151
|
Catchpole AP, Mingay LJ, Fodor E, Brownlee GG. Alternative base pairs attenuate influenza A virus when introduced into the duplex region of the conserved viral RNA promoter of either the NS or the PA gene. J Gen Virol 2003; 84:507-515. [PMID: 12604800 DOI: 10.1099/vir.0.18795-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of plasmid-based rescue systems for influenza virus has allowed previous studies of the neuraminidase (NA) virion RNA (vRNA) promoter to be extended, in order to test the hypothesis that alternative base pairs in the conserved influenza virus vRNA promoter cause attenuation when introduced into other gene segments. Influenza A/WSN/33 viruses with alternative base pairs in the duplex region of the vRNA promoter of either the polymerase acidic (PA) or the NS (non-structural 1, NS1, and nuclear export, NEP, -encoding) gene have been rescued. Virus growth in MDBK cells demonstrated that one of the mutations, the D2 mutation (U-A replacing G-C at nucleotide positions 12'-11), caused significant virus attenuation when introduced into either the PA or the NS gene. The D2 mutation resulted in the reduction of PA- or NS-specific vRNA and mRNA levels in PA- or NS-recombinant viruses, respectively. Since the D2 mutation attenuates influenza virus when introduced into either the PA or the NS gene segments, or the NA gene segment, as demonstrated previously, this suggests that this mutation will lead to virus attenuation when introduced into any of the eight gene segments. Such a mutation may be useful in the production of live-attenuated viruses.
Collapse
Affiliation(s)
- A P Catchpole
- Sir William Dunn School of Pathology, University of Oxford, Chemical Pathology Unit, South Parks Road, Oxford OX1 3RE, UK
| | - L J Mingay
- Sir William Dunn School of Pathology, University of Oxford, Chemical Pathology Unit, South Parks Road, Oxford OX1 3RE, UK
| | - E Fodor
- Sir William Dunn School of Pathology, University of Oxford, Chemical Pathology Unit, South Parks Road, Oxford OX1 3RE, UK
| | - G G Brownlee
- Sir William Dunn School of Pathology, University of Oxford, Chemical Pathology Unit, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
152
|
Wang X, Basler CF, Williams BRG, Silverman RH, Palese P, García-Sastre A. Functional replacement of the carboxy-terminal two-thirds of the influenza A virus NS1 protein with short heterologous dimerization domains. J Virol 2002; 76:12951-62. [PMID: 12438621 PMCID: PMC136679 DOI: 10.1128/jvi.76.24.12951-12962.2002] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2002] [Accepted: 09/18/2002] [Indexed: 11/20/2022] Open
Abstract
The NS1 protein of influenza A/WSN/33 virus is a 230-amino-acid-long protein which functions as an interferon alpha/beta (IFN-alpha/beta) antagonist by preventing the synthesis of IFN during viral infection. In tissue culture, the IFN inhibitory function of the NS1 protein has been mapped to the RNA binding domain, the first 73 amino acids. Nevertheless, influenza viruses expressing carboxy-terminally truncated NS1 proteins are attenuated in mice. Dimerization of the NS1 protein has previously been shown to be essential for its RNA binding activity. We have explored the ability of heterologous dimerization domains to functionally substitute in vivo for the carboxy-terminal domains of the NS1 protein. Recombinant influenza viruses were generated that expressed truncated NS1 proteins of 126 amino acids, fused to 28 or 24 amino acids derived from the dimerization domains of either the Saccharomyces cerevisiae PUT3 or the Drosophila melanogaster Ncd (DmNcd) proteins. These viruses regained virulence and lethality in mice. Moreover, a recombinant influenza virus expressing only the first 73 amino acids of the NS1 protein was able to replicate in mice lacking three IFN-regulated antiviral enzymes, PKR, RNaseL, and Mx, but not in wild-type (Mx-deficient) mice, suggesting that the attenuation was mainly due to an inability to inhibit the IFN system. Remarkably, a virus with an NS1 truncated at amino acid 73 but fused to the dimerization domain of DmNcd replicated and was also highly pathogenic in wild-type mice. These results suggest that the main biological function of the carboxy-terminal region of the NS1 protein of influenza A virus is the enhancement of its IFN antagonist properties by stabilizing the NS1 dimeric structure.
Collapse
Affiliation(s)
- Xiuyan Wang
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
153
|
Weber F, Bridgen A, Fazakerley JK, Streitenfeld H, Kessler N, Randall RE, Elliott RM. Bunyamwera bunyavirus nonstructural protein NSs counteracts the induction of alpha/beta interferon. J Virol 2002; 76:7949-55. [PMID: 12133999 PMCID: PMC155133 DOI: 10.1128/jvi.76.16.7949-7955.2002] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Production of alpha/beta interferons (IFN-alpha/beta) in response to viral infection is one of the main defense mechanisms of the innate immune system. Many viruses therefore encode factors that subvert the IFN system to enhance their virulence. Bunyamwera virus (BUN) is the prototype of the Bunyaviridae family. By using reverse genetics, we previously produced a recombinant virus lacking the nonstructural protein NSs (BUNdelNSs) and showed that NSs is a nonessential gene product that contributes to viral pathogenesis. Here we demonstrate that BUNdelNSs is a strong inducer of IFN-alpha/beta, whereas in cells infected with the wild-type counterpart expressing NSs (wild-type BUN), neither IFN nor IFN mRNA could be detected. IFN induction by BUNdelNSs correlated with activation of NF-kappaB and was dependent on virally produced double-stranded RNA and on the IFN transcription factor IRF-3. Furthermore, both in cultured cells and in mice lacking a functional IFN-alpha/beta system, BUNdelNSs replicated to wild-type BUN levels, whereas in IFN-competent systems, wild-type BUN grew more efficiently. These results suggest that BUN NSs is an IFN induction antagonist that blocks the transcriptional activation of IFN-alpha/beta in order to increase the virulence of Bunyamwera virus.
Collapse
MESH Headings
- Animals
- Bunyamwera virus/genetics
- Bunyamwera virus/immunology
- Bunyamwera virus/pathogenicity
- Bunyamwera virus/physiology
- Bunyaviridae Infections/genetics
- Bunyaviridae Infections/immunology
- Bunyaviridae Infections/metabolism
- Cells, Cultured
- Chlorocebus aethiops
- DNA-Binding Proteins/metabolism
- Female
- Gene Deletion
- Genes, Viral
- Humans
- Interferon Regulatory Factor-3
- Interferon-alpha/biosynthesis
- Interferon-alpha/genetics
- Interferon-beta/biosynthesis
- Interferon-beta/genetics
- Membrane Proteins
- Mice
- Mice, Knockout
- NF-kappa B/metabolism
- Promoter Regions, Genetic
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Interferon alpha-beta
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Transcription Factors/metabolism
- Transcriptional Activation
- Vero Cells
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/immunology
- Virulence
- Virus Replication
Collapse
Affiliation(s)
- Friedemann Weber
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
154
|
Wareing MD, Marsh GA, Tannock GA. Preparation and characterisation of attenuated cold-adapted influenza A reassortants derived from the A/Leningrad/134/17/57 donor strain. Vaccine 2002; 20:2082-90. [PMID: 11972977 DOI: 10.1016/s0264-410x(02)00056-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of a rapid cell culture method for the preparation of cold-adapted (ca) influenza A reassortant viruses is described and compared with a currently used egg method. Mixtures of the ca donor A/Leningrad/134/17/57-ca (A/Len/17) and A/Beijing/32/92 (A/Beij/32), a recent H3N2 epidemic strain, were used to co-infect chicken embryo kidney (CEK) cell cultures; reassortant progeny were selected using an infectious centre assay. The assay was capable of detecting interference where the infectivity ratio for A/Len/17 and A/Beij/32 was 1:7. Progeny viruses were characterised genetically by amplification of defined regions within each of the six internal genes by PCR and identification of the products by restriction enzyme analysis. Reassortants were also tested for ca and temperature-sensitive (ts) phenotype and the identity of the surface antigens. The infectious centre assay was shown to be an effective method for isolating reassortant progeny that possessed the haemagglutinin and neuraminidase surface antigens of A/Beij/32. Reassortants with the six internal genes derived from the donor strain and possessing the ca and ts phenotype were readily obtained when (a) an infectivity ratio of 1:49 was used and (b) two plaque-to-plaque isolations of progeny virus were made after growth at 25 degrees C and one at 34 degrees C, both in the presence of antiserum to the donor strain.
Collapse
Affiliation(s)
- M D Wareing
- Department of Biotechnology and Environmental Biology, RMIT University, P.O. Box 71, Bundoora, Vic. 3083, Australia
| | | | | |
Collapse
|
155
|
Salvatore M, Basler CF, Parisien JP, Horvath CM, Bourmakina S, Zheng H, Muster T, Palese P, García-Sastre A. Effects of influenza A virus NS1 protein on protein expression: the NS1 protein enhances translation and is not required for shutoff of host protein synthesis. J Virol 2002; 76:1206-12. [PMID: 11773396 PMCID: PMC135795 DOI: 10.1128/jvi.76.3.1206-1212.2002] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus NS1 protein, a virus-encoded alpha/beta interferon (IFN-alpha/beta) antagonist, appears to be a key regulator of protein expression in infected cells. We now show that NS1 protein expression results in enhancement of reporter gene activity from transfected plasmids. This effect appears to be mediated at the translational level, and it is reminiscent of the activity of the adenoviral virus-associated I (VAI) RNA, a known inhibitor of the antiviral, IFN-induced, PKR protein. To study the effects of the NS1 protein on viral and cellular protein synthesis during influenza A virus infection, we used recombinant influenza viruses lacking the NS1 gene (delNS1) or expressing truncated NS1 proteins. Our results demonstrate that the NS1 protein is required for efficient viral protein synthesis in COS-7 cells. This activity maps to the amino-terminal domain of the NS1 protein, since cells infected with wild-type virus or with a mutant virus expressing a truncated NS1 protein-lacking approximately half of its carboxy-terminal end-showed similar kinetics of viral and cellular protein expression. Interestingly, no major differences in host cell protein synthesis shutoff or in viral protein expression were found among NS1 mutant viruses in Vero cells. Thus, another viral component(s) different from the NS1 protein is responsible for the inhibition of host protein synthesis during viral infection. In contrast to the earlier proposal suggesting that the NS1 protein regulates the levels of spliced M2 mRNA, no effects on M2 protein accumulation were seen in Vero cells infected with delNS1 virus.
Collapse
Affiliation(s)
- Mirella Salvatore
- Department of Microbiology. Immunobiology Center, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Abstract
Wild-type (WT) influenza A/PR/8/34 virus and its variant lacking the NS1 gene (delNS1) have been compared for their ability to mediate apoptosis in cultured cells and chicken embryos. Cell morphology, fragmentation of chromatin DNA, and caspase-dependent cleavage of the viral NP protein have been used as markers for apoptosis. Another marker was caspase cleavage of the viral M2 protein, which was also found to occur in an apoptosis-specific manner. In interferon (IFN)-competent host systems, such as MDCK cells, chicken fibroblasts, and 7-day-old chicken embryos, delNS1 virus induced apoptosis more rapidly and more efficiently than WT virus. As a consequence, delNS1 virus was also more lethal for chicken embryos than WT virus. In IFN-deficient Vero cells, however, apoptosis was delayed and developed with similar intensity after infection with both viruses. Taken together, these data indicate that the IFN antagonistic NS1 protein of influenza A viruses has IFN-dependent antiapoptotic potential.
Collapse
Affiliation(s)
- O P Zhirnov
- D. I. Ivanovsky Institute of Virology, Moscow 123098, Russia
| | | | | | | |
Collapse
|
157
|
Influenza virus replication. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0168-7069(02)07002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
158
|
Ferko B, Stasakova J, Sereinig S, Romanova J, Katinger D, Niebler B, Katinger H, Egorov A. Hyperattenuated recombinant influenza A virus nonstructural-protein-encoding vectors induce human immunodeficiency virus type 1 Nef-specific systemic and mucosal immune responses in mice. J Virol 2001; 75:8899-908. [PMID: 11533153 PMCID: PMC114458 DOI: 10.1128/jvi.75.19.8899-8908.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have generated recombinant influenza A viruses belonging to the H1N1 and H3N2 virus subtypes containing an insertion of the 137 C-terminal amino acid residues of the human immunodeficiency virus type 1 (HIV-1) Nef protein into the influenza A virus nonstructural-protein (NS1) reading frame. These viral vectors were found to be genetically stable and capable of growing efficiently in embryonated chicken eggs and tissue culture cells but did not replicate in the murine respiratory tract. Despite the hyperattenuated phenotype of influenza/NS-Nef viruses, a Nef and influenza virus (nucleoprotein)-specific CD8(+)-T-cell response was detected in spleens and the lymph nodes draining the respiratory tract after a single intranasal immunization of mice. Compared to the primary response, a marked enhancement of the CD8(+)-T-cell response was detected in the systemic and mucosal compartments, including mouse urogenital tracts, if mice were primed with the H1N1 subtype vector and subsequently boosted with the H3N2 subtype vector. In addition, Nef-specific serum IgG was detected in mice which were immunized twice with the recombinant H1N1 and then boosted with the recombinant H3N2 subtype virus. These findings may contribute to the development of alternative immunization strategies utilizing hyperattenuated live recombinant influenza virus vectors to prevent or control infectious diseases, e.g., HIV-1 infection.
Collapse
Affiliation(s)
- B Ferko
- Institut für Angewandte Mikrobiologie, Universität für Bodenkultur, A-1190 Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Schultz-Cherry S, Dybdahl-Sissoko N, Neumann G, Kawaoka Y, Hinshaw VS. Influenza virus ns1 protein induces apoptosis in cultured cells. J Virol 2001; 75:7875-81. [PMID: 11483732 PMCID: PMC115031 DOI: 10.1128/jvi.75.17.7875-7881.2001] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The importance of influenza viruses as worldwide pathogens in humans, domestic animals, and poultry is well recognized. Discerning how influenza viruses interact with the host at a cellular level is crucial for a better understanding of viral pathogenesis. Influenza viruses induce apoptosis through mechanisms involving the interplay of cellular and viral factors that may depend on the cell type. However, it is unclear which viral genes induce apoptosis. In these studies, we show that the expression of the nonstructural (NS) gene of influenza A virus is sufficient to induce apoptosis in MDCK and HeLa cells. Further studies showed that the multimerization domain of the NS1 protein but not the effector domain is required for apoptosis. However, this mutation is not sufficient to inhibit apoptosis using whole virus.
Collapse
Affiliation(s)
- S Schultz-Cherry
- Southeast Poultry Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia 30605, USA.
| | | | | | | | | |
Collapse
|
160
|
Affiliation(s)
- A García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| |
Collapse
|
161
|
Neumann G, Hughes MT, Kawaoka Y. Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRM1. EMBO J 2000; 19:6751-8. [PMID: 11118210 PMCID: PMC305902 DOI: 10.1093/emboj/19.24.6751] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2000] [Revised: 10/30/2000] [Accepted: 10/30/2000] [Indexed: 11/14/2022] Open
Abstract
For nuclear export of proteins, the formation of a ternary export complex composed of the export substrate, a cellular export factor and Ran-GTP is crucial. CRM1 is a cellular export factor for proteins containing leucine-rich nuclear export signals (NESs). Although the NES sequence is crucial for nuclear export, its exact role in the formation of the ternary export complex is controversial. Here we demonstrate an interaction between human CRM1 (hCRM1) and influenza A virus NS2 protein, which contains an NES motif in its N-terminal region. Replacement of the hydrophobic amino acids in the NES motif did not abolish NS2's interaction with hCRM1. Using our recently established systems for the generation of influenza virus or virus-like particles from cloned cDNAs, we found that NS2 is essential for nuclear export of influenza virus ribonucleoprotein (RNP) complexes, and that alteration of the NS2-NES abrogated this event and influenza virus generation. These findings suggest that the NS2-NES is not crucial for the interaction of this protein with hCRM1, but is for the formation of the ternary export complex with Ran-GTP.
Collapse
Affiliation(s)
- G Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
162
|
Abstract
Many viruses interfere with host cell function in ways that are harmful or pathological. This often results in changes in cell morphology referred to as cytopathic effects. However, pathogenesis of virus infections also involves inhibition of host cell gene expression. Thus the term "cytopathogenesis," or pathogenesis at the cellular level, is meant to be broader than the term "cytopathic effects" and includes other cellular changes that contribute to viral pathogenesis in addition to those changes that are visible at the microscopic level. The goal of this review is to place recent work on the inhibition of host gene expression by RNA viruses in the context of the pathogenesis of virus infections. Three different RNA virus families, picornaviruses, influenza viruses, and rhabdoviruses, are used to illustrate common principles involved in cytopathogenesis. These examples were chosen because viral gene products responsible for inhibiting host gene expression have been identified, as have some of the molecular targets of the host. The argument is made that the role of the virus-induced inhibition of host gene expression is to inhibit the host antiviral response, such as the response to double-stranded RNA. Viral cytopathogenesis is presented as a balance between the host antiviral response and the ability of viruses to inhibit that response through the overall inhibition of host gene expression. This balance is a major determinant of viral tissue tropism in infections of intact animals.
Collapse
Affiliation(s)
- D S Lyles
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1064, USA.
| |
Collapse
|
163
|
Sekellick MJ, Carra SA, Bowman A, Hopkins DA, Marcus PI. Transient resistance of influenza virus to interferon action attributed to random multiple packaging and activity of NS genes. J Interferon Cytokine Res 2000; 20:963-70. [PMID: 11096453 DOI: 10.1089/10799900050198408] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interferon (IFN) action survival curves for an avian influenza virus (AIV) in chicken or quail cells showed that 40-60% of the virions in a stock of virus were highly sensitive to the inhibitory effects of chicken IFN-alpha (ChIFN-alpha), whereas the rest were up to 100 times less sensitive. This greater resistance to IFN was transient, that is, was not a stable characteristic, in that virus stocks grown from plaques that formed in the presence of 50-800 U/ml IFN gave rise to virus populations that contained both sensitive and resistant virions. If AIV was serially passaged several times in the presence of IFN, the proportion of transiently IFN-resistant virus was greater. We propose a model to account for this transient resistance of AIV to IFN action based on the reported inactivation of the dsRNA-dependent protein kinase (PKR) and its activator dsRNA by the NS1 protein of influenza virus and also on the increase in the survival of AIV in IFN-treated cells exposed to 2-aminopurine, a known inhibitor of PKR. We suggest that IFN-resistant AIV is generated from a random packaging event that results in virions that contain two or more copies of RNA segment 8, the gene segment that encodes the NS1 protein of AIV, and that these virions will produce correspondingly elevated levels of NS1. The experimental data fit well to theoretical curves based on this model and constructed from the fraction of virus in the population expected by chance to contain one, two, or three copies of the NS gene when packaging an average of 12 influenza gene segments that include the 8 segments essential for infectivity.
Collapse
Affiliation(s)
- M J Sekellick
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3044, USA.
| | | | | | | | | |
Collapse
|
164
|
Aragón T, de la Luna S, Novoa I, Carrasco L, Ortín J, Nieto A. Eukaryotic translation initiation factor 4GI is a cellular target for NS1 protein, a translational activator of influenza virus. Mol Cell Biol 2000; 20:6259-68. [PMID: 10938102 PMCID: PMC86100 DOI: 10.1128/mcb.20.17.6259-6268.2000] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza virus NS1 protein is an RNA-binding protein whose expression alters several posttranscriptional regulatory processes, like polyadenylation, splicing, and nucleocytoplasmic transport of cellular mRNAs. In addition, NS1 protein enhances the translational rate of viral, but not cellular, mRNAs. To characterize this effect, we looked for targets of NS1 influenza virus protein among cellular translation factors. We found that NS1 coimmunoprecipitates with eukaryotic initiation factor 4GI (eIF4GI), the large subunit of the cap-binding complex eIF4F, either in influenza virus-infected cells or in cells transfected with NS1 cDNA. Affinity chromatography studies using a purified His-NS1 protein-containing matrix showed that the fusion protein pulls down endogenous eIF4GI from COS-1 cells and labeled eIF4GI translated in vitro, but not the eIF4E subunit of the eIF4F factor. Similar in vitro binding experiments with eIF4GI deletion mutants indicated that the NS1-binding domain of eIF4GI is located between residues 157 and 550, in a region where no other component of the translational machinery is known to interact. Moreover, using overlay assays and pull-down experiments, we showed that NS1 and eIF4GI proteins interact directly, in an RNA-independent manner. Mapping of the eIF4GI-binding domain in the NS1 protein indicated that the first 113 N-terminal amino acids of the protein, but not the first 81, are sufficient to bind eIF4GI. The first of these mutants has been previously shown to act as a translational enhancer, while the second is defective in this activity. Collectively, these and previously published data suggest a model where NS1 recruits eIF4GI specifically to the 5' untranslated region (5' UTR) of the viral mRNA, allowing for the preferential translation of the influenza virus messengers.
Collapse
Affiliation(s)
- T Aragón
- Centro Nacional de Biotecnología (CSIC), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
165
|
Abstract
The NS1A protein of influenza A virus specifically inhibits the cellular machinery that processes the 3' ends of cellular pre-mRNAs by targeting two of the essential proteins of this machinery. Because the virus does not use this cellular machinery to synthesize the 3' poly(A) ends of viral mRNA, the nuclear export of cellular but not viral mRNAs is selectively inhibited.
Collapse
Affiliation(s)
- Z Chen
- Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | | |
Collapse
|
166
|
Jin H, Zhou H, Cheng X, Tang R, Munoz M, Nguyen N. Recombinant respiratory syncytial viruses with deletions in the NS1, NS2, SH, and M2-2 genes are attenuated in vitro and in vivo. Virology 2000; 273:210-8. [PMID: 10891423 DOI: 10.1006/viro.2000.0393] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Respiratory syncytial virus (RSV) encodes several proteins that lack well-defined functions; these include NS1, NS2, SH, and M2-2. Previous work has demonstrated that NS2, SH, and M2-2 can each be deleted from RSV genome and thus are considered as accessory proteins. To determine whether RSV can replicate efficiently when two or more transcriptional units are deleted, we removed NS1, NS2, SH, and M2-2 genes individually and in different combinations from an infectious cDNA clone derived from human RSV A2 strain. The following six mutants with two or more genes deleted were obtained: DeltaNS1NS2, DeltaM2-2SH, DeltaM2-2NS2, DeltaSHNS1, DeltaSHNS2, and DeltaSHNS1NS2. Deletion of M2-2 together with NS1 was detrimental to RSV replication. It was not possible to obtain a recombinant RSV when all four genes were deleted. All of the double and triple deletion mutants exhibited reduced replication and small plaque morphology in vitro. Replication of these deletion mutants was more reduced in HEp-2 cells than in Vero cells. Among the 10 single and multiple gene deletion mutants obtained, DeltaM2-2NS2 was most attenuated. DeltaM2-2NS2 formed barely visible plaques in HEp-2 cells and had a reduction of titer of 3 log(10) compared with the wild-type recombinant RSV in infected HEp-2 cells. When inoculated intranasally into cotton rats, all of the deletion mutants were attenuated in the respiratory tract. Our data indicated that the NS1, NS2, SH, and M2-2 proteins, although dispensable for virus replication in vitro, provide auxiliary functions for efficient RSV replication.
Collapse
Affiliation(s)
- H Jin
- Aviron, 297 North Bernardo Avenue, Mountain View, California, 94043, USA.
| | | | | | | | | | | |
Collapse
|
167
|
Bergmann M, Garcia-Sastre A, Carnero E, Pehamberger H, Wolff K, Palese P, Muster T. Influenza virus NS1 protein counteracts PKR-mediated inhibition of replication. J Virol 2000; 74:6203-6. [PMID: 10846107 PMCID: PMC112122 DOI: 10.1128/jvi.74.13.6203-6206.2000] [Citation(s) in RCA: 277] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The availability of an influenza virus NS1 gene knockout virus (delNS1 virus) allowed us to establish the significance of the biological relationship between the influenza virus NS1 protein and double-stranded-RNA-activated protein kinase (PKR) in the life cycle and pathogenicity of influenza virus. Our results show that the lack of functional PKR permits the delNS1 virus to replicate in otherwise nonpermissive hosts, suggesting that the major function of the influenza virus NS1 protein is to counteract or prevent the PKR-mediated antiviral response.
Collapse
Affiliation(s)
- M Bergmann
- Department of Surgery, University of Vienna Medical School, Austria
| | | | | | | | | | | | | |
Collapse
|
168
|
Enami M, Enami K. Characterization of influenza virus NS1 protein by using a novel helper-virus-free reverse genetic system. J Virol 2000; 74:5556-61. [PMID: 10823862 PMCID: PMC112042 DOI: 10.1128/jvi.74.12.5556-5561.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a novel helper-virus-free reverse genetic system to genetically manipulate influenza A viruses. The RNPs, which were purified from the influenza A/WSN/33 (WSN) virus, were treated with RNase H in the presence of NS (nonstructural) cDNA fragments. This specifically digested the NS RNP. The NS-digested RNPs thus obtained were transfected into cells together with the in vitro-reconstituted NS RNP. The NS-digested RNPs alone did not rescue viruses; however, cotransfection with the NS RNP did. This protocol was also used to rescue the NP transfectant. We obtained two NS1 mutants, dl12 and N110, using this protocol. The dl12 NS gene contains a deletion of 12 amino acids at positions 66 to 77 near the N terminus. This virus was temperature sensitive in Madin-Darby bovine kidney (MDBK) cells as well as in Vero cells. The translation of all viral proteins as well as cellular proteins was significantly disrupted during a later time of infection at the nonpermissive temperature of 39 degrees C. The N110 mutant consists of 110 amino acids which are the N-terminal 48% of the WSN virus NS1 protein. Growth of this virus was significantly reduced at any temperature. In the virus-infected cells, translation of the M1 protein was reduced to 10 to 20% of that of the wild-type virus; however, the translation of neither the nucleoprotein nor NS1 was significantly interfered with, indicating the important role of NS1 in translational stimulation of the M1 protein.
Collapse
Affiliation(s)
- M Enami
- Department of Biochemistry, Kanazawa University School of Medicine, Takaramachi, Kanazawa, Ishikawa 920-8640, Japan.
| | | |
Collapse
|
169
|
Rowley KV, Harvey R, Barclay WS. Isolation and characterization of a transfectant influenza B virus altered in RNA segment 6. J Gen Virol 1999; 80 ( Pt 9):2353-2359. [PMID: 10501487 DOI: 10.1099/0022-1317-80-9-2353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This report describes the successful generation of an influenza B transfectant virus altered in RNA segment 6, which encodes the neuraminidase (NA) protein. The procedure for selection of the transfectant virus relies on the use of strain-specific anti-NA monoclonal antibodies to inhibit growth of the helper virus within the system. A transfectant virus has been engineered which has a coding change in the NA protein. This change resulted in attenuated growth in vitro that could be rescued by addition of exogenous bacterial NA. The mutant virus-associated NA activity was unstable as a result of the engineered changes. The ability to genetically manipulate influenza B virus segment 6 will allow us to assess the function of both NA and the small protein NB, also coded from this RNA, within the context of the virus infectious cycle.
Collapse
Affiliation(s)
- Kate V Rowley
- School of Animal and Microbial Sciences, University of Reading, Whiteknights, PO Box 228, Reading RG6 6AJ, UK1
| | - Ruth Harvey
- School of Animal and Microbial Sciences, University of Reading, Whiteknights, PO Box 228, Reading RG6 6AJ, UK1
| | - Wendy S Barclay
- School of Animal and Microbial Sciences, University of Reading, Whiteknights, PO Box 228, Reading RG6 6AJ, UK1
| |
Collapse
|
170
|
Falcón AM, Fortes P, Marión RM, Beloso A, Ortín J. Interaction of influenza virus NS1 protein and the human homologue of Staufen in vivo and in vitro. Nucleic Acids Res 1999; 27:2241-7. [PMID: 10325410 PMCID: PMC148787 DOI: 10.1093/nar/27.11.2241] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A screening for human proteins capable of interacting with influenza virus NS1 has been carried out using the two-hybrid genetic trap in yeast. A cDNA corresponding to the human homologue of Drosophila melanogaster Staufen protein (hStaufen) was isolated that fulfilled all genetic controls of the two-hybrid protocol. Using a hStaufen cDNA isolated from a lambda human library, the interaction of hStaufen and NS1 proteins was characterised in vivo and in vitro. Co-transfection of NS1 cDNA and a partial cDNA of hStaufen led to the relocalisation of recombinant hStaufen protein from its normal accumulation site in the cytoplasm to the nuclear location of NS1 protein. NS1 and hStaufen proteins could be co-immunoprecipitated from extracts of co-transfected cells and from mixtures of extracts containing either protein, as well as from extracts of influenza virus-infected cells. Furthermore, both proteins co-localised in the ribosomal and polysomal fractions of influenza virus-infected cells. The interaction was also detected in pull-down experiments using a resin containing purified hStaufen and NS1 protein translated in vitro. Deletion mapping of the NS1 gene indicated that a mutant protein containing the N-terminal 81 amino acids is unable to interact with hStaufen, in spite of retaining full RNA-binding capacity. These results are discussed in relation to the possible mechanisms of action of hStaufen and its relevance for influenza virus infection.
Collapse
Affiliation(s)
- A M Falcón
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
171
|
Chen Z, Li Y, Krug RM. Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3'-end processing machinery. EMBO J 1999; 18:2273-83. [PMID: 10205180 PMCID: PMC1171310 DOI: 10.1093/emboj/18.8.2273] [Citation(s) in RCA: 316] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus NS1 protein (NS1A protein) via its effector domain targets the poly(A)-binding protein II (PABII) of the cellular 3'-end processing machinery. In vitro the NS1A protein binds the PABII protein, and in vivo causes PABII protein molecules to relocalize from nuclear speckles to a uniform distribution throughout the nucleoplasm. In vitro the NS1A protein inhibits the ability of PABII to stimulate the processive synthesis of long poly(A) tails catalyzed by poly(A) polymerase (PAP). Such inhibition also occurs in vivo in influenza virus-infected cells, where the NS1A protein via its effector domain causes the nuclear accumulation of cellular pre-mRNAs which contain short ( approximately 12 nucleotide) poly(A) tails. Consequently, although the NS1A protein also binds the 30 kDa subunit of the cleavage and polyadenylation specificity factor (CPSF), 3' cleavage of some cellular pre-mRNAs still occurs in virus-infected cells, followed by the PAP-catalyzed addition of short poly(A) tails. Subsequent elongation of these short poly(A) tails is blocked because the NS1A protein inhibits PABII function. Nuclear-cytoplasmic shuttling of PABII, an activity implicating this protein in the nuclear export of cellular mRNAs, is also inhibited by the NS1A protein. In vitro assays suggest that the 30 kDa CPSF and PABII proteins bind to non-overlapping regions of the NS1A protein effector domain and indicate that these two 3' processing proteins also directly bind to each other.
Collapse
Affiliation(s)
- Z Chen
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08855, USA
| | | | | |
Collapse
|
172
|
Hatada E, Saito S, Fukuda R. Mutant influenza viruses with a defective NS1 protein cannot block the activation of PKR in infected cells. J Virol 1999; 73:2425-33. [PMID: 9971827 PMCID: PMC104489 DOI: 10.1128/jvi.73.3.2425-2433.1999] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A short model genome RNA and also the genome RNA of influenza A virus bearing both 5'- and 3'-terminal common sequences activated the interferon-induced double-stranded-RNA-dependent protein kinase, PKR, by stimulating autophosphorylation in vitro. The activated PKR catalyzed phosphorylation of the alpha subunit of eucaryotic translation initiation factor 2 (eIF2alpha). The NS1 protein efficiently eliminated the PKR-activating activity of these RNAs by binding to them. Two mutant NS1 proteins, each harboring a single amino acid substitution at different regions, exhibited temperature sensitivity in their RNA binding activity in the mutant virus-infected cell lysates as well as when they were prepared as fusion proteins expressed in bacteria. The virus strains carrying these mutant NS1 proteins exhibited temperature sensitivity in virus protein synthesis at the translational level, as reported previously, and could not repress the autophosphorylation of PKR developing during the virus growth, which is normally suppressed by a viral function(s). As a result, the level of eIF2alpha phosphorylation was elevated 2.5- to 3-fold. The defect in virus protein synthesis was well correlated with the level of phosphorylation of PKR and eIF2alpha.
Collapse
Affiliation(s)
- E Hatada
- Department of Biochemistry, Kanazawa University School of Medicine, Kanazawa, Ishikawa 920-0934, Japan
| | | | | |
Collapse
|
173
|
García-Sastre A, Egorov A, Matassov D, Brandt S, Levy DE, Durbin JE, Palese P, Muster T. Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 1998; 252:324-30. [PMID: 9878611 DOI: 10.1006/viro.1998.9508] [Citation(s) in RCA: 808] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The NS1 protein is the only nonstructural protein encoded by influenza A virus. It has been proposed that the NS1 performs several regulatory functions during the viral replication cycle, including the regulation of synthesis, transport, splicing, and translation of mRNAs. Through the use of reverse genetics, a viable transfectant influenza A virus (delNS1) which lacks the NS1 gene has been generated. Our results indicate that the NS1 of influenza A virus is an auxiliary (virulence) factor which plays a crucial role in inhibiting interferon-mediated antiviral responses of the host.
Collapse
Affiliation(s)
- A García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York, 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|