151
|
Ghoshal G, Shivhare U, Banerjee U. Thermo-mechanical and micro-structural properties of xylanase containing whole wheat bread. FOOD SCIENCE AND HUMAN WELLNESS 2016. [DOI: 10.1016/j.fshw.2016.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
152
|
García-Huante Y, Cayetano-Cruz M, Santiago-Hernández A, Cano-Ramírez C, Marsch-Moreno R, Campos JE, Aguilar-Osorio G, Benitez-Cardoza CG, Trejo-Estrada S, Hidalgo-Lara ME. The thermophilic biomass-degrading fungus Thielavia terrestris Co3Bag1 produces a hyperthermophilic and thermostable β-1,4-xylanase with exo- and endo-activity. Extremophiles 2016; 21:175-186. [PMID: 27900528 DOI: 10.1007/s00792-016-0893-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
A hyperthermophilic and thermostable xylanase of 82 kDa (TtXynA) was purified from the culture supernatant of T. terrestris Co3Bag1, grown on carboxymethyl cellulose (CMC), and characterized biochemically. TtXynA showed optimal xylanolytic activity at pH 5.5 and at 85 °C, and retained more than 90% of its activity at a broad pH range (4.5-10). The enzyme is highly thermostable with a half-life of 23.1 days at 65 °C, and active in the presence of several metal ions. Circular dichroism spectra strongly suggest the enzyme gains secondary structures when temperature increases. TtXynA displayed higher substrate affinity and higher catalytic efficiency towards beechwood xylan than towards birchwood xylan, oat-spelt xylan, and CMC. According to its final hydrolysis products, TtXynA displays endo-/exo-activity, yielded xylobiose, an unknown oligosaccharide containing about five residues of xylose and a small amount of xylose on beechwood xylan. Finally, this report represents the description of the first fungal hyperthermophilic xylanase which is produced by T. terrestris Co3Bag1. Since TtXynA displays relevant biochemical properties, it may be a suitable candidate for biotechnological applications carried out at high temperatures, like the enzymatic pretreatment of plant biomass for the production of bioethanol.
Collapse
Affiliation(s)
- Yolanda García-Huante
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, CP 07360, México, Ciudad de México, México
| | - Maribel Cayetano-Cruz
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, CP 07360, México, Ciudad de México, México
| | - Alejandro Santiago-Hernández
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, CP 07360, México, Ciudad de México, México
| | - Claudia Cano-Ramírez
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, CP 07360, México, Ciudad de México, México
| | - Rodolfo Marsch-Moreno
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, CP 07360, México, Ciudad de México, México
| | - Jorge E Campos
- Laboratorio de Biología Molecular, UBIPRO, FES Iztacala, UNAM, Av. de los Barrios No. 1, Los Reyes Iztacala, CP 54090, Tlalnepantla, Estado de México, México
| | - Guillermo Aguilar-Osorio
- Grupo de Fisiología de Hongos, Departamento de Alimentos y Biotecnología, Facultad de Química, UNAM. Cd. Universitaria, CP 04510, México, Ciudad de México, México
| | - Claudia G Benitez-Cardoza
- Laboratorio de Investigación Bioquímica, ENMH-Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239 La Escalera Ticomán, 07320, México, Ciudad de México, México
| | - Sergio Trejo-Estrada
- Grupo de Microbiología Industrial, Centro de Investigación en Biotecnología Aplicada-IPN, Km 1.5 Carretera Estatal Tecuexcomac-Tepetitla, 90700, Tepetitla, Tlaxcala, México
| | - María Eugenia Hidalgo-Lara
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, CP 07360, México, Ciudad de México, México.
| |
Collapse
|
153
|
Heterologous production of an acidic thermostable lipase with broad-range pH activity from thermophilic fungus Neosartorya fischeri P1. J Biosci Bioeng 2016; 122:539-544. [DOI: 10.1016/j.jbiosc.2016.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/06/2016] [Accepted: 05/08/2016] [Indexed: 11/22/2022]
|
154
|
Isaac GS, Abu-Tahon MA. Enhanced alkaline cellulases production by the thermohalophilic Aspergillus terreus AUMC 10138 mutated by physical and chemical mutagens using corn stover as substrate. Braz J Microbiol 2016; 46:1269-77. [PMID: 26691490 PMCID: PMC4704614 DOI: 10.1590/s1517-838246420140958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 05/06/2015] [Indexed: 11/22/2022] Open
Abstract
A thermohalophilic fungus, Aspergillus terreus AUMC 10138, isolated
from the Wadi El-Natrun soda lakes in northern Egypt was exposed successively to
gamma and UV-radiation (physical mutagens) and ethyl methan-sulfonate (EMS; chemical
mutagen) to enhance alkaline cellulase production under solid state fermentation
(SSF) conditions. The effects of different carbon sources, initial moisture,
incubation temperature, initial pH, incubation period, inoculum levels and different
concentrations of NaCl on production of alkaline filter paper activity (FPase),
carboxymethyl cellulase (CMCase) and β-glucosidase by the wild-type and mutant
strains of A. terreus were evaluated under SSF. The optimum
conditions for maximum production of FPase, CMCase and β-glucosidase were found to be
the corn stover: moisture ratio of 1:3(w/v), temperature 45 °C, pH range, 9.0–11.0,
and fermentation for 4, 4 and 7 day, respectively. Inoculum levels of 30% for
β-glucosidase and 40% for FPase, CMCase gave the higher cellulase production by the
wild-type and mutant strains, respectively. Higher production of all three enzymes
was obtained at a 5% NaCl. Under the optimized conditions, the mutant strain
A. terreus M-17 produced FPase (729 U/g), CMCase (1,783 U/g), and
β-glucosidase (342 U/g), which is, 1.85, 1.97 and 2.31-fold higher than the wild-type
strain. Our results confirmed that mutant strain M-17 could be a promising alkaline
cellulase enzyme producer employing lignocellulosics especially corn stover.
Collapse
Affiliation(s)
- George Saad Isaac
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Medhat Ahmed Abu-Tahon
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
155
|
Khan FI, Bisetty K, Gu KR, Singh S, Permaul K, Hassan MI, Wei DQ. Molecular dynamics simulation of chitinase I from Thermomyces lanuginosus SSBP to ensure optimal activity. MOLECULAR SIMULATION 2016. [DOI: 10.1080/08927022.2016.1237024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Faez Iqbal Khan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Henan, China
| | - Krishna Bisetty
- Department of Chemistry, Durban University of Technology, Durban, South Africa
| | - Ke-Ren Gu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Henan, China
| | - Suren Singh
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Kugen Permaul
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Dong-Qing Wei
- School of Chemistry and Chemical Engineering, Henan University of Technology, Henan, China
| |
Collapse
|
156
|
Xu X, Li J, Shi P, Ji W, Liu B, Zhang Y, Yao B, Fan Y, Zhang W. The use of T-DNA insertional mutagenesis to improve cellulase production by the thermophilic fungus Humicola insolens Y1. Sci Rep 2016; 6:31108. [PMID: 27506519 PMCID: PMC4979032 DOI: 10.1038/srep31108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/11/2016] [Indexed: 11/21/2022] Open
Abstract
Humicola insolens is an excellent producer of pH-neutral active, thermostable cellulases that find many industrial applications. In the present study, we developed an efficient Agrobacterium tumefaciens-mediated transformation system for H. insolens. We transformed plasmids carrying the promoter of the glyceraldehyde-3-phosphate dehydrogenase gene of H. insolens driving the transcription of genes encoding neomycin phosphotransferase, hygromycin B phosphotransferase, and enhanced green fluorescent protein. We optimized transformation efficiency to obtain over 300 transformants/106 conidia. T-DNA insertional mutagenesis was employed to generate an H. insolens mutant library, and we isolated a transformant termed T4 with enhanced cellulase and hemicellulase activities. The FPase, endoglucanase, cellobiohydrolase, β-glucosidase, and xylanase activities of T4, measured at the end of fermentation, were 60%, 440%, 320%, 41%, and 81% higher than those of the wild-type strain, respectively. We isolated the sequences flanking the T-DNA insertions and thus identified new genes potentially involved in cellulase and hemicellulase production. Our results show that it is feasible to use T-DNA insertional mutagenesis to identify novel candidate genes involved in cellulase production. This will be valuable when genetic improvement programs seeking to enhance cellulase production are planned, and will also allow us to gain a better understanding of the genetics of the thermophilic fungus H. insolens.
Collapse
Affiliation(s)
- Xinxin Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinyang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pengjun Shi
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wangli Ji
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bo Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuhong Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Yao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunliu Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
157
|
Ozawa K, Iwasa H, Sasaki N, Kinoshita N, Hiratsuka A, Yokoyama K. Identification and characterization of thermostable glucose dehydrogenases from thermophilic filamentous fungi. Appl Microbiol Biotechnol 2016; 101:173-183. [PMID: 27510979 DOI: 10.1007/s00253-016-7754-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 11/29/2022]
Abstract
FAD-dependent glucose dehydrogenase (FAD-GDH), which contains FAD as a cofactor, catalyzes the oxidation of D-glucose to D-glucono-1,5-lactone, and plays an important role in biosensors measuring blood glucose levels. In order to obtain a novel FAD-GDH gene homolog, we performed degenerate PCR screening of genomic DNAs from 17 species of thermophilic filamentous fungi. Two FAD-GDH gene homologs were identified and cloned from Talaromyces emersonii NBRC 31232 and Thermoascus crustaceus NBRC 9129. We then prepared the recombinant enzymes produced by Escherichia coli and Pichia pastoris. Absorption spectra and enzymatic assays revealed that the resulting enzymes contained oxidized FAD as a cofactor and exhibited glucose dehydrogenase activity. The transition midpoint temperatures (T m) were 66.4 and 62.5 °C for glycosylated FAD-GDHs of T. emersonii and T. crustaceus prepared by using P. pastoris as a host, respectively. Therefore, both FAD-GDHs exhibited high thermostability. In conclusion, we propose that these thermostable FAD-GDHs could be ideal enzymes for use as thermotolerant glucose sensors with high accuracy.
Collapse
Affiliation(s)
- Kazumichi Ozawa
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Hisanori Iwasa
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Noriko Sasaki
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Nao Kinoshita
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Atsunori Hiratsuka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kenji Yokoyama
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan. .,School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
158
|
Rapid Bioinformatic Identification of Thermostabilizing Mutations. Biophys J 2016; 109:1420-8. [PMID: 26445442 DOI: 10.1016/j.bpj.2015.07.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/03/2015] [Accepted: 07/14/2015] [Indexed: 11/21/2022] Open
Abstract
Ex vivo stability is a valuable protein characteristic but is laborious to improve experimentally. In addition to biopharmaceutical and industrial applications, stable protein is important for biochemical and structural studies. Taking advantage of the large number of available genomic sequences and growth temperature data, we present two bioinformatic methods to identify a limited set of amino acids or positions that likely underlie thermostability. Because these methods allow thousands of homologs to be examined in silico, they have the advantage of providing both speed and statistical power. Using these methods, we introduced, via mutation, amino acids from thermoadapted homologs into an exemplar mesophilic membrane protein, and demonstrated significantly increased thermostability while preserving protein activity.
Collapse
|
159
|
Ordaz-Hernández A, Ortega-Sánchez E, Montesinos-Matías R, Hernández-Martínez R, Torres-Martínez D, Loera O. Morphological and enzymatic response of the thermotolerant fungusFomessp. EUM1 in solid state fermentation under thermal stress. FEMS Microbiol Lett 2016; 363:fnw177. [DOI: 10.1093/femsle/fnw177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2016] [Indexed: 11/13/2022] Open
|
160
|
HOT PHENOL EXTRACTION OF TOTAL RNA FROM Thermoascus aurantiacus AND CHARACTERIZATION OF ITS THERMOSTABLE XYLANASE GENE. BORNEO JOURNAL OF RESOURCE SCIENCE AND TECHNOLOGY 2016. [DOI: 10.33736/bjrst.264.2011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Total RNA was successfully isolated using hot phenol extraction method. Three bands representing the 18S, 5.8S and 28S rRNA was observed. No heavy smearing was observed in the RNA band patterns, indicating low levels of polysaccharide contamination, when subjected to 1% agarose gel electrophoresis. Genomic DNA was eliminated using DNase I digestion and lithium chloride (LiCl) precipitation. Two-steps reverse transcriptase polymerase chain reaction (RT-PCR) using M-MuLV Reverse Transcriptase and sequence specific primers for xylanase gene, XynA(F) and XynA(R), successfully generated the target amplicon of 500 base pairs (bp). Sequence analysis of the PCR product indicated as partial sequence of Thermoascus aurantiacus xylanase gene (XynA) deposited in the NCBI GenBank with accession number: AF127529.1 and AJ132635.1. Hot phenol extraction is useful for extracting large quantities of total RNA sufficient for complementary DNA (cDNA) synthesis in shorter period of time.
Collapse
|
161
|
Ahirwar S, Soni H, Rawat HK, Ganaie MA, Pranaw K, Kango N. Production optimization and functional characterization of thermostable β-mannanase from Malbranchea cinnamomea NFCCI 3724 and its applicability in mannotetraose (M4) generation. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.03.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
162
|
Heat shock response of thermophilic fungi: membrane lipids and soluble carbohydrates under elevated temperatures. Microbiology (Reading) 2016; 162:989-999. [DOI: 10.1099/mic.0.000279] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
163
|
Efficient Enantioselective Biocatalytic Production of a Chiral Intermediate of Sitagliptin by a Newly Filamentous Fungus Isolate. Appl Biochem Biotechnol 2016; 180:695-706. [DOI: 10.1007/s12010-016-2125-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
164
|
Zhou L, Li S, Zhang T, Mu W, Jiang B. Properties of a novel polydatin-β-d-glucosidase from Aspergillus niger SK34.002 and its application in enzymatic preparation of resveratrol. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2588-2595. [PMID: 26381723 DOI: 10.1002/jsfa.7465] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/12/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Resveratrol and its glucoside polydatin are the main stilbenes in Polygonum cuspidatum. Resveratrol has become the subject of intensive research over the past two decades owing to its outstanding pharmacological properties. However, its lower concentration in plants compared to polydatin limits its application. In this study, the polydatin-β-d-glucosidase (PBG) that hydrolyzes the β-d-glucosyl residue of polydatin with release of resveratrol was purified to homogeneity and characterized. RESULTS The molecular weight of PBG was estimated to be 125 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 128 kDa by size-exclusion chromatography- multi-angle laser light scattering/ultraviolet/refractive index. The optimal PBG activity was observed at 70 °C and pH 4.5. The enzyme showed around 50% stability at 60 °C for 12 h and residual activity was over 80% at pH 3.0-5.0. Ca(2+) , Mg(2+) , Mn(2+) , Zn(2+) , Ba(2+) , Ni(2+) , Co(2+) and Cu(2+) ions had no significant effect on the enzyme activity. The PBG presented higher affinity to polydatin (Km = 0.74 mmol L(-1) ) than p-nitrophenyl-β-d-glucopyranoside (Km = 2.9 mmol L(-1) ) and cellobiose (Km = 8.9 mmol L(-1) ). CONCLUSION With this enzyme, nearly all polydatin in P. cuspidatum was converted to resveratrol. Although several β-D-glucosidases (BGLs) have been obtained from other sources, PBG is distinguished from other BGLs by its outstanding thermal stability and high catalytic efficiency. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linfang Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Department of Textile and Dyeing Engineering, Jiangsu College of Engineering and Technology, Nantong, 226007, Jiangsu, China
| | - Shuhua Li
- Department of Textile and Dyeing Engineering, Jiangsu College of Engineering and Technology, Nantong, 226007, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
165
|
Secreted fungal aspartic proteases: A review. Rev Iberoam Micol 2016; 33:76-82. [PMID: 27137097 DOI: 10.1016/j.riam.2015.10.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 09/11/2015] [Accepted: 10/06/2015] [Indexed: 11/21/2022] Open
Abstract
The aspartic proteases, also called aspartyl and aspartate proteases or acid proteases (E.C.3.4.23), belong to the endopeptidase family and are characterized by the conserved sequence Asp-Gly-Thr at the active site. These enzymes are found in a wide variety of microorganisms in which they perform important functions related to nutrition and pathogenesis. In addition, their high activity and stability at acid pH make them attractive for industrial application in the food industry; specifically, they are used as milk-coagulating agents in cheese production or serve to improve the taste of some foods. This review presents an analysis of the characteristics and properties of secreted microbial aspartic proteases and their potential for commercial application.
Collapse
|
166
|
Kellner N, Schwarz J, Sturm M, Fernandez-Martinez J, Griesel S, Zhang W, Chait BT, Rout MP, Kück U, Hurt E. Developing genetic tools to exploit Chaetomium thermophilum for biochemical analyses of eukaryotic macromolecular assemblies. Sci Rep 2016; 6:20937. [PMID: 26864114 PMCID: PMC4750058 DOI: 10.1038/srep20937] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/14/2016] [Indexed: 11/09/2022] Open
Abstract
We describe a method to genetically manipulate Chaetomium thermophilum, a eukaryotic thermophile, along with various biochemical applications. The transformation method depends on a thermostable endogenous selection marker operating at high temperatures combined with chromosomal integration of target genes. Our technique allows exploiting eukaryotic thermophiles as source for purifying thermostable native macromolecular complexes with an emphasis on the nuclear pore complex, holding great potential for applications in basic science and biotechnology.
Collapse
Affiliation(s)
- Nikola Kellner
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| | - Johannes Schwarz
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| | - Miriam Sturm
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| | - Javier Fernandez-Martinez
- Laboratory of Cellular and Structural Biology and Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA
| | - Sabine Griesel
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| | - Wenzhu Zhang
- Laboratory of Cellular and Structural Biology and Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA
| | - Brian T Chait
- Laboratory of Cellular and Structural Biology and Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology and Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA
| | - Ulrich Kück
- Department for General and Molecular Botany, Ruhr-University Bochum, Bochum, Germany
| | - Ed Hurt
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
167
|
Singh B, Poças-Fonseca MJ, Johri BN, Satyanarayana T. Thermophilic molds: Biology and applications. Crit Rev Microbiol 2016; 42:985-1006. [DOI: 10.3109/1040841x.2015.1122572] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
168
|
Gomes E, de Souza AR, Orjuela GL, Da Silva R, de Oliveira TB, Rodrigues A. Applications and Benefits of Thermophilic Microorganisms and Their Enzymes for Industrial Biotechnology. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_21] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
169
|
Fungal Biotechnology for Industrial Enzyme Production: Focus on (Hemi)cellulase Production Strategies, Advances and Challenges. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
170
|
A Neurospora crassa ÿ-glucosidase with potential for lignocellulose hydrolysis shows strong glucose tolerance and stimulation by glucose and xylose. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
171
|
Walia A, Mehta P, Guleria S, Shirkot CK. Improvement for enhanced xylanase production by Cellulosimicrobium cellulans CKMX1 using central composite design of response surface methodology. 3 Biotech 2015; 5:1053-1066. [PMID: 28324413 PMCID: PMC4624141 DOI: 10.1007/s13205-015-0309-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/12/2015] [Indexed: 11/24/2022] Open
Abstract
The effects of yeast extract (X1), NH4NO3 (X2), peptone (X3), urea (X4), CMC (X5), Tween 20 (X6), MgSO4 (X7), and CaCO3 (X8) on production of xylanase from Cellulosimicrobium cellulans CKMX1 were optimized by statistical analysis using response surface methodology (RSM). The RSM was used to optimize xylanase production by implementing the Central composite design. Statistical analysis of the results showed that the linear, interaction and quadric terms of these variables had significant effects. However, only the linear effect of X4, X5, interaction effect of X1X7, X1X8, X2X3, X2X8, X3X6, X3X8, X4X6, X4X7, X5X7, X5X8 and quadratic effect of X 32 , X 52 and X 72 found to be insignificant terms in the quadratic model and had no response at significant level. The minimum and maximum xylanase production obtained was 331.50 U/g DBP and 1027.65 U/g DBP, respectively. The highest xylanase activity was obtained from Run No. 30, which consisted of yeast extract (X1), 1.00 g (%); NH4NO3 (X2), 0.20 g (%); peptone (X3), 1.00 g (%); urea (X4), 10 mg (%); CMC (X5), 1.00 g (%); Tween 20 (X6), 0.02 mL (%); CaCO3 (X7), 0.50 g (%) and MgSO4 (X8), 9.0 g (%). The optimization resulted in 3.1-fold increase of xylanase production, compared with the lowest xylanase production of 331.50 U/g DBP after 72 h of incubation in stationary flask experiment. Application of cellulase-free xylanase in pulp biobleaching from C. cellulans CKMX1 under C-EP-D sequence has been shown to bring about a 12.5 % reduction of chlorine, decrease of 0.8 kappa points (40 %), and gain in brightness was 1.42 % ISO points in 0.5 % enzyme treated pulp as compared to control.
Collapse
Affiliation(s)
- Abhishek Walia
- />Department of Microbiology, DAV University, Jalandhar, 144001 Punjab India
| | - Preeti Mehta
- />Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121 007 India
| | - Shiwani Guleria
- />Department of Basic Sciences, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, 173230 Himachal Pradesh India
| | - Chand Karan Shirkot
- />Department of Basic Sciences, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, 173230 Himachal Pradesh India
| |
Collapse
|
172
|
Madden O, Naughton MD, Moane S, Murray PG. Mycofabrication of common plasmonic colloids, theoretical considerations, mechanism and potential applications. Adv Colloid Interface Sci 2015; 225:37-52. [PMID: 26320607 DOI: 10.1016/j.cis.2015.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/09/2015] [Accepted: 08/10/2015] [Indexed: 01/12/2023]
Abstract
A coupling of the plasmon on the surface of metal nanoparticles with an incident photon enhances a broad range of useful optical phenomena, such as resonant light scattering (RLS), surface plasmon resonance (SPR) or Raman scattering. Due to these unique optical properties plasmonic nanostructures of different sizes and shapes have gained increasing popularity in areas such as cancer diagnosis, photothermal therapy as well as the imaging of living cells, detection of pathogens, biomolecules, metal ions, and the catalysis of various reactions in wet chemistry. This article reviews the current trends in the synthesis of plasmonic nanoparticles, particularly gold (AuNPs) and silver (AgNPs), using fungi as well as the proposed mechanisms for their mycofabrication. We provide an overview of the theoretical concepts of plasmonic nanoparticles which are sensitive electromagnetic responses that determine these nanoparticles applications.
Collapse
Affiliation(s)
- Olena Madden
- CHIMERA Research Group, Shannon ABC, Department of Applied Science, Limerick Institute of Technology, Moylish Park, Limerick, Ireland.
| | - Michael Daragh Naughton
- Bio-inspired Materials and TEMPO Research Groups, Department of Mechanical Engineering, Limerick Institute of Technology, Moylish Park, Limerick, Ireland
| | - Siobhan Moane
- CHIMERA Research Group, Shannon ABC, Department of Applied Science, Limerick Institute of Technology, Moylish Park, Limerick, Ireland
| | - Patrick G Murray
- CHIMERA Research Group, Shannon ABC, Department of Applied Science, Limerick Institute of Technology, Moylish Park, Limerick, Ireland
| |
Collapse
|
173
|
Thermophilic growth and enzymatic thermostability are polyphyletic traits within Chaetomiaceae. Fungal Biol 2015; 119:1255-1266. [PMID: 26615748 DOI: 10.1016/j.funbio.2015.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/31/2015] [Accepted: 09/29/2015] [Indexed: 11/20/2022]
Abstract
Thermophilic fungi have the potential to produce industrial-relevant thermostable enzymes, in particular for the degradation of plant biomass. Sordariales is one of the few fungal orders containing several thermophilic taxa, of which many have been associated with the production of thermostable enzymes. The evolutionary affiliation of Sordariales fungi, especially between thermophiles and non-thermophilic relatives, is however poorly understood. Phylogenetic analysis within the current study was based on sequence data, derived from a traditional Sanger and highly multiplexed targeted next generation sequencing approach of 45 isolates. The inferred phylogeny and detailed growth analysis rendered the trait 'thermophily' as polyphyletic within Chaetomiaceae (Sordariales, Sordariomycetes), and characteristic to: Myceliophthora spp., Thielavia terrestris, Chaetomium thermophilum, and Mycothermus thermophilus. Compared to mesophiles, the isolates within thermophilic taxa produced enzyme mixtures with the highest thermostability of known cellulase activities. Temperature profiles of the enzyme activities correlated strongly with the optimal growth temperatures of the isolates but not with their phylogenetic relationships. This strong correlation between growth and enzyme characteristics indicated that detailed analysis of growth does give predictive information on enzyme physiology. The variation in growth and enzyme characteristics reveals these fungi as an excellent platform to better understand fungal thermophily and enzyme thermostability.
Collapse
|
174
|
Langarica-Fuentes A, Fox G, Robson GD. Metabarcoding analysis of home composts reveals distinctive fungal communities with a high number of unassigned sequences. Microbiology (Reading) 2015; 161:1921-1932. [DOI: 10.1099/mic.0.000153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Adrian Langarica-Fuentes
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Graeme Fox
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Geoffrey D. Robson
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
175
|
Liang JD, Han YF, Zhang JW, Du W, Liang ZQ, Li ZZ. Optimal culture conditions for keratinase production by a novel thermophilic Myceliophthora thermophila strain GZUIFR-H49-1. J Appl Microbiol 2015; 110:871-80. [PMID: 21241422 DOI: 10.1111/j.1365-2672.2011.04949.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To investigate the effect of medium compositions and culture conditions on keratinase production by a novel thermophilic fungus Myceliophthora thermophila (Apinis) Oorschot strain GZUIFR-H49-1. METHODS AND RESULTS The thermophilic strain GZUIFR-H49-1 with keratinolytic ability was characterized and identified as a strain of M. thermophila on the basis of its morphological characters and molecular analysis of ITS1-5.8S-ITS2 rDNA sequence. Among the medium compositions tested, the soluble starch (SS), urea, sodium thiosulfate and CaCl2 were the most effective C-source, N-source, S-source and mineral ion, respectively, by employing the single-factor experiment. The urea and pH value were the significant factors (P < 0·05) for the keratinase production in this experiment condition using Plackett–Burman factorial design. The conditions of keratinase production were further optimized by Box–Behnken design. Consequently, there was a 6·4-fold increase (5100 U l−1) in the keratinase activity than the initial value (800 U l−1) by this optimal process. CONCLUSIONS This study indicated that the optimization design proved a useful and powerful tool for the development of optimal medium compositions and culture conditions. Myceliophthora thermophila strain GZUIFR-H49-1 was a promising fungus strain for keratinase production.
Collapse
Affiliation(s)
- J D Liang
- Institute of Fungus Resources, Guizhou University, Guiyang, China
| | | | | | | | | | | |
Collapse
|
176
|
Wang J, Wu Y, Gong Y, Yu S, Liu G. Enhancing xylanase production in the thermophilic fungus Myceliophthora thermophila by homologous overexpression of Mtxyr1. ACTA ACUST UNITED AC 2015; 42:1233-41. [DOI: 10.1007/s10295-015-1628-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/27/2015] [Indexed: 10/23/2022]
Abstract
Abstract
The xylanase regulator 1 protein in Myceliophthora thermophila ATCC42464 (MtXyr1) is 60 % homologous with that of Trichoderma reesei. However, MtXyr1’s regulatory role on cellulolytic and xylanolytic genes in M. thermophila is unknown. Herein, MtXyr1 was overexpressed under the control of the MtPpdc (pyruvate decarboxylase) promoter. Compared with the wild type, the extracellular xylanase activities of the transformant cultured in non-inducing and inducing media for 120 h were 25.19- and 9.04-fold higher, respectively. The Mtxyr1 mRNA level was 300-fold higher than in the wild type in corncob-containing medium. However, the filter paper activity and endoglucanase activities were unchanged in corncob-containing medium and glucose-containing medium. The different zymograms between the transformant and the wild type were analyzed and identified by mass spectrometry as three xylanases of the glycoside hydrolase (GH) family 11. Thus, overexpression of xyr1 resulted in enhanced xylanase activity in M. thermophila. Xylanase production could be improved by overexpressing Mtxyr1 in M. thermophila.
Collapse
Affiliation(s)
- Juan Wang
- grid.263488.3 0000000104729649 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences Shenzhen University 518060 Shenzhen China
| | - Yaning Wu
- grid.263488.3 0000000104729649 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences Shenzhen University 518060 Shenzhen China
| | - Yanfen Gong
- grid.263488.3 0000000104729649 Shenzhen Key Laboratory of Marine Bioresources and Ecology Shenzhen University 518060 Shenzhen China
| | - Shaowen Yu
- grid.263488.3 0000000104729649 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences Shenzhen University 518060 Shenzhen China
| | - Gang Liu
- grid.263488.3 0000000104729649 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences Shenzhen University 518060 Shenzhen China
| |
Collapse
|
177
|
Walia A, Mehta P, Guleria S, Shirkot CK. Modification in the properties of paper by using cellulase-free xylanase produced from alkalophilic Cellulosimicrobium cellulans CKMX1 in biobleaching of wheat straw pulp. Can J Microbiol 2015. [DOI: 10.1139/cjm-2015-0178] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alkalophilic Cellulosimicrobium cellulans CKMX1 isolated from mushroom compost is an actinomycete that produces industrially important and environmentally safer thermostable cellulase-free xylanase, which is used in the pulp and paper industry as an alternative to the use of toxic chlorinated compounds. Strain CKMX1 was previously characterized by metabolic fingerprinting, whole-cell fatty acids methyl ester analysis, and 16S rDNA and was found to be C. cellulans CKMX1. Crude enzyme (1027.65 U/g DBP) produced by C. cellulans CKMX1, having pH and temperature optima of 8.0 and 60 °C, respectively, in solid state fermentation of apple pomace, was used in the production of bleached wheat straw pulp. Pretreatment with xylanase at a dose of 5 U/g after pulping decreased pulp kappa points by 1.4 as compared with the control. Prebleaching with a xylanase dose of 5 U/g pulp reduced the chlorine charge by 12.5%, increased the final brightness points by approximately 1.42% ISO, and improved the pulp strength properties. Xylanase could be substituted for alkali extraction in C–Ep–D sequence and used for treating chemically bleached pulp, resulting in bleached pulp with higher strength properties. Modification of bleached pulp with 5 U of enzyme/g increased pulp whiteness and breaking length by 1.03% and 60 m, respectively; decreased tear factor of pulp by 7.29%; increased bulk weight by 3.99%, as compared with the original pulp. Reducing sugars and UV-absorbing lignin-derived compound values were considerably higher in xylanase-treated samples. Cellulosimicrobium cellulans CKMX1 has a potential application in the pulp and paper industries.
Collapse
Affiliation(s)
- Abhishek Walia
- Department of Microbiology, DAV University, Jalandhar 144001, Punjab, India
| | - Preeti Mehta
- Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Shiwani Guleria
- Department of Basic Sciences, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan 173230, Himachal Pradesh, India
| | - Chand Karan Shirkot
- Department of Basic Sciences, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan 173230, Himachal Pradesh, India
| |
Collapse
|
178
|
Guyot S, Gervais P, Young M, Winckler P, Dumont J, Davey HM. Surviving the heat: heterogeneity of response in Saccharomyces cerevisiae provides insight into thermal damage to the membrane. Environ Microbiol 2015; 17:2982-92. [PMID: 25845620 PMCID: PMC4676927 DOI: 10.1111/1462-2920.12866] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/30/2015] [Indexed: 01/03/2023]
Abstract
Environmental heat stress impacts on the physiology and viability of microbial cells with concomitant implications for microbial activity and diversity. Previously, it has been demonstrated that gradual heating of Saccharomyces cerevisiae induces a degree of thermal resistance, whereas a heat shock results in a high level of cell death. Here, we show that the impact of exogenous nutrients on acquisition of thermal resistance differs between strains. Using single-cell methods, we demonstrate the extent of heterogeneity of the heat-stress response within populations of yeast cells and the presence of subpopulations that are reversibly damaged by heat stress. Such cells represent potential for recovery of entire populations once stresses are removed. The results show that plasma membrane permeability and potential are key factors involved in cell survival, but thermal resistance is not related to homeoviscous adaptation of the plasma membrane. These results have implications for growth and regrowth of populations experiencing environmental heat stress and our understanding of impacts at the level of the single cell. Given the important role of microbes in biofuel production and bioremediation, a thorough understanding of the impact of stress responses of populations and individuals is highly desirable.
Collapse
Affiliation(s)
- Stéphane Guyot
- UMR A 02.102 Procédés Alimentaires et Microbiologiques (PAM), Equipe Procédés Microbiologiques et Biotechnologiques (PMB)1 Esplanade Erasme, 21000, Dijon, France
| | - Patrick Gervais
- UMR A 02.102 Procédés Alimentaires et Microbiologiques (PAM), Equipe Procédés Microbiologiques et Biotechnologiques (PMB)1 Esplanade Erasme, 21000, Dijon, France
| | - Michael Young
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityPenglais, Aberystwyth, Wales, SY23 3DA, UK
| | - Pascale Winckler
- Spectral Imagerie Resource Center, Agrosup Dijon/Université de Bourgogne1 Esplanade Erasme, 21000, Dijon, France
| | - Jennifer Dumont
- UMR A 02.102 Procédés Alimentaires et Microbiologiques (PAM), Equipe Procédés Microbiologiques et Biotechnologiques (PMB)1 Esplanade Erasme, 21000, Dijon, France
| | - Hazel Marie Davey
- Spectral Imagerie Resource Center, Agrosup Dijon/Université de Bourgogne1 Esplanade Erasme, 21000, Dijon, France
| |
Collapse
|
179
|
Panzer K, Yilmaz P, Weiß M, Reich L, Richter M, Wiese J, Schmaljohann R, Labes A, Imhoff JF, Glöckner FO, Reich M. Identification of Habitat-Specific Biomes of Aquatic Fungal Communities Using a Comprehensive Nearly Full-Length 18S rRNA Dataset Enriched with Contextual Data. PLoS One 2015. [PMID: 26226014 PMCID: PMC4520555 DOI: 10.1371/journal.pone.0134377] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Molecular diversity surveys have demonstrated that aquatic fungi are highly diverse, and that they play fundamental ecological roles in aquatic systems. Unfortunately, comparative studies of aquatic fungal communities are few and far between, due to the scarcity of adequate datasets. We combined all publicly available fungal 18S ribosomal RNA (rRNA) gene sequences with new sequence data from a marine fungi culture collection. We further enriched this dataset by adding validated contextual data. Specifically, we included data on the habitat type of the samples assigning fungal taxa to ten different habitat categories. This dataset has been created with the intention to serve as a valuable reference dataset for aquatic fungi including a phylogenetic reference tree. The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.
Collapse
Affiliation(s)
- Katrin Panzer
- University of Bremen, Molecular Ecology, FB2, Leobener Str. 2, 28359, Bremen, Germany
- Jacobs University Bremen gGmbH, Department of Life Sciences and Chemistry, Campusring 1, 28759, Bremen, Germany
| | - Pelin Yilmaz
- Max Planck Institute for Marine Microbiology, Microbial Genomics and Bioinformatics Research Group, Celsiusstr.1, 28359, Bremen, Germany
| | - Michael Weiß
- University of Tübingen, Department of Biology, Auf der Morgenstelle 1, 72076 Tübingen, Germany
| | - Lothar Reich
- Potsdam Transfer, August-Bebel-Straße 89, Haus 7, 14482, Potsdam, Germany
| | - Michael Richter
- Max Planck Institute for Marine Microbiology, Microbial Genomics and Bioinformatics Research Group, Celsiusstr.1, 28359, Bremen, Germany
| | - Jutta Wiese
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Microbiology, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Rolf Schmaljohann
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Microbiology, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Antje Labes
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Microbiology, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Johannes F. Imhoff
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Microbiology, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Frank Oliver Glöckner
- Jacobs University Bremen gGmbH, Department of Life Sciences and Chemistry, Campusring 1, 28759, Bremen, Germany
- Max Planck Institute for Marine Microbiology, Microbial Genomics and Bioinformatics Research Group, Celsiusstr.1, 28359, Bremen, Germany
| | - Marlis Reich
- University of Bremen, Molecular Ecology, FB2, Leobener Str. 2, 28359, Bremen, Germany
- * E-mail:
| |
Collapse
|
180
|
Deguchi S, Tsujii K, Horikoshi K. In situ microscopic observation of chitin and fungal cells with chitinous cell walls in hydrothermal conditions. Sci Rep 2015; 5:11907. [PMID: 26148792 PMCID: PMC4493705 DOI: 10.1038/srep11907] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/01/2015] [Indexed: 11/09/2022] Open
Abstract
Recent findings of intact chitin in fossil records suggest surprisingly high recalcitrance of this biopolymer during hydrothermal treatments. We also know in the experience of everyday life that mushroom, cells of which have chitinous cell walls, do not fall apart however long they are simmered. We used in situ optical microscopy to examine chitin and fungal cells with chitinous cell walls during hydrothermal treatments, and obtained direct evidence that they remained undegraded at temperatures well over 200 °C. The results show very hot and compressed water is needed to make mushrooms mushy.
Collapse
Affiliation(s)
- Shigeru Deguchi
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Kaoru Tsujii
- Graduate School of Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Koki Horikoshi
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| |
Collapse
|
181
|
Reuter T, Gilroyed B, Xu W, McAllister T, Stanford K. Compost biodegradation of recalcitrant hoof keratin by bacteria and fungi. J Appl Microbiol 2015; 119:425-34. [DOI: 10.1111/jam.12849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/29/2015] [Accepted: 05/11/2015] [Indexed: 11/27/2022]
Affiliation(s)
- T. Reuter
- Government of Alberta; Lethbridge AB Canada
| | | | - W. Xu
- Dalian University of Technology; Panjin China
| | | | | |
Collapse
|
182
|
de Souza PM, Bittencourt MLDA, Caprara CC, de Freitas M, de Almeida RPC, Silveira D, Fonseca YM, Ferreira EX, Pessoa A, Magalhães PO. A biotechnology perspective of fungal proteases. Braz J Microbiol 2015; 46:337-46. [PMID: 26273247 PMCID: PMC4507524 DOI: 10.1590/s1517-838246220140359] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/30/2014] [Indexed: 01/11/2023] Open
Abstract
Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.
Collapse
Affiliation(s)
- Paula Monteiro de Souza
- Universidade de São Paulo, Departamento de Tecnologia
Bioquimico-Farmacêutica, Faculdade de Ciências
Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brasil, Departamento de Tecnologia
Bioquimico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de
São Paulo, São Paulo, SP, Brazil
| | - Mona Lisa de Assis Bittencourt
- Universidade de Brasília, Departamento de Farmácia, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brasil, Departamento de Farmácia, Faculdade de Ciências
da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Carolina Canielles Caprara
- Universidade de Brasília, Departamento de Farmácia, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brasil, Departamento de Farmácia, Faculdade de Ciências
da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Marcela de Freitas
- Universidade de Brasília, Departamento de Farmácia, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brasil, Departamento de Farmácia, Faculdade de Ciências
da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Renata Paula Coppini de Almeida
- Universidade de Brasília, Departamento de Farmácia, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brasil, Departamento de Farmácia, Faculdade de Ciências
da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Dâmaris Silveira
- Universidade de Brasília, Departamento de Farmácia, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brasil, Departamento de Farmácia, Faculdade de Ciências
da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Yris Maria Fonseca
- Universidade de Brasília, Departamento de Farmácia, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brasil, Departamento de Farmácia, Faculdade de Ciências
da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Edivaldo Ximenes Ferreira
- Universidade de Brasília, Laboratório de Enzimologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brasil, Laboratório de Enzimologia, Departamento de
Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | - Adalberto Pessoa
- Universidade de São Paulo, Departamento de Tecnologia
Bioquimico-Farmacêutica, Faculdade de Ciências
Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brasil, Departamento de Tecnologia
Bioquimico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de
São Paulo, São Paulo, SP, Brazil
| | - Pérola Oliveira Magalhães
- Universidade de Brasília, Departamento de Farmácia, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brasil, Departamento de Farmácia, Faculdade de Ciências
da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| |
Collapse
|
183
|
Morillo OT, García Lugo PJ, Guerrero Cardena BR, Torres Vielma Y, Castañeda Ruiz R. Evaluación de la producción experimental de enzimas coagulantes de leche utilizando cepas de Rhizomucor spp. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2015. [DOI: 10.15446/rev.colomb.biote.v17n1.50701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
<p><strong>Título en ingles: Evaluation of experimental production of milk-clotting enzymes using <em>Rhizomucor</em> spp<em> </em>strains</strong><strong></strong><strong></strong></p><p><strong>Título corto: Producción de enzimas coagulantes de leche</strong></p><p><strong>Resumen</strong>: La producción experimental de enzimas coagulante de leche se llevó a cabo<em> </em>en un medio de cultivo de laboratorio durante 190 h de incubación, utilizando tres cepas certificadas de <em>Rhizomucor pusillus, </em> <em>R.</em> <em>miehei</em> y dos especies nativas de <em>Rhizomucor spp. </em>BIOMI-12 y 13. La evaluación se realizó midiendo la concentración de glucosa y proteína durante la incubación, estimación de la productividad, actividad específica, índice fuerza de cuajo/actividad proteolítica en los extractos enzimáticos crudos, determinación de los pesos moleculares y actividad proteolítica en los extractos enzimáticos parcialmente purificado. Todas las cepas mostraron un consumo de glucosa similar, el mismo comportamiento se observó en el contenido de proteína, excepto la cepa BIOM-13. Los incrementos en el contenido de proteínas después del descenso, coincidieron con la máxima actividad coagulante registrada por cada cepa, siendo el extracto crudo de la cepa BIOMI-13 la de mayor actividad coagulante (148,15 FC), productividad (3,09 FC/h), índice fuerza de cuajo/actividad proteolítica (142,60 FC/U) y actividad específica (1.062,00 FC/mg). Los extractos enzimáticos parcialmente purificados de las cepas <em>R miehei</em> 37, <em>Rhizomucor spp</em> BIOM-12 y 13, presentaron proteínas con pesos moleculares en aproximadamente 22,6 y 46,52 KDa, mientras el extracto <em>R pusillus</em> 39 presentó una banda adicional de 39,6 KDa. En el zimograma se observó para todas las cepas actividad proteolítica en las bandas comprendidas entre 40-50 KDa y 20-22 KDa, no así para el <em>R pusillus</em> 36, donde fue escasa. Finalmente se determinó que la cepa<strong> </strong>BIOMI-13, tiene la mayor capacidad para producir enzimas coagulantes de la leche.</p><p><strong>Palabras clave: </strong>renina microbiana, fuerza de<strong> </strong>cuajo, actividad proteolítica<em>, </em>productividad.</p><p><strong>Abstract: </strong>Experimental production of milk clotting enzymes was conducted on a laboratory culture medium for 190 h incubation, using three certified strains of <em>Rhizomucor pusillus</em>, <em>miehei </em>and two<em> </em>native <em>Rhizomucor </em>spp. BIOMI-12 and 13. The evaluation was performed by measuring the concentration of glucose and protein during incubation, estimate productivity, specific activity, rennet strength/proteolytic activity index in the crude enzyme extracts, determining the molecular weights and proteolytic activity in the partially purified enzyme extracts. All strains showed consumption rates of glucose, the same behavior observed protein content, except strain BIOM-13. The increase in protein content after descent coincided with the recorded maximum coagulant activity each strains, being the crude extract of strain BIOMI-13 higher coagulant activity (148,15 FC), productivity (3.09 HR / h), rennet strength/proteolytic activity index (142,60 FC/U) and specific activity (1,062 FC/mg). The partially purified enzyme extracts from strains <em>R miehei</em> 37, <em>Rhizomucor </em>spp BIOM-12 and 13, presented proteins with molecular weights in approximately 22,6 kDa and 46.52, while the extract <em>R pusillus</em> 39 present an additional band of 39,6 KDa. In the zymogram was observed for all strains, proteolytic activity in the bands between 40-50 KDa and 20-22 KDa, but not for the <em>R pusillus</em> 36, where activity was very dim. Finally it was determined that the strain BIOMI-13, has the greatest capacity to produce milk clotting enzymes.</p><p><strong>Key words</strong>: microbial rennet, rennet strength, proteolitic activity,<strong> </strong>productivity.</p><p><strong>Recibido: </strong>mayo 14 de 2014<strong> Aprobado: </strong>abril 21 de 2015</p>
Collapse
|
184
|
Guerriero G, Hausman JF, Strauss J, Ertan H, Siddiqui KS. Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:180-93. [PMID: 25804821 PMCID: PMC4937988 DOI: 10.1016/j.plantsci.2015.02.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 05/05/2023]
Abstract
The use of plant biomass as feedstock for biomaterial and biofuel production is relevant in the current bio-based economy scenario of valorizing renewable resources. Fungi, which degrade complex and recalcitrant plant polymers, secrete different enzymes that hydrolyze plant cell wall polysaccharides. The present review discusses the current research trends on fungal, as well as extremophilic cell wall hydrolases that can withstand extreme physico-chemical conditions required in efficient industrial processes. Secretomes of fungi from the phyla Ascomycota, Basidiomycota, Zygomycota and Neocallimastigomycota are presented along with metabolic cues (nutrient sensing, coordination of carbon and nitrogen metabolism) affecting their composition. We conclude the review by suggesting further research avenues focused on the one hand on a comprehensive analysis of the physiology and epigenetics underlying cell wall degrading enzyme production in fungi and on the other hand on the analysis of proteins with unknown function and metagenomics of extremophilic consortia. The current advances in consolidated bioprocessing, altered secretory pathways and creation of designer plants are also examined. Furthermore, recent developments in enhancing the activity, stability and reusability of enzymes based on synergistic, proximity and entropic effects, fusion enzymes, structure-guided recombination between homologous enzymes and magnetic enzymes are considered with a view to improving saccharification.
Collapse
Affiliation(s)
- Gea Guerriero
- Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, Luxembourg.
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, Luxembourg
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Fungal Genetics and Genomics Unit, University of Natural Resources and Life Sciences Vienna (BOKU), University and Research Center Campus Tulln-Technopol, Tulln/Donau, Austria; Health and Environment Department, Austrian Institute of Technology GmbH - AIT, University and Research Center Campus Tulln-Technopol, Tulln/Donau, Austria
| | - Haluk Ertan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia; Department of Molecular Biology and Genetics, Istanbul University, Turkey
| | - Khawar Sohail Siddiqui
- Biology Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia.
| |
Collapse
|
185
|
Chanwicha N, Katekaew S, Aimi T, Boonlue S. Purification and characterization of alkaline xylanase from Thermoascus aurantiacus var. levisporus KKU-PN-I2-1 cultivated by solid-state fermentation. MYCOSCIENCE 2015. [DOI: 10.1016/j.myc.2014.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
186
|
Xu X, Li J, Zhang W, Huang H, Shi P, Luo H, Liu B, Zhang Y, Zhang Z, Fan Y, Yao B. A Neutral Thermostable β-1,4-Glucanase from Humicola insolens Y1 with Potential for Applications in Various Industries. PLoS One 2015; 10:e0124925. [PMID: 25909505 PMCID: PMC4409357 DOI: 10.1371/journal.pone.0124925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/10/2015] [Indexed: 01/26/2023] Open
Abstract
We cloned a new glycoside hydrolase family 6 gene, Hicel6C, from the thermophilic fungus Humicola insolens Y1 and expressed it in Pichia pastoris. Using barley β-glucan as a substrate, recombinant HiCel6C protein exhibited neutral pH (6.5) and high temperature (70°C) optima. Distinct from most reported acidic fungal endo-β-1,4-glucanases, HiCel6C was alkali-tolerant, retaining greater than 98.0, 61.2, and 27.6% of peak activity at pH 8.0, 9.0, and 10.0, respectively, and exhibited good stability over a wide pH range (pH 5.0−11.0) and at temperatures up to 60°C. The Km and Vmax values of HiCel6C for barley β-glucan were 1.29 mg/mL and 752 μmol/min·mg, respectively. HiCel6C was strictly specific for the β-1,4-glucoside linkage exhibiting activity toward barley β-glucan, lichenan, and carboxy methylcellulose sodium salt (CMC-Na), but not toward laminarin (1,3-β-glucan). HiCel6C cleaved the internal glycosidic linkages of cellooligosaccharides randomly and thus represents an endo-cleaving enzyme. The predominant product of polysaccharide hydrolysis by HiCel6C was cellobiose, suggesting that it functions by an endo-processive mechanism. The favorable properties of HiCel6C make it a good candidate for basic research and for applications in the textile and brewing industries.
Collapse
Affiliation(s)
- Xinxin Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinyang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- * E-mail: (WZ); (BY)
| | - Huoqing Huang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pengjun Shi
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huiying Luo
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bo Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuhong Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhifang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunliu Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Yao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- * E-mail: (WZ); (BY)
| |
Collapse
|
187
|
Kielb P, Sezer M, Katz S, Lopez F, Schulz C, Gorton L, Ludwig R, Wollenberger U, Zebger I, Weidinger IM. Spectroscopic Observation of Calcium-Induced Reorientation of Cellobiose Dehydrogenase Immobilized on Electrodes and its Effect on Electrocatalytic Activity. Chemphyschem 2015; 16:1960-8. [PMID: 25908116 DOI: 10.1002/cphc.201500112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/12/2015] [Indexed: 12/31/2022]
Abstract
Cellobiose dehydrogenase catalyzes the oxidation of various carbohydrates and is considered as a possible anode catalyst in biofuel cells. It has been shown that the catalytic performance of this enzyme immobilized on electrodes can be increased by presence of calcium ions. To get insight into the Ca(2+) -induced changes in the immobilized enzyme we employ surface-enhanced vibrational (SERR and SEIRA) spectroscopy together with electrochemistry. Upon addition of Ca(2+) ions electrochemical measurements show a shift of the catalytic turnover signal to more negative potentials while SERR measurements reveal an offset between the potential of heme reduction and catalytic current. Comparing SERR and SEIRA data we propose that binding of Ca(2+) to the heme induces protein reorientation in a way that the electron transfer pathway of the catalytic FAD center to the electrode can bypass the heme cofactor, resulting in catalytic activity at more negative potentials.
Collapse
Affiliation(s)
- Patrycja Kielb
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin (Germany)
| | - Murat Sezer
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin (Germany)
| | - Sagie Katz
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin (Germany)
| | - Francesca Lopez
- Department of Biochemistry and Structural Biology, Lund University, PO Box 124, 221 00 Lund (Sweden)
| | - Christopher Schulz
- Department of Biochemistry and Structural Biology, Lund University, PO Box 124, 221 00 Lund (Sweden)
| | - Lo Gorton
- Department of Biochemistry and Structural Biology, Lund University, PO Box 124, 221 00 Lund (Sweden)
| | - Roland Ludwig
- Department of Food Science and Technology, BOKU - University of Natural Resources and Life Science, Muthgasse 18, 1190 Vienna (Austria)
| | - Ulla Wollenberger
- Institüt für Biochemie und Biologie, Universität Potsdam, Karl Liebknecht Strasse 24-25, 14476 Golm (Germany)
| | - Ingo Zebger
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin (Germany)
| | - Inez M Weidinger
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin (Germany).
| |
Collapse
|
188
|
Khan FI, Govender A, Permaul K, Singh S, Bisetty K. Thermostable chitinase II from Thermomyces lanuginosus SSBP: Cloning, structure prediction and molecular dynamics simulations. J Theor Biol 2015; 374:107-14. [PMID: 25861869 DOI: 10.1016/j.jtbi.2015.03.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/02/2015] [Accepted: 03/27/2015] [Indexed: 01/02/2023]
Abstract
Thermomyces lanuginosus is a thermophilic fungus that produces large number of industrially-significant enzymes owing to their inherent stability at high temperatures and wide range of pH optima, including thermostable chitinases that have not been fully characterized. Here, we report cloning, characterization and structure prediction of a gene encoding thermostable chitinase II. Sequence analysis revealed that chitinase II gene encodes a 343 amino acid protein of molecular weight 36.65kDa. Our study reports that chitinase II exhibits a well-defined TIM-barrel topology with an eight-stranded α/β domain. Structural analysis and molecular docking studies suggested that Glu176 is essential for enzyme activity. Folding studies of chitinase II using molecular dynamics simulations clearly demonstrated that the stability of the protein was evenly distributed at 350K.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- Department of Chemistry, Durban, Steve Biko Campus, Durban University of Technology, Durban, South Africa; Department of Biotechnology and Food Technology, Steve Biko Campus, Durban University of Technology, Durban, South Africa
| | - Algasan Govender
- Department of Biotechnology and Food Technology, Steve Biko Campus, Durban University of Technology, Durban, South Africa
| | - Kugen Permaul
- Department of Biotechnology and Food Technology, Steve Biko Campus, Durban University of Technology, Durban, South Africa
| | - Suren Singh
- Department of Biotechnology and Food Technology, Steve Biko Campus, Durban University of Technology, Durban, South Africa
| | - Krishna Bisetty
- Department of Chemistry, Durban, Steve Biko Campus, Durban University of Technology, Durban, South Africa.
| |
Collapse
|
189
|
Gomes D, Rodrigues AC, Domingues L, Gama M. Cellulase recycling in biorefineries—is it possible? Appl Microbiol Biotechnol 2015; 99:4131-43. [DOI: 10.1007/s00253-015-6535-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 11/28/2022]
|
190
|
Currin A, Swainston N, Day PJ, Kell DB. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 2015; 44:1172-239. [PMID: 25503938 PMCID: PMC4349129 DOI: 10.1039/c4cs00351a] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 12/21/2022]
Abstract
The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo, allow an unprecedented ability to engineer proteins with novel functions. However, the number of possible proteins is far too large to test individually, so we need means for navigating the 'search space' of possible protein sequences efficiently and reliably in order to find desirable activities and other properties. Enzymologists distinguish binding (Kd) and catalytic (kcat) steps. In a similar way, judicious strategies have blended design (for binding, specificity and active site modelling) with the more empirical methods of classical directed evolution (DE) for improving kcat (where natural evolution rarely seeks the highest values), especially with regard to residues distant from the active site and where the functional linkages underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the 'best' amino acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of this review is to highlight some of the approaches that are being developed to allow us to use directed evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a number of ways from natural evolution, including in particular the available mechanisms and the likely selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein landscapes. Because known landscapes may be assessed and reasoned about as a whole, simultaneously, this offers opportunities for protein improvement not readily available to natural evolution on rapid timescales. Intelligent landscape navigation, informed by sequence-activity relationships and coupled to the emerging methods of synthetic biology, offers scope for the development of novel biocatalysts that are both highly active and robust.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| | - Neil Swainston
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- School of Computer Science , The University of Manchester , Manchester M13 9PL , UK
| | - Philip J. Day
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- Faculty of Medical and Human Sciences , The University of Manchester , Manchester M13 9PT , UK
| | - Douglas B. Kell
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| |
Collapse
|
191
|
Robert V, Cardinali G, Casadevall A. Distribution and impact of yeast thermal tolerance permissive for mammalian infection. BMC Biol 2015; 13:18. [PMID: 25762372 PMCID: PMC4381509 DOI: 10.1186/s12915-015-0127-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/10/2015] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND From the viewpoint of fungal virulence in mammals, thermal tolerance can be defined as the ability to grow in the 35°C to 40°C range, which is essential for inhabiting these hosts. RESULTS We used archival information in a fungal collection to analyze the relationship between thermal tolerance and genetic background for over 4,289 yeast strains belonging to 1,054 species. Fungal genetic relationships were inferred from hierarchical trees based on pairwise alignments using the rRNA internal transcribed spacer and large subunit rDNA (LSU) sequences. In addition, we searched for correlations between thermal tolerance and other archival information including antifungal susceptibility, carbon sources, and fermentative capacity. Thermal tolerance for growth at mammalian temperatures was not monophyletic, with thermally tolerant species being interspersed among families that include closely related species that are not thermal tolerant. Thermal tolerance and resistance to antifungal drugs were not correlated, suggesting that these two properties evolved independently. Nevertheless, the ability to grow at higher temperatures did correlate with origin from lower geographic latitudes, capacity for fermentation and assimilation of certain carbon sources. CONCLUSIONS Thermal tolerance was significantly more common among ascomycetous than basidiomycetous yeasts, suggesting an explanation for the preponderance of ascomycetous yeasts among human pathogenic fungi. Analysis of strain maximum tolerable temperature as a function of collection time suggested that basidiomycetous yeasts are rapidly adapting to global warming. The analysis identified genera with a high prevalence of the thermal-tolerant species that could serve as sources of emerging pathogenic fungi.
Collapse
Affiliation(s)
- Vincent Robert
- Centraalbureau voor Schimmelcultures CBS, 8 Uppsalalaan, 3584CT, Utrecht, The Netherlands.
| | - Gianluigi Cardinali
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
| | - Arturo Casadevall
- Department of Microbiology and Immunology and the Division of Infectious Diseases of the Department of Medicine of the Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA.
| |
Collapse
|
192
|
de Cassia Pereira J, Paganini Marques N, Rodrigues A, Brito de Oliveira T, Boscolo M, da Silva R, Gomes E, Bocchini Martins D. Thermophilic fungi as new sources for production of cellulases and xylanases with potential use in sugarcane bagasse saccharification. J Appl Microbiol 2015; 118:928-39. [DOI: 10.1111/jam.12757] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/07/2015] [Accepted: 01/11/2015] [Indexed: 11/30/2022]
Affiliation(s)
- J. de Cassia Pereira
- Laboratory of Biochemistry and Applied Microbiology; São Paulo State University - UNESP/IBILCE; São José do Rio Preto São Paulo State Brazil
| | - N. Paganini Marques
- Laboratory of Microbial Enzymes; São Paulo State University - UNESP/IQ; Araraquara São Paulo State Brazil
| | - A. Rodrigues
- Laboratory of Ecology and Systematics of Fungi; São Paulo State University - IB/UNESP; Rio Claro São Paulo State Brazil
| | - T. Brito de Oliveira
- Laboratory of Ecology and Systematics of Fungi; São Paulo State University - IB/UNESP; Rio Claro São Paulo State Brazil
| | - M. Boscolo
- Laboratory of Sucrochemistry and Analytical Chemistry; São Paulo State University - IB/UNESP; Rio Claro São Paulo State Brazil
| | - R. da Silva
- Laboratory of Biochemistry and Applied Microbiology; São Paulo State University - UNESP/IBILCE; São José do Rio Preto São Paulo State Brazil
| | - E. Gomes
- Laboratory of Biochemistry and Applied Microbiology; São Paulo State University - UNESP/IBILCE; São José do Rio Preto São Paulo State Brazil
| | - D.A. Bocchini Martins
- Laboratory of Microbial Enzymes; São Paulo State University - UNESP/IQ; Araraquara São Paulo State Brazil
| |
Collapse
|
193
|
Crichton PG, Lee Y, Ruprecht JJ, Cerson E, Thangaratnarajah C, King MS, Kunji ERS. Trends in thermostability provide information on the nature of substrate, inhibitor, and lipid interactions with mitochondrial carriers. J Biol Chem 2015; 290:8206-17. [PMID: 25653283 PMCID: PMC4375477 DOI: 10.1074/jbc.m114.616607] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial carriers, including uncoupling proteins, are unstable in detergents, which hampers structural and mechanistic studies. To investigate carrier stability, we have purified ligand-free carriers and assessed their stability with a fluorescence-based thermostability assay that monitors protein unfolding with a thiol-reactive dye. We find that mitochondrial carriers from both mesophilic and thermophilic organisms exhibit poor stability in mild detergents, indicating that instability is inherent to the protein family. Trends in the thermostability of yeast ADP/ATP carrier AAC2 and ovine uncoupling protein UCP1 allow optimal conditions for stability in detergents to be established but also provide mechanistic insights into the interactions of lipids, substrates, and inhibitors with these proteins. Both proteins exhibit similar stability profiles across various detergents, where stability increases with the size of the associated detergent micelle. Detailed analysis shows that lipids stabilize carriers indirectly by increasing the associated detergent micelle size, but cardiolipin stabilizes by direct interactions as well. Cardiolipin reverses destabilizing effects of ADP and bongkrekic acid on AAC2 and enhances large stabilizing effects of carboxyatractyloside, revealing that this lipid interacts in the m-state and possibly other states of the transport cycle, despite being in a dynamic interface. Fatty acid activators destabilize UCP1 in a similar way, which can also be prevented by cardiolipin, indicating that they interact like transport substrates. Our controls show that carriers can be soluble but unfolded in some commonly used detergents, such as the zwitterionic Fos-choline-12, which emphasizes the need for simple validation assays like the one used here.
Collapse
Affiliation(s)
- Paul G Crichton
- From the Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Yang Lee
- From the Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Jonathan J Ruprecht
- From the Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Elizabeth Cerson
- From the Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Chancievan Thangaratnarajah
- From the Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Martin S King
- From the Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Edmund R S Kunji
- From the Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
194
|
Effects of temperature and glucose concentration on the growth and respiration of fungal species isolated from a highly productive coastal upwelling ecosystem. FUNGAL ECOL 2015. [DOI: 10.1016/j.funeco.2014.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
195
|
Ethanol Production from Enzymatically Treated Dried Food Waste Using Enzymes Produced On-Site. SUSTAINABILITY 2015. [DOI: 10.3390/su7021446] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
196
|
El-Sayed ASA, Hassan MN, Nada HMS. Purification, immobilization, and biochemical characterization of l-arginine deiminase from thermophilic Aspergillus fumigatus KJ434941: anticancer activity in vitro. Biotechnol Prog 2015; 31:396-405. [PMID: 25582958 DOI: 10.1002/btpr.2045] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/31/2014] [Indexed: 12/16/2022]
Abstract
l-Arginine deiminase (ADI) has a powerful anticancer activity against various tumors, via arginine depletion, arresting the cell cycle at G1 phase. However, the current clinically tried bacterial ADI displayed a higher antigenicity and lower thermal stability. Thus, our objective was to purify and characterize this enzyme from thermophilic fungi, to explore its catalytic and antigenic properties for therapeutic uses. ADI was purified from thermophilic Aspergillus fumigatus KJ434941 to its electrophoretic homogeneity by 5.1-fold, with molecular subunit 50 kDa. The purified ADI was PEGylated and covalently immobilized on dextran to explore its catalytic properties. The specific activity of free ADI, PEG-ADI, and Dex-ADI was 26.7, 21.5, and 18.0 U/mg, respectively. At 50°C, PEG-ADI displays twofold resistance to thermal denaturation (t1/2 13.9 h), than free ADI (t1/2 6.9 h), while at 70°C, the thermal stability of PEG-ADI was increased by 1.7-fold, with similar stability to Dex-ADI with the free one. Kinetically, free ADI had the higher catalytic affinity to arginine, followed by PEG-ADI and Dex-ADI. Upon proteolysis for 30 min, the residual activity of native ADI, PEG-ADI, and Dex-AD was 8.0, 32.0, and 20.0% for proteinase K and 10.0, 52.0, and 90.0% for acid protease, respectively. The anticancer activity of the ADIs was assessed against HCT, HEP-G2, and MCF7, in vitro. The free and PEG-ADI exhibits a similar cytotoxic efficacy for the tested cells, lower than Dex-ADI. The free ADI had IC50 value 22.0, 16.6, and 13.9 U/mL, while Dex-ADI had 3.98, 5.18, and 4.43 U/mL for HCT, MCF7, and HEPG-2, respectively. The in vitro anticancer activity of ADI against HCT, MCF7, and HEPG-2 was increased by five-, three-, and threefold upon covalent modification by dextran. The biochemical and hematological parameters of the experimented animals were not affected by ADIs dosing, with no signs of anti-ADI immunoglobulins in vivo. The in vivo half-life time of free ADI, PEG-ADI, and Dex-ADI was 29.7, 91.1, 59.6 h, respectively. The present findings explored a novel thermostable, less antigenic ADI from thermophilic A. fumigatus, with further molecular and crystallographic analyses, this enzyme will be a powerful candidate for clinical trials.
Collapse
|
197
|
Hamedi J, Mohammadipanah F, Panahi HKS. Biotechnological Exploitation of Actinobacterial Members. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2015. [DOI: 10.1007/978-3-319-14595-2_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
198
|
Production of thermostable hydrolases (cellulases and xylanase) from Thermoascus aurantiacus RCKK: a potential fungus. Bioprocess Biosyst Eng 2014; 38:787-96. [DOI: 10.1007/s00449-014-1320-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/26/2014] [Indexed: 10/24/2022]
|
199
|
Thermophilic fungi in the new age of fungal taxonomy. Extremophiles 2014; 19:31-7. [PMID: 25399310 DOI: 10.1007/s00792-014-0707-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
Abstract
Thermophilic fungi are of wide interest due to their potential to produce heat-tolerant enzymes for biotechnological processes. However, the taxonomy of such organisms remains obscure, especially given new developments in the nomenclature of fungi. Here, we examine the taxonomy of the thermophilic fungi most commonly used in industry in light of the recent taxonomic changes following the adoption of the International Code of Nomenclature for Algae, Fungi and Plants and also based on the movement One Fungus = One Name. Despite the widespread use of these fungi in applied research, several thermotolerant fungi still remain classified as thermophiles. Furthermore, we found that while some thermophilic fungi have had their genomes sequenced, many taxa still do not have barcode sequences of reference strains available in public databases. This lack of basic information is a limiting factor for the species identification of thermophilic fungi and for metagenomic studies in this field. Based on next-generation sequencing, such studies generate large amounts of data, which may reveal new species of thermophilic fungi in different substrates (composting systems, geothermal areas, piles of plant material). As discussed in this study, there are intrinsic problems associated with this method, considering the actual state of the taxonomy of thermophilic fungi. To overcome such difficulties, the taxonomic classification of this group should move towards standardizing the commonly used species names in industry and to assess the possibility of including new systems for describing species based on environmental sequences.
Collapse
|
200
|
El-Sayed AS, Shindia AA, Diab AA, Rady AM. Purification and immobilization of L-arginase from thermotolerant Penicillium chrysogenum KJ185377.1; with unique kinetic properties as thermostable anticancer enzyme. Arch Pharm Res 2014. [PMID: 25322968 DOI: 10.1007/s12272-014-0498-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
Abstract
L-Arginase, hydrolyzing L-arginine to L-ornithine and urea, is a powerful anticancer, L-arginine-depleting agent, against argininosuccinate synthase expressing tumors. Otherwise, the higher antigenicity and lower thermal stability of this enzyme was the main biochemical hurdles. Since, the intrinsic thermal stability of enzymes follow the physiological temperature of their producer, thus, characterization of L-arginase from thermotolerant Penicillium chrysogenum was the objective of this study. L-Arginase (Arg) was purified to its homogeneity from P. chrysogenum by 10.1-fold, with 37.0 kDa under denaturing PAGE, optimum reaction at 50 °C, pH stability (6.8-7.9), with highest molar ratio of constitutional arginine, glutamic acid, lysine and aspartic acid. The purified enzyme was PEGylated and immobilized on chitosan, with 41.9 and 22.1 % yield of immobilization. At 40 °C, the T1/2 value of free-Arg, PEG-Arg and Chit-Arg was 10.4, 15.6, 20.5 h, respectively. The free-Arg and Chit-Arg have a higher affinity to L-arginine (K m 4.8 mM), while, PEG-Arg affinity was decreased by about 3 fold (K m 15.2 mM). The inhibitory constants to the free and PEG-Arg were relatively similar towards HA and PPG. The IC50 for the free enzyme against HEPG-2 and A549 tumor cells was 0.136 and 0.165 U/ml, comparing to 0.232 and 0.496 U/ml for PEG-Arg, respectively. The in vivo T1/2 to the free Arg and PEG-Arg was 16.4 and 20.4 h, respectively as holo-enzyme. The residual L-arginine level upon using free Arg was 156.9 and 144.5 µM, after 6 and 8 h, respectively, regarding to initials at 253.6 µM, while for Peg-Arg the level of L-arginine was nil till 7 h of initial dosing. The titer of IgG was induced by 10-15 % in response to free-Arg after 28 days comparing to IgG titer for PEG-Arg.
Collapse
Affiliation(s)
- Ashraf S El-Sayed
- Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt,
| | | | | | | |
Collapse
|