151
|
Guo N, Ling G, Liang X, Jin J, Fan J, Qiu J, Song Y, Huang N, Wu X, Wang X, Deng X, Deng X, Yu L. In vitro synergy of pseudolaric acid B and fluconazole against clinical isolates of Candida albicans. Mycoses 2010; 54:e400-6. [PMID: 21910756 DOI: 10.1111/j.1439-0507.2010.01935.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Candida albicans is the most common fungal pathogen in humans. The emergence of resistance to azole antifungals has raised the issue of using such antifungals in combination to optimise therapeutic outcome. The objective of this study was to evaluate in vitro synergy of pseudolaric acid B (PAB) and fluconazole (FLC) against clinical isolates of C. albicans. The in vitro antifungal activity of PAB, a diterpene acid from Pseudolarix kaempferi Gordon, was evaluated alone and in combination with FLC against 22 FLC-resistant (FLC-R) and 12 FLC-susceptible (FLC-S) C. albicans using the chequerboard microdilution method and time-killing test assays. Synergism was observed in all 22 (100%) FLC-R strains tested as determined by both fractional inhibitory concentration index (FICI) with values ranging from 0.02 to 0.13 and bliss independence (BI) models. Synergism was observed in two of 12 (17%) FLC-S strains as determined by FICI model with values ranging from 0.25 to 0.5 and in three of 12 (18%) FLC-S strains as determined by BI model. For FLC-R strains, the drug concentrations of FLC and PAB, where synergistic interactions were found, ranged from 0.06 to 4 μg ml(-1) and 0.5 to 4 μg ml(-1) respectively. For FLC-S strains, the drug concentrations of FLC and PAB were 1-8 μg ml(-1) and 0.5-4 μg ml(-1) respectively. The BI model gave results consistent with FICI, but no antagonistic activity was observed in any of the strains tested. These interactions between PAB and FLC were confirmed using the time-killing test for the selected strains. Fluconazole and PAB exhibited a good synergism against azole-R isolates of C. albicans.
Collapse
Affiliation(s)
- Na Guo
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Katragkou A, Kruhlak MJ, Simitsopoulou M, Chatzimoschou A, Taparkou A, Cotten CJ, Paliogianni F, Diza-Mataftsi E, Tsantali C, Walsh TJ, Roilides E. Interactions between human phagocytes and Candida albicans biofilms alone and in combination with antifungal agents. J Infect Dis 2010; 201:1941-9. [PMID: 20415537 DOI: 10.1086/652783] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Biofilm formation is an important component of vascular catheter infections caused by Candida albicans. Little is known about the interactions between human phagocytes, antifungal agents, and Candida biofilms. METHODS The interactions between C. albicans biofilms and human phagocytes alone and in combination with anidulafungin or voriconazole were investigated and compared with their corresponding planktonic counterparts by means of an in vitro biofilm model with clinical intravascular and green fluorescent protein (GFP)-expressing strains. Phagocyte-mediated and antifungal agent-mediated damages were determined by 2,3-bis[ 2- methoxy-4-nitro-5-sulfophenyl]2H-tetrazolium-5-carboxanilide assay, and structural effects were visualized by confocal microscopy. Oxidative burst was evaluated by flow cytometric measurement of dihydrorhodamine 123 oxidation, and cytokine release was measured by enzyme-linked immunosorbent assay. RESULTS Phagocytes alone and in combination with antifungal agents induced less damage against biofilms compared with planktonic cells. However, additive effects occurred between phagocytes and anidulafungin against Candida biofilms. Confocal microscopy demonstrated the absence of phagocytosis within biofilms but marked destruction caused by anidulafungin and phagocytes. Anidulafungin but not voriconazole elicited tumor necrosis factor alpha release from phagocytes compared with that from untreated biofilms. CONCLUSIONS C. albicans within biofilms are more resistant to phagocytic host defenses but are susceptible to additive effects between phagocytes and an echinocandin.
Collapse
Affiliation(s)
- Aspasia Katragkou
- Laboratory of Infectious Diseases, Third Department of Pediatrics, Aristotle University Medical School, Hippokration Hospital, Thessaloniki, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Sharma M, Manoharlal R, Negi AS, Prasad R. Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis. FEMS Yeast Res 2010; 10:570-8. [PMID: 20528949 DOI: 10.1111/j.1567-1364.2010.00637.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We have shown previously that pure polyphenol curcumin I (CUR-I) shows antifungal activity against Candida species. By employing the chequerboard method, filter disc and time-kill assays, in the present study we demonstrate that CUR-I at non-antifungal concentration interacts synergistically with azoles and polyenes. For this, pure polyphenol CUR-I was tested for synergy with five azole and two polyene drugs - fluconazole (FLC), miconazole, ketoconazole (KTC), itraconazole (ITR), voriconazole (VRC), nystatin (NYS) and amphotericin B (AMB) - against 21 clinical isolates of Candida albicans with reduced antifungal sensitivity, as well as a drug-sensitive laboratory strain. Notably, there was a 10-35-fold drop in the MIC(80) values of the drugs when CUR-I was used in combination with azoles and polyenes, with fractional inhibitory concentration index (FICI) values ranging between 0.09 and 0.5. Interestingly, the synergistic effect of CUR-I with FLC and AMB was associated with the accumulation of reactive oxygen species, which could be reversed by the addition of an antioxidant such as ascorbic acid. Furthermore, the combination of CUR-I and FLC/AMB triggered apoptosis that could also be reversed by ascorbic acid. We provide the first evidence that pure CUR-I in combination with azoles and polyenes represents a novel therapeutic strategy to improve the activity of common antifungals.
Collapse
Affiliation(s)
- Monika Sharma
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | |
Collapse
|
154
|
Guo N, Wu X, Yu L, Liu J, Meng R, Jin J, Lu H, Wang X, Yan S, Deng X. In vitroandin vivointeractions between fluconazole and allicin against clinical isolates of fluconazole-resistantCandida albicansdetermined by alternative methods. ACTA ACUST UNITED AC 2010; 58:193-201. [DOI: 10.1111/j.1574-695x.2009.00620.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
155
|
Niimi M, Firth NA, Cannon RD. Antifungal drug resistance of oral fungi. Odontology 2010; 98:15-25. [PMID: 20155503 DOI: 10.1007/s10266-009-0118-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 11/28/2009] [Indexed: 01/19/2023]
Abstract
Fungi comprise a minor component of the oral microbiota but give rise to oral disease in a significant proportion of the population. The most common form of oral fungal disease is oral candidiasis, which has a number of presentations. The mainstay for the treatment of oral candidiasis is the use of polyenes, such as nystatin and amphotericin B, and azoles including miconazole, fluconazole, and itraconazole. Resistance of fungi to polyenes is rare, but some Candida species, such as Candida glabrata and C. krusei, are innately less susceptible to azoles, and C. albicans can acquire azole resistance. The main mechanism of high-level fungal azole resistance, measured in vitro, is energy-dependent drug efflux. Most fungi in the oral cavity, however, are present in multispecies biofilms that typically demonstrate an antifungal resistance phenotype. This resistance is the result of multiple factors including the expression of efflux pumps in the fungal cell membrane, biofilm matrix permeability, and a stress response in the fungal cell. Removal of dental biofilms, or treatments to prevent biofilm development in combination with antifungal drugs, may enable better treatment and prevention of oral fungal disease.
Collapse
Affiliation(s)
- Masakazu Niimi
- Department of Oral Sciences, School of Dentistry, University of Otago, 310 Great King Street, Dunedin, 9016, New Zealand
| | | | | |
Collapse
|
156
|
Egan JD, García-Pedrajas MD, Andrews DL, Gold SE. Calcineurin is an antagonist to PKA protein phosphorylation required for postmating filamentation and virulence, while PP2A is required for viability in Ustilago maydis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1293-1301. [PMID: 19737102 DOI: 10.1094/mpmi-22-10-1293] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Ustilago maydis is a dimorphic basidiomycete and the causal agent of corn smut disease. It serves as a genetic model for understanding dimorphism, pathogenicity, and mating response in filamentous fungi. Previous studies indicated the importance of regulated cAMP-dependent protein kinase A (PKA) for filamentous growth and pathogenicity in U. maydis. The roles of two protein phosphatases that potentially act antagonistically to PKA were assessed. A reverse genetics approach to mutate the catalytic subunits of calcineurin (CN, protein phosphatase [PP]2B) and PP2A in U. maydis was employed. A mutation in the CN catalytic subunit ucn1 caused a dramatic multiple-budding phenotype and mating between two ucn1 mutants was severely reduced. The pathogenicity of ucn1 mutant strains was also severely reduced, even in a solopathogenic haploid strain. Importantly, mutations disrupting protein phosphorylation by PKA were epistatic to ucn1 mutation, indicating a major role of ucn1 as a PKA antagonistic phosphatase. Genetic and inhibitor studies indicated that the U. maydis PP2A catalytic subunit gene (upa2) was essential.
Collapse
Affiliation(s)
- John D Egan
- Department of Plant Pathology, University of Georgia, Athens, GA 30602-7274, USA
| | | | | | | |
Collapse
|
157
|
Characteristics of Candida albicans biofilms grown in a synthetic urine medium. J Clin Microbiol 2009; 47:4078-83. [PMID: 19794044 DOI: 10.1128/jcm.01377-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Urinary tract infections (UTIs) are the most common type of nosocomial infection, and Candida albicans is the most frequent organism causing fungal UTIs. Presence of an indwelling urinary catheter represents a significant risk factor for UTIs. Furthermore, these infections are frequently associated with the formation of biofilms on the surface of these catheters. Here, we describe the characterization of C. albicans biofilms formed in vitro using synthetic urine (SU) medium and the frequently used RPMI medium and compare the results. Biofilms of C. albicans strain SC5314 were formed in 96-well microtiter plates and on silicon elastomer pieces using both SU and RPMI media. Biofilm formation was monitored by microscopy and a colorimetric XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction assay. As in biofilms grown in RPMI medium, time course studies revealed that biofilm formation using SU medium occurred after an initial adherence phase, followed by growth, proliferation, and maturation. However, microscopy techniques revealed that the architectural complexity of biofilms formed in SU medium was lower than that observed for those formed using RPMI medium. In particular, the level of filamentation of cells within the biofilms formed in SU medium was diminished compared to those in the biofilms grown in RPMI medium. This observation was also corroborated by expression profiling of five filamentation-associated genes using quantitative real-time reverse transcriptase PCR. Sessile C. albicans cells were resistant to fluconazole and amphotericin B, irrespective of the medium used to form the biofilms. However, caspofungin exhibited potent in vitro activity at therapeutic levels against C. albicans biofilms grown in both SU and RPMI media.
Collapse
|
158
|
Inhibition of Candida albicans growth by brominated furanones. Appl Microbiol Biotechnol 2009; 85:1551-63. [PMID: 19756586 DOI: 10.1007/s00253-009-2174-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 07/22/2009] [Accepted: 07/29/2009] [Indexed: 12/11/2022]
Abstract
Candida albicans is the most virulent Candida species of medical importance, which presents a great threat to immunocompromised individuals such as HIV patients. Currently, there are only four classes of antifungal agents available for treating fungal infections: azoles, polyenes, pyrimidines, and echinocandins. The fast spread of multidrug resistant C. albicans strains has increased the demand for new antifungal drugs. In this study, we demonstrate the antifungal activity of brominated furanones on C. albicans. Studying the structure and activity of this class of furanones reveals that the exocyclic vinyl bromide conjugated with the carbonyl group is the most important structural element for fungal inhibition. Furthermore, gene expression analysis using DNA microarrays showed that 3 microg/mL of 4-bromo-5Z-(bromomethylene)-3-butylfuran-2-one (BF1) upregulated 32 C. albicans genes with functions of stress response, NADPH dehydrogenation, and small-molecule transport, and repressed 21 genes involved mainly in cell-wall maintenance. Interestingly, only a small overlap is observed between the gene expression changes caused by the representative brominated furanone (BF1) in this study and other antifungal drugs reported in literature. This result suggests that brominated furanones and other antifungal drugs may target different fungal proteins or genes. The existence of such new targets provides an opportunity for developing new agents to control fungal pathogens which are resistant to currently available drugs.
Collapse
|
159
|
Dannaoui E, Schwarz P, Lortholary O. In vitro interactions between antifungals and immunosuppressive drugs against zygomycetes. Antimicrob Agents Chemother 2009; 53:3549-51. [PMID: 19451295 PMCID: PMC2715618 DOI: 10.1128/aac.00184-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/07/2009] [Accepted: 05/09/2009] [Indexed: 01/09/2023] Open
Abstract
The in vitro interaction of antifungals with immunosuppressive drugs was evaluated against zygomycetes. The combination of amphotericin B with cyclosporine, rapamycin, or tacrolimus was synergistic for 90%, 70%, and 30% of the isolates, respectively. For posaconazole, itraconazole, and ravuconazole, synergy was more frequently observed with cyclosporine than with rapamycin or tacrolimus and antagonistic interactions were rarely noted. In summary, calcineurin inhibitors and rapamycin can be synergistic in vitro with amphotericin B and azoles against zygomycetes.
Collapse
Affiliation(s)
- Eric Dannaoui
- Centre National de Référence Mycologie et Antifongiques, Unité de Mycologie Moléculaire, CNRS URA3012, Institut Pasteur, 25 Rue du Dr. Roux, 75724 Paris, Cedex 15, France.
| | | | | |
Collapse
|
160
|
Guo N, Liu J, Wu X, Bi X, Meng R, Wang X, Xiang H, Deng X, Yu L. Antifungal activity of thymol against clinical isolates of fluconazole-sensitive and -resistant Candida albicans. J Med Microbiol 2009; 58:1074-1079. [DOI: 10.1099/jmm.0.008052-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Thymol (THY) was found to have in vitro antifungal activity against 24 fluconazole (FLC)-resistant and 12 FLC-susceptible clinical isolates of Candida albicans, standard strain ATCC 10231 and one experimentally induced FLC-resistant C. albicans S-1. In addition, synergism was observed for clinical isolates of C. albicans with combinations of THY–FLC and THY–amphotericin B (AMB) evaluated by the chequerboard microdilution method. The interaction intensity was determined by spectrophotometry for the chequerboard assay, and the nature of the interactions was assessed using two non-parametric approaches [fractional inhibitory concentration index (FICI) and ΔE models]. The interaction between THY–FLC or THY–AMB in FLC-resistant and -susceptible strains of C. albicans showed a high percentage of synergism by the FICI method and the ΔE method. The ΔE model gave results consistent with FICI, and no antagonistic action was observed in the strains tested.
Collapse
Affiliation(s)
- Na Guo
- Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Jingbo Liu
- Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China
| | - Xiuping Wu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xingming Bi
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Rizeng Meng
- Jilin Entry–Exit Inspection and Quarantine Bureau, Changchun 130062, PR China
| | - Xuelin Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Hua Xiang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Lu Yu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, PR China
| |
Collapse
|
161
|
Toenjes KA, Stark BC, Brooks KM, Johnson DI. Inhibitors of cellular signalling are cytotoxic or block the budded-to-hyphal transition in the pathogenic yeast Candida albicans. J Med Microbiol 2009; 58:779-790. [PMID: 19429755 DOI: 10.1099/jmm.0.006841-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The pathogenic yeast Candida albicans can grow in multiple morphological states including budded, pseudohyphal and true hyphal forms. The ability to interconvert between budded and hyphal forms, herein termed the budded-to-hyphal transition (BHT), is important for C. albicans virulence, and is regulated by multiple environmental and cellular signals. To identify small-molecule inhibitors of known cellular processes that can also block the BHT, a microplate-based morphological assay was used to screen the BIOMOL-Institute of Chemistry and Cell Biology (ICCB) Known Bioactives collection from the ICCB-Longwood Screening Facility (Harvard Medical School, Boston, MA, USA). Of 480 molecules tested, 53 were cytotoxic to C. albicans and 16 were able to block the BHT without inhibiting budded growth. These 16 BHT inhibitors affected protein kinases, protein phosphatases, Ras signalling pathways, G protein-coupled receptors, calcium homeostasis, nitric oxide and guanylate cyclase signalling, and apoptosis in mammalian cells. Several of these molecules were also able to inhibit filamentous growth in other Candida species, as well as the pathogenic filamentous fungus Aspergillus fumigatus, suggesting a broad fungal host range for these inhibitory molecules. Results from secondary assays, including hyphal-specific transcription and septin localization analysis, were consistent with the inhibitors affecting known BHT signalling pathways in C. albicans. Therefore, these molecules will not only be invaluable in deciphering the signalling pathways regulating the BHT, but also may serve as starting points for potential new antifungal therapeutics.
Collapse
Affiliation(s)
- Kurt A Toenjes
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT 59101, USA.,Markey Center for Molecular Genetics, Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Benjamin C Stark
- Markey Center for Molecular Genetics, Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Krista M Brooks
- Markey Center for Molecular Genetics, Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Douglas I Johnson
- Markey Center for Molecular Genetics, Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
162
|
Grim SA, Clark NM. The role of adjuvant agents in treating fungal diseases. CURRENT FUNGAL INFECTION REPORTS 2009. [DOI: 10.1007/s12281-009-0016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
163
|
|
164
|
Uppuluri P, Chaturvedi AK, Lopez-Ribot JL. Design of a simple model of Candida albicans biofilms formed under conditions of flow: development, architecture, and drug resistance. Mycopathologia 2009; 168:101-9. [PMID: 19370400 DOI: 10.1007/s11046-009-9205-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 04/02/2009] [Indexed: 11/25/2022]
Abstract
Candida albicans biofilms on most medical devices are exposed to a flow of body fluids that provide water and nutrients to the fungal cells. While C. albicans biofilms grown in vitro under static conditions have been exhaustively studied, the same is not true for biofilms developed under continuous flow of replenishing nutrients. Here, we describe a simple flow biofilm (FB) model that can be built easily with materials commonly available in most microbiological laboratories. We demonstrate that C. albicans biofilms formed using this flow system show increased architectural complexity compared to biofilms grown under static conditions. C. albicans biofilms under continuous medium flow grow rapidly, and by 8 h show characteristics similar to 24 h statically grown biofilms. Biomass measurements and microscopic observations further revealed that after 24 h of incubation, FB was more than twofold thicker than biofilms grown under static conditions. Microscopic analyses revealed that the surface of these biofilms was extremely compact and wrinkled, unlike the open hyphal layer typically seen in 24 h static biofilms. Results of antifungal drug susceptibility tests showed that C. albicans cells in FB exhibited increased resistance to most clinically used antifungal agents.
Collapse
Affiliation(s)
- Priya Uppuluri
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, USA
| | | | | |
Collapse
|
165
|
Cannon RD, Lamping E, Holmes AR, Niimi K, Baret PV, Keniya MV, Tanabe K, Niimi M, Goffeau A, Monk BC. Efflux-mediated antifungal drug resistance. Clin Microbiol Rev 2009; 22:291-321, Table of Contents. [PMID: 19366916 PMCID: PMC2668233 DOI: 10.1128/cmr.00051-08] [Citation(s) in RCA: 393] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungi cause serious infections in the immunocompromised and debilitated, and the incidence of invasive mycoses has increased significantly over the last 3 decades. Slow diagnosis and the relatively few classes of antifungal drugs result in high attributable mortality for systemic fungal infections. Azole antifungals are commonly used for fungal infections, but azole resistance can be a problem for some patient groups. High-level, clinically significant azole resistance usually involves overexpression of plasma membrane efflux pumps belonging to the ATP-binding cassette (ABC) or the major facilitator superfamily class of transporters. The heterologous expression of efflux pumps in model systems, such Saccharomyces cerevisiae, has enabled the functional analysis of efflux pumps from a variety of fungi. Phylogenetic analysis of the ABC pleiotropic drug resistance family has provided a new view of the evolution of this important class of efflux pumps. There are several ways in which the clinical significance of efflux-mediated antifungal drug resistance can be mitigated. Alternative antifungal drugs, such as the echinocandins, that are not efflux pump substrates provide one option. Potential therapeutic approaches that could overcome azole resistance include targeting efflux pump transcriptional regulators and fungal stress response pathways, blockade of energy supply, and direct inhibition of efflux pumps.
Collapse
Affiliation(s)
- Richard D Cannon
- Department of Oral Sciences, School of Dentistry, University of Otago, P.O. Box 647, Dunedin 9054, New Zealand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
ten Cate J, Klis F, Pereira-Cenci T, Crielaard W, de Groot P. Molecular and Cellular Mechanisms That Lead to Candida Biofilm Formation. J Dent Res 2009; 88:105-15. [DOI: 10.1177/0022034508329273] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Fungal infections in the oral cavity are mainly caused by C. albicans, but other Candida species are also frequently identified. They are increasing in prevalence, especially in denture-wearers and aging people, and may lead to invasive infections, which have a high mortality rate. Attachment to mucosal tissues and to abiotic surfaces and the formation of biofilms are crucial steps for Candida survival and proliferation in the oral cavity. Candida species possess a wide arsenal of glycoproteins located at the exterior side of the cell wall, many of which play a determining role in these steps. In addition, C. albicans secretes signaling molecules that inhibit the yeast-to-hypha transition and biofilm formation. In vivo, Candida species are members of mixed biofilms, and subject to various antagonistic and synergistic interactions, which are beginning to be explored. We believe that these new insights will allow for more efficacious treatments of fungal oral infections. For example, the use of signaling molecules that inhibit biofilm formation should be considered. In addition, cell-wall biosynthetic enzymes, wall cross-linking enzymes, and wall proteins, which include adhesins, proteins involved in biofilm formation, fungal-bacterial interactions, and competition for surface colonization sites, offer a wide range of potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- J.M. ten Cate
- Department of Cariology Endodontology Pedodontology, Academic Centre for Dentistry Amsterdam -ACTA-, University of Amsterdam and Free University Amsterdam, Louwesweg 1, 1066 EA Amsterdam, the Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands; and
- Department of Prosthodontics and Periodontology, Faculty of Dentistry of Piracicaba, UNICAMP, Brazil
| | - F.M. Klis
- Department of Cariology Endodontology Pedodontology, Academic Centre for Dentistry Amsterdam -ACTA-, University of Amsterdam and Free University Amsterdam, Louwesweg 1, 1066 EA Amsterdam, the Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands; and
- Department of Prosthodontics and Periodontology, Faculty of Dentistry of Piracicaba, UNICAMP, Brazil
| | - T. Pereira-Cenci
- Department of Cariology Endodontology Pedodontology, Academic Centre for Dentistry Amsterdam -ACTA-, University of Amsterdam and Free University Amsterdam, Louwesweg 1, 1066 EA Amsterdam, the Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands; and
- Department of Prosthodontics and Periodontology, Faculty of Dentistry of Piracicaba, UNICAMP, Brazil
| | - W. Crielaard
- Department of Cariology Endodontology Pedodontology, Academic Centre for Dentistry Amsterdam -ACTA-, University of Amsterdam and Free University Amsterdam, Louwesweg 1, 1066 EA Amsterdam, the Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands; and
- Department of Prosthodontics and Periodontology, Faculty of Dentistry of Piracicaba, UNICAMP, Brazil
| | - P.W.J. de Groot
- Department of Cariology Endodontology Pedodontology, Academic Centre for Dentistry Amsterdam -ACTA-, University of Amsterdam and Free University Amsterdam, Louwesweg 1, 1066 EA Amsterdam, the Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands; and
- Department of Prosthodontics and Periodontology, Faculty of Dentistry of Piracicaba, UNICAMP, Brazil
| |
Collapse
|
167
|
Quindós G, Villar-Vidal M, Eraso E. Actividad de la micafungina contra las biopelículas de Candida. Rev Iberoam Micol 2009; 26:49-55. [DOI: 10.1016/s1130-1406(09)70008-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 02/12/2009] [Indexed: 01/10/2023] Open
|
168
|
|
169
|
ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates. Antimicrob Agents Chemother 2008; 52:3851-62. [PMID: 18710914 DOI: 10.1128/aac.00463-08] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fluconazole (FLC) remains the antifungal drug of choice for non-life-threatening Candida infections, but drug-resistant strains have been isolated during long-term therapy with azoles. Drug efflux, mediated by plasma membrane transporters, is a major resistance mechanism, and clinically significant resistance in Candida albicans is accompanied by increased transcription of the genes CDR1 and CDR2, encoding plasma membrane ABC-type transporters Cdr1p and Cdr2p. The relative importance of each transporter protein for efflux-mediated resistance in C. albicans, however, is unknown; neither the relative amounts of each polypeptide in resistant isolates nor their contributions to efflux function have been determined. We have exploited the pump-specific properties of two antibody preparations, and specific pump inhibitors, to determine the relative expression and functions of Cdr1p and Cdr2p in 18 clinical C. albicans isolates. The antibodies and inhibitors were standardized using recombinant Saccharomyces cerevisiae strains that hyper-express either protein in a host strain with a reduced endogenous pump background. In all 18 C. albicans strains, including 13 strains with reduced FLC susceptibilities, Cdr1p was present in greater amounts (2- to 20-fold) than Cdr2p. Compounds that inhibited Cdr1p-mediated function, but had no effect on Cdr2p efflux activity, significantly decreased the resistance to FLC of seven representative C. albicans isolates, whereas three other compounds that inhibited both pumps did not cause increased chemosensitization of these strains to FLC. We conclude that Cdr1p expression makes a greater functional contribution than does Cdr2p to FLC resistance in C. albicans.
Collapse
|
170
|
Bastidas RJ, Reedy JL, Morales-Johansson H, Heitman J, Cardenas ME. Signaling cascades as drug targets in model and pathogenic fungi. CURRENT OPINION IN INVESTIGATIONAL DRUGS (LONDON, ENGLAND : 2000) 2008; 9:856-864. [PMID: 18666033 PMCID: PMC2715221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microbes evolved to produce natural products that inhibit growth of competing soil microorganisms. In many cases these compounds act on fungi, which are eukaryotes with conserved gene sequences closely related to metazoans, including humans. The calcineurin inhibitors cyclosporin A and FK-506, the Tor inhibitor rapamycin, and the Hsp90 inhibitor geldanamycin, all act via targets conserved from yeast to humans. This allows the use of genetically tractable fungi as models to elucidate how these drugs and their targets function in yeast and human cells. These inhibitors also enable studies aimed at harnessing their intrinsic antimicrobial activities to develop novel antifungal therapies. Extensive studies have revealed a globally conserved role for the Tor protein in regulating growth and proliferation in response to nutrients, and targeting its essential functions results in robust antifungal action. Similarly, a conserved and essential role for calcineurin in fungal virulence has been established and could be targeted by inhibitors for therapeutic uses in a variety of clinical settings. Finally, the discovery that inhibitors of calcineurin or Hsp90 result in dramatic synergism with either azoles or glucan synthase inhibitors (candins) provides another therapeutic vantage point. Taken together, these fungal targets and their inhibitors provide a robust platform from which to develop novel antimicrobial therapies.
Collapse
Affiliation(s)
- Robert J Bastidas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Research Drive, Box 3546, Durham, NC 27710, USA
| | - Jennifer L Reedy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Research Drive, Box 3546, Durham, NC 27710, USA
| | - Helena Morales-Johansson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Research Drive, Box 3546, Durham, NC 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Research Drive, Box 3546, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Research Drive, Box 3546, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Research Drive, Box 3546, Durham, NC 27710, USA
| | - Maria E. Cardenas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Research Drive, Box 3546, Durham, NC 27710, USA
| |
Collapse
|