151
|
Pittam B, Chumber R, Vashisht G, Miller S, O'Dowd C, Ledson T, Srinivas-Shankar U. The value of administering intravenous antibiotics during haemodialysis in the treatment of diabetic foot infections. J Wound Care 2022; 31:683-688. [PMID: 36001702 DOI: 10.12968/jowc.2022.31.8.683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE People with diabetes who are on haemodialysis (HD) are at a high risk of diabetic foot infections (DFI) and related complications. We explored the value of treating DFI with intravenous (IV) antibiotics during HD. METHOD This was an observational study of consecutively treated patients with DFIs with IV antibiotics during HD. Data collected included baseline characteristics, IV antibiotics used, details of multidisciplinary interventions and DFI treatment outcome. RESULTS A cohort of 11 patients, mean (±standard deviation) age 62.4±12.7 years, had 15 episodes of treatment with IV antibiotics during HD. Of the patients, six (54.5%) were male and nine (81.8%) had type 2 diabetes. The estimated mean glomerular filtration rate (eGFR) was 11.4±3.9ml/minute. All patients had infected foot ulceration, soft tissue infection, six (54.5%) patients had osteomyelitis, and two (18.2%) had wet gangrene. The commonest IV antibiotic used was vancomycin (10/15 episodes, 66.7%). Other IV antibiotics used were daptomycin and meropenem. In three episodes, oral ciprofloxacin was used with IV antibiotics. The mean duration of antibiotic treatment was 9.2±4.9 weeks. Of the episodes, 11 (73.3%) were treated successfully with IV antibiotics alone and two (13.3%) episodes required minor surgical debridement/amputation. Some 10 (90.9%) members of the cohort had peripheral arterial disease and of those, five (50%) underwent angioplasty during IV antibiotic treatment. CONCLUSION HD provides a good opportunity for treatment with IV antibiotics in DFI. This mode of administration of IV antibiotics, along with multidisciplinary intervention, is associated with ulcer healing and resolution of infection in over three-quarters of patients with DFI. DECLARATION OF INTEREST The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Bradley Pittam
- Department of Diabetes and Endocrinology, Department of Pharmacy, Department of Nephrology, Wirral University Teaching Hospital NHS Foundation Trust, UK
| | - Ruby Chumber
- Department of Diabetes and Endocrinology, Department of Pharmacy, Department of Nephrology, Wirral University Teaching Hospital NHS Foundation Trust, UK
| | - Gaurav Vashisht
- Department of Diabetes and Endocrinology, Department of Pharmacy, Department of Nephrology, Wirral University Teaching Hospital NHS Foundation Trust, UK
| | - Sophie Miller
- Department of Diabetes and Endocrinology, Department of Pharmacy, Department of Nephrology, Wirral University Teaching Hospital NHS Foundation Trust, UK
| | - Christina O'Dowd
- Department of Diabetes and Endocrinology, Department of Pharmacy, Department of Nephrology, Wirral University Teaching Hospital NHS Foundation Trust, UK
| | - Thomas Ledson
- Department of Diabetes and Endocrinology, Department of Pharmacy, Department of Nephrology, Wirral University Teaching Hospital NHS Foundation Trust, UK
| | - Upendram Srinivas-Shankar
- Department of Diabetes and Endocrinology, Department of Pharmacy, Department of Nephrology, Wirral University Teaching Hospital NHS Foundation Trust, UK
| |
Collapse
|
152
|
Jia B, Zhang Z, Zhuang Y, Yang H, Han Y, Wu Q, Jia X, Yin Y, Qu X, Zheng Y, Dai K. High-strength biodegradable zinc alloy implants with antibacterial and osteogenic properties for the treatment of MRSA-induced rat osteomyelitis. Biomaterials 2022; 287:121663. [PMID: 35810539 DOI: 10.1016/j.biomaterials.2022.121663] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022]
Abstract
Implant-related infections caused by drug-resistant bacteria remain a major challenge faced by orthopedic surgeons. Furthermore, ideal prevention and treatment methods are lacking in clinical practice. Here, based on the antibacterial and osteogenic properties of Zn alloys, Ag and Li were selected as alloying elements to prepare biodegradable Zn-Li-Ag ternary alloys. Li and Ag addition improved the mechanical properties of Zn-Li-Ag alloys. The Zn-0.8Li-0.5Ag alloy exhibited the highest ultimate tensile strength (>530 MPa). Zn-Li-Ag alloys showed strong bactericidal effects on methicillin-resistant Staphylococcus aureus (MRSA) in vitro. RNA sequencing revealed two MRSA-killing mechanisms exhibited by the Zn-0.8Li-0.5Ag alloy: cellular metabolism disturbance and induction of reactive oxygen species production. To verify that the therapeutic potential of the Zn-0.8Li-0.5Ag alloy is greater than that of Ti intramedullary nails, X-ray, micro-computed tomography, microbiological, and histological analyses were conducted in a rat femoral model of MRSA-induced osteomyelitis. Treatment with Zn-0.8Li-0.5Ag alloy implants resulted in remarkable infection control and favorable bone retention. The in vivo safety of this ternary alloy was confirmed by evaluating vital organ functions and pathological morphologies. We suggest that, with its good antibacterial and osteogenic properties, Zn-0.8Li-0.5Ag alloy can serve as an orthopedic implant material to prevent and treat orthopedic implant-related infections.
Collapse
Affiliation(s)
- Bo Jia
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China; Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zechuan Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yifu Zhuang
- Trauma Center, Department of Orthopaedics and Traumatology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 201620, China
| | - Hongtao Yang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Yu Han
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China
| | - Qiang Wu
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China
| | - Xiufeng Jia
- Department of Orthopaedic Surgery, Wudi People's Hospital, Binzhou, 251900, China
| | - Yanhui Yin
- School of Economics and Trade, Shandong Management University, Jinan, 250357, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Kerong Dai
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
153
|
Nanotechnology in the Diagnosis and Treatment of Osteomyelitis. Pharmaceutics 2022; 14:pharmaceutics14081563. [PMID: 36015188 PMCID: PMC9412360 DOI: 10.3390/pharmaceutics14081563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Infection remains one of the largest threats to global health. Among those infections that are especially troublesome, osteomyelitis, or inflammation of the bone, typically due to infection, is a particularly difficult condition to diagnose and treat. This difficulty stems not only from the biological complexities of opportunistic infections designed to avoid the onslaught of both the host immune system as well as exogenous antibiotics, but also from changes in the host vasculature and the heterogeneity of infectious presentations. While several groups have attempted to classify and stage osteomyelitis, controversy remains, often delaying diagnosis and treatment. Despite a host of preclinical treatment advances being incubated in academic and company research and development labs worldwide, clinical treatment strategies remain relatively stagnant, including surgical debridement and lengthy courses of intravenous antibiotics, both of which may compromise the overall health of the bone and the patient. This manuscript reviews the current methods for diagnosing and treating osteomyelitis and then contemplates the role that nanotechnology might play in the advancement of osteomyelitis treatment.
Collapse
|
154
|
Garcia-Moreno M, Jordan PM, Günther K, Dau T, Fritzsch C, Vermes M, Schoppa A, Ignatius A, Wildemann B, Werz O, Löffler B, Tuchscherr L. Osteocytes Serve as a Reservoir for Intracellular Persisting Staphylococcus aureus Due to the Lack of Defense Mechanisms. Front Microbiol 2022; 13:937466. [PMID: 35935196 PMCID: PMC9355688 DOI: 10.3389/fmicb.2022.937466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic staphylococcal osteomyelitis can persist for long time periods causing bone destruction. The ability of Staphylococcus aureus to develop chronic infections is linked to its capacity to invade and replicate within osteoblasts and osteocytes and to switch to a dormant phenotype called small colony variants. Recently, osteocytes were described as a main reservoir for this pathogen in bone tissue. However, the mechanisms involved in the persistence of S. aureus within these cells are still unknown. Here, we investigated the interaction between S. aureus and osteoblasts or osteocytes during infection. While osteoblasts are able to induce a strong antimicrobial response and eliminate intracellular S. aureus, osteocytes trigger signals to recruit immune cells and enhance inflammation but fail an efficient antimicrobial activity to clear the bacterial infection. Moreover, we found that extracellular signals from osteocytes enhance intracellular bacterial clearance by osteoblasts. Even though both cell types express Toll-like receptor (TLR) 2, the main TLR responsible for S. aureus detection, only osteoblasts were able to increase TLR2 expression after infection. Additionally, proteomic analysis indicates that reduced intracellular bacterial killing activity in osteocytes is related to low antimicrobial peptide expression. Nevertheless, high levels of lipid mediators and cytokines were secreted by osteocytes, suggesting that they can contribute to inflammation. Taken together, our results demonstrate that osteocytes contribute to severe inflammation observed in osteomyelitis and represent the main niche for S. aureus persistence due to their poor capacity for intracellular antimicrobial response.
Collapse
Affiliation(s)
| | - Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Kerstin Günther
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Therese Dau
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Christian Fritzsch
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Monika Vermes
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Astrid Schoppa
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
- *Correspondence: Lorena Tuchscherr,
| |
Collapse
|
155
|
Zhang Z, Liu P, Wang W, Wang S, Li B, Li J, Yang B, Li M, Li Q, Yang H, Huang Z, Liu L. Epidemiology and Drug Resistance of Fracture-Related Infection of the Long Bones of the Extremities: A Retrospective Study at the Largest Trauma Center in Southwest China. Front Microbiol 2022; 13:923735. [PMID: 35903480 PMCID: PMC9315197 DOI: 10.3389/fmicb.2022.923735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
Objective To describe the demographic characteristics, risk factors, and bacterial resistance of fracture-related infection (FRI) of the long bones of the extremities. Materials and Methods This single-center study retrospectively evaluated patients with FRI of the long bones of the extremities at West China Hospital between January 2012 and December 2017, and analyzed the demographic characteristics, risk factors, distribution of pathogenic bacteria, and bacterial drug resistance. Results Among 9,900 patients, 535 patients (5.4%) were diagnosed with FRI. The most common site of FRI was tibiofibular (298, 55.7%), with 424 cases (79.2%) of open fractures, and 282 cases (52.7%) due to traffic injuries. The 41–50 years age group had the highest incidence of FRI with 157 (29.3%) cases. Overall, 546 strains of 52 types of bacteria were detected in FRI patients, with 105 strains of multidrug-resistant (MDR) bacteria. Methicillin-resistant Staphylococcus aureus (48, 8.8%) and extended-spectrum-β-lactamase Escherichia coli (32, 5.8%) accounted for the largest proportion. Multivariate logistic regression analysis showed that sex (odds ratio [OR] 1.813; 95% confidence interval [CI], 1.071∼3.070; P = 0.027) and fracture type (OR 3.128; 95% CI, 1.683∼5.815; P < 0.001) were independent risk factors for monomicrobial infection (MI). Female sex (OR 4.190; 95% CI, 1.212∼14.486; P = 0.024) was an independent risk factor for polymicrobial infection (PI). Conclusion This study clarified the infection rates, changes in the bacterial spectrum, and drug resistance characteristics, and risk factors of FRI of the long bones of the extremities in the largest trauma center in southwest China.
Collapse
Affiliation(s)
- Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
- *Correspondence: Zhengdong Zhang,
| | - Pan Liu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenzhao Wang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Shanxi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bohua Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Banyin Yang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Mingxin Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Yang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Zeyu Huang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
- Zeyu Huang,
| | - Lei Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
- Lei Liu,
| |
Collapse
|
156
|
Masters EA, Ricciardi BF, Bentley KLDM, Moriarty TF, Schwarz EM, Muthukrishnan G. Skeletal infections: microbial pathogenesis, immunity and clinical management. Nat Rev Microbiol 2022; 20:385-400. [PMID: 35169289 PMCID: PMC8852989 DOI: 10.1038/s41579-022-00686-0] [Citation(s) in RCA: 222] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Osteomyelitis remains one of the greatest risks in orthopaedic surgery. Although many organisms are linked to skeletal infections, Staphylococcus aureus remains the most prevalent and devastating causative pathogen. Important discoveries have uncovered novel mechanisms of S. aureus pathogenesis and persistence within bone tissue, including implant-associated biofilms, abscesses and invasion of the osteocyte lacuno-canalicular network. However, little clinical progress has been made in the prevention and eradication of skeletal infection as treatment algorithms and outcomes have only incrementally changed over the past half century. In this Review, we discuss the mechanisms of persistence and immune evasion in S. aureus infection of the skeletal system as well as features of other osteomyelitis-causing pathogens in implant-associated and native bone infections. We also describe how the host fails to eradicate bacterial bone infections, and how this new information may lead to the development of novel interventions. Finally, we discuss the clinical management of skeletal infection, including osteomyelitis classification and strategies to treat skeletal infections with emerging technologies that could translate to the clinic in the future.
Collapse
Affiliation(s)
- Elysia A Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - Benjamin F Ricciardi
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA.
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
157
|
Le MNT, Kawada-Matsuo M, Komatsuzawa H. Efficiency of Antimicrobial Peptides Against Multidrug-Resistant Staphylococcal Pathogens. Front Microbiol 2022; 13:930629. [PMID: 35756032 PMCID: PMC9218695 DOI: 10.3389/fmicb.2022.930629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Antibiotics play a vital role in saving millions of lives from fatal infections; however, the inappropriate use of antibiotics has led to the emergence and propagation of drug resistance worldwide. Multidrug-resistant bacteria represent a significant challenge to treating infections due to the limitation of available antibiotics, necessitating the investigation of alternative treatments for combating these superbugs. Under such circumstances, antimicrobial peptides (AMPs), including human-derived AMPs and bacteria-derived AMPs (so-called bacteriocins), are considered potential therapeutic drugs owing to their high efficacy against infectious bacteria and the poor ability of these microorganisms to develop resistance to them. Several staphylococcal species including Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, and Staphylococcus saprophyticus are commensal bacteria and known to cause many opportunistic infectious diseases. Methicillin-resistant Staphylococci, especially methicillin-resistant S. aureus (MRSA), are of particular concern among the critical multidrug-resistant infectious Gram-positive pathogens. Within the past decade, studies have reported promising AMPs that are effective against MRSA and other methicillin-resistant Staphylococci. This review discusses the sources and mechanisms of AMPs against staphylococcal species, as well as their potential to become chemotherapies for clinical infections caused by multidrug-resistant staphylococci.
Collapse
Affiliation(s)
- Mi Nguyen-Tra Le
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
158
|
Yang Q, Wang J, Yang Y, Li S, Dong Y, Sun Y. In vitro antibacterial effect of vancomycin hydrogel on methicillin-resistant Staphylococcus aureus. Am J Transl Res 2022; 14:3964-3971. [PMID: 35836897 PMCID: PMC9274585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To evaluate the in vitro antibacterial effect of vancomycin hydrogel on methicillin-resistant Staphylococcus aureus (MRSA). METHODS We used polylactide glycolide-polyethylene glycol-polylactide glycolide (PLGA-PEG-PLGA) copolymer as a carrier of vancomycin to prepare vancomycin hydrogel. A vancomycin hydrogel group, a PLGA-PEG-PLGA copolymer group, a phosphate-buffered saline (PBS) negative control group and a vancomycin group were set for comparison. Then, we analyzed the in vitro antibacterial effect of each group to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) and to evaluate the effect of vancomycin hydrogel on the cell activity of bacterial biofilms. RESULTS The temperature of the successfully prepared PLGA-PEG-PLGA vancomycin copolymer was slightly lower than normal body temperature. The copolymer reduced both MIC (1 μg/mL) and MBC (2 μg/mL) for MRSA by 1 time. Compared with phosphate buffered saline negative control group and PLGA-PEG-PLGA copolymer group, the MIC vancomycin and vancomycin hydrogel groups showed a reduction of 3 CFU/mL (P<0.05) on the inhibitory effect of original colony count (106 CFU/mL). Though the antibacterial effect of MIC the vancomycin group was significantly better than the vancomycin hydrogel group in the first 12 h, the antibacterial effects of the two were similar after 12 hours. The effect of 1 MIC vancomycin on the cell activity of MRSA biofilm was higher than that of 1 MIC vancomycin hydrogel (P<0.05). CONCLUSION Vancomycin hydrogel with a reduced dosage has a similar antibacterial effect to vancomycin. This finding provides a reference for the development of novel sustained-release vancomycin formulations in future treatment of MRSA.
Collapse
Affiliation(s)
- Qinde Yang
- Department of Laboratory, People’s Hospital of Guangrao CountyDongying, Shandong Province, China
| | - Jing Wang
- Department of Laboratory, Tianjin Fifth Central HospitalTianjin City, China
| | - Yufang Yang
- Department of Laboratory, The Second People’s Hospital of DongyingDongying, Shandong Province, China
| | - Suting Li
- Department of Internal Medicine, Binzhou PolytechnicBinzhou, Shandong Province, China
| | - Yujun Dong
- Department of Laboratory, Liaocheng Dongchangfu People’s HospitalLiaocheng, Shandong Province, China
| | - Yan Sun
- Department of Pharmacy, The Second People’s Hospital of DongyingDongying, Shandong Province, China
| |
Collapse
|
159
|
Berry KA, Verhoef MTA, Leonard AC, Cox G. Staphylococcus aureus adhesion to the host. Ann N Y Acad Sci 2022; 1515:75-96. [PMID: 35705378 DOI: 10.1111/nyas.14807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus is a pathobiont capable of colonizing and infecting most tissues within the human body, resulting in a multitude of different clinical outcomes. Adhesion of S. aureus to the host is crucial for both host colonization and the establishment of infections. Underlying the pathogen's success is a complex and diverse arsenal of adhesins. In this review, we discuss the different classes of adhesins, including a consideration of the various adhesion sites throughout the body and the clinical outcomes of each infection type. The development of therapeutics targeting the S. aureus host-pathogen interaction is a relatively understudied area. Due to the increasing global threat of antimicrobial resistance, it is crucial that innovative and alternative approaches are considered. Neutralizing virulence factors, through the development of antivirulence agents, could reduce bacterial pathogenicity and the ever-increasing burden of S. aureus infections. This review provides insight into potentially efficacious adhesion-associated targets for the development of novel decolonizing and antivirulence strategies.
Collapse
Affiliation(s)
- Kirsten A Berry
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Mackenzie T A Verhoef
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Allison C Leonard
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Georgina Cox
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
160
|
Wu S, Wu B, Liu Y, Deng S, Lei L, Zhang H. Mini Review Therapeutic Strategies Targeting for Biofilm and Bone Infections. Front Microbiol 2022; 13:936285. [PMID: 35774451 PMCID: PMC9238355 DOI: 10.3389/fmicb.2022.936285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 12/21/2022] Open
Abstract
Bone infection results in a complex inflammatory response and bone destruction. A broad spectrum of bacterial species has been involved for jaw osteomyelitis, hematogenous osteomyelitis, vertebral osteomyelitis or diabetes mellitus, such as Staphylococcus aureus (S. aureus), coagulase-negative Staphylococcus species, and aerobic gram-negative bacilli. S. aureus is the major pathogenic bacterium for osteomyelitis, which results in a complex inflammatory response and bone destruction. Although various antibiotics have been applied for bone infection, the emergence of drug resistance and biofilm formation significantly decrease the effectiveness of those agents. In combination with gram-positive aerobes, gram-negative aerobes and anaerobes functionally equivalent pathogroups interact synergistically, developing as pathogenic biofilms and causing recurrent infections. The adhesion of biofilms to bone promotes bone destruction and protects bacteria from antimicrobial agent stress and host immune system infiltration. Moreover, bone is characterized by low permeability and reduced blood flow, further hindering the therapeutic effect for bone infections. To minimize systemic toxicity and enhance antibacterial effectiveness, therapeutic strategies targeting on biofilm and bone infection can serve as a promising modality. Herein, we focus on biofilm and bone infection eradication with targeting therapeutic strategies. We summarize recent targeting moieties on biofilm and bone infection with peptide-, nucleic acid-, bacteriophage-, CaP- and turnover homeostasis-based strategies. The antibacterial and antibiofilm mechanisms of those therapeutic strategies include increasing antibacterial agents’ accumulation by bone specific affinity, specific recognition of phage-bacteria, inhibition biofilm formation in transcription level. As chronic inflammation induced by infection can trigger osteoclast activation and inhibit osteoblast functioning, we additionally expand the potential applications of turnover homeostasis-based therapeutic strategies on biofilm or infection related immunity homeostasis for host-bacteria. Based on this review, we expect to provide useful insights of targeting therapeutic efficacy for biofilm and bone infection eradication.
Collapse
Affiliation(s)
- Shizhou Wu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Binjie Wu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yunjie Liu
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Shu Deng
- Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, United States
| | - Lei Lei
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Lei Lei,
| | - Hui Zhang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Hui Zhang,
| |
Collapse
|
161
|
Successful Treatment with Antibiotics Alone for Infant Rib Osteomyelitis. Case Rep Pediatr 2022; 2022:3093784. [PMID: 35847833 PMCID: PMC9277467 DOI: 10.1155/2022/3093784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Pediatric rib osteomyelitis is a rare disease occurring predominantly in the neonatal period and early childhood and accounting for about 1% of all pediatric osteomyelitis. Compared to osteomyelitis in other parts of the body, pediatric rib osteomyelitis shows few localized findings (such as redness and swelling) and often an indolent lesion as well either of which may delay diagnosis and thus make treatment more difficult. A previously healthy one-year-old girl came to our department with a chief complaint of fever lasting for three days. She was admitted to our department to investigate her fever. At the time of admission, radiographs showed decreased permeability in the left lung field; so, we started antimicrobial therapy on the assumption of pneumonia. On the second day of admission, methicillin-susceptible Staphylococcus aureus was detected in the blood culture. A further, more detailed physical examination revealed some slight left anterior chest swelling. We performed a contrast-enhanced CT scan and an MRI and diagnosed her with rib osteomyelitis complicated with a chest wall abscess. She was given intravenous cefazolin for two weeks, switched to oral cephalexin for four weeks, and then recovered completely. She was treated without surgical intervention, having showed a good response to antimicrobial therapy. Osteomyelitis of the ribs in children is reported to be more common in the lower ribs and to occur more frequently in infants. In many cases, the earliest symptoms are nonspecific, so careful examination to detect any subtle abnormalities—such as swelling or mass—is of key importance for early diagnosis in infants. Regarding treatment, most cases of hematogenous osteomyelitis resolve with antimicrobial therapy alone—although surgical intervention may be required in cases of poor response to antimicrobial therapy. Therefore, early diagnosis of rib osteomyelitis through careful physical examination may reduce the chances of requiring surgical intervention.
Collapse
|
162
|
Jothipandiyan S, Suresh D, Sekaran S, Sudharsan M, Subramanian R, Paramasivam N. Transition metal complex laminated bioactive implant alleviates Methicillin Resistant Staphylococcus aureus virulence. BIOMATERIALS ADVANCES 2022; 137:212813. [PMID: 35929252 DOI: 10.1016/j.bioadv.2022.212813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/30/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Orthopedic implant infections cause a serious threat after implantation. The major source of implant infection is biofilms which are highly tolerant to antibiotics due to the presence of rigid biofilm matrix. Hence to overcome biofilm mediated implant infections, we developed a novel antibiofilm agent, palladium (II) thiazolinyl picolinamide complex (Pd(II)-E). From our study, it was found that Pd(II)-E have profound biofilm inhibition activity and also reduced various virulence factors of Methicillin resistant Staphylococcus aureus (MRSA) including slime synthesis, Phenol soluble modulin (PSM) mediated spreading, Exopolysaccharides production and staphyloxanthin synthesis. Further, Pd(II)-E was coated over the titanium plates which was confirmed using EDX (Energy Dispersive X-Ray) analysis. The Pd(II)-E coated plates were able to prevent the biofilm formation on them which was evident under a Scanning electron microscope (SEM) and several virulent genes were found to be downregulated in the biofilms on the coated titanium plates which confirmed by qPCR. From our findings, it was found that Pd(II)-E coated titanium implants would be an effective alternate approach for preventing biofilm mediated implant infections.
Collapse
Affiliation(s)
- Sowndarya Jothipandiyan
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India
| | - Devarajan Suresh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Murugesan Sudharsan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Raghunandhakumar Subramanian
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Nithyanand Paramasivam
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
163
|
Ndukwe ARN, Wiedbrauk S, Boase NRB, Fairfull‐Smith KE. Strategies to Improve the Potency of Oxazolidinones towards Bacterial Biofilms. Chem Asian J 2022; 17:e202200201. [PMID: 35352479 PMCID: PMC9321984 DOI: 10.1002/asia.202200201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Indexed: 11/29/2022]
Abstract
Biofilms are part of the natural lifecycle of bacteria and are known to cause chronic infections that are difficult to treat. Most antibiotics are developed and tested against bacteria in the planktonic state and are ineffective against bacterial biofilms. The oxazolidinones, including the last resort drug linezolid, are one of the main classes of synthetic antibiotics progressed to clinical use in the last 50 years. They have a unique mechanism of action and only develop low levels of resistance in the clinical setting. With the aim of providing insight into strategies to design more potent antibiotic compounds with activity against bacterial biofilms, we review the biofilm activity of clinically approved oxazolidinones and report on structural modifications to oxazolidinones and their delivery systems which lead to enhanced anti-biofilm activity.
Collapse
Affiliation(s)
- Audrey R. N. Ndukwe
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Sandra Wiedbrauk
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Nathan R. B. Boase
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Kathryn E. Fairfull‐Smith
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| |
Collapse
|
164
|
Han K, Sathiyaseelan A, Saravanakumar K, Park SY, Shin S, Choi HB, Naveen KV, Wang MH. Biomimetic hydroxyapatite-chitosan nanoparticles deliver the erythromycin for improved antibacterial activity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
165
|
Yin X, Fang Z, Fang Y, Zhu L, Pang J, Liu T, Zhao Z, Zhao J. Antimicrobial Photodynamic Therapy Involving a Novel Photosensitizer Combined With an Antibiotic in the Treatment of Rabbit Tibial Osteomyelitis Caused by Drug-Resistant Bacteria. Front Microbiol 2022; 13:876166. [PMID: 35531297 PMCID: PMC9073078 DOI: 10.3389/fmicb.2022.876166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Osteomyelitis is deep tissue inflammation caused by bacterial infection. If such an infection persists, it can lead to dissolution and necrosis of the bone tissue. As a result of the extensive use of antibiotics, drug-resistant bacteria are an increasingly common cause of osteomyelitis, limiting the treatment options available to surgeons. Photodynamic antibacterial chemotherapy has attracted increasing attention as a potential alternative treatment. Its advantages are a broad antibacterial spectrum, lack of drug resistance, and lack of toxic side effects. In this study, we explored the impact of the new photosensitizer LD4 in photodynamic antimicrobial chemotherapy (PACT), both alone and in combination with an antibiotic, on osteomyelitis. A rabbit tibial osteomyelitis model was employed and microbiological, histological, and radiological studies were performed. New Zealand white rabbits (n = 36) were randomly divided into a control group, antibiotic group, PACT group and PACT + antibiotic group for treatment. In microbiological analysis, a reduction in bacterial numbers of more than 99.9% was recorded in the PACT group and the PACT + antibiotic group 5 weeks after treatment (p < 0.01). In histological analysis, repair of the damaged bone tissue was observed in the PACT group, and bone repair in the PACT + antibiotic group was even more significant. In radiological analysis, the X-ray Norden score showed that the severity of bone tissue defects or destruction followed the pattern: PACT + antibiotic group < PACT group < antibiotic group < control group.
Collapse
Affiliation(s)
- Xiujuan Yin
- School of Clinical Medicine, Hebei University, Baoding, China
| | - Ziyuan Fang
- School of Clinical Medicine, Hebei University, Baoding, China
| | - Yan Fang
- School of Clinical Medicine, Hebei University, Baoding, China
| | - Lin Zhu
- School of Clinical Medicine, Hebei University, Baoding, China
| | - Jinwen Pang
- School of Clinical Medicine, Hebei University, Baoding, China
| | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Material, Institute of Biomedical Engineering, Peking Union Medical College, Chinese Academy of Medical Sciences, Tianjin, China
| | - Zhanjuan Zhao
- School of Basic Medicine, Hebei University, Baoding, China
| | - Jianxi Zhao
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
166
|
Kong P, Ren Y, Yang J, Fu W, Liu Z, Li Z, He W, Wang Y, Zheng Z, Ding M, Schwarz EM, Deng Z, Xie C. Relapsed boyhood tibia polymicrobial osteomyelitis linked to dermatophytosis: a case report. BMC Surg 2022; 22:156. [PMID: 35509041 PMCID: PMC9066813 DOI: 10.1186/s12893-022-01600-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background Relapsed childhood polymicrobial osteomyelitis associated with dermatophytosis has not been reported in the literature.
Case presentation Here we report on a case of a 45-year-old man who had left tibial osteomyelitis for 29 years, accompanied by skin fungal infection of the ipsilateral heel for 20 years, and underwent a second operation due to recurrence of polymicrobial infection 6 years ago. The patient had a history of injury from a rusty object, which penetrated the anterior skin of the left tibia middle segment causing subsequent bone infection, but was asymptomatic after receiving treatments in 1983. The patient was physically normal until dermatophytosis occurred on the ipsilateral heel skin in 1998. The patient complained that the dermatophytosis was gradually getting worse, and the tibial wound site became itchy, red, and swollen. The left tibial infection resurged in May 2012, leading to the patient receiving debridement and antibiotic treatment. H&E and Gram-stained histology was performed on biopsy specimens of sequestrum and surrounding inflammatory tissue. Tissue culture and microbiology examination confirmed polymicrobial infection with Staphylococcus aureus (S. aureus) and Corynebacterium and a fungus. Additionally, the patient also received potassium permanganate for dermatophytosis when he was admitted into the hospital.
Conclusions Together with longitudinal follow-up of medical history, surgical findings, histopathological and microbiology culture evidence, we conclude that boyhood tibia polymicrobial osteomyelitis with S. aureus and Corynebacterium occurred in this patient, and the fungal activation of dermatophytosis may have led to osteomyelitis relapse.
Collapse
Affiliation(s)
- Ping Kong
- Department of Orthopaedics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.,Joint Orthopaedic Research Center of Zunyi Medical University and University of Rochester Medical Center, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Youliang Ren
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400065, China
| | - Jin Yang
- Department of Orthopaedics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.,Joint Orthopaedic Research Center of Zunyi Medical University and University of Rochester Medical Center, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.,Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400065, China
| | - Wei Fu
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang, 550000, China
| | - Ziming Liu
- Institute of Sports Medicine Beijing Key Laboratory of Sports Injuries Peking University Third Hospital, Beijing, 100191, China
| | - Zhengdao Li
- Department of Orthopaedics, First People's Hospital of Xuzhou, Affiliated Hospital of China University of Mining and Technology, Xuzhou, 221005, China
| | - Wenbin He
- Department of Trauma, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yunying Wang
- Department of Laboratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400065, China
| | - Zhonghui Zheng
- Department of Orthopaedics, Second Affiliated Hospital of Central South University, Changsha, 410008, China
| | - Muliang Ding
- Department of Orthopaedics, Second Affiliated Hospital of Central South University, Changsha, 410008, China
| | - Edward M Schwarz
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Zhongliang Deng
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400065, China
| | - Chao Xie
- Joint Orthopaedic Research Center of Zunyi Medical University and University of Rochester Medical Center, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China. .,Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
167
|
Wang J, Zhang Q. Early diagnosis and treatment of acute brucellosis knee arthritis complicated by acute osteomyelitis: two cases report. BMC Infect Dis 2022; 22:430. [PMID: 35509042 PMCID: PMC9066799 DOI: 10.1186/s12879-022-07392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Brucellosis is an endemic systemic infectious disease, the most common complication is bone and joint involvement. Sacroiliac joint and spinal joint are the most frequently involved sites in adults, but knee joint infection is rare, and acute infectious knee arthritis complicated by acute osteomyelitis is even extremely uncommon in adults. Here, we report two cases of acute septic knee arthritis complicated by acute osteomyelitis caused by Brucella melitensis (B. melitensis). Case presentation Both patients had a history of traveling in animal husbandry areas within three months. On clinical examination, their right knee joint was tender, swollen, had limited movement and an effusion was present. Imaging examination showed effusion and synovial thickening of the right knee joint, as well as subchondral bone edema of the distal femur and proximal tibia. Laboratory examination showed that the serum agglutination test (SAT) in both patients were positive (1: 640 and 1: 320) without leukocytosis, although the proportion of lymphocytes, erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) significantly increased. Both patients underwent knee joint aspiration. Real-time polymerase chain reaction (Real-time PCR) analysis of synovial fluid showed that there was B. melitensis, and blood bacterial culture was negative. We determined that two patients had acute brucellosis knee arthritis complicated by acute osteomyelitis. Antibiotic treatment was given during hospitalization consisting of doxycycline (0.1 g po bid) and rifampicin (0.6 g po qd) for six weeks, and the changes of inflammatory indexes were closely monitored. At discharge, the symptoms had completely resolved, imaging abnormalities disappeared, and inflammatory indexes returned to normal. There was no recurrence of the disease at 1-year follow-up. Conclusion Acute brucellosis knee arthritis complicated by acute osteomyelitis is a rare but serious complication of brucellosis in adults. There is no obvious specificity of clinical manifestation and imaging examination. Early diagnosis and treatment can prevent the occurrence of knee joint deformity and even pathological fracture. Clinicians should fully consider the possibility of brucellosis where the travel or occupational history is suggestive.
Collapse
Affiliation(s)
- Jie Wang
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Qiang Zhang
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| |
Collapse
|
168
|
Lin H, Yang C, Luo Y, Ge M, Shen H, Zhang X, Shi J. Biomimetic Nanomedicine-Triggered in Situ Vaccination for Innate and Adaptive Immunity Activations for Bacterial Osteomyelitis Treatment. ACS NANO 2022; 16:5943-5960. [PMID: 35316599 DOI: 10.1021/acsnano.1c11132] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of bacterial vaccines for inducing an immunoresponse against infectious diseases such as osteomyelitis is of great significance and importance. However, the responsiveness of bacterial immunotherapy remains far from being satisfactory, largely due to the erratic antigen epitopes of bacteria. Herein, we report an in situ vaccination strategy for the immunotherapy of bacterial infection based on an osteomyelitis model using a biomimetic nanomedicine named as HMMP, which was constructed by engineering PpIX-encapsulated hollow MnOx with a hybrid membrane exfoliated from both macrophage and tumor cell lines. The as-established HMMP features a burst bacterial antigen release as the in situ vaccine by the augmented sonodynamic treatment and the resultant priming of antigen-presenting cells for the following activations of both cellular and humoral adaptive immunities against bacterial infections. This treatment regimen not only triggers initial bacterial regression in the established osteomyelitis model but also simultaneously generates robust systemic antibacterial immunity against poorly immunogenic secondary osteomyelitis in the contralateral knee and additionally confers long-lasting bacteria-specific immune memory responses to prevent infection relapse. Thus, our study provides a proof of concept of in situ vaccination for the activation of both innate and adaptive antibacterial immune responses, providing an individual-independent bacterial immunotherapy.
Collapse
Affiliation(s)
- Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, P.R. China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P.R. China
| | - Chuang Yang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Yao Luo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Min Ge
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, P.R. China
| | - Hao Shen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
- Department of Orthopedics, Jinjiang Municipal Hospital, Jinjiang 362200, P.R. China
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, P.R. China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P.R. China
| |
Collapse
|
169
|
Billings C, Anderson DE. Role of Animal Models to Advance Research of Bacterial Osteomyelitis. Front Vet Sci 2022; 9:879630. [PMID: 35558882 PMCID: PMC9087578 DOI: 10.3389/fvets.2022.879630] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Osteomyelitis is an inflammatory bone disease typically caused by infectious microorganisms, often bacteria, which causes progressive bone destruction and loss. The most common bacteria associated with chronic osteomyelitis is Staphylococcus aureus. The incidence of osteomyelitis in the United States is estimated to be upwards of 50,000 cases annually and places a significant burden upon the healthcare system. There are three general categories of osteomyelitis: hematogenous; secondary to spread from a contiguous focus of infection, often from trauma or implanted medical devices and materials; and secondary to vascular disease, often a result of diabetic foot ulcers. Independent of the route of infection, osteomyelitis is often challenging to diagnose and treat, and the effect on the patient's quality of life is significant. Therapy for osteomyelitis varies based on category and clinical variables in each case. Therapeutic strategies are typically reliant upon protracted antimicrobial therapy and surgical interventions. Therapy is most successful when intensive and initiated early, although infection may recur months to years later. Also, treatment is accompanied by risks such as systemic toxicity, selection for antimicrobial drug resistance from prolonged antimicrobial use, and loss of form or function of the affected area due to radical surgical debridement or implant removal. The challenges of diagnosis and successful treatment, as well as the negative impacts on patient's quality of life, exemplify the need for improved strategies to combat bacterial osteomyelitis. There are many in vitro and in vivo investigations aimed toward better understanding of the pathophysiology of bacterial osteomyelitis, as well as improved diagnostic and therapeutic strategies. Here, we review the role of animal models utilized for the study of bacterial osteomyelitis and their critically important role in understanding and improving the management of bacterial osteomyelitis.
Collapse
|
170
|
Chang B, Zhang L, Wu S, Sun Z, Cheng Z. Engineering single-atom catalysts toward biomedical applications. Chem Soc Rev 2022; 51:3688-3734. [PMID: 35420077 DOI: 10.1039/d1cs00421b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Due to inherent structural defects, common nanocatalysts always display limited catalytic activity and selectivity, making it practically difficult for them to replace natural enzymes in a broad scope of biologically important applications. By decreasing the size of the nanocatalysts, their catalytic activity and selectivity will be substantially improved. Guided by this concept, the advances of nanocatalysts now enter an era of atomic-level precise control. Single-atom catalysts (denoted as SACs), characterized by atomically dispersed active sites, strikingly show utmost atomic utilization, precisely located metal centers, unique metal-support interactions and identical coordination environments. Such advantages of SACs drastically boost the specific activity per metal atom, and thus provide great potential for achieving superior catalytic activity and selectivity to functionally mimic or even outperform natural enzymes of interest. Although the size of the catalysts does matter, it is not clear whether the guideline of "the smaller, the better" is still correct for developing catalysts at the single-atom scale. Thus, it is clearly a new, urgent issue to address before further extending SACs into biomedical applications, representing an important branch of nanomedicine. This review begins by providing an overview of recent advances of synthesis strategies of SACs, which serve as a basis for the discussion of emerging achievements in improving the enzyme-like catalytic properties at an atomic level. Then, we carefully compare the structures and functions of catalysts at various scales from nanoparticles, nanoclusters, and few-atom clusters to single atoms. Contrary to conventional wisdom, SACs are not the most catalytically active catalysts in specific reactions, especially those requiring multi-site auxiliary activities. After that, we highlight the unique roles of SACs toward biomedical applications. To appreciate these advances, the challenges and prospects in rapidly growing studies of SACs-related catalytic nanomedicine are also discussed in this review.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Liqin Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Shaolong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Ziyan Sun
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China. .,Bohai rim Advanced Research Institute for Drug Discovery, Yantai, 264000, China.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, California 94305, USA
| |
Collapse
|
171
|
Zhang T, Yu S, Lv X, Gan Y, Luo Y, Li T. Paediatric Osteomyelitis and Septic Arthritis Pathogen Distribution and Antimicrobial Resistance in a Single Centre: A 15-Year Retrospective Analysis. J Trop Pediatr 2022; 68:6589881. [PMID: 35595253 DOI: 10.1093/tropej/fmac038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND The epidemiological characteristics of the common pathogens underlying acute haematogenous osteoarticular infection (AHOI) and their resistance to drugs have temporal and regional differences. AIMS To determine the antimicrobial treatment most effective for culture-negative AHOI patients and those without bacterial cultures. METHODS Retrospective analysis of clinical data of children with AHOI who were culture positive from January 2007 to December 2021. And the distribution of the main pathogens and the drug resistance Staphylococcus aureus were analysed in different time periods, age groups and infection types. RESULTS A total of 188 cases met the inclusion criteria, including 97 cases of acute haematogenous osteomyelitis (AHO), 75 cases of septic arthritis (SA) and 16 cases of AHO concomitant with SA. The commonest causative pathogen in local children was S. aureus of Gram-positive cocci, followed by Streptococcus, and occasionally Gram-negative bacilli. The distribution of S. aureus had no significant correlation with age or infection type. Staphylococcus aureus accounted for 81.82%, 90.91% and 96.15% of all pathogens, and methicillin-resistant S. aureus (MRSA) accounted for 24.22%, 53.33% and 76.00% of S. aureus in 2007-11, 2012-16 and 2017-21, respectively. The frequency of MRSA infection showed an increasing trend over time. CONCLUSION Staphylococcus aureus is still the main pathogen of AHOI in local children. The proportion of MRSA in S. aureus has also increased over time to 76% in the last 5 years, and the increased proportion of MRSA can affect the choice of initial empirical medication.
Collapse
Affiliation(s)
- Tianjiu Zhang
- Department of Orthopaedics, the Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Song Yu
- Department of Orthopaedics, the Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Xin Lv
- Department of Pediatric Orthopaedics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Yongqiao Gan
- Department of Pediatric Orthopaedics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Yu Luo
- Department of Pediatric Orthopaedics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Tangjiang Li
- Department of Pediatric Orthopaedics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
172
|
Surface functionalization with copper endows carbonate apatite honeycomb scaffold with antibacterial, proangiogenic, and pro-osteogenic activities. BIOMATERIALS ADVANCES 2022; 135:212751. [PMID: 35929223 DOI: 10.1016/j.bioadv.2022.212751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/04/2022] [Accepted: 03/04/2022] [Indexed: 11/22/2022]
Abstract
Osteomyelitis is a potentially devastating inflammatory bone disease that leads to bone destruction and loss. Treatment of osteomyelitis requires the removal of residual bacteria as well as osteogenesis with angiogenesis at the site of treatment. Use of an appropriate amount of copper (Cu) in treatment scaffolds may achieve these goals without the risk of toxicity. In this study, the surface of the carbonate apatite honeycomb scaffold was functionalized with Cu through a dissolution-precipitation reaction. The resulting scaffolds retained the honeycomb structure after immersion in CuCl2 solution, and Cu was precipitated on the surface as libethenite [Cu2(OH)PO4]. The surface Cu concentration was controlled by the concentration of the CuCl2 solution. Scaffolds with a surface Cu concentration of 23.8 wt% exhibited antibacterial and cytotoxic effects, whereas those with concentrations of ≤4.6 wt% exerted antibacterial effects without negatively affecting the cellular adhesion, proliferation, differentiation, and calcification of osteoblast-like cells. Furthermore, scaffolds with a surface Cu concentration of 4.6 wt% Cu inhibited bacterial growth for at least 28 days and displayed proangiogenic and pro-osteogenic activities in vivo. These data confirm the success in functionalizing scaffolds with Cu that may be utilized as an innovative osteomyelitis therapy.
Collapse
|
173
|
Ding R, Wei S, Huang M. Long non-coding RNA KCNQ1OT1 overexpression promotes osteogenic differentiation of staphylococcus aureus-infected human bone mesenchymal stem cells by sponging microRNA miR-29b-3p. Bioengineered 2022; 13:5855-5867. [PMID: 35226820 PMCID: PMC8973675 DOI: 10.1080/21655979.2022.2037898] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Osteomyelitis (OM) is an orthopedic disease caused by bone infections in the bone cortex, bone marrow, periosteum, and surrounding soft tissues. Recent studies have implicated non-coding RNAs (ncRNAs) in the development of OM. However, little is known about the role of ncRNAs in the osteogenic differentiation during bone infection. In the present study, we investigated the role of KCNQ1OT1/miR-29b-3p axis in osteogenic differentiation in staphylococcus aureus (SpA)-infected human bone mesenchymal stem cells (hBMSCs). We first examined the expression of lncRNA KCNQ1OT1 and miR-29b-3p in the serum samples of OM patients and healthy controls. We also infected hBMSCs with different concentrations of SpA and studied the osteogenic differentiation after infection. Our results revealed that KCNQ1OT1 was downregulated while miR-29b-3p was upregulated in the serum samples of OM patients, as well as in SpA-infected hBMSCs. Overexpression of KCNQ1OT1 ameliorated the damage in hBMSCs caused by SpA infection. KCNQ1OT1 could support hBMSCs osteogenic differentiation by enhancing ALP activity, alizarin red S accumulation, expressions of osteogenic markers, and attenuating inflammatory responses after SpA infection. We further showed that miR-29b-3p was a downstream target of KCNQ1OT1, mediating the osteogenic differentiation of hBMSCs during SpA infection. Our data suggest that KCNQ1OT1 could ameliorate the SpA-induced suppression of osteogenic differentiation in hBMSCs by sponging miR-29b-3p. Modulating KCNQ1OT1 expression may serve as a strategy to ameliorate osteomyelitis.
Collapse
Affiliation(s)
- Ran Ding
- Department of Orthopedic Surgery, Wuhan General Hospital of People's Liberation Army, Wuhan City, China
| | - Shijun Wei
- Department of Orthopedic Surgery, Wuhan General Hospital of People's Liberation Army, Wuhan City, China
| | - Ming Huang
- Department of Orthopedic Surgery, Wuhan General Hospital of People's Liberation Army, Wuhan City, China
| |
Collapse
|
174
|
Zhang Z, Zhou J, Liu C, Zhang J, Shibata Y, Kong N, Corbo C, Harris MB, Tao W. Emerging biomimetic nanotechnology in orthopedic diseases: progress, challenges, and opportunities. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
175
|
Role of Implantable Drug Delivery Devices with Dual Platform Capabilities in the Prevention and Treatment of Bacterial Osteomyelitis. Bioengineering (Basel) 2022; 9:bioengineering9020065. [PMID: 35200418 PMCID: PMC8869141 DOI: 10.3390/bioengineering9020065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/26/2022] Open
Abstract
As medicine advances and physicians are able to provide patients with innovative solutions, including placement of temporary or permanent medical devices that drastically improve quality of life of the patient, there is the persistent, recurring problem of chronic bacterial infection, including osteomyelitis. Osteomyelitis can manifest as a result of traumatic or contaminated wounds or implant-associated infections. This bacterial infection can persist as a result of inadequate treatment regimens or the presence of biofilm on implanted medical devices. One strategy to mitigate these concerns is the use of implantable medical devices that simultaneously act as local drug delivery devices (DDDs). This classification of device has the potential to prevent or aid in clearing chronic bacterial infection by delivering effective doses of antibiotics to the area of interest and can be engineered to simultaneously aid in tissue regeneration. This review will provide a background on bacterial infection and current therapies as well as current and prospective implantable DDDs, with a particular emphasis on local DDDs to combat bacterial osteomyelitis.
Collapse
|
176
|
Feng X, Lei J, Ma L, Ouyang Q, Zeng Y, Liang H, Lei C, Li G, Tan L, Liu X, Yang C. Ultrasonic Interfacial Engineering of MoS 2 -Modified Zn Single-Atom Catalysts for Efficient Osteomyelitis Sonodynamic Ion Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105775. [PMID: 34889522 DOI: 10.1002/smll.202105775] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/12/2021] [Indexed: 05/23/2023]
Abstract
Osteomyelitis is considered as the most serious bone infection, which can lead to the bone destruction or fatal sepsis. Clinical treatments through frequent antibiotics administration and surgical debridement bring inevitable side effects including drug-resistance and disfigurements. It is urgent to develop an antibiotics-free and rapid strategy to treat osteomyelitis. Herein, a bifunctional sonosensitizer that consists of porphyrin-like Zn single-atom catalysts (g-ZnN4 ) and MoS2 quantum dots is developed, which exhibits excellent sonodynamic antibacterial efficiency and osteogenic ability. It is found that the construction of heterogeneous interfaces of g-ZnN4 -MoS2 fully activates the adsorbed O2 due to the increased interface charge transfer, enhanced spin-flip, and reduced activation energy of O2 . The generated 1 O2 can kill methicillin-resistant Staphylococcus aureus (MRSA) with an antibacterial efficiency of 99.58% under 20 min of ultrasound (US) irradiation. The Zn single atoms immobilized in g-ZnN4 can be released steadily in the form of Zn2+ for 28 days within safe concentration, realizing the great osteoinductive ability of such a sonosensitizer. For the treatment of MRSA-infected osteomyelitis, the inflammation and bone loss can be significantly suppressed through sonodynamic ion therapy. This work provides another strategy for developing high efficiency sonosensitizer through ultrasound interfacial engineering.
Collapse
Affiliation(s)
- Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qunle Ouyang
- Biomedical Materials Engineering Research Center, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Yuxuan Zeng
- Biomedical Materials Engineering Research Center, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Hang Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chunchi Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Tan
- Biomedical Materials Engineering Research Center, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Xiangmei Liu
- School of Life Science and Health Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin, 300401, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
177
|
Gama e Silva GL, Sato de Souza Bustamante Monteiro M, dos Santos Matos AP, Santos-Oliveira R, Kenechukwu FC, Ricci-Júnior E. Nanofibers in the treatment of osteomyelitis and bone regeneration. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
178
|
Shi T, Ruan Z, Wang X, Lian X, Chen Y. Erythrocyte Membrane-Enveloped Molybdenum Disulfide Nanodots for Biofilm Elimination on Implants via Toxin Neutralization and Immune Modulation. J Mater Chem B 2022; 10:1805-1820. [PMID: 35199816 DOI: 10.1039/d1tb02615a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Implant-related infections (IRIs) caused by bacterial biofilms remain a prevalent but tricky clinical issue, which are characterized by drug resistance, toxin impairment and immunity suppression. Recently, antimicrobial therapies based on...
Collapse
Affiliation(s)
- Tingwang Shi
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China.
| | - Zesong Ruan
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China.
| | - Xin Wang
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China.
| | - Xiaofeng Lian
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China.
| | - Yunfeng Chen
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China.
| |
Collapse
|
179
|
Gu F, Zhang K, Li J, Xie X, Wen Q, Sui Z, Su Z, Yu T. Changes of Migration, Immunoregulation and Osteogenic Differentiation of Mesenchymal Stem Cells in Different Stages of Inflammation. Int J Med Sci 2022; 19:25-33. [PMID: 34975296 PMCID: PMC8692114 DOI: 10.7150/ijms.58428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Bone infection has always been the focus of orthopedic research. Mesenchymal stem cells (MSCs) are the natural progenitors of osteoblasts, and the process of osteogenesis is triggered in response to different signals from the extracellular matrix. MSCs exert important functions including secretion and immune regulation and also play a key role in bone regeneration. The biological behavior of MSCs in acute and chronic inflammation, especially the transformation between acute inflammation and chronic inflammation, has aroused great interest among researchers. This paper reviews the recent literature and summarizes the behavior and biological characteristics of MSCs in acute and chronic inflammation to stimulate further research on MSCs and treatment of bone diseases.
Collapse
Affiliation(s)
- Feng Gu
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Ke Zhang
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Jiangbi Li
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Xiaoping Xie
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Qiangqiang Wen
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Zhenjiang Sui
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Zilong Su
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Tiecheng Yu
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
180
|
Sun Y, Yang Y, Jiang W, Bai H, Liu H, Wang J. In Vivo Antibacterial Efficacy of Nanopatterns on Titanium Implant Surface: A Systematic Review of the Literature. Antibiotics (Basel) 2021; 10:antibiotics10121524. [PMID: 34943736 PMCID: PMC8698789 DOI: 10.3390/antibiotics10121524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Bionic surface nanopatterns of titanium (Ti) materials have excellent antibacterial effects in vitro for infection prevention. To date, there is a lack of knowledge about the in vivo bactericidal outcomes of the nanostructures on the Ti implant surfaces. Methods: A systematic review was performed using the PubMed, Embase, and Cochrane databases to better understand surface nanoscale patterns’ in vivo antibacterial efficacy. The inclusion criteria were preclinical studies (in vivo) reporting the antibacterial activity of nanopatterns on Ti implant surface. Ex vivo studies, studies not evaluating the antibacterial activity of nanopatterns or surfaces not modified with nanopatterns were excluded. Results: A total of five peer-reviewed articles met the inclusion criteria. The included studies suggest that the in vivo antibacterial efficacy of the nanopatterns on Ti implants’ surfaces seems poor. Conclusions: Given the small number of literature results, the variability in experimental designs, and the lack of reporting across studies, concluding the in vivo antibacterial effectiveness of nanopatterns on Ti substrates’ surfaces remains a big challenge. Surface coatings using metallic or antibiotic elements are still practical approaches for this purpose. High-quality preclinical data are still needed to investigate the in vivo antibacterial effects of the nanopatterns on the implant surface.
Collapse
Affiliation(s)
- Yang Sun
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
| | - Yang Yang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
- Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Disease, The Second Hospital of Jilin University, Changchun 130041, China
| | - Weibo Jiang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
| | - Haotian Bai
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
- Correspondence:
| |
Collapse
|
181
|
Wassif RK, Elkayal M, Shamma RN, Elkheshen SA. Recent advances in the local antibiotics delivery systems for management of osteomyelitis. Drug Deliv 2021; 28:2392-2414. [PMID: 34755579 PMCID: PMC8583938 DOI: 10.1080/10717544.2021.1998246] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic osteomyelitis is a challenging disease due to its serious rates of mortality and morbidity while the currently available treatment strategies are suboptimal. In contrast to the adopted systemic treatment approaches after surgical debridement in chronic osteomyelitis, local drug delivery systems are receiving great attention in the recent decades. Local drug delivery systems using special carriers have the pros of enhancing the feasibility of penetration of antimicrobial agents to bone tissues, providing sustained release and localized concentrations of the antimicrobial agents in the infected area while avoiding the systemic side effects and toxicity. Most important, the incorporation of osteoinductive and osteoconductive materials in these systems assists bones proliferation and differentiation, hence the generation of new bone materials is enhanced. Some of these systems can also provide mechanical support for the long bones during the healing process. Most important, if the local systems are designed to be injectable to the affected site and biodegradable, they will reduce the level of invasion required for implantation and can win the patients’ compliance and reduce the healing period. They will also allow multiple injections during the course of therapy to guard against the side effect of the long-term systemic therapy. The current review presents different available approaches for delivering antimicrobial agents for the treatment of osteomyelitis focusing on the recent advances in researches for local delivery of antibiotics.HIGHLIGHTS Chronic osteomyelitis is a challenging disease due to its serious mortality and morbidity rates and limited effective treatment options. Local drug delivery systems are receiving great attention in the recent decades. Osteoinductive and osteoconductive materials in the local systems assists bones proliferation and differentiation Local systems can be designed to provide mechanical support for the long bones during the healing process. Designing the local system to be injectable to the affected site and biodegradable will reduces the level of invasion and win the patients’ compliance.
Collapse
Affiliation(s)
- Reem Khaled Wassif
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Maha Elkayal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Rehab Nabil Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Seham A Elkheshen
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
182
|
George LH, Arakkal A, Sreedharan P, Sailaja GS. Injectable polyelectrolyte complex-nascent HAP biodegradable antibiotic delivery system for the treatment of osteomyelitis. Biomed Mater 2021; 17. [PMID: 34753122 DOI: 10.1088/1748-605x/ac37c5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/11/2022]
Abstract
An injectable osteoconductive polyelectrolyte complex -hydroxyapatite formulation capable of controlled delivery of ciprofloxacin has been developed from a novel biodegradable polyelectrolyte complex and antibiotic loaded nascent hydroxyapatite (n-HAP) for the treatment of osteomyelitis. A single source (chitosan) derived polyelectrolytes were complexed in situ in the presence of n-HAP, pre-loaded with ciprofloxacin. The PEC- (n-HAP) nanoformulation (HPEC) was characterized by FT-IR, XRD, TGA and TEM analyses. HPEC combines functionalities of n-HAP (crystallinity and osteoconductivity) as well as PEC (biodegradable hydrophilic electrostatically bound macromolecular network) imparting better control over swelling and degradation kinetics favourable for drug release and transport of micronutrients. MTT assay and cytoskeleton staining (MG 63 cells) established cytocompatibility of HPEC. Early biomimetic mineralization of apatite was manifested under simulated physiological condition with a Ca/P of 1.23 (day 3) and 1.55 (day 6) complimented by in vitro biomineralization of MG-63 and Human Osteosarcoma (HOS) cells in a week (Alizarin Red S staining), which was further validated by calcium quantification. Antibacterial efficacy of HPEC has been evaluated by delivery kinetics of ciprofloxacin and by disc diffusion method against S. aureus and E. coli. The injectable system therefore possesses unique combination of functionalities: osteoconduction enriched with early biomineralization, antibacterial activity and is biodegradable; hence highly suitable for osteomyelitis treatment.
Collapse
Affiliation(s)
- Liz Hannah George
- Cochin University of Science and Technology, Department of Polymer Science and Rubber Technology, KOCHI, Kerala, 682022, INDIA
| | - Aswin Arakkal
- Cochin University of Science and Technology, Department of Polymer Science and Rubber Technology, CUSAT, KOCHI, Kerala, 682022, INDIA
| | - Prathapan Sreedharan
- Department of Applied Chemistry, Cochin University of Science and Technology, CUSAT, KOCHI, Kerala, 682022, INDIA
| | - G S Sailaja
- Department of Polymer Science and Technology, Cochin University of Science and Technology, Cochin 22, KOCHI, KOCHI, Kerala, 682022, INDIA
| |
Collapse
|
183
|
Current opinions on the mechanism, classification, imaging diagnosis and treatment of post-traumatic osteomyelitis. Chin J Traumatol 2021; 24:320-327. [PMID: 34429227 PMCID: PMC8606609 DOI: 10.1016/j.cjtee.2021.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 02/04/2023] Open
Abstract
Post-traumatic osteomyelitis (PTO) is a worldwide problem in the field of orthopaedic trauma. So far, there is no ideal treatment or consensus-based gold standard for its management. This paper reviews the representative literature focusing on PTO, mainly from the following four aspects: (1) the pathophysiological mechanism of PTO and the interaction mechanism between bacteria and the body, including fracture stress, different components of internal fixation devices, immune response, occurrence and development mechanisms of inflammation in PTO, as well as the occurrence and development mechanisms of PTO in skeletal system; (2) clinical classification, mainly the etiological classification, histological classification, anatomical classification and the newly proposed new classifications (a brief analysis of their scope and limitations); (3) imaging diagnosis, including non-invasive examination and invasive examination (this paper discusses their advantages and disadvantages respectively, and briefly compares the sensitivity and effectiveness of the current examinations); and (4) strategies, including antibiotic administration, surgical choices and other treatment programs. Based on the above-mentioned four aspects, we try to put forward some noteworthy sections, in order to make the existing opinions more specific.
Collapse
|
184
|
Harrison ZL, Pace LR, Brown MN, Beenken KE, Smeltzer MS, Bumgardner JD, Haggard WO, Jennings JA. Staphylococcal infection prevention using antibiotic-loaded mannitol-chitosan paste in a rabbit model of implant-associated osteomyelitis. J Orthop Res 2021; 39:2455-2464. [PMID: 33470467 PMCID: PMC8289950 DOI: 10.1002/jor.24986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/08/2020] [Accepted: 01/11/2021] [Indexed: 02/04/2023]
Abstract
Antibiotic-loaded chitosan pastes have shown advantages in the treatment and coverage of complex musculoskeletal defects. We added mannitol, previously shown to increase antibiotic susceptibility of biofilm, to an injectable chitosan/polyethylene glycol paste for delivery of antibiotics. Ground sponges (0.85% acetic acid solution, 1% chitosan, 0% or 2% mannitol, 1% polyethylene glycol) were hydrated using phosphate-buffered saline with 10 mg/ml amikacin and 10 mg/ml vancomycin added to form pastes. We inoculated rabbit radial defects with 105 colony-forming units of Staphylococcus aureus (UAMS-1) and inserted titanium pins into the cortical bone. Groups compared included mannitol blend pastes, non-mannitol blends, antibiotic-loaded bone cement, vancomycin powder, and no treatment controls. We harvested tissue samples and retrieved the pins retrieved at 3 weeks. All antibiotic-loaded groups lowered bacterial growth and colony-forming unit counts in soft and bone tissue and on titanium pins in in vivo studies. The results indicate this biomaterial is capable of eluting active antibiotics at concentrations that reduce bacterial growth on biomaterials and tissue, which, in turn, may prevent biofilm formation. Blends of chitosan and mannitol may be useful in prevention and treatment of osteomyelitis and implant-associated infections.
Collapse
Affiliation(s)
- Zoe L. Harrison
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA
| | - Leslie R. Pace
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA
| | - Madison N. Brown
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA
| | - Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Joel D. Bumgardner
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA
| | - Warren O. Haggard
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA
| | - J. Amber Jennings
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA
| |
Collapse
|
185
|
Ghosh R, Dey R, Sawoo R, Bishayi B. Neutralization of IL-17 and treatment with IL-2 protects septic arthritis by regulating free radical production and antioxidant enzymes in Th17 and Tregs: An immunomodulatory TLR2 versus TNFR response. Cell Immunol 2021; 370:104441. [PMID: 34628221 DOI: 10.1016/j.cellimm.2021.104441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/13/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
Septic arthritis is a destructive joint disease caused by Staphylococcus aureus. Synovial inflammation involved Th17 proliferation and down regulation of Treg population, thus resolution of inflammation targeting IL-17 may be important to control arthritis. Endogenous inhibition of IL-17 to regulate arthritic inflammation correlating with Th17/Treg cells TLR2 and TNFRs are not done. The role of SOD, CAT and GRx in relation to ROS production during arthritis along with expression of TLR2, TNFR1/TNFR2 in Th17/Treg cells of mice treated with IL-17A Ab/ IL-2 were studied. Increased ROS, reduced antioxidant enzyme activity was found in Th17 cells of SA infected mice whereas Treg cells of IL-17A Ab/ IL-2 treated group showed opposite effects. Neutralization of IL-17 after arthritis cause decreased TNFR1 and increased TNFR2 expression in Treg cells. Thus, neutralization of IL-17 or IL-2 treatment regulates septic arthritis by enhancing anti-inflammatory properties of Treg via antioxidant balance and modulating TLR2/TNFR response.
Collapse
Affiliation(s)
- Rituparna Ghosh
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Rajen Dey
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Ritasha Sawoo
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| |
Collapse
|
186
|
Zhou J, Zhang Z, Joseph J, Zhang X, Ferdows BE, Patel DN, Chen W, Banfi G, Molinaro R, Cosco D, Kong N, Joshi N, Farokhzad OC, Corbo C, Tao W. Biomaterials and nanomedicine for bone regeneration: Progress and future prospects. EXPLORATION (BEIJING, CHINA) 2021; 1:20210011. [PMID: 37323213 PMCID: PMC10190996 DOI: 10.1002/exp.20210011] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/12/2021] [Indexed: 06/14/2023]
Abstract
Bone defects pose a heavy burden on patients, orthopedic surgeons, and public health resources. Various pathological conditions cause bone defects including trauma, tumors, inflammation, osteoporosis, and so forth. Auto- and allograft transplantation have been developed as the most commonly used clinic treatment methods, among which autologous bone grafts are the golden standard. Yet the repair of bone defects, especially large-volume defects in the geriatric population or those complicated with systemic disease, is still a challenge for regenerative medicine from the clinical perspective. The fast development of biomaterials and nanomedicine favors the emergence and promotion of efficient bone regeneration therapies. In this review, we briefly summarize the progress of novel biomaterial and nanomedical approaches to bone regeneration and then discuss the current challenges that still hinder their clinical applications in treating bone defects.
Collapse
Affiliation(s)
- Jun Zhou
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital Harvard Medical SchoolBostonMassachusettsUSA
| | - Zhongyang Zhang
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital Harvard Medical SchoolBostonMassachusettsUSA
| | - John Joseph
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital Harvard Medical SchoolBostonMassachusettsUSA
| | - Xingcai Zhang
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- School of EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Bijan Emiliano Ferdows
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital Harvard Medical SchoolBostonMassachusettsUSA
- Pomona CollegeClaremontCaliforniaUSA
| | - Dylan Neal Patel
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital Harvard Medical SchoolBostonMassachusettsUSA
- Jericho High SchoolJerichoNew YorkUSA
| | - Wei Chen
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital Harvard Medical SchoolBostonMassachusettsUSA
| | - Giuseppe Banfi
- IRCCS GaleazziMilanoItaly
- Università Vita e Salute San RaffaeleMilanoItaly
| | | | - Donato Cosco
- Department of Health ScienceCampus Universitario‐Germaneto“Magna Græcia” University of CatanzaroCatanzaroItaly
| | - Na Kong
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital Harvard Medical SchoolBostonMassachusettsUSA
| | - Nitin Joshi
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital Harvard Medical SchoolBostonMassachusettsUSA
| | - Omid C. Farokhzad
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital Harvard Medical SchoolBostonMassachusettsUSA
| | - Claudia Corbo
- School of Medicine and SurgeryNanomedicine Center NanomibUniversity of Milano‐BicoccaVedano al LambroItaly
| | - Wei Tao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
187
|
Qiu G, Wu H, Huang M, Ma T, Schneider A, Oates TW, Weir MD, Xu HHK, Zhao L. Novel calcium phosphate cement with biofilm-inhibition and platelet lysate delivery to enhance osteogenesis of encapsulated human periodontal ligament stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112306. [PMID: 34474857 DOI: 10.1016/j.msec.2021.112306] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023]
Abstract
Osteomyelitis is caused by Staphylococcus aureus (S. aureus), with associated progressive bone loss. This study developed for the first time a calcium phosphate cement (CPC) for delivery of doxycycline (DOX) and human platelet lysate (hPL) to fight against S. aureus infection and enhance the osteogenesis of human periodontal ligament stem cells (hPDLSCs). Chitosan-containing CPC scaffolds were fabricated in the absence (CPCC) or presence of DOX (CPCC+DOX). In addition, hPL was encapsulated in alginate microbeads and incorporated into CPCC+DOX (CPCC+DOX+ hPL). Flexural strength of CPCC+DOX + hPL was (5.56 ± 0.55) MPa, lower than (8.26 ± 1.6) MPa of CPCC+DOX (p < 0.05), but exceeding the reported strength of cancellous bone. CPCC+DOX and CPCC+DOX + hPL exhibited strong antibacterial activity against S. aureus, reducing biofilm CFU by 4 orders of magnitude. The hPDLSCs encapsulated in microbeads were co-cultured with the CPCs. The hPDLSCs were able to be released from the microbeads and showed a high proliferation rate, increasing by about 8 folds at 14 days for all groups. The hPL was released from the scaffold and promoted the osteogenic differentiation of hPDLSCs. ALP activity was 28.07 ± 5.15 mU/mg for CPCC+DOX + hPL, higher than 17.36 ± 2.37 mU/mg and 1.34 ± 0.37 mU/mg of CPCC+DOX and CPCC, respectively (p < 0.05). At 7 days, osteogenic genes (ALP, RUNX2, COL-1, and OPN) in CPCC+DOX + hPL were 3-10 folds those of control. The amount of hPDLSC-synthesized bone mineral with CPCC+DOX + hPL was 3.8 folds that of CPCC (p < 0.05). In summary, the novel CPC + DOX + hPL-hPDLSCs scaffold exhibited strong antibacterial activity, excellent cytocompatibility and hPDLSC osteogenic differentiation, showing a promising approach for treatment and prevention of bone infection and enhancement of bone regeneration.
Collapse
Affiliation(s)
- Gengtao Qiu
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan, Guangdong, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hansen Wu
- General Administration Office, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingguang Huang
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Member, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; Member, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Liang Zhao
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan, Guangdong, China; Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
188
|
Boparai JK, Nancy N, Sharma PK. Molecular Cloning, Functional and Biophysical Characterization of an Antimicrobial Peptide from Rhizosphere Soil. Protein Pept Lett 2021; 28:1312-1322. [PMID: 34477502 DOI: 10.2174/0929866528666210903162137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022]
Abstract
AIM This study was designed to screen and identify an antimicrobial peptide from rhizosphere soil. The study was further focused towards overexpression, purification and characterization of this antimicrobial peptide, and to functionally validate its efficiency and efficacy as an antimicrobial agent. Yet the study was further aimed at corroborating structural and functional studies using biophysical tools. BACKGROUND Antimicrobial resistance is emerging as one of the top 10 global health crisis, it is multifaceted and is the second largest cause of mortality. According to the World Health Organization (WHO), around the world, an estimated 700,000 people die each year from infection caused by antibiotic-resistant microbes. Antimicrobial peptides offers best alternative to combat and overcome this crisis. In this manuscript, we report cloning, expression, purification and characterization of an antimicrobial peptide discovered from rhizosphere soil. OBJECTIVE Objectives of this study includes construction, screening and identification of antimicrobial peptide from metagenome followed by its expression, purification and functional and biophysical investigation. Yet another objective of the study was to determine antimicrobial efficacy and efficiency as an antimicrobial peptide towards MRSA strains. METHODS In this study, we used array of molecular biology tools that include genetic engineering, PCR amplification, construction of an expression construct and NI-NTA based purification of the recombinant peptide. We have also carried out antimicrobial activity assay to determine MIC and IC50 values of antimicrobial peptide. To establish structural and functional relationship, circular dichroism, and both extrinsic and intrinsic fluorescence spectroscopy studies were carried out. RESULTS Screening of metagenomic library resulted in identification of gene (~500bp) harbouring an open reading frame (ORF) consisting of 282 bp. Open reading frame identified in gene encodes an antimicrobial peptide which had shared ~95% sequence similarity with the antimicrobial peptide of Bacillus origin. Purification of recombinant protein using Ni-NTA column chromatography demonstrated a purified protein band of ~11 kDa on 14% SDS-PAGE which is well corroborated to theoretical deduced molecular weight of peptide from its amino acids sequence. Interestingly, the peptide exhibited antimicrobial activity in broad range of pH and temperature. MIC (minimum inhibitory concentration) determined against gram positive Bacillus sp. was found to be 0.015mg/ml, whereas in case of gram negative E. coli, it was calculated to be 0.062mg/ml. The peptide exhibited IC50 values corresponding to ~0.25mg/ml against Bacillus and ~0.5 mg/ml against E. coli. Antimicrobial susceptibility assay performed against methicillin resistant Staphylococcus aureus strain ATCC 3412 and standard strain of Staphylococcus aureus ATCC 9144 revealed its strong inhibitory activity against MRSA, whereby we observed a ~16mm clearance zone at higher peptide concentrations ~2mg/ml (~181.8µM). Biophysical investigation carried out using Trp fluorescence, ANS fluorescence and circular dichroism spectroscopy further revealed conformational stability in its secondary and tertiary structure at wide range of temperature and pH. CONCLUSION Altogether, the peptide discovered from rhizosphere metagenome hold potential in inhibiting the growth of both the gram positive and gram negative bacteria, and was equally effective in inhibiting the multidrug resistant pathogenic strains (MRSA).
Collapse
Affiliation(s)
- Jaspreet Kaur Boparai
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Pb, India
| | - Nancy Nancy
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Pb, India
| | - Pushpender Kumar Sharma
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Pb, India
| |
Collapse
|
189
|
Paggi R, Cenci E, De Socio GV, Belati A, Marini D, Gili A, Camilloni B, Mencacci A. Accuracy and Impact on Patient Management of New Tools for Diagnosis of Sepsis: Experience with the T2 Magnetic Resonance Bacteria Panel. Pathogens 2021; 10:pathogens10091132. [PMID: 34578164 PMCID: PMC8465567 DOI: 10.3390/pathogens10091132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/20/2022] Open
Abstract
The rapid and accurate identification of pathogens responsible for sepsis is essential for prompt and effective antimicrobial therapy. Molecular technologies have been developed to detect the most common causative agents, with high sensitivity and short time to result (TTR). T2 Bacteria Panel (T2), based on a combination of PCR and T2 magnetic resonance, can identify directly in blood samples Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecium, and Acinetobacter baumannii pathogens. This study evaluates the role of T2 in the diagnosis of sepsis and its impact on patient management, specifically in terms of TTR and the switch from empirical to directed therapy, comparing results of blood culture (BC) and T2 assay in 82 patients with sepsis. T2 significantly improved the detection of the causative agents of sepsis. For pathogens included in the panel, T2 sensitivity was 100% (95% CI 86.3–100.0), significantly higher than that of BC (54.8%, 95% CI 36.0–72.7). The TTR (median, IQR) of positive T2 (3.66 h, 3.59–4.31) was significantly shorter than that of the positive BC (37.58 h, 20.10–47.32). A significant reduction in the duration of empiric therapy and an increase in the percentage of patients with switched therapy was observed in patients with a positive T2 result. In conclusion, T2 can shorten and improve the etiological diagnosis of sepsis with a positive impact on patient management.
Collapse
Affiliation(s)
- Riccardo Paggi
- Medical Microbiology Section, Department of Medicine, University of Perugia, Polo Unico Sant’Andrea delle Fratte, 06132 Perugia, Italy; (R.P.); (E.C.); (A.B.); (D.M.); (B.C.)
| | - Elio Cenci
- Medical Microbiology Section, Department of Medicine, University of Perugia, Polo Unico Sant’Andrea delle Fratte, 06132 Perugia, Italy; (R.P.); (E.C.); (A.B.); (D.M.); (B.C.)
| | | | - Alessandra Belati
- Medical Microbiology Section, Department of Medicine, University of Perugia, Polo Unico Sant’Andrea delle Fratte, 06132 Perugia, Italy; (R.P.); (E.C.); (A.B.); (D.M.); (B.C.)
| | - Daniele Marini
- Medical Microbiology Section, Department of Medicine, University of Perugia, Polo Unico Sant’Andrea delle Fratte, 06132 Perugia, Italy; (R.P.); (E.C.); (A.B.); (D.M.); (B.C.)
| | - Alessio Gili
- Public Health Section, Department of Experimental Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy;
| | - Barbara Camilloni
- Medical Microbiology Section, Department of Medicine, University of Perugia, Polo Unico Sant’Andrea delle Fratte, 06132 Perugia, Italy; (R.P.); (E.C.); (A.B.); (D.M.); (B.C.)
| | - Antonella Mencacci
- Medical Microbiology Section, Department of Medicine, University of Perugia, Polo Unico Sant’Andrea delle Fratte, 06132 Perugia, Italy; (R.P.); (E.C.); (A.B.); (D.M.); (B.C.)
- Correspondence:
| |
Collapse
|
190
|
Dahdouh E, Díaz-Pollán B, Falces-Romero I, Mingorance J, Gómez-Gil R. Characterization of an osteomyelitis case caused by dalbavancin, ceftaroline, and vancomycin non-susceptible methicillin-resistant Staphylococcus aureus. Eur J Clin Microbiol Infect Dis 2021; 40:2029-2032. [PMID: 33686556 DOI: 10.1007/s10096-021-04219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/04/2021] [Indexed: 10/22/2022]
Abstract
We report a case of osteomyelitis due to methicillin-resistant Staphylococcus aureus (MRSA) that is also non-susceptible to vancomycin, dalbavancin, ceftaroline, and ceftobiprole, in the absence of exposure to the latter three antibiotics. It was isolated from a patient with a 26-year history of cranial surgeries and episodes of osteomyelitis. Whole-genome sequencing was performed. It was found to belong to ST247 and the mecA gene was detected within the SSCmec type I (1B) gene cassette that lacked the E447K mutation known to produce resistance to ceftobiprole and ceftaroline. However, mutations in other genes related to resistance to these antibiotics were found.
Collapse
Affiliation(s)
- Elias Dahdouh
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain.
| | - Beatriz Díaz-Pollán
- Clinical Microbiology and Infectious Diseases Unit, Hospital Universitario La Paz, Madrid, Spain
| | - Iker Falces-Romero
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Jesús Mingorance
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Rosa Gómez-Gil
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| |
Collapse
|
191
|
Fan Z, Pathak JL, Ge L. The Potential Role of RP105 in Regulation of Inflammation and Osteoclastogenesis During Inflammatory Diseases. Front Cell Dev Biol 2021; 9:713254. [PMID: 34414191 PMCID: PMC8369417 DOI: 10.3389/fcell.2021.713254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammatory diseases have a negative impact on bone homeostasis via exacerbated local and systemic inflammation. Bone resorbing osteoclasts are mainly derived from hematopoietic precursors and bone marrow monocytes. Induced osteoclastogenesis during inflammation, autoimmunity, metabolic diseases, and cancers is associated with bone loss and osteoporosis. Proinflammatory cytokines, pathogen-associated molecular patterns, or endogenous pathogenic factors induce osteoclastogenic differentiation by binding to the Toll-like receptor (TLR) family expressed on surface of osteoclast precursors. As a non-canonical member of the TLRs, radioprotective 105 kDa (RP105 or CD180) and its ligand, myeloid differentiation protein 1 (MD1), are involved in several bone metabolic disorders. Reports from literature had demonstrated RP105 as an important activator of B cells, bone marrow monocytes, and macrophages, which regulates inflammatory cytokines release from immune cells. Reports from literature had shown the association between RP105 and other TLRs, and the downstream signaling mechanisms of RP105 with different “signaling-competent” partners in immune cells during different disease conditions. This review is focused to summarize: (1) the role of RP105 on immune cells’ function and inflammation regulation (2) the potential regulatory roles of RP105 in different disease-mediated osteoclast activation and the underlying mechanisms, and (3) the different “signaling-competent” partners of RP105 that regulates osteoclastogenesis.
Collapse
Affiliation(s)
- Zhou Fan
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Janak L Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Linhu Ge
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Oral Disease, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
192
|
Kumar M, Mathur T, Barman TK, Chaira T, Kumar R, Joshi V, Pandya M, Sharma L, Fujii K, Bandgar M, Jadhav B, Bambal R, Upadhyay D, Masuda N, Verma AK, Bhatnagar PK. Novel FtsZ inhibitor with potent activity against Staphylococcus aureus. J Antimicrob Chemother 2021; 76:2867-2874. [PMID: 34383913 DOI: 10.1093/jac/dkab270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES FtsZ is an essential bacterial protein and an unexplored target for the development of antibacterial drugs. The development of a novel inhibitor targeting FtsZ offers a potential opportunity to combat drug resistance. DS01750413, a new derivative of PC190723, is a novel FtsZ inhibitor with improved in vitro and in vivo activity. The objective of this study was to investigate the efficacy of DS01750413 against Staphylococcus spp., including MRSA, in in vitro and in vivo models. METHODS In vitro activities of DS01750413 and standard-of-care antibiotics were evaluated against clinical isolates of Gram-positive pathogens. The in vivo efficacy was evaluated in a murine systemic infection model caused by MRSA. RESULTS DS01750413 showed potent in vitro activity against MRSA clinical isolates with MIC ranges of 0.5-1 mg/L and also demonstrated concentration-dependent bactericidal killing. In the murine bacteraemia infection model of MRSA, treatment with DS01750413 resulted in prolonged survival of animals compared with placebo-treated animals and exhibited a significant reduction in the bacterial load in liver, spleen, lungs and kidneys. CONCLUSIONS DS01750413 showed encouraging in vitro and in vivo activity against MRSA. As a novel chemical class, DS01750413 has the potential to become clinically viable antibiotics to address the drug resistance problem by its unique novel targeting mechanism of action.
Collapse
Affiliation(s)
- Manoj Kumar
- Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Udyog Vihar Industrial Area, Gurgaon 122 015, Haryana, India
| | - Tarun Mathur
- Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Udyog Vihar Industrial Area, Gurgaon 122 015, Haryana, India
| | - Tarani Kanta Barman
- Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Udyog Vihar Industrial Area, Gurgaon 122 015, Haryana, India
| | - Tridib Chaira
- Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Udyog Vihar Industrial Area, Gurgaon 122 015, Haryana, India
| | - Ram Kumar
- Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Udyog Vihar Industrial Area, Gurgaon 122 015, Haryana, India
| | - Vattan Joshi
- Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Udyog Vihar Industrial Area, Gurgaon 122 015, Haryana, India
| | - Manisha Pandya
- Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Udyog Vihar Industrial Area, Gurgaon 122 015, Haryana, India
| | - Lalima Sharma
- Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Udyog Vihar Industrial Area, Gurgaon 122 015, Haryana, India
| | - Kunihiko Fujii
- Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Udyog Vihar Industrial Area, Gurgaon 122 015, Haryana, India
| | - Mahadev Bandgar
- Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Udyog Vihar Industrial Area, Gurgaon 122 015, Haryana, India
| | - Balasaheb Jadhav
- Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Udyog Vihar Industrial Area, Gurgaon 122 015, Haryana, India
| | - Ramesh Bambal
- Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Udyog Vihar Industrial Area, Gurgaon 122 015, Haryana, India
| | - Dilip Upadhyay
- Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Udyog Vihar Industrial Area, Gurgaon 122 015, Haryana, India
| | - Nobuhisa Masuda
- Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Udyog Vihar Industrial Area, Gurgaon 122 015, Haryana, India
| | - Ashwani Kumar Verma
- Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Udyog Vihar Industrial Area, Gurgaon 122 015, Haryana, India
| | - Pradip Kumar Bhatnagar
- Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Udyog Vihar Industrial Area, Gurgaon 122 015, Haryana, India
| |
Collapse
|
193
|
He M, Huang Y, Xu H, Feng G, Liu L, Li Y, Sun D, Zhang L. Modification of polyetheretherketone implants: From enhancing bone integration to enabling multi-modal therapeutics. Acta Biomater 2021; 129:18-32. [PMID: 34020056 DOI: 10.1016/j.actbio.2021.05.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023]
Abstract
Polyetheretherketone (PEEK) is a popular thermoplastic material widely used in engineering applications due to its favorable mechanical properties and stability at high temperatures. With the first implantable grade PEEK being commercialized in 1990s, the use of PEEK has since grown exponentially in the biomedical field and has rapidly transformed a large section of the medical devices landscape. Nowadays, PEEK is a standard biomaterial used across a wide range of implant applications, however, its bioinertness remains a limitation for bone repair applications. The increasing demand for enhanced treatment efficacy/improved patient quality of life, calls for next-generation implants that can offer fast bone integration as well as other desirable therapeutic functions. As such, modification of PEEK implants has progressively shifted from offering desirable mechanical properties, enhancing bioactivity/fast osteointegration, to more recently, tackling post-surgery bacterial infection/biofilm formation, modulation of inflammation and management of bone cancers. Such progress is also accompanied by the evolution of the PEEK manufacturing technologies, to meet the ever increasing demand for more patient specific devices. However, no review has comprehensively covered the recently engaged application areas to date. This paper provides an up-to-date review on the development of PEEK-based biomedical devices in the past 10 years, with particularly focus on modifying PEEK for multi-modal therapeutics. The aim is to provide the peers with a timely update, which may guide and inspire the research and development of next generation PEEK-based healthcare products. STATEMENT OF SIGNIFICANCE: Significant progress has been made in PEEK processing and modification techniques in the past decades, which greatly contributed to its wide applications in the biomedical field. Despite the high volume of published literature on PEEK implant related research, there is a lack of review on its emerging applications in multi-modal therapeutics, which involve bone regeneration, anti-bacteria/anti-inflammation, and cancer inhibition, etc. This timely review covers the state-of-the-art in these exciting areas and provides the important guidance for next generation PEEK based biomedical device research and development.
Collapse
|
194
|
Czechowska J, Cichoń E, Belcarz A, Ślósarczyk A, Zima A. Effect of Gold Nanoparticles and Silicon on the Bioactivity and Antibacterial Properties of Hydroxyapatite/Chitosan/Tricalcium Phosphate-Based Biomicroconcretes. MATERIALS 2021; 14:ma14143854. [PMID: 34300772 PMCID: PMC8304576 DOI: 10.3390/ma14143854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/01/2022]
Abstract
Bioactive, chemically bonded bone substitutes with antibacterial properties are highly recommended for medical applications. In this study, biomicroconcretes, composed of silicon modified (Si-αTCP) or non-modified α-tricalcium phosphate (αTCP), as well as hybrid hydroxyapatite/chitosan granules non-modified and modified with gold nanoparticles (AuNPs), were designed. The developed biomicroconcretes were supposed to combine the dual functions of antibacterial activity and bone defect repair. The chemical and phase composition, microstructure, setting times, mechanical strength, and in vitro bioactive potential of the composites were examined. Furthermore, on the basis of the American Association of Textile Chemists and Colorists test (AATCC 100), adapted for chemically bonded materials, the antibacterial activity of the biomicroconcretes against S. epidermidis, E. coli, and S. aureus was evaluated. All biomicroconcretes were surgically handy and revealed good adhesion between the hybrid granules and calcium phosphate-based matrix. Furthermore, they possessed acceptable setting times and mechanical properties. It has been stated that materials containing AuNPs set faster and possess a slightly higher compressive strength (3.4 ± 0.7 MPa). The modification of αTCP with silicon led to a favorable decrease of the final setting time to 10 min. Furthermore, it has been shown that materials modified with AuNPs and silicon possessed an enhanced bioactivity. The antibacterial properties of all of the developed biomicroconcretes against the tested bacterial strains due to the presence of both chitosan and Au were confirmed. The material modified simultaneously with AuNPs and silicon seems to be the most promising candidate for further biological studies.
Collapse
Affiliation(s)
- Joanna Czechowska
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland; (E.C.); (A.Ś.)
- Correspondence: (J.C.); (A.Z.)
| | - Ewelina Cichoń
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland; (E.C.); (A.Ś.)
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University in Lublin, Chodzki 1, 20-093 Lublin, Poland;
| | - Anna Ślósarczyk
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland; (E.C.); (A.Ś.)
| | - Aneta Zima
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland; (E.C.); (A.Ś.)
- Correspondence: (J.C.); (A.Z.)
| |
Collapse
|
195
|
Olivares-Ramírez MA, López-Zamora L, Peña-Juárez MG, Gutiérrez-Castañeda EJ, Gonzalez-Calderon JA. Application of the response surface methodology for the evaluation of Staphylococcus aureus inhibition with Ag/TiO2 nanoparticles. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03822-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
196
|
Parente R, Possetti V, Schiavone ML, Campodoni E, Menale C, Loppini M, Doni A, Bottazzi B, Mantovani A, Sandri M, Tampieri A, Sobacchi C, Inforzato A. 3D Cocultures of Osteoblasts and Staphylococcus aureus on Biomimetic Bone Scaffolds as a Tool to Investigate the Host-Pathogen Interface in Osteomyelitis. Pathogens 2021; 10:pathogens10070837. [PMID: 34357987 PMCID: PMC8308613 DOI: 10.3390/pathogens10070837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/19/2022] Open
Abstract
Osteomyelitis (OM) is an infectious disease of the bone primarily caused by the opportunistic pathogen Staphylococcus aureus (SA). This Gram-positive bacterium has evolved a number of strategies to evade the immune response and subvert bone homeostasis, yet the underlying mechanisms remain poorly understood. OM has been modeled in vitro to challenge pathogenetic hypotheses in controlled conditions, thus providing guidance and support to animal experimentation. In this regard, traditional 2D models of OM inherently lack the spatial complexity of bone architecture. Three-dimensional models of the disease overcome this limitation; however, they poorly reproduce composition and texture of the natural bone. Here, we developed a new 3D model of OM based on cocultures of SA and murine osteoblastic MC3T3-E1 cells on magnesium-doped hydroxyapatite/collagen I (MgHA/Col) scaffolds that closely recapitulate the bone extracellular matrix. In this model, matrix-dependent effects were observed in proliferation, gene transcription, protein expression, and cell–matrix interactions both of the osteoblastic cell line and of bacterium. Additionally, these had distinct metabolic and gene expression profiles, compared to conventional 2D settings, when grown on MgHA/Col scaffolds in separate monocultures. Our study points to MgHA/Col scaffolds as biocompatible and bioactive matrices and provides a novel and close-to-physiology tool to address the pathogenetic mechanisms of OM at the host–pathogen interface.
Collapse
Affiliation(s)
- Raffaella Parente
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (R.P.); (V.P.); (M.L.S.); (M.L.); (A.D.); (B.B.); (A.M.)
| | - Valentina Possetti
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (R.P.); (V.P.); (M.L.S.); (M.L.); (A.D.); (B.B.); (A.M.)
| | - Maria Lucia Schiavone
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (R.P.); (V.P.); (M.L.S.); (M.L.); (A.D.); (B.B.); (A.M.)
- National Research Council-Institute for Genetic and Biomedical Research (CNR-IRGB), Milan Unit, 20089 Rozzano, Italy;
| | - Elisabetta Campodoni
- National Research Council-Institute of Science and Technology for Ceramics (CNR-ISTEC), 48018 Faenza, Italy; (E.C.); (M.S.); (A.T.)
| | - Ciro Menale
- National Research Council-Institute for Genetic and Biomedical Research (CNR-IRGB), Milan Unit, 20089 Rozzano, Italy;
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
| | - Mattia Loppini
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (R.P.); (V.P.); (M.L.S.); (M.L.); (A.D.); (B.B.); (A.M.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Andrea Doni
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (R.P.); (V.P.); (M.L.S.); (M.L.); (A.D.); (B.B.); (A.M.)
| | - Barbara Bottazzi
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (R.P.); (V.P.); (M.L.S.); (M.L.); (A.D.); (B.B.); (A.M.)
| | - Alberto Mantovani
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (R.P.); (V.P.); (M.L.S.); (M.L.); (A.D.); (B.B.); (A.M.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
- The William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK
| | - Monica Sandri
- National Research Council-Institute of Science and Technology for Ceramics (CNR-ISTEC), 48018 Faenza, Italy; (E.C.); (M.S.); (A.T.)
| | - Anna Tampieri
- National Research Council-Institute of Science and Technology for Ceramics (CNR-ISTEC), 48018 Faenza, Italy; (E.C.); (M.S.); (A.T.)
- National Research Council-Institute of Nanostructured Material (CNR-ISMN), 40129 Bologna, Italy
| | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (R.P.); (V.P.); (M.L.S.); (M.L.); (A.D.); (B.B.); (A.M.)
- National Research Council-Institute for Genetic and Biomedical Research (CNR-IRGB), Milan Unit, 20089 Rozzano, Italy;
- Correspondence: (C.S.); (A.I.); Tel.: +39-028-224-5153 (C.S.); +39-028-224-5132 (A.I.)
| | - Antonio Inforzato
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (R.P.); (V.P.); (M.L.S.); (M.L.); (A.D.); (B.B.); (A.M.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
- Correspondence: (C.S.); (A.I.); Tel.: +39-028-224-5153 (C.S.); +39-028-224-5132 (A.I.)
| |
Collapse
|
197
|
Jiao J, Zhang S, Qu X, Yue B. Recent Advances in Research on Antibacterial Metals and Alloys as Implant Materials. Front Cell Infect Microbiol 2021; 11:693939. [PMID: 34277473 PMCID: PMC8283567 DOI: 10.3389/fcimb.2021.693939] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Implants are widely used in orthopedic surgery and are gaining attention of late. However, their use is restricted by implant-associated infections (IAI), which represent one of the most serious and dangerous complications of implant surgeries. Various strategies have been developed to prevent and treat IAI, among which the closest to clinical translation is designing metal materials with antibacterial functions by alloying methods based on existing materials, including titanium, cobalt, tantalum, and biodegradable metals. This review first discusses the complex interaction between bacteria, host cells, and materials in IAI and the mechanisms underlying the antibacterial effects of biomedical metals and alloys. Then, their applications for the prevention and treatment of IAI are highlighted. Finally, new insights into their clinical translation are provided. This review also provides suggestions for further development of antibacterial metals and alloys.
Collapse
Affiliation(s)
- Juyang Jiao
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
198
|
Fluorescence-guided surgical debridement of chronic osteomyelitis utilizing doxycycline bone labeling: a technical trick revived. CURRENT ORTHOPAEDIC PRACTICE 2021. [DOI: 10.1097/bco.0000000000001025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
199
|
Imani S, Wijetunga A, Shumborski S, O’Leary E. Chronic osteomyelitis caused by Achromobacter xylosoxidans following orthopaedic trauma: A case report and review of the literature. IDCases 2021; 25:e01211. [PMID: 34277350 PMCID: PMC8267561 DOI: 10.1016/j.idcr.2021.e01211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022] Open
Abstract
Background Achromobacter xylosoxidans is an opportunistic environmental aerobe. In cases where A. xylosoxidans infects humans, it most commonly manifests as bacteraemia in the immunosuppressed. A. xylosoxidans causing chronic osteomyelitis is rare, particularly in the immunocompetent and young. Case We present the case of a 23-year-old man with chronic osteomyelitis of the right femur caused by co-infection of A. xylosoxidans and Staphylococcus aureus. Five years earlier, he had sustained a right femur fracture and was treated with intramedullary fixation at a peripheral hospital in a developing nation. Past medical history was otherwise unremarkable. Management comprised of surgical debridement and culture-directed antibiotic therapy, resulting in clinical cure. Conclusion In the context of local trauma and previous surgery, osteomyelitis caused by atypical pathogens must be considered. A multidisciplinary approach commensurate with duration and severity of infection and tailored to the causative organism is paramount.
Collapse
Affiliation(s)
- Sahand Imani
- Department of Orthopaedic Surgery, Hornsby Ku-Ring-Gai Hospital, Sydney, New South Wales, Australia
| | - Asanka Wijetunga
- School of Medicine, The University of Sydney, Sydney, New South Wales, Australia
- Corresponding author.
| | - Sarah Shumborski
- Department of Orthopaedic Surgery, Hornsby Ku-Ring-Gai Hospital, Sydney, New South Wales, Australia
| | - Edmund O’Leary
- Department of Orthopaedic Surgery, Hornsby Ku-Ring-Gai Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
200
|
Yu Y, Tan L, Li Z, Liu X, Zheng Y, Feng X, Liang Y, Cui Z, Zhu S, Wu S. Single-Atom Catalysis for Efficient Sonodynamic Therapy of Methicillin-Resistant Staphylococcus aureus-Infected Osteomyelitis. ACS NANO 2021; 15:10628-10639. [PMID: 34086433 DOI: 10.1021/acsnano.1c03424] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Osteomyelitis, as a severe bone disease caused by bacterial infection, can result in lifelong disability or fatal sepsis. Considering that the infection is stubborn and deep-sited in bone tissue, in situ and rapid treatments for osteomyelitis remain a significant challenge. Herein, we prepare an ultrasound (US)-activated single-atom catalyst that consists of a Au nanorod (NRs)-actuated single-atom-doped porphyrin metal-organic framework (HNTM-Pt@Au) and red cell membrane (RBC), which can efficiently treat methicillin-resistant Staphylococcus aureus (MRSA)-infected osteomyelitis under US. Besides the outstanding performance in the field of photocatalysis, we find that single atoms (such as Pt, Au, Cu) also improve the sonocatalytic ability of the sonosensitizer. Due to the strong electron-trapping and oxygen adsorption capacity, the Pt single atom endows RBC-HNTM-Pt@Au with an excellent sonocatalytic activity. It shows an excellent antibacterial performance with an antibacterial efficiency of 99.9% toward MRSA under 15 min of US irradiation. Meanwhile, the RBC-HNTM-Pt@Au can be propelled directionally under US and thus dynamically neutralize the secreted toxins. The MRSA-infected osteomyelitis in rat tibia was successfully treated, which shows negligible bone loss, reduced inflammation response, and great biocompatibility. This work presents an efficient sonodynamic therapy for the treatment of deep tissue infections via a multifunctional single-atom catalyst.
Collapse
Affiliation(s)
- Yi Yu
- Biomedical Materials Engineering Research Center, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Lei Tan
- Biomedical Materials Engineering Research Center, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Xiangmei Liu
- School of Life Science and Health Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin 300401, China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 0087, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanqin Liang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Shuilin Wu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| |
Collapse
|