
Affiliation(s)
- Tip W Loo
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David M Clarke
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
176
|
Langron E, Simone MI, Delalande CMS, Reymond JL, Selwood DL, Vergani P. Improved fluorescence assays to measure the defects associated with F508del-CFTR allow identification of new active compounds. Br J Pharmacol 2017; 174:525-539. [PMID: 28094839 DOI: 10.1111/bph.13715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Cystic fibrosis (CF) is a debilitating disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which codes for a Cl-/HCO3 - channel. F508del, the most common CF-associated mutation, causes both gating and biogenesis defects in the CFTR protein. This paper describes the optimization of two fluorescence assays, capable of measuring CFTR function and cellular localization, and their use in a pilot drug screen. EXPERIMENTAL APPROACH HEK293 cells expressing YFP-F508del-CFTR, in which halide sensitive YFP is tagged to the N-terminal of CFTR, were used to screen a small library of compounds based on the VX-770 scaffold. Cells expressing F508del-CFTR-pHTomato, in which a pH sensor is tagged to the fourth extracellular loop of CFTR, were used to measure CFTR plasma membrane exposure following chronic treatment with the novel potentiators. KEY RESULTS Active compounds with efficacy ~50% of VX-770, micromolar potency, and structurally distinct from VX-770 were identified in the screen. The F508del-CFTR-pHTomato assay suggests that the hit compound MS131A, unlike VX-770, does not decrease membrane exposure of F508del-CFTR. CONCLUSIONS AND IMPLICATIONS Most known potentiators have a negative influence on F508del-CFTR biogenesis/stability, which means membrane exposure needs to be monitored early during the development of drugs targeting CFTR. The combined use of the two fluorescence assays described here provides a useful tool for the identification of improved potentiators and correctors. The assays could also prove useful for basic scientific investigations on F508del-CFTR, and other CF-causing mutations.
Collapse
Affiliation(s)
- Emily Langron
- Research Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Michela I Simone
- Discipline of Chemistry, School of Environmental and Life Sciences, Priority Research Centre for Chemical Biology and Clinical Pharmacology, The University of Newcastle, Callaghan, NSW, Australia
| | | | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - David L Selwood
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Paola Vergani
- Research Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
177
|
Donaldson SH, Solomon GM, Zeitlin PL, Flume PA, Casey A, McCoy K, Zemanick ET, Mandagere A, Troha JM, Shoemaker SA, Chmiel JF, Taylor-Cousar JL. Pharmacokinetics and safety of cavosonstat (N91115) in healthy and cystic fibrosis adults homozygous for F508DEL-CFTR. J Cyst Fibros 2017; 16:371-379. [PMID: 28209466 DOI: 10.1016/j.jcf.2017.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/18/2017] [Accepted: 01/23/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cavosonstat (N91115), an orally bioavailable inhibitor of S-nitrosoglutathione reductase, promotes cystic fibrosis transmembrane conductance regulator (CFTR) maturation and plasma membrane stability, with a mechanism of action complementary to CFTR correctors and potentiators. METHODS A Phase I program evaluated pharmacokinetics, drug-drug interactions and safety of cavosonstat in healthy and cystic fibrosis (CF) subjects homozygous for F508del-CFTR. Exploratory outcomes included changes in sweat chloride in CF subjects. RESULTS Cavosonstat was rapidly absorbed and demonstrated linear and predictable pharmacokinetics. Exposure was unaffected by a high-fat meal or rifampin-mediated effects on drug metabolism and transport. Cavosonstat was well tolerated, with no dose-limiting toxicities or significant safety findings. At the highest dose, significant reductions from baseline in sweat chloride were observed (-4.1mmol/L; P=0.032) at day 28. CONCLUSIONS The favorable safety and clinical profile warrant further study of cavosonstat in CF. ClinicalTrials.gov Numbers: NCT02275936, NCT02013388, NCT02500667.
Collapse
Affiliation(s)
- Scott H Donaldson
- Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - George M Solomon
- Department of Medicine and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, AL, USA
| | - Pamela L Zeitlin
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Patrick A Flume
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Alicia Casey
- Department of Medicine, Division of Respiratory Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Karen McCoy
- Ohio State University, Nationwide Children's Hospital, Columbus, OH, USA
| | - Edith T Zemanick
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | | | | | | | - James F Chmiel
- Department of Pediatrics, Case Western Reserve University School of Medicine and Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Jennifer L Taylor-Cousar
- Department of Internal Medicine, Pulmonary Division, National Jewish Health, University of Colorado Health Sciences Center, Denver, CO, USA; Department of Pediatrics, Pulmonary Division, National Jewish Health, University of Colorado Health Sciences Center, Denver, CO, USA
| |
Collapse
|
178
|
Delaunay JL, Bruneau A, Hoffmann B, Durand-Schneider AM, Barbu V, Jacquemin E, Maurice M, Housset C, Callebaut I, Aït-Slimane T. Functional defect of variants in the adenosine triphosphate-binding sites of ABCB4 and their rescue by the cystic fibrosis transmembrane conductance regulator potentiator, ivacaftor (VX-770). Hepatology 2017; 65:560-570. [PMID: 28012258 DOI: 10.1002/hep.28929] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/22/2016] [Accepted: 10/11/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED ABCB4 (MDR3) is an adenosine triphosphate (ATP)-binding cassette (ABC) transporter expressed at the canalicular membrane of hepatocytes, where it mediates phosphatidylcholine (PC) secretion. Variations in the ABCB4 gene are responsible for several biliary diseases, including progressive familial intrahepatic cholestasis type 3 (PFIC3), a rare disease that can be lethal in the absence of liver transplantation. In this study, we investigated the effect and potential rescue of ABCB4 missense variations that reside in the highly conserved motifs of ABC transporters, involved in ATP binding. Five disease-causing variations in these motifs have been identified in ABCB4 (G535D, G536R, S1076C, S1176L, and G1178S), three of which are homologous to the gating mutations of cystic fibrosis transmembrane conductance regulator (CFTR or ABCC7; i.e., G551D, S1251N, and G1349D), that were previously shown to be function defective and corrected by ivacaftor (VX-770; Kalydeco), a clinically approved CFTR potentiator. Three-dimensional structural modeling predicted that all five ABCB4 variants would disrupt critical interactions in the binding of ATP and thereby impair ATP-induced nucleotide-binding domain dimerization and ABCB4 function. This prediction was confirmed by expression in cell models, which showed that the ABCB4 mutants were normally processed and targeted to the plasma membrane, whereas their PC secretion activity was dramatically decreased. As also hypothesized on the basis of molecular modeling, PC secretion activity of the mutants was rescued by the CFTR potentiator, ivacaftor (VX-770). CONCLUSION Disease-causing variations in the ATP-binding sites of ABCB4 cause defects in PC secretion, which can be rescued by ivacaftor. These results provide the first experimental evidence that ivacaftor is a potential therapy for selected patients who harbor mutations in the ATP-binding sites of ABCB4. (Hepatology 2017;65:560-570).
Collapse
Affiliation(s)
- Jean-Louis Delaunay
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Saint-Antoine Research Center, F-75012, Paris, France
| | - Alix Bruneau
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Saint-Antoine Research Center, F-75012, Paris, France
| | - Brice Hoffmann
- IMPMC, Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, 4 Place Jussieu, 75005, Paris Cedex 05, France
| | - Anne-Marie Durand-Schneider
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Saint-Antoine Research Center, F-75012, Paris, France
| | - Véronique Barbu
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Saint-Antoine Research Center, F-75012, Paris, France.,Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, Reference Center for Rare Disease, Inflammatory Biliary Diseases & Hepatology Department, F-75012, Paris, France
| | - Emmanuel Jacquemin
- Assistance Publique-Hôpitaux de Paris, Faculty of Medicine Paris Sud, CHU Bicêtre, Pediatric Hepatology & Pediatric Hepatic Transplant Department, Reference Center for Rare Pediatric Liver Diseases, F-94275, Le Kremlin Bicêtre, France.,Université Paris Sud, INSERM, UMR_S 1174, Hepatinov, Orsay, France
| | - Michèle Maurice
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Saint-Antoine Research Center, F-75012, Paris, France
| | - Chantal Housset
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Saint-Antoine Research Center, F-75012, Paris, France.,Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, Reference Center for Rare Disease, Inflammatory Biliary Diseases & Hepatology Department, F-75012, Paris, France
| | - Isabelle Callebaut
- IMPMC, Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, 4 Place Jussieu, 75005, Paris Cedex 05, France
| | - Tounsia Aït-Slimane
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Saint-Antoine Research Center, F-75012, Paris, France
| |
Collapse
|
179
|
Stanton BA. Effects of Pseudomonas aeruginosa on CFTR chloride secretion and the host immune response. Am J Physiol Cell Physiol 2017; 312:C357-C366. [PMID: 28122735 DOI: 10.1152/ajpcell.00373.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 12/18/2022]
Abstract
In the healthy lung the opportunistic pathogen, Pseudomonas aeruginosa, is rapidly eliminated by mucociliary clearance, a process that is dependent on the activity of the CFTR anion channel that, in concert with a number of other transport proteins, regulates the volume and composition of the periciliary surface liquid. This fluid layer is essential to enable cilia to clear pathogens from the lungs. However, in cystic fibrosis (CF), mutations in the CFTR gene reduce Cl- and [Formula: see text] secretion, thereby decreasing periciliary surface liquid volume and mucociliary clearance of bacteria. In CF this leads to persistent infection with the opportunistic pathogen, P. aeruginosa, which is the cause of reduced lung function and death in ~95% of CF patients. Others and we have conducted studies to elucidate the effects of P. aeruginosa on wild-type and Phe508del-CFTR Cl- secretion as well as on the host immune response. These studies have demonstrated that Cif (CFTR inhibitory factor), a virulence factor secreted by P. aeruginosa, is associated with reduced lung function in CF and induces the ubiquitination and degradation of wt-CFTR as well as TAP1, which plays a key role in viral and bacterial antigen presentation. Cif also enhances the degradation of Phe508del-CFTR that has been rescued by ORKAMBI, a drug approved for CF patients homozygous for the Phe508del-CFTR mutation, thereby reducing drug efficacy. This review is based on the Hans Ussing Distinguished Lecture at the 2016 Experimental Biology Meeting given by the author.
Collapse
Affiliation(s)
- Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
180
|
Mondejar-Lopez P, Pastor-Vivero MD, Sanchez-Solis M, Escribano A. Cystic fibrosis treatment: targeting the basic defect. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1280390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | - Manuel Sanchez-Solis
- Cystic Fibrosis Unit, Virgen de la Arrixaca University Hospital, Murcia, Spain
- IMIB Bio-Research Institute, Murcia, Spain
| | - Amparo Escribano
- Pediatric Pulmonology and Cystic Fibrosis Unit, Clinic University Hospital, Valencia, Spain
- University of Valencia, Valencia, Spain
| |
Collapse
|
181
|
Meng X, Wang Y, Wang X, Wrennall JA, Rimington TL, Li H, Cai Z, Ford RC, Sheppard DN. Two Small Molecules Restore Stability to a Subpopulation of the Cystic Fibrosis Transmembrane Conductance Regulator with the Predominant Disease-causing Mutation. J Biol Chem 2017; 292:3706-3719. [PMID: 28087700 PMCID: PMC5339754 DOI: 10.1074/jbc.m116.751537] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/12/2017] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations that disrupt the plasma membrane expression, stability, and function of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. Two small molecules, the CFTR corrector lumacaftor and the potentiator ivacaftor, are now used clinically to treat CF, although some studies suggest that they have counteracting effects on CFTR stability. Here, we investigated the impact of these compounds on the instability of F508del-CFTR, the most common CF mutation. To study individual CFTR Cl- channels, we performed single-channel recording, whereas to assess entire CFTR populations, we used purified CFTR proteins and macroscopic CFTR Cl- currents. At 37 °C, low temperature-rescued F508del-CFTR more rapidly lost function in cell-free membrane patches and showed altered channel gating and current flow through open channels. Compared with purified wild-type CFTR, the full-length F508del-CFTR was about 10 °C less thermostable. Lumacaftor partially stabilized purified full-length F508del-CFTR and slightly delayed deactivation of individual F508del-CFTR Cl- channels. By contrast, ivacaftor further destabilized full-length F508del-CFTR and accelerated channel deactivation. Chronic (prolonged) co-incubation of F508del-CFTR-expressing cells with lumacaftor and ivacaftor deactivated macroscopic F508del-CFTR Cl- currents. However, at the single-channel level, chronic co-incubation greatly increased F508del-CFTR channel activity and temporal stability in most, but not all, cell-free membrane patches. We conclude that chronic lumacaftor and ivacaftor co-treatment restores stability in a small subpopulation of F508del-CFTR Cl- channels but that the majority remain destabilized. A fuller understanding of these effects and the characterization of the small F508del-CFTR subpopulation might be crucial for CF therapy development.
Collapse
Affiliation(s)
- Xin Meng
- From the Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PL, United Kingdom and
| | - Yiting Wang
- the School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Xiaomeng Wang
- From the Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PL, United Kingdom and
| | - Joe A Wrennall
- the School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Tracy L Rimington
- From the Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PL, United Kingdom and
| | - Hongyu Li
- the School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Zhiwei Cai
- the School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Robert C Ford
- From the Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PL, United Kingdom and
| | - David N Sheppard
- the School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
182
|
Farinha CM, Canato S. From the endoplasmic reticulum to the plasma membrane: mechanisms of CFTR folding and trafficking. Cell Mol Life Sci 2017; 74:39-55. [PMID: 27699454 PMCID: PMC11107782 DOI: 10.1007/s00018-016-2387-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 01/10/2023]
Abstract
CFTR biogenesis starts with its co-translational insertion into the membrane of endoplasmic reticulum and folding of the cytosolic domains, towards the acquisition of a fully folded compact native structure. Efficiency of this process is assessed by the ER quality control system that allows the exit of folded proteins but targets unfolded/misfolded CFTR to degradation. If allowed to leave the ER, CFTR is modified at the Golgi and reaches the post-Golgi compartments to be delivered to the plasma membrane where it functions as a cAMP- and phosphorylation-regulated chloride/bicarbonate channel. CFTR residence at the membrane is a balance of membrane delivery, endocytosis, and recycling. Several adaptors, motor, and scaffold proteins contribute to the regulation of CFTR stability and are involved in continuously assessing its structure through peripheral quality control systems. Regulation of CFTR biogenesis and traffic (and its dysregulation by mutations, such as the most common F508del) determine its overall activity and thus contribute to the fine modulation of chloride secretion and hydration of epithelial surfaces. This review covers old and recent knowledge on CFTR folding and trafficking from its synthesis to the regulation of its stability at the plasma membrane and highlights how several of these steps can be modulated to promote the rescue of mutant CFTR.
Collapse
Affiliation(s)
- Carlos M Farinha
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| | - Sara Canato
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
183
|
Callebaut I, Hoffmann B, Lehn P, Mornon JP. Molecular modelling and molecular dynamics of CFTR. Cell Mol Life Sci 2017; 74:3-22. [PMID: 27717958 PMCID: PMC11107702 DOI: 10.1007/s00018-016-2385-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a member of the ATP-binding cassette (ABC) transporter superfamily that functions as an ATP-gated channel. Considerable progress has been made over the last years in the understanding of the molecular basis of the CFTR functions, as well as dysfunctions causing the common genetic disease cystic fibrosis (CF). This review provides a global overview of the theoretical studies that have been performed so far, especially molecular modelling and molecular dynamics (MD) simulations. A special emphasis is placed on the CFTR-specific evolution of an ABC transporter framework towards a channel function, as well as on the understanding of the effects of disease-causing mutations and their specific modulation. This in silico work should help structure-based drug discovery and design, with a view to develop CFTR-specific pharmacotherapeutic approaches for the treatment of CF in the context of precision medicine.
Collapse
Affiliation(s)
- Isabelle Callebaut
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France.
| | - Brice Hoffmann
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France
| | - Pierre Lehn
- INSERM U1078, SFR ScInBioS, Université de Bretagne Occidentale, Brest, France
| | - Jean-Paul Mornon
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France
| |
Collapse
|
184
|
Abstract
CFTR protein is an ion channel regulated by cAMP-dependent phosphorylation and expressed in many types of epithelial cells. CFTR-mediated chloride and bicarbonate secretion play an important role in the respiratory and gastrointestinal systems. Pharmacological modulators of CFTR represent promising drugs for a variety of diseases. In particular, correctors and potentiators may restore the activity of CFTR in cystic fibrosis patients. Potentiators are also potentially useful to improve mucociliary clearance in patients with chronic obstructive pulmonary disease. On the other hand, CFTR inhibitors may be useful to block fluid and electrolyte loss in secretory diarrhea and slow down the progression of polycystic kidney disease.
Collapse
Affiliation(s)
- Olga Zegarra-Moran
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Luis J V Galietta
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy.
| |
Collapse
|
185
|
Vu CB, Bridges RJ, Pena-Rasgado C, Lacerda AE, Bordwell C, Sewell A, Nichols AJ, Chandran S, Lonkar P, Picarella D, Ting A, Wensley A, Yeager M, Liu F. Fatty Acid Cysteamine Conjugates as Novel and Potent Autophagy Activators That Enhance the Correction of Misfolded F508del-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). J Med Chem 2016; 60:458-473. [PMID: 27976892 DOI: 10.1021/acs.jmedchem.6b01539] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A depressed autophagy has previously been reported in cystic fibrosis patients with the common F508del-CFTR mutation. This report describes the synthesis and preliminary biological characterization of a novel series of autophagy activators involving fatty acid cysteamine conjugates. These molecular entities were synthesized by first covalently linking cysteamine to docosahexaenoic acid. The resulting conjugate 1 synergistically activated autophagy in primary homozygous F508del-CFTR human bronchial epithelial (hBE) cells at submicromolar concentrations. When conjugate 1 was used in combination with the corrector lumacaftor and the potentiator ivacaftor, it showed an additive effect, as measured by the increase in the chloride current in a functional assay. In order to obtain a more stable form for oral dosing, the sulfhydryl group in conjugate 1 was converted into a functionalized disulfide moiety. The resulting conjugate 5 is orally bioavailable in the mouse, rat, and dog and allows a sustained delivery of the biologically active conjugate 1.
Collapse
Affiliation(s)
- Chi B Vu
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Robert J Bridges
- Chicago Medical School, Rosalind Franklin University of Medicine and Science , 3333 Green Bay Road, North Chicago, Illinois 60064, United States
| | - Cecilia Pena-Rasgado
- Chicago Medical School, Rosalind Franklin University of Medicine and Science , 3333 Green Bay Road, North Chicago, Illinois 60064, United States
| | - Antonio E Lacerda
- Charles River Laboratories , 14656 Neo Parkway, Cleveland, Ohio 44128, United States
| | - Curtis Bordwell
- Charles River Laboratories , 14656 Neo Parkway, Cleveland, Ohio 44128, United States
| | - Abby Sewell
- Charles River Laboratories , 14656 Neo Parkway, Cleveland, Ohio 44128, United States
| | - Andrew J Nichols
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Sachin Chandran
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Pallavi Lonkar
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Dominic Picarella
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Amal Ting
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Allison Wensley
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Maisy Yeager
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Feng Liu
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
186
|
Adnan H, Zhang Z, Park HJ, Tailor C, Che C, Kamani M, Spitalny G, Binnington B, Lingwood C. Endoplasmic Reticulum-Targeted Subunit Toxins Provide a New Approach to Rescue Misfolded Mutant Proteins and Revert Cell Models of Genetic Diseases. PLoS One 2016; 11:e0166948. [PMID: 27935997 PMCID: PMC5147855 DOI: 10.1371/journal.pone.0166948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 11/06/2016] [Indexed: 01/08/2023] Open
Abstract
Many germ line diseases stem from a relatively minor disturbance in mutant protein endoplasmic reticulum (ER) 3D assembly. Chaperones are recruited which, on failure to correct folding, sort the mutant for retrotranslocation and cytosolic proteasomal degradation (ER-associated degradation-ERAD), to initiate/exacerbate deficiency-disease symptoms. Several bacterial (and plant) subunit toxins, retrograde transport to the ER after initial cell surface receptor binding/internalization. The A subunit has evolved to mimic a misfolded protein and hijack the ERAD membrane translocon (dislocon), to effect cytosolic access and cytopathology. We show such toxins compete for ERAD to rescue endogenous misfolded proteins. Cholera toxin or verotoxin (Shiga toxin) containing genetically inactivated (± an N-terminal polyleucine tail) A subunit can, within 2–4 hrs, temporarily increase F508delCFTR protein, the major cystic fibrosis (CF) mutant (5-10x), F508delCFTR Golgi maturation (<10x), cell surface expression (20x) and chloride transport (2x) in F508del CFTR transfected cells and patient-derived F508delCFTR bronchiolar epithelia, without apparent cytopathology. These toxoids also increase glucocerobrosidase (GCC) in N370SGCC Gaucher Disease fibroblasts (3x), another ERAD–exacerbated misfiling disease. We identify a new, potentially benign approach to the treatment of certain genetic protein misfolding diseases.
Collapse
Affiliation(s)
- Humaira Adnan
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Zhenbo Zhang
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hyun-Joo Park
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chetankumar Tailor
- Division of Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Clare Che
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mustafa Kamani
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Beth Binnington
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Clifford Lingwood
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
187
|
Mukoviszidose. MED GENET-BERLIN 2016. [DOI: 10.1007/s11825-016-0105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Zusammenfassung
Die Mukoviszidose gehört mit einer Inzidenz von etwa 1:3300 bis 1:4800 Neugeborenen zu den häufigsten autosomal-rezessiv erblichen Erkrankungen in Deutschland und ist mit einer hohen Morbidität und Mortalität assoziiert. Um die möglichst frühzeitige Einleitung einer Therapie zu ermöglichen, wurde mit der am 1. September 2016 in Kraft getretenen Novellierung der Richtlinie über die Früherkennung von Krankheiten bei Kindern bis zur Vollendung des 6. Lebensjahres durch den Gemeinsamen Bundesausschuss die Einführung eines Screenings auf Mukoviszidose im Neugeborenenalter beschlossen. Ferner konnte durch interdisziplinäre Behandlungskonzepte u. a. in spezialisierten Mukoviszidosezentren die Lebenserwartung in den letzten Jahrzehnten deutlich gesteigert werden. Mit der Entwicklung und zunehmenden Markteinführung mutationsspezifischer Therapien besteht erstmals die Möglichkeit, direkt in die Pathophysiologie der Mukoviszidose einzugreifen.
Collapse
|
188
|
Schneider EK, Reyes-Ortega F, Li J, Velkov T. Can Cystic Fibrosis Patients Finally Catch a Breath With Lumacaftor/Ivacaftor? Clin Pharmacol Ther 2016; 101:130-141. [PMID: 27804127 DOI: 10.1002/cpt.548] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 12/13/2022]
Abstract
Cystic fibrosis (CF) is a life-limiting disease caused by defective or deficient cystic fibrosis transmembrane conductance regulator (CFTR) activity. The recent US Food and Drug Administration (FDA) approval of lumacaftor combined with ivacaftor (Orkambi) targets patients with the F508del-CFTR. The question remains: Is this breakthrough combination therapy the "magic-bullet" cure for the vast majority of patients with CF? This review covers the contemporary clinical and scientific knowledge-base for lumacaftor/ivacaftor and highlights the emerging issues from recent conflicting literature reports.
Collapse
Affiliation(s)
- E K Schneider
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences; Monash University, Parkville, Victoria, Australia
| | - F Reyes-Ortega
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences; Monash University, Parkville, Victoria, Australia
| | - J Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences; Monash University, Parkville, Victoria, Australia.,Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - T Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences; Monash University, Parkville, Victoria, Australia
| |
Collapse
|
189
|
Abstract
Cystic fibrosis is a common life-limiting autosomal recessive genetic disorder, with highest prevalence in Europe, North America, and Australia. The disease is caused by mutation of a gene that encodes a chloride-conducting transmembrane channel called the cystic fibrosis transmembrane conductance regulator (CFTR), which regulates anion transport and mucociliary clearance in the airways. Functional failure of CFTR results in mucus retention and chronic infection and subsequently in local airway inflammation that is harmful to the lungs. CFTR dysfunction mainly affects epithelial cells, although there is evidence of a role in immune cells. Cystic fibrosis affects several body systems, and morbidity and mortality is mostly caused by bronchiectasis, small airways obstruction, and progressive respiratory impairment. Important comorbidities caused by epithelial cell dysfunction occur in the pancreas (malabsorption), liver (biliary cirrhosis), sweat glands (heat shock), and vas deferens (infertility). The development and delivery of drugs that improve the clearance of mucus from the lungs and treat the consequent infection, in combination with correction of pancreatic insufficiency and undernutrition by multidisciplinary teams, have resulted in remarkable improvements in quality of life and clinical outcomes in patients with cystic fibrosis, with median life expectancy now older than 40 years. Innovative and transformational therapies that target the basic defect in cystic fibrosis have recently been developed and are effective in improving lung function and reducing pulmonary exacerbations. Further small molecule and gene-based therapies are being developed to restore CFTR function; these therapies promise to be disease modifying and to improve the lives of people with cystic fibrosis.
Collapse
Affiliation(s)
- J Stuart Elborn
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, and Belfast City Hospital, Belfast, UK.
| |
Collapse
|
190
|
Schneider EK, Reyes-Ortega F, Wilson JW, Kotsimbos T, Keating D, Li J, Velkov T. Development of HPLC and LC-MS/MS methods for the analysis of ivacaftor, its major metabolites and lumacaftor in plasma and sputum of cystic fibrosis patients treated with ORKAMBI or KALYDECO. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1038:57-62. [PMID: 27792891 DOI: 10.1016/j.jchromb.2016.10.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/18/2016] [Accepted: 10/23/2016] [Indexed: 11/29/2022]
Abstract
ORKAMBI (ivacaftor-lumacaftor [LUMA]) and KALYDECO (ivacaftor; IVA) are two new breakthrough cystic fibrosis (CF) drugs that directly modulate the activity and trafficking of the defective CFTR underlying the CF disease state. Currently, no therapeutic drug monitoring assays exist for these very expensive, albeit, important drugs. In this study, for the first time HPLC and LC-MS methods were developed and validated for rapid detection and quantification of IVA and its major metabolites hydroxymethyl-IVA M1 (active) and IVA-carboxylate M6 (inactive); and LUMA in the plasma and sputum of CF patients. With a mobile phase consisting of acetonitrile/water:0.1% formic acid (60:40v/v) at a flow rate of 1mL/min, a linear correlation was observed over a concentration range from 0.01 to 10μg/mL in human plasma (IVA R2>0.999, IVA M1 R2>0.9961, IVA M6 R2>0.9898, LUMA R2>0.9954). The assay was successfully utilized to quantify the concentration of LUMA, IVA, M1 and M6 in the plasma and sputum of CF patients undergoing therapy with KALYDECO (IVA 150mg/q12h) or ORKAMBI (200mg/q12h LUMA-125mg/q12h IVA). The KALYDECO patient exhibited an IVA plasma concentration of 0.97μg/mL at 2.5h post dosage. M1 and M6 plasma concentrations were 0.50μg/mL and 0.16μg/mL, respectively. Surprisingly, the ORKAMBI patient displayed very low plasma concentrations of IVA (0.06μg/mL) and M1 (0.07μg/mL). The M6 concentrations (0.15μg/mL) were comparable to those of the KALYDECO patient. However, we observed a relatively high plasma concentration of LUMA (4.42μg/mL). This reliable and novel method offers a simple and sensitive approach for therapeutic drug monitoring of KALYDECO and ORKAMBI in plasma and sputum. The introduction of the assay into the clinical setting will facilitate pharmacokinetics/pharmacodynamic analysis and assist clinicians to develop more cost effective and efficacious dosage regimens for these breakthrough CF drugs.
Collapse
Affiliation(s)
- Elena K Schneider
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Felisa Reyes-Ortega
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - John W Wilson
- Department of Medicine, Monash University, Alfred Hospital, Commercial Road, Melbourne, Victoria 3004, Australia; Department of Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Commercial Road, Melbourne, Victoria 3004, Australia
| | - Tom Kotsimbos
- Department of Medicine, Monash University, Alfred Hospital, Commercial Road, Melbourne, Victoria 3004, Australia; Department of Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Commercial Road, Melbourne, Victoria 3004, Australia
| | - Dominic Keating
- Department of Medicine, Monash University, Alfred Hospital, Commercial Road, Melbourne, Victoria 3004, Australia; Department of Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Commercial Road, Melbourne, Victoria 3004, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| |
Collapse
|
191
|
The cystic fibrosis transmembrane conductance regulator (CFTR) and its stability. Cell Mol Life Sci 2016; 74:23-38. [PMID: 27734094 PMCID: PMC5209436 DOI: 10.1007/s00018-016-2386-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is responsible for the disease cystic fibrosis (CF). It is a membrane protein belonging to the ABC transporter family functioning as a chloride/anion channel in epithelial cells around the body. There are over 1500 mutations that have been characterised as CF-causing; the most common of these, accounting for ~70 % of CF cases, is the deletion of a phenylalanine at position 508. This leads to instability of the nascent protein and the modified structure is recognised and then degraded by the ER quality control mechanism. However, even pharmacologically ‘rescued’ F508del CFTR displays instability at the cell’s surface, losing its channel function rapidly and it is rapidly removed from the plasma membrane for lysosomal degradation. This review will, therefore, explore the link between stability and structure/function relationships of membrane proteins and CFTR in particular and how approaches to study CFTR structure depend on its stability. We will also review the application of a fluorescence labelling method for the assessment of the thermostability and the tertiary structure of CFTR.
Collapse
|
192
|
Schmidt BZ, Haaf JB, Leal T, Noel S. Cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis: current perspectives. Clin Pharmacol 2016; 8:127-140. [PMID: 27703398 PMCID: PMC5036583 DOI: 10.2147/cpaa.s100759] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mutations of the CFTR gene cause cystic fibrosis (CF), the most common recessive monogenic disease worldwide. These mutations alter the synthesis, processing, function, or half-life of CFTR, the main chloride channel expressed in the apical membrane of epithelial cells in the airway, intestine, pancreas, and reproductive tract. Lung disease is the most critical manifestation of CF. It is characterized by airway obstruction, infection, and inflammation that lead to fatal tissue destruction. In spite of great advances in early and multidisciplinary medical care, and in our understanding of the pathophysiology, CF is still considerably reducing the life expectancy of patients. This review highlights the current development in pharmacological modulators of CFTR, which aim at rescuing the expression and/or function of mutated CFTR. While only Kalydeco® and Orkambi® are currently available to patients, many other families of CFTR modulators are undergoing preclinical and clinical investigations. Drug repositioning and personalized medicine are particularly detailed in this review as they represent the most promising strategies for restoring CFTR function in CF.
Collapse
Affiliation(s)
- Béla Z Schmidt
- Stem Cell Biology and Embryology, Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven
| | - Jérémy B Haaf
- Louvain Center for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Teresinha Leal
- Louvain Center for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Sabrina Noel
- Louvain Center for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
193
|
Laselva O, Molinski S, Casavola V, Bear CE. The investigational Cystic Fibrosis drug Trimethylangelicin directly modulates CFTR by stabilizing the first membrane-spanning domain. Biochem Pharmacol 2016; 119:85-92. [PMID: 27614011 DOI: 10.1016/j.bcp.2016.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/06/2016] [Indexed: 12/24/2022]
Abstract
Cystic Fibrosis (CF) is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. The most common mutation, deletion of phenylalanine 508 (F508del), disrupts tertiary assembly, causing protein misprocessing and loss of CFTR function in epithelial tissues. Lumacaftor (VX-809) is a Class 1 corrector molecule shown to partially rescue misprocessing of F508del and together with the potentiator of channel activity: ivacaftor (VX-770) has been approved for treatment of CF patients homozygous for the F508del mutation. The specificity of these modulators for CFTR is thought to be conferred through direct binding. Trimethylangelicin (TMA) is a distinct small molecule modulator, previously shown to exhibit both corrector and potentiator activities. We were prompted to determine if TMA also mediates these activities by direct binding. Interestingly, we found that like VX-770, TMA was effective in enhancing anion efflux mediated by purified WT-CFTR reconstituted in phospholipid liposomes. Furthermore, like VX-809, TMA was effective in stabilizing the functional expression of CFTR lacking the regulatory "R" domain or second nucleotide-binding domain (NBD2). The smallest domain that was stabilized by TMA binding was the first membrane-spanning domain (MSD1) as previously observed for VX-809. Together, our findings support the claim that TMA binds directly to CFTR, and despite its distinct chemical structure, shares similar mechanisms as VX-770 and VX-809 to potentiate and stabilize CFTR, respectively.
Collapse
Affiliation(s)
- Onofrio Laselva
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Italy; Programme in Molecular Structure and Function, Hospital for Sick Children, Toronto, Canada
| | - Steven Molinski
- Programme in Molecular Structure and Function, Hospital for Sick Children, Toronto, Canada; Department of Biochemistry, University of Toronto, Canada
| | - Valeria Casavola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Italy
| | - Christine E Bear
- Programme in Molecular Structure and Function, Hospital for Sick Children, Toronto, Canada; Department of Biochemistry, University of Toronto, Canada; Department of Physiology, University of Toronto, Canada.
| |
Collapse
|
194
|
Lopes-Pacheco M. CFTR Modulators: Shedding Light on Precision Medicine for Cystic Fibrosis. Front Pharmacol 2016; 7:275. [PMID: 27656143 PMCID: PMC5011145 DOI: 10.3389/fphar.2016.00275] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) is the most common life-threatening monogenic disease afflicting Caucasian people. It affects the respiratory, gastrointestinal, glandular and reproductive systems. The major cause of morbidity and mortality in CF is the respiratory disorder caused by a vicious cycle of obstruction of the airways, inflammation and infection that leads to epithelial damage, tissue remodeling and end-stage lung disease. Over the past decades, life expectancy of CF patients has increased due to early diagnosis and improved treatments; however, these patients still present limited quality of life. Many attempts have been made to rescue CF transmembrane conductance regulator (CFTR) expression, function and stability, thereby overcoming the molecular basis of CF. Gene and protein variances caused by CFTR mutants lead to different CF phenotypes, which then require different treatments to quell the patients' debilitating symptoms. In order to seek better approaches to treat CF patients and maximize therapeutic effects, CFTR mutants have been stratified into six groups (although several of these mutations present pleiotropic defects). The research with CFTR modulators (read-through agents, correctors, potentiators, stabilizers and amplifiers) has achieved remarkable progress, and these drugs are translating into pharmaceuticals and personalized treatments for CF patients. This review summarizes the main molecular and clinical features of CF, emphasizes the latest clinical trials using CFTR modulators, sheds light on the molecular mechanisms underlying these new and emerging treatments, and discusses the major breakthroughs and challenges to treating all CF patients.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
195
|
Huguet F, Calvez ML, Benz N, Le Hir S, Mignen O, Buscaglia P, Horgen FD, Férec C, Kerbiriou M, Trouvé P. Function and regulation of TRPM7, as well as intracellular magnesium content, are altered in cells expressing ΔF508-CFTR and G551D-CFTR. Cell Mol Life Sci 2016; 73:3351-73. [PMID: 26874684 PMCID: PMC11108291 DOI: 10.1007/s00018-016-2149-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 02/03/2023]
Abstract
Cystic fibrosis (CF), one of the most common fatal hereditary disorders, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The CFTR gene product is a multidomain adenosine triphosphate-binding cassette (ABC) protein that functions as a chloride (Cl(-)) channel that is regulated by intracellular magnesium [Mg(2+)]i. The most common mutations in CFTR are a deletion of a phenylalanine residue at position 508 (ΔF508-CFTR, 70-80 % of CF phenotypes) and a Gly551Asp substitution (G551D-CFTR, 4-5 % of alleles), which lead to decreased or almost abolished Cl(-) channel function, respectively. Magnesium ions have to be finely regulated within cells for optimal expression and function of CFTR. Therefore, the melastatin-like transient receptor potential cation channel, subfamily M, member 7 (TRPM7), which is responsible for Mg(2+) entry, was studies and [Mg(2+)]i measured in cells stably expressing wildtype CFTR, and two mutant proteins (ΔF508-CFTR and G551D-CFTR). This study shows for the first time that [Mg(2+)]i is decreased in cells expressing ΔF508-CFTR and G551D-CFTR mutated proteins. It was also observed that the expression of the TRPM7 protein is increased; however, membrane localization was altered for both ΔF508del-CFTR and G551D-CFTR. Furthermore, both the function and regulation of the TRPM7 channel regarding Mg(2+) is decreased in the cells expressing the mutated CFTR. Ca(2+) influx via TRPM7 were also modified in cells expressing a mutated CFTR. Therefore, there appears to be a direct involvement of TRPM7 in CF physiopathology. Finally, we propose that the TRPM7 activator Naltriben is a new potentiator for G551D-CFTR as the function of this mutant increases upon activation of TRPM7 by Naltriben.
Collapse
Affiliation(s)
- F Huguet
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
| | - M L Calvez
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
- Association G. Saleun, Brest, 29218, France
| | - N Benz
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Association G. Saleun, Brest, 29218, France
| | - S Le Hir
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Laboratoire de Génétique Moléculaire, Hôpital Morvan, C.H.U. Brest, Brest, 29200, France
| | - O Mignen
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
| | - P Buscaglia
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
| | - F D Horgen
- Laboratory of Marine Biological Chemistry, Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI, 96744, USA
| | - C Férec
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France.
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France.
- Laboratoire de Génétique Moléculaire, Hôpital Morvan, C.H.U. Brest, Brest, 29200, France.
- Etablissement Français du Sang - Bretagne, Brest, 29200, France.
| | - M Kerbiriou
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
| | - P Trouvé
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France.
| |
Collapse
|
196
|
Lin WY, Sohma Y, Hwang TC. Synergistic Potentiation of Cystic Fibrosis Transmembrane Conductance Regulator Gating by Two Chemically Distinct Potentiators, Ivacaftor (VX-770) and 5-Nitro-2-(3-Phenylpropylamino) Benzoate. Mol Pharmacol 2016; 90:275-85. [PMID: 27413118 PMCID: PMC4998663 DOI: 10.1124/mol.116.104570] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/12/2016] [Indexed: 01/12/2023] Open
Abstract
Cystic fibrosis (CF) is caused by loss-of-function mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding a phosphorylation-activated but ATP-gated chloride channel. Previous studies suggested that VX-770 [ivacaftor, N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide], a CFTR potentiator now used in clinics, increases the open probability of CFTR by shifting the gating conformational changes to favor the open channel configuration. Recently the chloride channel blocker and CFTR potentiator 5-nitro-2-(3-phenylpropylamino) benzoate (NPPB) has been reported to enhance CFTR activity by a mechanism that exploits the ATP hydrolysis-driven, nonequilibrium gating mechanism unique to CFTR. Surprisingly however, NPPB increased the activity of nonhydrolytic G551D-CFTR, the third most common disease-associated mutation. Here, we further investigated the mechanism of NPPB's effects on CFTR gating by assessing its interaction with well-studied VX-770. Interestingly, once G551D-CFTR was maximally potentiated by VX-770, NPPB further increased its activity. However, quantitative analysis of this drug-drug interaction suggests that this pharmacologic synergism is not due to independent actions of NPPB and VX-770 on CFTR gating; instead, our data support a dependent mechanism involving two distinct binding sites. This latter idea is further supported by the observation that the locked-open time of a hydrolysis-deficient mutant K1250A was shortened by NPPB but prolonged by VX-770. In addition, the effectiveness of NPPB, but not of VX-770, was greatly diminished in a mutant whose second nucleotide-binding domain was completely removed. Interpreting these results under the framework of current understanding of CFTR gating not only reveals insights into the mechanism of action for different CFTR potentiators but also brings us one step forward to a more complete schematic for CFTR gating.
Collapse
Affiliation(s)
- Wen-Ying Lin
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (W.-Y.L., T.-C.H.); Department of Pharmacology, School of Medicine, Keio University, Tokyo Japan (Y.S.)
| | - Yoshiro Sohma
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (W.-Y.L., T.-C.H.); Department of Pharmacology, School of Medicine, Keio University, Tokyo Japan (Y.S.)
| | - Tzyh-Chang Hwang
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (W.-Y.L., T.-C.H.); Department of Pharmacology, School of Medicine, Keio University, Tokyo Japan (Y.S.)
| |
Collapse
|
197
|
Zhang W, Zhang X, Zhang YH, Strokes DC, Naren AP. Lumacaftor/ivacaftor combination for cystic fibrosis patients homozygous for Phe508del-CFTR. DRUGS OF TODAY (BARCELONA, SPAIN : 1998) 2016; 52:229-37. [PMID: 27252987 DOI: 10.1358/dot.2016.52.4.2467205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cystic fibrosis (CF) is a life-shortening inherited disease caused by the loss or dysfunction of the CF transmembrane conductance regulator (CFTR) channel activity resulting from mutations in the CFTR gene. Phe508del is the most prevalent mutation, with approximately 90% of all CF patients carrying it on at least one allele. Over the past two or three decades, significant progress has been made in understanding the pathogenesis of CF, and in the development of effective CF therapies. The approval of Orkambi® (lumacaftor/ivacaftor) marks another milestone in CF therapeutics development, which, with the advent of personalized medicine, could potentially revolutionize CF care and management. This article reviews the rationale, progress and future direction in the development of lumacaftor/ivacaftor combination to treat CF patients homozygous for the Phe508del-CFTR mutation.
Collapse
Affiliation(s)
- W Zhang
- Department of Pediatrics, Physiology, University of Tennessee Health Science Center, and University of Tennessee Cystic Fibrosis Care and Research Center at Le Bonheur Children's Hospital-Methodist University Hospital, Memphis, Tennessee, USA
| | - X Zhang
- Department of Pediatrics, University of Tennessee Health Science Center, and University of Tennessee Cystic Fibrosis Care and Research Center at Le Bonheur Children's Hospital-Methodist University Hospital, Memphis, Tennessee, USA
| | - Y H Zhang
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - D C Strokes
- Department of Pediatrics, University of Tennessee Health Science Center, and University of Tennessee Cystic Fibrosis Care and Research Center at Le Bonheur Children's Hospital-Methodist University Hospital, Memphis, Tennessee, USA
| | - A P Naren
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| |
Collapse
|
198
|
|
199
|
Gentzsch M, Ren HY, Houck SA, Quinney NL, Cholon DM, Sopha P, Chaudhry IG, Das J, Dokholyan NV, Randell SH, Cyr DM. Restoration of R117H CFTR folding and function in human airway cells through combination treatment with VX-809 and VX-770. Am J Physiol Lung Cell Mol Physiol 2016; 311:L550-9. [PMID: 27402691 DOI: 10.1152/ajplung.00186.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/24/2016] [Indexed: 01/06/2023] Open
Abstract
Cystic fibrosis (CF) is a lethal recessive genetic disease caused primarily by the F508del mutation in the CF transmembrane conductance regulator (CFTR). The potentiator VX-770 was the first CFTR modulator approved by the FDA for treatment of CF patients with the gating mutation G551D. Orkambi is a drug containing VX-770 and corrector VX809 and is approved for treatment of CF patients homozygous for F508del, which has folding and gating defects. At least 30% of CF patients are heterozygous for the F508del mutation with the other allele encoding for one of many different rare CFTR mutations. Treatment of heterozygous F508del patients with VX-809 and VX-770 has had limited success, so it is important to identify heterozygous patients that respond to CFTR modulator therapy. R117H is a more prevalent rare mutation found in over 2,000 CF patients. In this study we investigated the effectiveness of VX-809/VX-770 therapy on restoring CFTR function in human bronchial epithelial (HBE) cells from R117H/F508del CF patients. We found that VX-809 stimulated more CFTR activity in R117H/F508del HBEs than in F508del/F508del HBEs. R117H expressed exclusively in immortalized HBEs exhibited a folding defect, was retained in the ER, and degraded prematurely. VX-809 corrected the R117H folding defect and restored channel function. Because R117 is involved in ion conductance, VX-770 acted additively with VX-809 to restore CFTR function in chronically treated R117H/F508del cells. Although treatment of R117H patients with VX-770 has been approved, our studies indicate that Orkambi may be more beneficial for rescue of CFTR function in these patients.
Collapse
Affiliation(s)
- Martina Gentzsch
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, North Carolina; Department of Cell Biology and Physiology. University of North Carolina, Chapel Hill, North Carolina; and
| | - Hong Y Ren
- Department of Cell Biology and Physiology. University of North Carolina, Chapel Hill, North Carolina; and
| | - Scott A Houck
- Department of Cell Biology and Physiology. University of North Carolina, Chapel Hill, North Carolina; and
| | - Nancy L Quinney
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Deborah M Cholon
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Pattarawut Sopha
- Department of Cell Biology and Physiology. University of North Carolina, Chapel Hill, North Carolina; and
| | - Imron G Chaudhry
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, North Carolina; Department of Cell Biology and Physiology. University of North Carolina, Chapel Hill, North Carolina; and
| | - Jhuma Das
- Department of Biochemistry, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Nikolay V Dokholyan
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, North Carolina; Department of Biochemistry, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Scott H Randell
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, North Carolina; Department of Cell Biology and Physiology. University of North Carolina, Chapel Hill, North Carolina; and
| | - Douglas M Cyr
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, North Carolina; Department of Cell Biology and Physiology. University of North Carolina, Chapel Hill, North Carolina; and
| |
Collapse
|
200
|
Convertino M, Das J, Dokholyan NV. Pharmacological Chaperones: Design and Development of New Therapeutic Strategies for the Treatment of Conformational Diseases. ACS Chem Biol 2016; 11:1471-89. [PMID: 27097127 DOI: 10.1021/acschembio.6b00195] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Errors in protein folding may result in premature clearance of structurally aberrant proteins, or in the accumulation of toxic misfolded species or protein aggregates. These pathological events lead to a large range of conditions known as conformational diseases. Several research groups have presented possible therapeutic solutions for their treatment by developing novel compounds, known as pharmacological chaperones. These cell-permeable molecules selectively provide a molecular scaffold around which misfolded proteins can recover their native folding and, thus, their biological activities. Here, we review therapeutic strategies, clinical potentials, and cost-benefit impacts of several classes of pharmacological chaperones for the treatment of a series of conformational diseases.
Collapse
Affiliation(s)
- Marino Convertino
- Department of Biochemistry
and Biophysics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Jhuma Das
- Department of Biochemistry
and Biophysics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Nikolay V. Dokholyan
- Department of Biochemistry
and Biophysics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|