151
|
Yang X, Promnares K, Qin J, He M, Shroder DY, Kariu T, Wang Y, Pal U. Characterization of multiprotein complexes of the Borrelia burgdorferi outer membrane vesicles. J Proteome Res 2011; 10:4556-66. [PMID: 21875077 DOI: 10.1021/pr200395b] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among bacterial cell envelopes, the Borrelia burgdorferi outer membrane (OM) is structurally unique in that the identities of many protein complexes remain unknown; however, their characterization is the first step toward our understanding of membrane protein interactions and potential functions. Here, we used two-dimensional blue native/SDS-PAGE/mass spectrometric analysis for a global characterization of protein-protein interactions as well as to identify protein complexes in OM vesicles isolated from multiple infectious sensu stricto isolates of B. burgdorferi. Although we uncovered the existence of at least 10 distinct OM complexes harboring several unique subunits, the complexome is dominated by the frequent occurrence of a limited diversity of membrane proteins, most notably P13, outer surface protein (Osp) A, -B, -C, and -D and Lp6.6. The occurrence of these complexes and specificity of subunit interaction were further supported by independent two-dimensional immunoblotting and coimmunoprecipitation assays as well as by mutagenesis studies, where targeted depletion of a subunit member (P66) selectively abolished a specific complex. Although a comparable profile of the OM complexome was detected in two major infectious isolates, such as B31 and 297, certain complexes are likely to occur in an isolate-specific manner. Further assessment of protein complexes in multiple Osp-deficient isolates showed loss of several protein complexes but revealed the existence of additional complex/subunits that are undetectable in wild-type cells. Together, these observations uncovered borrelial antigens involved in membrane protein interactions. The study also suggests that the assembly process of OM complexes is specific and that the core or stabilizing subunits vary between complexes. Further characterization of these protein complexes including elucidation of their biological significance may shed new light on the mechanism of pathogen persistence and the development of preventative measures against the infection.
Collapse
Affiliation(s)
- Xiuli Yang
- Department of Veterinary Medicine, University of Maryland , College Park and Virginia-Maryland Regional College of Veterinary Medicine, United States
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Bunikis I, Kutschan-Bunikis S, Bonde M, Bergström S. Multiplex PCR as a tool for validating plasmid content of Borrelia burgdorferi. J Microbiol Methods 2011; 86:243-7. [DOI: 10.1016/j.mimet.2011.05.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/04/2011] [Accepted: 05/05/2011] [Indexed: 11/28/2022]
|
153
|
Regulation of the virulence determinant OspC by bbd18 on linear plasmid lp17 of Borrelia burgdorferi. J Bacteriol 2011; 193:5365-73. [PMID: 21784941 DOI: 10.1128/jb.01496-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Persistent infection of a mammalian host by Borrelia burgdorferi, the spirochete that causes Lyme disease, requires specific downregulation of an immunogenic outer surface protein, OspC. Although OspC is an essential virulence factor needed by the spirochete to establish infection in the mammal, it represents a potent target for the host acquired immune response, and constitutive expression of OspC results in spirochete clearance. In this study, we demonstrate that a factor encoded on a linear plasmid of B. burgdorferi, lp17, can negatively regulate ospC transcription from the endogenous gene on the circular plasmid cp26 and from an ospC promoter-lacZ fusion on a shuttle vector. Furthermore, we have identified bbd18 as the gene on lp17 that is responsible for this effect. These data identify a novel component of ospC regulation and provide the basis for determining the molecular mechanisms of ospC repression in vivo.
Collapse
|
154
|
Jewett MW, Jain S, Linowski AK, Sarkar A, Rosa PA. Molecular characterization of the Borrelia burgdorferi in vivo-essential protein PncA. MICROBIOLOGY-SGM 2011; 157:2831-2840. [PMID: 21778210 DOI: 10.1099/mic.0.051706-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The conversion of nicotinamide to nicotinic acid by nicotinamidase enzymes is a critical step in maintaining NAD(+) homeostasis and contributes to numerous important biological processes in diverse organisms. In Borrelia burgdorferi, the nicotinamidase enzyme, PncA, is required for spirochaete survival throughout the infectious cycle. Mammals lack nicotinamidases and therefore PncA may serve as a therapeutic target for Lyme disease. Contrary to the in vivo importance of PncA, the current annotation for the pncA ORF suggests that the encoded protein may be inactive due to the absence of an N-terminal aspartic acid residue that is a conserved member of the catalytic triad of characterized PncA proteins. Herein, we have used genetic and biochemical strategies to determine the N-terminal sequence of B. burgdorferi PncA. Our data demonstrate that the PncA protein is 24 aa longer than the currently annotated sequence and that pncA translation is initiated from the rare, non-canonical initiation codon AUU. These findings are an important first step in understanding the catalytic function of this in vivo-essential protein.
Collapse
Affiliation(s)
- Mollie W Jewett
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, FL 32827, USA.,Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Sunny Jain
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, FL 32827, USA
| | - Angelika K Linowski
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, FL 32827, USA
| | - Amit Sarkar
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Patricia A Rosa
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| |
Collapse
|
155
|
Hyde JA, Weening EH, Skare JT. Genetic transformation of Borrelia burgdorferi. ACTA ACUST UNITED AC 2011; Chapter 12:Unit 12C.4. [PMID: 21400675 DOI: 10.1002/9780471729259.mc12c04s20] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The development of robust genetic tools to manipulate Borrelia burgdorferi, the etiologic agent of Lyme disease, now allows investigators to assess the role(s) of individual genes in the context of experimental Lyme borreliosis. This unit is devoted to the description of experimental approaches that are available for the molecular genetic analysis of B. burgdorferi with an emphasis on cultivation, electrotransformation, selection of desired mutants, and genetic complementation of acquired mutants. The intent is to provide a consensus protocol that encapsulates the methodologies currently employed by the B. burgdorferi research community and describe pertinent issues that must be accounted for when working with these pathogenic spirochetal bacteria.
Collapse
Affiliation(s)
- Jenny A Hyde
- Texas A&M University Health Science Center, College Station, Texas, USA
| | | | | |
Collapse
|
156
|
Pappas CJ, Iyer R, Petzke MM, Caimano MJ, Radolf JD, Schwartz I. Borrelia burgdorferi requires glycerol for maximum fitness during the tick phase of the enzootic cycle. PLoS Pathog 2011; 7:e1002102. [PMID: 21750672 PMCID: PMC3131272 DOI: 10.1371/journal.ppat.1002102] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 04/18/2011] [Indexed: 12/02/2022] Open
Abstract
Borrelia burgdorferi, the spirochetal agent of Lyme disease, is a vector-borne pathogen that cycles between a mammalian host and tick vector. This complex life cycle requires that the spirochete modulate its gene expression program to facilitate growth and maintenance in these diverse milieus. B. burgdorferi contains an operon that is predicted to encode proteins that would mediate the uptake and conversion of glycerol to dihydroxyacetone phosphate. Previous studies indicated that expression of the operon is elevated at 23°C and is repressed in the presence of the alternative sigma factor RpoS, suggesting that glycerol utilization may play an important role during the tick phase. This possibility was further explored in the current study by expression analysis and mutagenesis of glpD, a gene predicted to encode glycerol 3-phosphate dehydrogenase. Transcript levels for glpD were significantly lower in mouse joints relative to their levels in ticks. Expression of GlpD protein was repressed in an RpoS-dependent manner during growth of spirochetes within dialysis membrane chambers implanted in rat peritoneal cavities. In medium supplemented with glycerol as the principal carbohydrate, wild-type B. burgdorferi grew to a significantly higher cell density than glpD mutant spirochetes during growth in vitro at 25°C. glpD mutant spirochetes were fully infectious in mice by either needle or tick inoculation. In contrast, glpD mutants grew to significantly lower densities than wild-type B. burgdorferi in nymphal ticks and displayed a replication defect in feeding nymphs. The findings suggest that B. burgdorferi undergoes a switch in carbohydrate utilization during the mammal to tick transition. Further, the results demonstrate that the ability to utilize glycerol as a carbohydrate source for glycolysis during the tick phase of the infectious cycle is critical for maximal B. burgdorferi fitness. Borrelia burgdorferi is the vector-borne pathogen that causes Lyme disease. It has a complex life cycle that involves growth in a tick vector and a mammalian host — two diverse environments that present B. burgdorferi with alternative carbohydrate sources for support of growth. Previous studies suggested that glycerol may be an important nutrient in the tick vector. Here we show that genes predicted to be involved in glycerol metabolism have significantly elevated expression during all tick stages. Repression of expression in the mammalian host is dependent on the alternative sigma factor, RpoS. A mutant that cannot convert glycerol into dihydroxyacetone phosphate to support glycolysis was able to infect mice. In contrast, the mutant was present at significantly lower levels in nymphal ticks, its replication was delayed during nymphal feeding and longer feeding times were required for transmission from nymph to mouse. The results demonstrate that the ability to utilize glycerol as a carbohydrate source for glycolysis during the tick phase of the infectious cycle is critical for maximal B. burgdorferi fitness.
Collapse
Affiliation(s)
- Christopher J. Pappas
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Radha Iyer
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Mary M. Petzke
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Melissa J. Caimano
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Justin D. Radolf
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Ira Schwartz
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
- * E-mail:
| |
Collapse
|
157
|
Schmit VL, Patton TG, Gilmore RD. Analysis of Borrelia burgdorferi Surface Proteins as Determinants in Establishing Host Cell Interactions. Front Microbiol 2011; 2:141. [PMID: 21747816 PMCID: PMC3129520 DOI: 10.3389/fmicb.2011.00141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 06/14/2011] [Indexed: 11/13/2022] Open
Abstract
Borrelia burgdorferi infection causes Lyme borreliosis in humans, a condition which can involve a systemic spread of the organism to colonize various tissues and organs. If the infection is left untreated by antimicrobials, it can lead to manifestations including, arthritis, carditis, and/or neurological problems. Identification and characterization of B. burgdorferi outer membrane proteins that facilitate cellular attachment and invasion to establish infection continue to be investigated. In this study, we sought to further define putative cell binding properties of surface-exposed B. burgdorferi proteins by observing whether cellular adherence could be blocked by antibodies. B. burgdorferi mixed separately with monoclonal antibodies (mAbs) against outer surface protein (Osp) A, OspC, decorin-binding protein (Dbp) A, BBA64, and RevA antigens were incubated with human umbilical vein endothelial cells (HUVEC) and human neuroglial cells (H4). B. burgdorferi treated with anti-OspA, -DbpA, and -BBA64 mAbs showed a significant decrease in cellular association compared to controls, whereas B. burgdorferi treated with anti-OspC and anti-RevA showed no reduction in cellular attachment. Additionally, temporal transcriptional analyses revealed upregulated expression of bba64, ospA, and dbpA during coincubation with cells. Together, the data provide evidence that OspA, DbpA, and BBA64 function in host cell adherence and infection mechanisms.
Collapse
Affiliation(s)
- Virginia L Schmit
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention Fort Collins, CO, USA
| | | | | |
Collapse
|
158
|
Borrelia burgdorferi linear plasmid 38 is dispensable for completion of the mouse-tick infectious cycle. Infect Immun 2011; 79:3510-7. [PMID: 21708994 DOI: 10.1128/iai.05014-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, exists in a complex enzootic cycle, transiting between its vector, Ixodes ticks, and a diverse range of vertebrate hosts. B. burgdorferi linear plasmid 38 (lp38) contains several genes that are differentially regulated in response to conditions mimicking the tick or mouse environments, suggesting that these plasmid-borne genes may encode proteins important for the B. burgdorferi infectious cycle. Some of these genes encode potential virulence factors, including hypothetical lipoproteins as well as a putative membrane transport system. To characterize the role of lp38 in the B. burgdorferi infectious cycle, we constructed a shuttle vector to selectively displace lp38 from the B. burgdorferi genome and analyzed the resulting clones to confirm the loss of lp38. We found that, in vitro, clones lacking lp38 were similar to isogenic wild-type bacteria, both in growth rate and in antigenic protein production. We analyzed these strains in an experimental mouse-tick infectious cycle, and our results demonstrate that clones lacking lp38 are fully infectious in a mouse, can efficiently colonize the tick vector, and are readily transmitted to a naive host.
Collapse
|
159
|
Analysis of the HD-GYP domain cyclic dimeric GMP phosphodiesterase reveals a role in motility and the enzootic life cycle of Borrelia burgdorferi. Infect Immun 2011; 79:3273-83. [PMID: 21670168 DOI: 10.1128/iai.05153-11] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
HD-GYP domain cyclic dimeric GMP (c-di-GMP) phosphodiesterases are implicated in motility and virulence in bacteria. Borrelia burgdorferi possesses a single set of c-di-GMP-metabolizing enzymes, including a putative HD-GYP domain protein, BB0374. Recently, we characterized the EAL domain phosphodiesterase PdeA. A mutation in pdeA resulted in cells that were defective in motility and virulence. Here we demonstrate that BB0374/PdeB specifically hydrolyzed c-di-GMP with a K(m) of 2.9 nM, confirming that it is a functional phosphodiesterase. Furthermore, by measuring phosphodiesterase enzyme activity in extracts from cells containing the pdeA pdeB double mutant, we demonstrate that no additional phosphodiesterases are present in B. burgdorferi. pdeB single mutant cells exhibit significantly increased flexing, indicating a role for c-di-GMP in motility. Constructing and analyzing a pilZ pdeB double mutant suggests that PilZ likely interacts with chemotaxis signaling. While virulence in needle-inoculated C3H/HeN mice did not appear to be altered significantly in pdeB mutant cells, these cells exhibited a reduced ability to survive in Ixodes scapularis ticks. Consequently, those ticks were unable to transmit the infection to naïve mice. All of these phenotypes were restored when the mutant was complemented. Identification of this role of pdeB increases our understanding of the c-di-GMP signaling network in motility regulation and the life cycle of B. burgdorferi.
Collapse
|
160
|
Bourret TJ, Boylan JA, Lawrence KA, Gherardini FC. Nitrosative damage to free and zinc-bound cysteine thiols underlies nitric oxide toxicity in wild-type Borrelia burgdorferi. Mol Microbiol 2011; 81:259-73. [PMID: 21564333 PMCID: PMC3147059 DOI: 10.1111/j.1365-2958.2011.07691.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Borrelia burgdorferi encounters potentially harmful reactive nitrogen species (RNS) throughout its infective cycle. In this study, diethylamine NONOate (DEA/NO) was used to characterize the lethal effects of RNS on B. burgdorferi. RNS produce a variety of DNA lesions in a broad spectrum of microbial pathogens; however, levels of the DNA deamination product, deoxyinosine, and the numbers of apurinic/apyrimidinic (AP) sites were identical in DNA isolated from untreated and DEA/NO-treated B. burgdorferi cells. Strains with mutations in the nucleotide excision repair (NER) pathway genes uvrC or uvrB treated with DEA/NO had significantly higher spontaneous mutation frequencies, increased numbers of AP sites in DNA and reduced survival compared with wild-type controls. Polyunsaturated fatty acids in B. burgdorferi cell membranes, which are susceptible to peroxidation by reactive oxygen species (ROS), were not sensitive to RNS-mediated lipid peroxidation. However, treatment of B. burgdorferi cells with DEA/NO resulted in nitrosative damage to several proteins, including the zinc-dependent glycolytic enzyme fructose-1,6-bisphosphate aldolase (BB0445), the Borrelia oxidative stress regulator (BosR) and neutrophil-activating protein (NapA). Collectively, these data suggested that nitrosative damage to proteins harbouring free or zinc-bound cysteine thiols, rather than DNA or membrane lipids underlies RNS toxicity in wild-type B. burgdorferi.
Collapse
Affiliation(s)
- Travis J Bourret
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | | | | | | |
Collapse
|
161
|
Xiao S, Kumar M, Yang X, Akkoyunlu M, Collins PL, Samal SK, Pal U. A host-restricted viral vector for antigen-specific immunization against Lyme disease pathogen. Vaccine 2011; 29:5294-303. [PMID: 21600949 PMCID: PMC3138909 DOI: 10.1016/j.vaccine.2011.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/21/2011] [Accepted: 05/05/2011] [Indexed: 11/21/2022]
Abstract
Newcastle disease virus (NDV) is an avian virus that is attenuated in primates and is a potential vaccine vector for human use. We evaluated NDV as a vector for expressing selected antigens of the Lyme disease pathogen Borrelia burgdorferi. A series of recombinant NDVs were generated that expressed intracellular or extracellular forms of two B. burgdorferi antigens: namely, the basic membrane protein A (BmpA) and the outer surface protein C (OspC). Expression of the intracellular and extracellular forms of these antigens was confirmed in cultured chicken cells. C3H or Balb/C mice that were immunized intranasally with the NDV vectors mounted vigorous serum antibody responses against the NDV vector, but failed to mount a robust response against either the intracellular or extracellular forms of BmpA or OspC. By contrast, a single immunization of hamsters with the NDV vectors via the intranasal, intramuscular, or intraperitoneal route resulted in rapid and rigorous antibody responses against the intracellular or extracellular forms of BmpA and OspC. When groups of hamsters were separately inoculated with various NDV vectors and challenged with B. burgdorferi (108 cells/animal), immunization with vector expressing either intracellular or extracellular BmpA was associated with a significant reduction of the pathogen load in the joints. Taken together, our studies highlighted the importance of NDV as vaccine vector that can be used for simple yet effective immunization of hosts against bacterial infections including Lyme disease.
Collapse
Affiliation(s)
- Sa Xiao
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | |
Collapse
|
162
|
Patton TG, Dietrich G, Dolan MC, Piesman J, Carroll JA, Gilmore RD. Functional analysis of the Borrelia burgdorferi bba64 gene product in murine infection via tick infestation. PLoS One 2011; 6:e19536. [PMID: 21559293 PMCID: PMC3086921 DOI: 10.1371/journal.pone.0019536] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/31/2011] [Indexed: 11/26/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme borreliosis, is transmitted to humans from the bite of Ixodes spp. ticks. During the borrelial tick-to-mammal life cycle, B. burgdorferi must adapt to many environmental changes by regulating several genes, including bba64. Our laboratory recently demonstrated that the bba64 gene product is necessary for mouse infectivity when B. burgdorferi is transmitted by an infected tick bite, but not via needle inoculation. In this study we investigated the phenotypic properties of a bba64 mutant strain, including 1) replication during tick engorgement, 2) migration into the nymphal salivary glands, 3) host transmission, and 4) susceptibility to the MyD88-dependent innate immune response. Results revealed that the bba64 mutant's attenuated infectivity by tick bite was not due to a growth defect inside an actively feeding nymphal tick, or failure to invade the salivary glands. These findings suggested there was either a lack of spirochete transmission to the host dermis or increased susceptibility to the host's innate immune response. Further experiments showed the bba64 mutant was not culturable from mouse skin taken at the nymphal bite site and was unable to establish infection in MyD88-deficient mice via tick infestation. Collectively, the results of this study indicate that BBA64 functions at the salivary gland-to-host delivery interface of vector transmission and is not involved in resistance to MyD88-mediated innate immunity.
Collapse
Affiliation(s)
- Toni G. Patton
- Microbiology and Pathogenesis Activity, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Gabrielle Dietrich
- Tick-Borne Diseases Activity, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Marc C. Dolan
- Tick-Borne Diseases Activity, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Joseph Piesman
- Tick-Borne Diseases Activity, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - James A. Carroll
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Robert D. Gilmore
- Microbiology and Pathogenesis Activity, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
163
|
Patton TG, Dietrich G, Gilmore RD. Detection ofBorrelia burgdorferiDNA in Tick Feces Provides Evidence for Organism Shedding During Vector Feeding. Vector Borne Zoonotic Dis 2011; 11:197-200. [DOI: 10.1089/vbz.2010.0149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Toni G. Patton
- Microbiology and Pathogenesis Activity, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Gabrielle Dietrich
- Tick-Borne Diseases Activity, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Robert D. Gilmore
- Microbiology and Pathogenesis Activity, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| |
Collapse
|
164
|
Analysis of the Borrelia burgdorferi cyclic-di-GMP-binding protein PlzA reveals a role in motility and virulence. Infect Immun 2011; 79:1815-25. [PMID: 21357718 DOI: 10.1128/iai.00075-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The cyclic-dimeric-GMP (c-di-GMP)-binding protein PilZ has been implicated in bacterial motility and pathogenesis. Although BB0733 (PlzA), the only PilZ domain-containing protein in Borrelia burgdorferi, was reported to bind c-di-GMP, neither its role in motility or virulence nor it's affinity for c-di-GMP has been reported. We determined that PlzA specifically binds c-di-GMP with high affinity (dissociation constant [K(d)], 1.25 μM), consistent with K(d) values reported for c-di-GMP-binding proteins from other bacteria. Inactivation of the monocistronically transcribed plzA resulted in an opaque/solid colony morphology, whereas the wild-type colonies were translucent. While the swimming pattern of mutant cells appeared normal, on swarm plates, mutant cells exhibited a significantly reduced swarm diameter, demonstrating a role of plzA in motility. Furthermore, the plzA mutant cells were significantly less infectious in experimental mice (as determined by 50% infectious dose [ID(50)]) relative to wild-type spirochetes. The mutant also had survival rates in fed ticks lower than those of the wild type. Consequently, plzA mutant cells failed to complete the mouse-tick-mouse infection cycle, indicating plzA is essential for the enzootic life cycle of B. burgdorferi. All of these defects were corrected when the mutant was complemented in cis. We propose that failure of plzA mutant cells to infect mice was due to altered motility; however, the possibility that an unidentified factor(s) contributed to interruption of the B. burgdorferi enzootic life cycle cannot yet be excluded.
Collapse
|
165
|
Defining the plasmid-borne restriction-modification systems of the Lyme disease spirochete Borrelia burgdorferi. J Bacteriol 2010; 193:1161-71. [PMID: 21193609 DOI: 10.1128/jb.01176-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The restriction-modification (R-M) systems of many bacteria present a barrier to the stable introduction of foreign DNA. The Lyme disease spirochete Borrelia burgdorferi has two plasmid-borne putative R-M genes, bbe02 and bbq67, whose presence limits transformation by shuttle vector DNA from Escherichia coli. We show that both the bbe02 and bbq67 loci in recipient B. burgdorferi limit transformation with shuttle vector DNA from E. coli, irrespective of its dam, dcm, or hsd methylation status. However, plasmid DNA purified from B. burgdorferi transformed naïve B. burgdorferi much more efficiently than plasmid DNA from E. coli, particularly when the bbe02 and bbq67 genotypes of the B. burgdorferi DNA source matched those of the recipient. We detected adenine methylation of plasmid DNA prepared from B. burgdorferi that carried bbe02 and bbq67. These results indicate that the bbe02 and bbq67 loci of B. burgdorferi encode distinct R-M enzymes that methylate endogenous DNA and cleave foreign DNA lacking the same sequence-specific modification. Our findings have basic implications for horizontal gene transfer among B. burgdorferi strains with distinct plasmid contents. Further characterization and identification of the nucleotide sequences recognized by BBE02 and BBQ67 will facilitate efficient genetic manipulation of this pathogenic spirochete.
Collapse
|
166
|
BBK07 immunodominant peptides as serodiagnostic markers of Lyme disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:406-13. [PMID: 21177911 DOI: 10.1128/cvi.00461-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lyme disease (LD) is a tick-borne infection caused by the bacterial pathogen Borrelia burgdorferi. Current diagnostic tests mostly use borrelial lysates or select antigens to detect serum antibodies against B. burgdorferi. These immunoassays are not entirely effective, especially for detection of early infection. We have recently characterized an in vivo-induced antigen, BBK07, as a serodiagnostic marker for LD. We now report that in a line blot assay, recombinant BBK07 protein-based detection is 90% sensitive and nearly 100% specific against B. burgdorferi infection in humans. Using an overlapping peptide library of 23 peptides encompassing full-length BBK07, we identified the immunodominant epitopes of BBK07 during human infection. We show that a select combination of amino-terminal peptides significantly enhanced BBK07-based diagnostic accuracy compared to that with the full-length protein. Although in enzyme-linked immunosorbent assay (ELISA) studies BBK07 peptides had overall lower sensitivity than established serodiagnostic peptides, such as the VlsE peptide C6 and OspC peptide pepC10, for the detection of early human LD, a subset of serum samples that failed to recognize either VlsE or OspC peptides were preferentially reactive to BBK07 peptides. These results highlight the fact that BBK07 peptides could be useful to complement the efficacy of VlsE and OspC peptide-based serodiagnostic assays. Finally, using a panel of canine sera, we show that BBK07 peptide is also effective for LD diagnosis in infected dogs. Together, our data show that peptides from the B. burgdorferi surface protein BBK07 are highly specific and sensitive serodiagnostic markers, and we suggest their future use in LD diagnostic assays.
Collapse
|
167
|
Inactivation of bb0184, which encodes carbon storage regulator A, represses the infectivity of Borrelia burgdorferi. Infect Immun 2010; 79:1270-9. [PMID: 21173314 DOI: 10.1128/iai.00871-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The genome of Borrelia burgdorferi, the Lyme disease spirochete, encodes a homolog (the bb0184 gene product) of the carbon storage regulator A protein (CsrA(Bb)); recent studies reported that CsrA(Bb) is involved in the regulation of several infectivity factors of B. burgdorferi. However, the mechanism involved remains unknown. In this report, a csrA(Bb) mutant was constructed and complemented in an infectious B31A3 strain. Subsequent animal studies showed that the mutant failed to establish an infection in mice, highlighting that CsrA(Bb) is required for the infectivity of B. burgdorferi. Western blot analyses revealed that the virulence-associated factors OspC, DbpB, and DbpA were attenuated in the csrA(Bb) mutant. The Rrp2-RpoN-RpoS pathway (σ(54)-σ(S) sigma factor cascade) is a central regulon that governs the expression of ospC, dbpB, and dbpA. Further analyses found that the level of RpoS was significantly decreased in the mutant, while the level of Rrp2 remained unchanged. A recent study reported that the overexpression of BB0589, a phosphate acetyl-transferase (Pta) that converts acetyl-phosphate to acetyl-coenzyme A (CoA), led to the inhibition of RpoS and OspC expression, suggesting that acetyl-phosphate is an activator of Rrp2. Along with this report, we found that CsrA(Bb) binds to the leader sequence of the bb0589 transcript and that the intracellular level of acetyl-CoA in the csrA(Bb) mutant was significantly increased compared to that of the wild type, suggesting that more acetyl-phosphate was being converted to acetyl-CoA in the mutant. Collectively, these results suggest that CsrA(Bb) may influence the infectivity of B. burgdorferi via regulation of acetate metabolism and subsequent activation of the Rrp2-RpoN-RpoS pathway.
Collapse
|
168
|
High-throughput plasmid content analysis of Borrelia burgdorferi B31 by using Luminex multiplex technology. Appl Environ Microbiol 2010; 77:1483-92. [PMID: 21169439 DOI: 10.1128/aem.01877-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease in North America, is an invasive pathogen that causes persistent multiorgan manifestations in humans and other mammals. Genetic studies of this bacterium are complicated by the presence of multiple plasmid replicons, many of which are readily lost during in vitro culture. The analysis of B. burgdorferi plasmid content by plasmid-specific PCR and agarose gel electrophoresis or other existing techniques is informative, but these techniques are cumbersome and challenging to perform in a high-throughput manner. In this study, a PCR-based Luminex assay was developed for determination of the plasmid content of the strain B. burgdorferi B31. This multiplex, high-throughput method allows simultaneous detection of the plasmid contents of many B. burgdorferi strains in a 96-well format. The procedure was used to evaluate the occurrence of plasmid loss in 44 low-passage B. burgdorferi B31 clones and in a library of over 4,000 signature-tagged mutagenesis (STM) transposon mutant clones. This analysis indicated that only 40% of the clones contained all plasmids, with (in order of decreasing frequency) lp5, lp56, lp28-1, lp25, cp9, lp28-4, lp28-2, and lp21 being the most commonly missing plasmids. These results further emphasize the need for careful plasmid analysis in Lyme disease Borrelia studies. Adaptations of this approach may also be useful in the evaluation of plasmid content and chromosomal gene variations in additional Lyme disease Borrelia strains and other organisms with variable genomes and in the correlation of these genetic differences with pathogenesis and other biological properties.
Collapse
|
169
|
Gandhi G, Londoño D, Whetstine CR, Sethi N, Kim KS, Zückert WR, Cadavid D. Interaction of variable bacterial outer membrane lipoproteins with brain endothelium. PLoS One 2010; 5:e13257. [PMID: 21063459 PMCID: PMC2962627 DOI: 10.1371/journal.pone.0013257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 09/07/2010] [Indexed: 11/29/2022] Open
Abstract
Background Previously we reported that the variable outer membrane lipoprotein Vsp1 from the relapsing fever spirochete Borrelia turicatae disseminates from blood to brain better than the closely related Vsp2 [1]. Here we studied the interaction between Vsp1 and Vsp2 with brain endothelium in more detail. Methodology/Principal Findings We compared Vsp1 to Vsp2 using human brain microvascular endothelial cell (HBMEC) association assays with aminoacid radiolabeled Vsp-expressing clones of recombinant Borrelia burgdorferi and lanthanide-labeled purified lipidated Vsp1 (LVsp1) and Vsp2 (LVsp2) and inoculations of the lanthanide-labeled proteins into mice. The results showed that heterologous expression of LVsp1 or LVsp2 in B. burgdorferi increased its association with HBMEC to a similar degree. Purified lanthanide-labeled lipidated Vsp1 (LVsp1) and LVsp2 by themselves were capable of associating with HBMEC. The association of LVsp1 with brain endothelium was time-dependent, saturable, and required the lipidation. The association of Vsp1 with HBMEC was inhibited by incubation at lower temperature or with excess unlabeled LVsp1 or LVsp2 but not with excess rVsp1 or mouse albumin or an anti Vsp1 monoclonal antibody. The association of LVsp2 with HBMEC and its movement from blood to brain parenchyma significantly increased in the presence of LVsp1. Conclusions/Significance Variable bacterial outer membrane lipoproteins interact with brain endothelium differently; the lipidation and variable features at the protein dome region are key modulators of this interaction.
Collapse
Affiliation(s)
- Gaurav Gandhi
- Department of Neurology and Neuroscience and Center for the Study of Emerging Pathogens at UMDNJ-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Diana Londoño
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology and Neuroscience and Center for the Study of Emerging Pathogens at UMDNJ-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Christine R. Whetstine
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Nilay Sethi
- Department of Neurology and Neuroscience and Center for the Study of Emerging Pathogens at UMDNJ-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Kwang S. Kim
- Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Wolfram R. Zückert
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Diego Cadavid
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology and Neuroscience and Center for the Study of Emerging Pathogens at UMDNJ-New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
170
|
Role of acetyl-phosphate in activation of the Rrp2-RpoN-RpoS pathway in Borrelia burgdorferi. PLoS Pathog 2010; 6:e1001104. [PMID: 20862323 PMCID: PMC2940757 DOI: 10.1371/journal.ppat.1001104] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 08/13/2010] [Indexed: 11/22/2022] Open
Abstract
Borrelia burgdorferi, the Lyme disease spirochete, dramatically alters its transcriptome and proteome as it cycles between the arthropod vector and mammalian host. During this enzootic cycle, a novel regulatory network, the Rrp2-RpoN-RpoS pathway (also known as the σ54–σS sigma factor cascade), plays a central role in modulating the differential expression of more than 10% of all B. burgdorferi genes, including the major virulence genes ospA and ospC. However, the mechanism(s) by which the upstream activator and response regulator Rrp2 is activated remains unclear. Here, we show that none of the histidine kinases present in the B. burgdorferi genome are required for the activation of Rrp2. Instead, we present biochemical and genetic evidence that supports the hypothesis that activation of the Rrp2-RpoN-RpoS pathway occurs via the small, high-energy, phosphoryl-donor acetyl phosphate (acetyl∼P), the intermediate of the Ack-Pta (acetate kinase-phosphate acetyltransferase) pathway that converts acetate to acetyl-CoA. Supplementation of the growth medium with acetate induced activation of the Rrp2-RpoN-RpoS pathway in a dose-dependent manner. Conversely, the overexpression of Pta virtually abolished acetate-induced activation of this pathway, suggesting that acetate works through acetyl∼P. Overexpression of Pta also greatly inhibited temperature and cell density-induced activation of RpoS and OspC, suggesting that these environmental cues affect the Rrp2-RpoN-RpoS pathway by influencing acetyl∼P. Finally, overexpression of Pta partially reduced infectivity of B. burgdorferi in mice. Taken together, these findings suggest that acetyl∼P is one of the key activating molecule for the activation of the Rrp2-RpoN-RpoS pathway and support the emerging concept that acetyl∼P can serve as a global signal in bacterial pathogenesis. Borrelia burgdorferi, the causative agent of Lyme disease, is maintained in nature in a complex enzootic cycle involving Ixodes ticks and mammals. A novel regulatory network, the Rrp2-RpoN-RpoS pathway, which governs differential expression of numerous genes of B. burgdorferi, is essential for this complex life cycle. In this study, we provide evidence showing that the activation of the Rrp2-RpoN-RpoS pathway is modulated, not by the predicted histidine kinase for Rrp2, but rather by acetyl phosphate (acetyl∼P), the intermediate of the Ack-Pta (acetate kinase-phosphate acetyltransferase) metabolic pathway. Based on our findings, we propose that during the enzootic cycle of B. burgdorferi, changes in environmental cues and nutrient conditions lead to an increase in the intracellular acetyl∼P pool in B. burgdorferi, which in turn modulates the activation of the Rrp2-RpoN-RpoS pathway.
Collapse
|
171
|
Effect of Borrelia burgdorferi OspC at the site of inoculation in mouse skin. Infect Immun 2010; 78:4723-33. [PMID: 20696825 DOI: 10.1128/iai.00464-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Borrelia burgdorferi surface lipoprotein OspC is a critical virulence factor, but its precise role in the establishment of B. burgdorferi infection remains unclear. To determine whether OspC affects the host response at the site of inoculation of the bacterium, the recruitment of macrophages and neutrophils and the production of cytokines were examined at the site of infection by wild-type, ospC mutant, and complemented mutant B. burgdorferi strains. Of the 21 cytokines tested, monocyte chemoattractant protein 1 (MCP-1), keratinocyte-derived chemokine (KC, CXCL1), and vascular endothelial growth factor (VEGF) were found at increased levels at the site of inoculation of B. burgdorferi, and the levels varied with the production of OspC at one or more time points over the 1-week course of infection. The kinetics of expression and the dependence on OspC production by B. burgdorferi varied among the cytokines. The production of KC and MCP-1, and the appearance of monocytic infiltrates, correlated with the presence of the bacteria rather than with OspC specifically. In contrast, VEGF production was not correlated simply to the presence of the bacteria and is influenced by the presence of OspC. In in vitro assays, OspC and B. burgdorferi expressing OspC stimulated the growth of endothelial cells more than did the controls. These data suggest the possibility of a novel role for OspC in the life of B. burgdorferi at the interface of its mammalian and tick hosts.
Collapse
|
172
|
Characterization of unique regions of Borrelia burgdorferi surface-located membrane protein 1. Infect Immun 2010; 78:4477-87. [PMID: 20696833 DOI: 10.1128/iai.00501-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The pathogen of Lyme disease, Borrelia burgdorferi, produces a putative surface protein termed "surface-located membrane protein 1" (Lmp1). Lmp1 has been shown previously to assist the microbe in evasion of host-acquired immune defenses and in the establishment of persistent infection of mammals. Here, we show that Lmp1 is an integral membrane protein with surface-exposed N-terminal, middle, and C-terminal regions. During murine infection, antibodies recognizing these three protein regions were produced. Separate immunization of mice with each of the discrete regions exerted differential effects on spirochete survival during infection. Notably, antibodies against the C-terminal region primarily interfered with B. burgdorferi persistence in the joints, while antibodies specific to the N-terminal region predominantly affected pathogen levels in the heart, including the development of carditis. Genetic reconstitution of lmp1 deletion mutants with the lmp1 N-terminal region significantly enhanced its ability to resist the bactericidal effects of immune sera and also was observed to increase pathogen survival in vivo. Taken together, the combined data suggest that the N-terminal region of Lmp1 plays a distinct role in spirochete survival and other parts of the protein are related to specific functions corresponding to pathogen persistence and tropism during infection that is displayed in an organ-specific manner. The findings reported here underscore the fact that surface-exposed regions of Lmp1 could potentially serve as vaccine targets or antigenic regions that could alter the course of natural Lyme disease.
Collapse
|
173
|
Antibiotic resistance markers for genetic manipulations of Leptospira spp. Appl Environ Microbiol 2010; 76:4882-5. [PMID: 20511419 DOI: 10.1128/aem.00775-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We measured the frequency of appearance of spontaneous mutants resistant to gentamicin, kanamycin, streptomycin, and spectinomycin in saprophytic and pathogenic Leptospira strains. The mutations responsible for the spontaneous resistance to streptomycin and spectinomycin were identified in the rpsL and rrs genes, respectively. We also generated a gentamicin resistance cassette that allows the use of a third selectable marker in leptospires. These results may facilitate further advances in gene transfer systems in Leptospira spp.
Collapse
|
174
|
Sultan SZ, Pitzer JE, Miller MR, Motaleb MA. Analysis of a Borrelia burgdorferi phosphodiesterase demonstrates a role for cyclic-di-guanosine monophosphate in motility and virulence. Mol Microbiol 2010; 77:128-42. [PMID: 20444101 DOI: 10.1111/j.1365-2958.2010.07191.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The genome of Borrelia burgdorferi encodes a set of genes putatively involved in cyclic-dimeric guanosine monophosphate (cyclic-di-GMP) metabolism. Although BB0419 was shown to be a diguanylate cyclase, the extent to which bb0419 or any of the putative cyclic-di-GMP metabolizing genes impact B. burgdorferi motility and pathogenesis has not yet been reported. Here we identify and characterize a phosphodiesterase (BB0363). BB0363 specifically hydrolyzed cyclic-di-GMP with a K(m) of 0.054 microM, confirming it is a functional cyclic-di-GMP phosphodiesterase. A targeted mutation in bb0363 was constructed using a newly developed promoterless antibiotic cassette that does not affect downstream gene expression. The mutant cells exhibited an altered swimming pattern, indicating a function for cyclic-di-GMP in regulating B. burgdorferi motility. Furthermore, the bb0363 mutant cells were not infectious in mice, demonstrating an important role for cyclic-di-GMP in B. burgdorferi infection. The mutant cells were able to survive within Ixodes scapularis ticks after a blood meal from naïve mice; however, ticks infected with the mutant cells were not able to infect naïve mice. Both motility and infection phenotypes were restored upon genetic complementation. These results reveal an important connection between cyclic-di-GMP, B. burgdorferi motility and Lyme disease pathogenesis. A mechanism by which cyclic-di-GMP influences motility and infection is proposed.
Collapse
Affiliation(s)
- Syed Z Sultan
- Department of Microbiology and Immunology, Brody School of Medicine, 600 Moye Boulevard, Greenville, NC 27834, USA
| | | | | | | |
Collapse
|
175
|
Role of the surface lipoprotein BBA07 in the enzootic cycle of Borrelia burgdorferi. Infect Immun 2010; 78:2910-8. [PMID: 20421380 DOI: 10.1128/iai.00372-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Borrelia burgdorferi, the Lyme disease pathogen, dramatically alters its protein profile when it is transmitted between ticks and mammals. Several differentially expressed proteins have been shown to be critical for the enzootic cycle of B. burgdorferi. In this study, we demonstrated that expression of the surface lipoprotein-encoding gene bba07 is induced by an elevated temperature and a reduced pH during in vitro cultivation, as well as during nymphal tick feeding. Expression of bba07 is regulated by the Rrp2-RpoN-RpoS pathway, a central regulatory network that is activated during nymphal feeding. By generating a bba07 mutant of an infectious strain of B. burgdorferi, we demonstrated that although BBA07-deficient spirochetes were capable of infecting mice via needle inoculation and surviving in ticks, they were defective in infection of mammals via tick transmission. Complementation of the bba07 mutant with a wild-type copy of bba07 partially restored the transmission defect of the bba07 mutant. Based on these findings, we concluded that the surface lipoprotein BBA07 is produced during tick feeding and facilitates optimal transmission of B. burgdorferi from the tick vector to a mammalian host.
Collapse
|
176
|
Kumar M, Yang X, Coleman AS, Pal U. BBA52 facilitates Borrelia burgdorferi transmission from feeding ticks to murine hosts. J Infect Dis 2010; 201:1084-95. [PMID: 20170377 DOI: 10.1086/651172] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Borrelia burgdorferi, the pathogen of Lyme borreliosis, persists in nature through a tick-rodent transmission cycle. A selective assessment of the microbial transcriptome, limited to gene-encoding putative membrane proteins, reveals that bba52 transcription in vivo is strictly confined to the vector-specific portion of the microbial life cycle, with the highest levels of expression noted in feeding ticks and with swift down-regulation noted in mice. bba52 deletion did not affect murine disease as assessed by the genesis of arthritis and carditis or long-term persistence of pathogens in mice or ticks. However, bba52 deficiency did impair microbial transitions between hosts and vector, defects that could be fully rescued when bba52 expression was genetically restored to the original genomic locus. These studies establish that BBA52 facilitates vector-host transitions by the pathogen and therefore is a potential antigenic target for interference with transmission of B. burgdorferi from ticks to mammalian hosts.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Veterinary Medicine, University of Maryland, and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland 20742, USA
| | | | | | | |
Collapse
|
177
|
Schulze RJ, Chen S, Kumru OS, Zückert WR. Translocation of Borrelia burgdorferi surface lipoprotein OspA through the outer membrane requires an unfolded conformation and can initiate at the C-terminus. Mol Microbiol 2010; 76:1266-78. [PMID: 20398211 DOI: 10.1111/j.1365-2958.2010.07172.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Borrelia burgdorferi surface lipoproteins are essential to the pathogenesis of Lyme borreliosis, but the mechanisms responsible for their localization are only beginning to emerge. We have previously demonstrated the critical nature of the amino-terminal 'tether' domain of the mature lipoprotein for sorting a fluorescent reporter to the Borrelia cell surface. Here, we show that individual deletion of four contiguous residues within the tether of major surface lipoprotein OspA results in its inefficient translocation across the Borrelia outer membrane. Intriguingly, C-terminal epitope tags of these N-terminal deletion mutants were selectively surface-exposed. Fold-destabilizing C-terminal point mutations and deletions did not block OspA secretion, but rather restored one of the otherwise periplasmic tether mutants to the bacterial surface. Together, these data indicate that disturbance of a confined tether feature leads to premature folding of OspA in the periplasm and thereby prevents secretion through the outer membrane. Furthermore, they suggest that OspA emerges tail-first on the bacterial surface, yet independent of a specific C-terminal targeting peptide sequence.
Collapse
Affiliation(s)
- Ryan J Schulze
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Mail Stop 3029, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
178
|
The bba64 gene of Borrelia burgdorferi, the Lyme disease agent, is critical for mammalian infection via tick bite transmission. Proc Natl Acad Sci U S A 2010; 107:7515-20. [PMID: 20368453 DOI: 10.1073/pnas.1000268107] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spirochetal agent of Lyme disease, Borrelia burgdorferi, is transmitted by bites of Ixodes ticks to mammalian reservoir hosts and humans. The mechanism(s) by which the organism is trafficked from vector to host is poorly understood. In this study, we demonstrate that a B. burgdorferi mutant strain deficient in the synthesis of the bba64 gene product was incapable of infecting mice via tick bite even though the mutant was (i) infectious in mice when introduced by needle inoculation, (ii) acquired by larval ticks feeding on infected mice, and (iii) able to persist through tick molting stages. This finding of a B. burgdorferi gene required for pathogen transfer and/or survival from the tick to the susceptible host represents an important breakthrough toward understanding transmission mechanisms involved for the Lyme disease agent.
Collapse
|
179
|
Use of the Cre-lox recombination system to investigate the lp54 gene requirement in the infectious cycle of Borrelia burgdorferi. Infect Immun 2010; 78:2397-407. [PMID: 20231410 DOI: 10.1128/iai.01059-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, has a complex genome consisting of a linear chromosome and up to 21 linear and circular plasmids. These plasmids encode numerous proteins critical to the spirochete's infectious cycle and many hypothetical proteins whose functions and requirements are unknown. The conserved linear plasmid lp54 encodes several proteins important for survival in the mouse-tick infectious cycle, but the majority of the proteins are of unknown function and lack homologs outside the borreliae. In this study we adapted the Cre-lox recombination system to create large deletions in the B. burgdorferi genome. Using Cre-lox, we systematically investigated the contribution of 14 adjacent genes on the left arm of lp54 to the overall infectivity of B. burgdorferi. The deletion of the region of lp54 encompassing bba07 to bba14 had no significant effect on the infectious cycle of B. burgdorferi. The deletion of bba01 to bba07 resulted in a slight growth defect but did not significantly affect the ability of B. burgdorferi to complete the infectious cycle. This study demonstrated the utility of the Cre-lox system to efficiently explore gene requirements in B. burgdorferi and surprisingly revealed that a large number of the highly conserved proteins encoded on lp54 are not required to complete the infectious cycle.
Collapse
|
180
|
Li C, Xu H, Zhang K, Liang FT. Inactivation of a putative flagellar motor switch protein FliG1 prevents Borrelia burgdorferi from swimming in highly viscous media and blocks its infectivity. Mol Microbiol 2010; 75:1563-76. [PMID: 20180908 DOI: 10.1111/j.1365-2958.2010.07078.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The flagellar motor switch complex protein FliG plays an essential role in flagella biosynthesis and motility. In most motile bacteria, only one fliG homologue is present in the genome. However, several spirochete species have two putative fliG genes (referred to as fliG1 and fliG2) and their roles in flagella assembly and motility remain unknown. In this report, the Lyme disease spirochete Borrelia burgdorferi was used as a genetic model to investigate the roles of these two fliG homologues. It was found that fliG2 encodes a typical motor switch complex protein that is required for the flagellation and motility of B. burgdorferi. In contrast, the function of fliG1 is quite unique. Disruption of fliG1 did not affect flagellation and the mutant was still motile but failed to translate in highly viscous media. GFP-fusion and motion tracking analyses revealed that FliG1 asymmetrically locates at one end of cells and the loss of fliG1 somehow impacted one bundle of flagella rotation. In addition, animal studies demonstrated that the fliG1- mutant was quickly cleared after inoculation into the murine host, which highlights the importance of the ability to swim in highly viscous media in the infectivity of B. burgdorferi and probably other pathogenic spirochetes.
Collapse
Affiliation(s)
- Chunhao Li
- Department of Oral Biology, State University of New York, Buffalo, NY 14214, USA.
| | | | | | | |
Collapse
|
181
|
Lenhart TR, Akins DR. Borrelia burgdorferi locus BB0795 encodes a BamA orthologue required for growth and efficient localization of outer membrane proteins. Mol Microbiol 2009; 75:692-709. [PMID: 20025662 DOI: 10.1111/j.1365-2958.2009.07015.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The outer membrane (OM) of the pathogenic diderm spirochete, Borrelia burgdorferi, contains integral beta-barrel outer membrane proteins (OMPs) in addition to its numerous outer surface lipoproteins. Very few OMPs have been identified in B. burgdorferi, and the protein machinery required for OMP assembly and OM localization is currently unknown. Essential OM BamA proteins have recently been characterized in Gram-negative bacteria that are central components of an OM beta-barrel assembly machine and are required for proper localization and insertion of bacterial OMPs. In the present study, we characterized a putative B. burgdorferi BamA orthologue encoded by open reading frame bb0795. Structural model predictions and cellular localization data indicate that the B. burgdorferi BB0795 protein contains an N-terminal periplasmic domain and a C-terminal, surface-exposed beta-barrel domain. Additionally, assays with an IPTG-regulatable bb0795 mutant revealed that BB0795 is required for B. burgdorferi growth. Furthermore, depletion of BB0795 results in decreased amounts of detectable OMPs in the B. burgdorferi OM. Interestingly, a decrease in the levels of surface-exposed lipoproteins was also observed in the mutant OMs. Collectively, our structural, cellular localization and functional data are consistent with the characteristics of other BamA proteins, indicating that BB0795 is a B. burgdorferi BamA orthologue.
Collapse
Affiliation(s)
- Tiffany R Lenhart
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
182
|
Coleman JL, Katona LI, Kuhlow C, Toledo A, Okan NA, Tokarz R, Benach JL. Evidence that two ATP-dependent (Lon) proteases in Borrelia burgdorferi serve different functions. PLoS Pathog 2009; 5:e1000676. [PMID: 19956677 PMCID: PMC2777506 DOI: 10.1371/journal.ppat.1000676] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 10/30/2009] [Indexed: 12/02/2022] Open
Abstract
The canonical ATP-dependent protease Lon participates in an assortment of biological processes in bacteria, including the catalysis of damaged or senescent proteins and short-lived regulatory proteins. Borrelia spirochetes are unusual in that they code for two putative ATP-dependent Lon homologs, Lon-1 and Lon-2. Borrelia burgdorferi, the etiologic agent of Lyme disease, is transmitted through the blood feeding of Ixodes ticks. Previous work in our laboratory reported that B. burgdorferi lon-1 is upregulated transcriptionally by exposure to blood in vitro, while lon-2 is not. Because blood induction of Lon-1 may be of importance in the regulation of virulence factors critical for spirochete transmission, the clarification of functional roles for these two proteases in B. burgdorferi was the object of this study. On the chromosome, lon-2 is immediately downstream of ATP-dependent proteases clpP and clpX, an arrangement identical to that of lon of Escherichia coli. Phylogenetic analysis revealed that Lon-1 and Lon-2 cluster separately due to differences in the NH2-terminal substrate binding domains that may reflect differences in substrate specificity. Recombinant Lon-1 manifested properties of an ATP-dependent chaperone-protease in vitro but did not complement an E. coli Lon mutant, while Lon-2 corrected two characteristic Lon-mutant phenotypes. We conclude that B. burgdorferi Lons -1 and -2 have distinct functional roles. Lon-2 functions in a manner consistent with canonical Lon, engaged in cellular homeostasis. Lon-1, by virtue of its blood induction, and as a unique feature of the Borreliae, may be important in host adaptation from the arthropod to a warm-blooded host. Lyme disease, caused by the spirochete Borrelia burgdorferi, is the most prevalent arthropod-borne disease in North America. In nature, the bacterium oscillates between its tick vector host (Ixodes spp.) and small rodents (Peromyscus spp.). B. burgdorferi is able to persist in these two very different host environments by modulating the expression of surface lipoproteins proteins, or other proteins, in response to host factors or environmental cues such as temperature and pH. Our interest in this process led to the identification of a homolog of the E. coli ATP-dependent lon protease (lon-1) in B. burgdorferi that was upregulated in response to blood. The prototypical Lon of E. coli is a conserved protease important for the destruction of abnormal and short-lived proteins. B. burgdorferi is unusual in that it also codes for a second lon homolog, lon-2, that was not upregulated in response to blood. In this study, we sought to clarify the roles for Lon-1 and Lon-2 in B. burgdorferi. We present evidence that Lon-1 is an ATP- and Mg2+-dependent protease but does not function in a manner consistent with a prototypical Lon. Lon-2, however, functionally complemented Lon in E. coli. Thus, Lon-1 and Lon-2 appear to have distinct roles in B. burgdorferi; Lon-1 by virtue of its blood induction may be important in host adaptation, while Lon-2 is the functional homolog of E. coli Lon.
Collapse
Affiliation(s)
- James L Coleman
- State of New York Department of Health, Stony Brook University, Stony Brook, New York, United States of America.
| | | | | | | | | | | | | |
Collapse
|
183
|
Zhang X, Yang X, Kumar M, Pal U. BB0323 function is essential for Borrelia burgdorferi virulence and persistence through tick-rodent transmission cycle. J Infect Dis 2009; 200:1318-30. [PMID: 19754308 DOI: 10.1086/605846] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Borrelia burgdorferi bb0323 encodes an immunogenic protein in mammalian hosts, including humans. An analysis of bb0323 expression in vivo showed variable transcription throughout the spirochete infection cycle, with elevated expression during tick-mouse transmission. Deletion of bb0323 in infectious B. burgdorferi did not affect microbial survival in vitro, despite considerable alterations in growth kinetics and cell morphology. The bb0323 mutants were unable to infect either mice or ticks and were quickly eliminated from immunocompetent and immunodeficient hosts and the vector within the first few days after inoculation. Chromosomal complementation of the mutant with native bb0323 and phenotypic analysis in vivo indicated the substantial restoration of spirochete virulence and persistence throughout the mouse-tick infection cycle. The BB0323 protein may serve an indispensable physiological function that is more pronounced during microbial persistence and transitions between the host and the vector in vivo. Strategies to interfere with BB0323 function may interrupt the infectious cycle of spirochetes.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Veterinary Medicine, University of Maryland, College Park 20742, USA
| | | | | | | |
Collapse
|
184
|
Characterization of the highly regulated antigen BBA05 in the enzootic cycle of Borrelia burgdorferi. Infect Immun 2009; 78:100-7. [PMID: 19822648 DOI: 10.1128/iai.01008-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dramatic alteration of surface lipoprotein profiles is a key strategy that Borrelia burgdorferi, the Lyme disease pathogen, has evolved for adapting to the diverse environments of arthropod and mammalian hosts. Several of these differentially expressed lipoproteins have been shown to play important roles in the enzootic cycle of B. burgdorferi. The BBA05 protein is a previously identified putative lipoprotein (P55 or S1 antigen) that elicits antibody responses in mammals. Recent microarray analyses indicate that the BBA05 gene is differentially expressed by many environmental factors, including temperature. However, the role of the BBA05 protein in the life cycle of B. burgdorferi has not been elucidated. Here we show that expression of the BBA05 gene was exclusively induced in feeding nymphal ticks during the spirochetal transmission from ticks to mammals. Upon generating a BBA05 mutant in an infectious strain of B. burgdorferi, we showed that the BBA05 mutant remained capable of establishing infection in mice, being acquired by ticks, persisting through tick molting, and reinfecting new mammalian hosts. These results indicate that, despite being a highly conserved and regulated antigen, the BBA05 protein has a nonessential role in the transmission cycle of B. burgdorferi, at least in the animal model.
Collapse
|
185
|
Sarkar A, Tilly K, Stewart P, Bestor A, Battisti JM, Rosa PA. Borrelia burgdorferi resistance to a major skin antimicrobial peptide is independent of outer surface lipoprotein content. Antimicrob Agents Chemother 2009; 53:4490-4. [PMID: 19651916 PMCID: PMC2764146 DOI: 10.1128/aac.00558-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 06/19/2009] [Accepted: 07/23/2009] [Indexed: 11/20/2022] Open
Abstract
We hypothesize a potential role for Borrelia burgdorferi OspC in innate immune evasion at the initial stage of mammalian infection. We demonstrate that B. burgdorferi is resistant to high levels (>200 microg/ml) of cathelicidin and that this antimicrobial peptide exhibits limited binding to the spirochetal outer membrane, irrespective of OspC or other abundant surface lipoproteins. We conclude that the essential role of OspC is unrelated to resistance to this component of innate immunity.
Collapse
Affiliation(s)
- Amit Sarkar
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, 903 S. 4th Street, Hamilton, MT 59840, USA.
| | | | | | | | | | | |
Collapse
|
186
|
Promnares K, Kumar M, Shroder DY, Zhang X, Anderson JF, Pal U. Borrelia burgdorferi small lipoprotein Lp6.6 is a member of multiple protein complexes in the outer membrane and facilitates pathogen transmission from ticks to mice. Mol Microbiol 2009; 74:112-125. [PMID: 19703109 PMCID: PMC2754595 DOI: 10.1111/j.1365-2958.2009.06853.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Borrelia burgdorferi lipoprotein Lp6.6 is a differentially produced spirochete antigen. An assessment of lp6.6 expression covering representative stages of the infectious cycle of spirochetes demonstrates that the gene is solely expressed during pathogen persistence in ticks. Deletion of lp6.6 in infectious B. burgdorferi did not influence in vitro growth, or its ability to persist and induce inflammation in mice, migrate to larval or nymphal ticks or survive through the larval-nymphal molt. However, Lp6.6-deficient spirochetes displayed significant impairment in their ability to transmit from infected ticks to naïve mice, which was restored upon genetic complementation of the mutant with a wild-type copy of lp6.6, establishing that Lp6.6 plays a role in pathogen transmission from ticks to mammals. Lp6.6 is a subsurface, yet highly abundant, outer membrane antigen. Two-dimensional blue native/SDS-PAGE coupled with liquid chromatography-mass spectrometry (LC-MS/MS) analysis and protein cross-linking studies independently shows that Lp6.6 exists in multiple protein complexes in the outer membrane. We speculate that the function of Lp6.6 is connected to the physiological processes of these membrane complexes. Further characterization of differentially produced membrane antigens and associated protein complexes will likely aid in our understanding of the molecular details of B. burgdorferi persistence and transmission through a complex enzootic cycle.
Collapse
Affiliation(s)
- Kamoltip Promnares
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20742, USA.Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Manish Kumar
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20742, USA.Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Deborah Y Shroder
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20742, USA.Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Xinyue Zhang
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20742, USA.Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - John F Anderson
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20742, USA.Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20742, USA.Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| |
Collapse
|
187
|
GuaA and GuaB are essential for Borrelia burgdorferi survival in the tick-mouse infection cycle. J Bacteriol 2009; 191:6231-41. [PMID: 19666713 DOI: 10.1128/jb.00450-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pathogens lacking the enzymatic pathways for de novo purine biosynthesis are required to salvage purines and pyrimidines from the host environment for synthesis of DNA and RNA. Two key enzymes in purine salvage pathways are IMP dehydrogenase (GuaB) and GMP synthase (GuaA), encoded by the guaB and guaA genes, respectively. While these genes are typically found on the chromosome in most bacterial pathogens, the guaAB operon of Borrelia burgdorferi is present on plasmid cp26, which also harbors a number of genes critical for B. burgdorferi viability. Using molecular genetics and an experimental model of the tick-mouse infection cycle, we demonstrate that the enzymatic activities encoded by the guaAB operon are essential for B. burgdorferi mouse infectivity and provide a growth advantage to spirochetes in the tick. These data indicate that the GuaA and GuaB proteins are critical for the survival of B. burgdorferi in the infection cycle and highlight a potential difference in the requirements for purine salvage in the disparate mammalian and tick environments.
Collapse
|
188
|
Tilly K, Bestor A, Dulebohn DP, Rosa PA. OspC-independent infection and dissemination by host-adapted Borrelia burgdorferi. Infect Immun 2009; 77:2672-82. [PMID: 19398538 PMCID: PMC2708573 DOI: 10.1128/iai.01193-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 11/04/2008] [Accepted: 04/20/2009] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi OspC is required for the spirochete to establish infection in a mammal by tick transmission or needle inoculation. After a brief essential period, the protein no longer is required and the gene can be shut off. Using a system in which spirochetes contain only an unstable wild-type copy of the ospC gene, we can obtain mice persistently infected with bacteria lacking OspC. We implanted pieces of infected mouse skin subcutaneously in naïve mice, using donors carrying wild-type or ospC mutant spirochetes, and found that both could infect mice by this method, with similar numbers of wild-type or ospC mutant spirochetes disseminated throughout the tissues of recipient mice. Recipient mouse immune responses to tissue transfer-mediated infection with wild-type or ospC mutant spirochetes were similar. These experiments demonstrate that mammalian host-adapted spirochetes can infect and disseminate in mice in the absence of OspC, thereby circumventing this hallmark of tick-derived or in vitro-grown spirochetes. We propose a model in which OspC is one of a succession of functionally equivalent, essential proteins that are synthesized at different stages of mammalian infection. In this model, another protein uniquely present on host-adapted spirochetes performs the same essential function initially fulfilled by OspC. The strict temporal control of B. burgdorferi outer surface protein gene expression may reflect immunological constraints rather than distinct functions.
Collapse
Affiliation(s)
- Kit Tilly
- Laboratory of Zoonotic Pathogens, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana 59840, USA
| | | | | | | |
Collapse
|
189
|
CspA-mediated binding of human factor H inhibits complement deposition and confers serum resistance in Borrelia burgdorferi. Infect Immun 2009; 77:2773-82. [PMID: 19451251 DOI: 10.1128/iai.00318-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Borrelia burgdorferi has developed efficient mechanisms for evading the innate immune response during mammalian infection and has been shown to be resistant to the complement-mediated bactericidal activity of human serum. It is well recognized that B. burgdorferi expresses multiple lipoproteins on its surface that bind the human complement inhibitors factor H and factor H-like protein 1 (FH/FHL-1). The binding of FH/FHL-1 on the surface of B. burgdorferi is thought to enhance its ability to evade serum-mediated killing during the acute phase of infection. One of the key B. burgdorferi FH/FHL-1 binding proteins identified thus far was designated CspA. While it is known that CspA binds FH/FHL-1, it is unclear how the interaction between CspA and FH/FHL-1 specifically enhances serum resistance. To better understand how CspA mediates serum resistance in B. burgdorferi, we inactivated cspA in a virulent strain of B. burgdorferi. An affinity ligand blot immunoassay and indirect immunofluorescence revealed that the CspA mutant does not efficiently bind human FH to its surface. Consistent with the lack of FH binding, the CspA mutant was also highly sensitive to killing by human serum. Additionally, the deposition of complement components C3, C6, and C5b-9 was enhanced on the surface of the CspA mutant compared to that of the wild-type strain. The combined data lead us to conclude that the CspA-mediated binding of human FH confers serum resistance by directly inhibiting complement deposition on the surface of B. burgdorferi.
Collapse
|
190
|
Lawrence KA, Jewett MW, Rosa PA, Gherardini FC. Borrelia burgdorferi bb0426 encodes a 2'-deoxyribosyltransferase that plays a central role in purine salvage. Mol Microbiol 2009; 72:1517-29. [PMID: 19460093 PMCID: PMC2764106 DOI: 10.1111/j.1365-2958.2009.06740.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Borrelia burgdorferi is an obligate parasite with a limited genome that severely narrows its metabolic and biosynthetic capabilities. Thus survival of this spirochaete in an arthropod vector and mammalian host requires that it can scavenge amino acids, fatty acids and nucleosides from a blood meal or various host tissues. Additionally, the utilization of ribonucleotides for DNA synthesis is further complicated by the lack of a ribonucleotide reductase for the conversion of nucleoside-5′-diphosphates to deoxynucleosides-5′-diphosphates. The data presented here demonstrate that B. burgdorferi must rely on host-derived sources of purine bases, deoxypurines and deoxypyrimidines for the synthesis of DNA. However, if deoxyguanosine (dGuo) is limited in host tissue, the enzymatic activities of a 2′-deoxyribosyltransferase (DRTase, encoded by bb0426), IMP dehydrogenase (GuaB) and GMP synthase (GuaA) catalyse the multistep conversion of hypoxanthine (Hyp) to dGMP for DNA synthesis. This pathway provides additional biochemical flexibility for B. burgdorferi when it colonizes and infects different host tissues.
Collapse
Affiliation(s)
- Kevin A Lawrence
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | |
Collapse
|
191
|
Abstract
Borrelia burgdorferi, the Lyme disease-causing spirochete, can persistently infect its vertebrate hosts for years. B. burgdorferi is often found associated with host connective tissue, where it interacts with components of the extracellular matrix, including fibronectin. Some years ago, a borrelial surface protein, named BBK32, was identified as a fibronectin-binding protein. However, B. burgdorferi BBK32 mutants are still able to bind fibronectin, indicating that the spirochete possesses additional mechanisms for adherence to fibronectin. We now demonstrate that RevA, an unrelated B. burgdorferi outer surface protein, binds mammalian fibronectin in a saturable manner. Site-directed mutagenesis studies identified the amino terminus of the RevA protein as being required for adhesion to fibronectin. RevA bound to the amino-terminal region of fibronectin. RevA binding to fibronectin was not inhibited by salt or heparin, suggesting that adhesin-ligand interactions are primarily nonionic and occur through the non-heparin-binding regions of the fibronectin amino-terminal domains. revA genes are widely distributed among Lyme disease spirochetes, and the present studies determined that all RevA alleles tested bound fibronectin. In addition, RevB, a paralogous protein found in a subset of B. burgdorferi strains, also bound fibronectin. We also confirmed that RevA is produced during mammalian infection but not during colonization of vector ticks and determined that revA transcription is controlled through a mechanism distinct from that of BBK32.
Collapse
|
192
|
Yang X, Coleman AS, Anguita J, Pal U. A chromosomally encoded virulence factor protects the Lyme disease pathogen against host-adaptive immunity. PLoS Pathog 2009; 5:e1000326. [PMID: 19266024 PMCID: PMC2644780 DOI: 10.1371/journal.ppat.1000326] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 02/04/2009] [Indexed: 11/18/2022] Open
Abstract
Borrelia burgdorferi, the bacterial pathogen of Lyme borreliosis, differentially expresses select genes in vivo, likely contributing to microbial persistence and disease. Expression analysis of spirochete genes encoding potential membrane proteins showed that surface-located membrane protein 1 (lmp1) transcripts were expressed at high levels in the infected murine heart, especially during early stages of infection. Mice and humans with diagnosed Lyme borreliosis also developed antibodies against Lmp1. Deletion of lmp1 severely impaired the pathogen's ability to persist in diverse murine tissues including the heart, and to induce disease, which was restored upon chromosomal complementation of the mutant with the lmp1 gene. Lmp1 performs an immune-related rather than a metabolic function, as its deletion did not affect microbial persistence in immunodeficient mice, but significantly decreased spirochete resistance to the borreliacidal effects of anti-B. burgdorferi sera in a complement-independent manner. These data demonstrate the existence of a virulence factor that helps the pathogen evade host-acquired immune defense and establish persistent infection in mammals. The pathogen of Lyme borreliosis, Borrelia burgdorferi, causes disease in many parts of the world, resulting in multi-system complications in infected humans and animals. The microbe produces certain antigens in response to host environments that potentially allow it to persist and cause disease. Here, we analyzed the expression of B. burgdorferi genes encoding potential membrane proteins in infected hosts and show that one of them, termed Lmp1, is dramatically expressed in infected mice, most prominently in cardiac tissue during early infection. Mice and humans diagnosed with Lyme borreliosis also develop antibodies against Lmp1. Deletion of lmp1 in an infectious isolate of B. burgdorferi impairs the pathogen's ability to persist in murine tissues, especially the heart, and to induce disease, which was reversed when the gene was inserted back into the chromosome of the mutant. Lmp1 performs an immune-related, rather than a metabolic, function as its deletion does not affect microbial persistence in immunodeficient mice, but decreases the spirochete's ability to resist the borreliacidal effects of anti-B. burgdorferi sera. These data identify the existence of a surface-located antigen of B. burgdorferi that helps the pathogen evade host-acquired immune defense and establish persistent infection and disease in mammals.
Collapse
Affiliation(s)
- Xiuli Yang
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
- Virginia–Maryland Regional College of Veterinary Medicine, College Park, Maryland, United States of America
| | - Adam S. Coleman
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
- Virginia–Maryland Regional College of Veterinary Medicine, College Park, Maryland, United States of America
| | - Juan Anguita
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, Amherst, Massachusetts, United States of America
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
- Virginia–Maryland Regional College of Veterinary Medicine, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
193
|
Spent culture medium from virulent Borrelia burgdorferi increases permeability of individually perfused microvessels of rat mesentery. PLoS One 2008; 3:e4101. [PMID: 19116656 PMCID: PMC2605548 DOI: 10.1371/journal.pone.0004101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 11/26/2008] [Indexed: 11/21/2022] Open
Abstract
Background Lyme disease is a common vector-borne disease caused by the spirochete Borrelia burgdorferi (Bb), which manifests as systemic and targeted tissue inflammation. Both in vitro and in vivo studies have shown that Bb-induced inflammation is primarily host-mediated, via cytokine or chemokine production that promotes leukocyte adhesion/migration. Whether Bb produces mediators that can directly alter the vascular permeability in vivo has not been investigated. The objective of the present study was to investigate if Bb produces a mediator(s) that can directly activate endothelial cells resulting in increases in permeability in intact microvessels in the absence of blood cells. Methodology/Principal Findings The effects of cell-free, spent culture medium from virulent (B31-A3) and avirulent (B31-A) B. burgdorferi on microvessel permeability and endothelial calcium concentration, [Ca2+]i, were examined in individually perfused rat mesenteric venules. Microvessel permeability was determined by measuring hydraulic conductivity (Lp). Endothelial [Ca2+]i, a necessary signal initiating hyperpermeability, was measured in Fura-2 loaded microvessels. B31-A3 spent medium caused a rapid and transient increase in Lp and endothelial [Ca2+]i. Within 2–5 min, the mean peak Lp increased to 5.6±0.9 times the control, and endothelial [Ca2+]i increased from 113±11 nM to a mean peak value of 324±35 nM. In contrast, neither endothelial [Ca2+]i nor Lp was altered by B31-A spent medium. Conclusions/Significance A mediator(s) produced by virulent Bb under culture conditions directly activates endothelial cells, resulting in increases in microvessel permeability. Most importantly, the production of this mediator is associated with Bb virulence and is likely produced by one or more of the 8 plasmid(s) missing from strain B31-A.
Collapse
|
194
|
Battisti JM, Bono JL, Rosa PA, Schrumpf ME, Schwan TG, Policastro PF. Outer surface protein A protects Lyme disease spirochetes from acquired host immunity in the tick vector. Infect Immun 2008; 76:5228-37. [PMID: 18779341 PMCID: PMC2573341 DOI: 10.1128/iai.00410-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 05/19/2008] [Accepted: 08/29/2008] [Indexed: 11/20/2022] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi alters the expression of outer surface protein (osp) genes as the bacterium cycles between ticks and mammals. OspA is produced as borreliae enter the tick vector and remains a major surface antigen during midgut colonization. To elucidate the role of OspA in the vector, we created an insertional deletion of ospA in strain B31-A3. The ospA mutant infects mice when it is injected intradermally and is acquired by larval ticks fed on these mice, where it persists through the molt to the nymph stage. Bacterial survival rates in artificially infected tick larvae fed on naïve mice were compared with those in the vector fed on immune mice. The ospA mutant proliferates in larvae if it is exposed to blood from naïve mice, but it declines in density after larval feeding if the blood is from immune mice. When uninfected larvae are fed on B-cell-deficient mice infected with the ospA mutant, larvae show borrelial densities and persistence that are significantly greater than those fed on infected, immunocompetent mice. We conclude that OspA serves a critical antibody-shielding role during vector blood meal uptake from immune hosts and is not required for persistence in the tick vector.
Collapse
Affiliation(s)
- James M Battisti
- Rocky Mountain Laboratories, NIAID, NIH, 903 S. 4th Street, Hamilton, MT 59840, USA
| | | | | | | | | | | |
Collapse
|
195
|
In vitro CpG methylation increases the transformation efficiency of Borrelia burgdorferi strains harboring the endogenous linear plasmid lp56. J Bacteriol 2008; 190:7885-91. [PMID: 18849429 DOI: 10.1128/jb.00324-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi is the causative agent of Lyme disease, the most common vector-borne illness in the Northern hemisphere. Low-passage-number infectious strains of B. burgdorferi exhibit extremely low transformation efficiencies-so low, in fact, as to hinder the genetic study of putative virulence factors. Two putative restriction-modification (R-M) systems, BBE02 contained on linear plasmid 25 (lp25) and BBQ67 contained on lp56, have been postulated to contribute to this poor transformability. Restriction barriers posed by other bacteria have been overcome by the in vitro methylation of DNA prior to transformation. To test whether a methylation-sensitive restriction system contributes to poor B. burgdorferi transformability, shuttle plasmids were treated with the CpG methylase M.SssI prior to the electroporation of a variety of strains harboring different putative R-M systems. We found that for B. burgdorferi strains that harbor lp56, in vitro methylation increased transformation by at least 1 order of magnitude. These results suggest that in vitro CpG methylation protects exogenous DNA from degradation by an lp56-contained R-M system, presumably BBQ67. The utility of in vitro methylation for the genetic manipulation of B. burgdorferi was exemplified by the ease of plasmid complementation of a B. burgdorferi B31 A3 BBK32 kanamycin-resistant (B31 A3 BBK32::Kan(r)) mutant, deficient in the expression of the fibronectin- and glycosaminoglycan (GAG)-binding adhesin BBK32. Consistent with the observation that several surface proteins may promote GAG binding, the B. burgdorferi B31 A3 BBK32::Kan(r) mutant demonstrated no defect in the ability to bind purified GAGs or GAGs expressed on the surfaces of cultured cells.
Collapse
|
196
|
Zückert WR. Laboratory maintenance of Borrelia burgdorferi. CURRENT PROTOCOLS IN MICROBIOLOGY 2008; Chapter 12:Unit 12C.1. [PMID: 18770608 DOI: 10.1002/9780471729259.mc12c01s4] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This unit describes the propagation of Borrelia burgdorferi as well as other "cultivable" Borrelia species in Barbour-Stoenner-Kelly-II (BSK-II) medium. It supplies a detailed recipe for BSK-II, as well as protocols for standard liquid culture, the generation of frozen Borrelia stocks, and the plating of B. burgdorferi cells in solid BSK-II medium.
Collapse
|
197
|
Gilmore RD, Howison RR, Schmit VL, Carroll JA. Borrelia burgdorferi expression of the bba64, bba65, bba66, and bba73 genes in tissues during persistent infection in mice. Microb Pathog 2008; 45:355-60. [PMID: 18848981 DOI: 10.1016/j.micpath.2008.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/11/2008] [Accepted: 08/20/2008] [Indexed: 11/16/2022]
Abstract
Borrelia burgdorferi, the etiological agent of Lyme disease in humans, is vectored between mammalian hosts in nature by Ixodes ticks. The organism adapts to diverse environments encountered throughout the enzootic cycle by differentially expressing essential gene products to survive the specialized conditions, whether in ticks or warm-blooded hosts. However, little is known regarding the identity and/or function of B. burgdorferi genes expressed during colonization of tissues during mammalian infection. Experimental evidence has shown that a group of genes (formerly classified as paralogous gene family 54) contiguously localized on the 54-kilobase linear plasmid of B. burgdorferi, are among the most highly regulated by in vitro conditions resembling mammalian infection. In this study, we employed quantitative reverse transcription-PCR to measure temporal gene expression of a subset of this B. burgdorferi gene family (bba64, bba65, bba66, and bba73) in tissues during chronic murine infection. The goal was to gain insight into the role of these genes in infectivity and pathogenesis by identifying when the genes are induced and whether they are expressed in specific target tissues. B. burgdorferi bba64, bba65, bba66, and bba73 expression was measured from infected mouse tissues relative to expression in in vitro culture conditions at specific times post-infection. bba64 expression was highly upregulated in bladder, heart, and spleen tissues throughout the infection period, contrasting with the sharp downregulation previously observed in ear tissues. bba65, bba66, and bba73 demonstrated upregulated differential expression in various tissues over 1 year post-infection. These results suggest an essential role for these genes in borrelial survival, persistence, and/or pathogenesis.
Collapse
Affiliation(s)
- Robert D Gilmore
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, 3150 Rampart Rd, Fort Collins, CO 80521, USA.
| | | | | | | |
Collapse
|
198
|
Swanson KI, Norris DE. Presence of multiple variants of Borrelia burgdorferi in the natural reservoir Peromyscus leucopus throughout a transmission season. Vector Borne Zoonotic Dis 2008; 8:397-405. [PMID: 18399776 DOI: 10.1089/vbz.2007.0222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
White-footed mice (Peromyscus leucopus) serve as the principal reservoir for Borrelia burgdorferi and have been shown to remain infected for life. Complex infections with multiple genetic variants of B. burgdorferi occur in mice through multiple exposures to infected ticks or through exposure to ticks infected with multiple variants of B. burgdorferi. Using a combination of cloning and single strand conformation polymorphism (SSCP), B. burgdorferi ospC variation was assessed in serial samples collected from individual P. leucopus during a single transmission season. In individuals with ospC variation, at least seven ospC variants were recognized at each time point. One to four of these variants predominated at each time point; however, the predominant variants seldom remained consistent in an individual mouse throughout the entire sampling period. These results confirmed that mice in southern Maryland were persistently infected with multiple variants of B. burgdorferi throughout the transmission season. However, the presence of multiple ospC variants and the fluctuations in the frequency of these variants indicates that either new ospC variants are regularly introduced to this mouse population and predominate while the existing infections are cleared, or that the variation detected in the genetic profile at different time points reflects a complex mixture of B. burgdorferi populations whose relative frequencies may continually change.
Collapse
Affiliation(s)
- Katherine I Swanson
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | |
Collapse
|
199
|
Coleman AS, Yang X, Kumar M, Zhang X, Promnares K, Shroder D, Kenedy MR, Anderson JF, Akins DR, Pal U. Borrelia burgdorferi complement regulator-acquiring surface protein 2 does not contribute to complement resistance or host infectivity. PLoS One 2008; 3:3010e. [PMID: 18714378 PMCID: PMC2526170 DOI: 10.1371/journal.pone.0003010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 07/30/2008] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi, the pathogen of Lyme disease, cycles in nature through Ixodes ticks and mammalian hosts. At least five Complement Regulator-Acquiring Surface Proteins (BbCRASPs) are produced by B. burgdorferi, which are thought to assist spirochetes in host immune evasion. Recent studies established that BbCRASP-2 is preferentially expressed in mammals, and elicits robust antibody response in infected hosts, including humans. We show that BbCRASP-2 is ubiquitously expressed in diverse murine tissues, but not in ticks, reinforcing a role of BbCRASP-2 in conferring B. burgdorferi defense against persistent host immune threats, such as complement. BbCRASP-2 immunization, however, fails to protect mice from B. burgdorferi infection and does not modify disease, as reflected by the development of arthritis. An infectious BbCRASP-2 mutant was generated, therefore, to examine the precise role of the gene product in spirochete infectivity. Similar to wild type B. burgdorferi, BbCRASP-2 mutants remain insensitive to complement-mediated killing in vitro, retain full murine infectivity and induce arthritis. Quantitative RT-PCR assessment indicates that survivability of BbCRASP-2-deficient B. burgdorferi is not due to altered expression of other BbCRASPs. Together, these results suggest that the function of a selectively expressed B. burgdorferi gene, BbCRASP-2, is not essential for complement resistance or infectivity in the murine host.
Collapse
Affiliation(s)
- Adam S. Coleman
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Xiuli Yang
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Manish Kumar
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Xinyue Zhang
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Kamoltip Promnares
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Deborah Shroder
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Melisha R. Kenedy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - John F. Anderson
- Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Darrin R. Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
200
|
Abstract
RecA is a key protein linking genetic recombination to DNA replication and repair in bacteria. Previous functional characterization of Borrelia burgdorferi RecA indicated that the protein is mainly involved in genetic recombination rather than DNA repair. Genetic recombination may play a role in B. burgdorferi persistence by generation of antigenic variation. We report here the isolation of a recA null mutant in an infectious B. burgdorferi strain. Comparison of the in vitro growth characteristics of the mutant with those of the wild-type strain under various conditions showed no significant differences. While the RecA mutant was moderately more sensitive to UV irradiation and mitomycin C than the wild-type strain, the lack of RecA abolished allelic exchange in the mutant. Absence of RecA did not affect the ability of the mutant to infect mice. However, the RecA mutant was attenuated for joint infection in competitive-infection assays with the wild-type strain. vlsE sequence variation in mice was observed in both wild-type and RecA mutant spirochetes, indicating that the mechanism of antigenic variation is not homologous genetic recombination.
Collapse
|