151
|
Aho ER, Wang J, Gogliotti RD, Howard GC, Phan J, Acharya P, Macdonald JD, Cheng K, Lorey SL, Lu B, Wenzel S, Foshage AM, Alvarado J, Wang F, Shaw JG, Zhao B, Weissmiller AM, Thomas LR, Vakoc CR, Hall MD, Hiebert SW, Liu Q, Stauffer SR, Fesik SW, Tansey WP. Displacement of WDR5 from Chromatin by a WIN Site Inhibitor with Picomolar Affinity. Cell Rep 2019; 26:2916-2928.e13. [PMID: 30865883 PMCID: PMC6448596 DOI: 10.1016/j.celrep.2019.02.047] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/17/2019] [Accepted: 02/12/2019] [Indexed: 01/09/2023] Open
Abstract
The chromatin-associated protein WDR5 is a promising target for pharmacological inhibition in cancer. Drug discovery efforts center on the blockade of the "WIN site" of WDR5, a well-defined pocket that is amenable to small molecule inhibition. Various cancer contexts have been proposed to be targets for WIN site inhibitors, but a lack of understanding of WDR5 target genes and of the primary effects of WIN site inhibitors hampers their utility. Here, by the discovery of potent WIN site inhibitors, we demonstrate that the WIN site links WDR5 to chromatin at a small cohort of loci, including a specific subset of ribosome protein genes. WIN site inhibitors rapidly displace WDR5 from chromatin and decrease the expression of associated genes, causing translational inhibition, nucleolar stress, and p53 induction. Our studies define a mode by which WDR5 engages chromatin and forecast that WIN site blockade could have utility against multiple cancer types.
Collapse
Affiliation(s)
- Erin R Aho
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rocco D Gogliotti
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Gregory C Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jason Phan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Pankaj Acharya
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jonathan D Macdonald
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ken Cheng
- National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bin Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sabine Wenzel
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Audra M Foshage
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Joseph Alvarado
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Feng Wang
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - J Grace Shaw
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bin Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - April M Weissmiller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lance R Thomas
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | - Matthew D Hall
- National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shaun R Stauffer
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Stephen W Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
152
|
Schnekenburger M, Dicato M, Diederich MF. Anticancer potential of naturally occurring immunoepigenetic modulators: A promising avenue? Cancer 2019; 125:1612-1628. [PMID: 30840315 DOI: 10.1002/cncr.32041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/29/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022]
Abstract
The immune system represents the major primary defense line against carcinogenesis and acts by identifying and eradicating nascent transformed cells. A growing body of evidence is indicating that aberrant epigenetic reprogramming plays a key role in tumor immune escape through: 1) impaired efficient recognition of neoplastic cells by the immune system, resulting from a downregulation or loss of the expression of tumor-associated antigens, human leukocyte antigens, antigen processing and presenting machinery, and costimulatory molecule genes; 2) aberrant expression of immune checkpoint proteins and their ligands; and 3) modification of cytokine profiles and tumor-associated immune cell populations toward an immunosuppressive state in the tumor microenvironment. Consistent with the inherent reversibility of epigenetic alterations, epigenetic drugs, including DNA methyltransferase and histone deacetylase inhibitors, have the unique potential to favorably modify the tumor microenvironment, restore tumor recognition and stimulate an antitumor immune response. The objective of this review is to highlight selected, naturally occurring epigenetic modulators, namely, butyrate, curcumin, (-)-epigallocatechin-3-gallate, resveratrol, romidepsin, and trichostatin A, with a special focus on their antitumor immune properties.
Collapse
Affiliation(s)
- Michael Schnekenburger
- Laboratory of Molecular and Cellular Biology of Cancer, Kirchberg Hospital, Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratory of Molecular and Cellular Biology of Cancer, Kirchberg Hospital, Luxembourg, Luxembourg
| | - Marc F Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
153
|
Jeusset LMP, McManus KJ. Developing Targeted Therapies That Exploit Aberrant Histone Ubiquitination in Cancer. Cells 2019; 8:cells8020165. [PMID: 30781493 PMCID: PMC6406838 DOI: 10.3390/cells8020165] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Histone ubiquitination is a critical epigenetic mechanism regulating DNA-driven processes such as gene transcription and DNA damage repair. Importantly, the cellular machinery regulating histone ubiquitination is frequently altered in cancers. Moreover, aberrant histone ubiquitination can drive oncogenesis by altering the expression of tumor suppressors and oncogenes, misregulating cellular differentiation and promoting cancer cell proliferation. Thus, targeting aberrant histone ubiquitination may be a viable strategy to reprogram transcription in cancer cells, in order to halt cellular proliferation and induce cell death, which is the basis for the ongoing development of therapies targeting histone ubiquitination. In this review, we present the normal functions of histone H2A and H2B ubiquitination and describe the role aberrant histone ubiquitination has in oncogenesis. We also describe the key benefits and challenges associated with current histone ubiquitination targeting strategies. As these strategies are predicted to have off-target effects, we discuss additional efforts aimed at developing synthetic lethal strategies and epigenome editing tools, which may prove pivotal in achieving effective and selective therapies targeting histone ubiquitination, and ultimately improving the lives and outcomes of those living with cancer.
Collapse
Affiliation(s)
- Lucile M-P Jeusset
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Kirk J McManus
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| |
Collapse
|
154
|
Drake TM, Søreide K. Cancer epigenetics in solid organ tumours: A primer for surgical oncologists. Eur J Surg Oncol 2019; 45:736-746. [PMID: 30745135 DOI: 10.1016/j.ejso.2019.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer is initiated through both genetic and epigenetic alterations. The end-effect of such changes to the DNA machinery is a set of uncontrolled mechanisms of cell division, invasion and, eventually, metastasis. Epigenetic changes are now increasingly appreciated as an essential driver to the cancer phenotype. The epigenetic regulation of cancer is complex and not yet fully understood, but application of epigenetics to clinical practice and in cancer research has the potential to improve cancer care. Epigenetics changes do not cause changes in the DNA base-pairs (and, hence, does not alter the genetic code per se) but rather occur through methylation of DNA, by histone modifications, and, through changes to chromatin structure to alter genetic expression. Epigenetic regulators are characterized as writers, readers or erasers by their mechanisms of action. The human epigenome is influenced from cradle to grave, with internal and external life-time exposure influencing the epigenetic marks that may act as modifiers or drivers of carcinogenesis. Preventive and public health strategies may follow from better understanding of the life-time influence of the epigenome. Epigenetics may be used to define risk, to investigate mechanisms of carcinogenesis, to identify biomarkers, and to identify novel therapeutic options. Epigenetic alterations are found across many solid cancers and are increasingly making clinical impact to cancer management. Novel epigenetic drugs may be used for a more tailored and specific response to treatment of cancers. We present a primer on epigenetics for surgical oncologists with examples from colorectal cancer, breast cancer, pancreatic cancer and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Thomas M Drake
- Department of Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Kjetil Søreide
- Department of Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK; Gastrointestinal Translational Research Unit, Laboratory for Molecular Biology, Stavanger University Hospital, Stavanger, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway.
| |
Collapse
|
155
|
Valencia AM, Kadoch C. Chromatin regulatory mechanisms and therapeutic opportunities in cancer. Nat Cell Biol 2019; 21:152-161. [PMID: 30602726 DOI: 10.1038/s41556-018-0258-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
Research over the past several decades has unmasked a major contribution of disrupted chromatin regulatory processes to human disease, particularly cancer. Advances in genome-wide technologies have highlighted frequent mutations in genes encoding chromatin-associated proteins, identified unexpected synthetic lethal opportunities and enabled increasingly comprehensive structural and functional dissection. Here, we review recent progress in our understanding of oncogenic mechanisms at each level of chromatin organization and regulation, and discuss new strategies towards therapeutic intervention.
Collapse
Affiliation(s)
- Alfredo M Valencia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Chemical Biology Program, Harvard University, Cambridge, MA, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
156
|
Zhang LS, Kang X, Lu J, Zhang Y, Wu X, Wu G, Zheng J, Tuladhar R, Shi H, Wang Q, Morlock L, Yao H, Huang LJS, Maire P, Kim J, Williams N, Xu J, Chen C, Zhang CC, Lum L. Installation of a cancer promoting WNT/SIX1 signaling axis by the oncofusion protein MLL-AF9. EBioMedicine 2019; 39:145-158. [PMID: 30528456 PMCID: PMC6354558 DOI: 10.1016/j.ebiom.2018.11.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Chromosomal translocation-induced expression of the chromatin modifying oncofusion protein MLL-AF9 promotes acute myelocytic leukemia (AML). Whereas WNT/β-catenin signaling has previously been shown to support MLL-AF9-driven leukemogenesis, the mechanism underlying this relationship remains unclear. METHODS We used two novel small molecules targeting WNT signaling as well as a genetically modified mouse model that allow targeted deletion of the WNT protein chaperone Wntless (WLS) to evaluate the role of WNT signaling in AML progression. ATAC-seq and transcriptome profiling were deployed to understand the cellular consequences of disrupting a WNT signaling in leukemic initiating cells (LICs). FINDINGS We identified Six1 to be a WNT-controlled target gene in MLL-AF9-transformed leukemic initiating cells (LICs). MLL-AF9 alters the accessibility of Six1 DNA to the transcriptional effector TCF7L2, a transducer of WNT/β-catenin gene expression changes. Disruption of WNT/SIX1 signaling using inhibitors of the Wnt signaling delays the development of AML. INTERPRETATION By rendering TCF/LEF-binding elements controlling Six1 accessible to TCF7L2, MLL-AF9 promotes WNT/β-catenin-dependent growth of LICs. Small molecules disrupting WNT/β-catenin signaling block Six1 expression thereby disrupting leukemia driven by MLL fusion proteins.
Collapse
Affiliation(s)
- Li-Shu Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xunlei Kang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jianming Lu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuannyu Zhang
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaofeng Wu
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guojin Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Junke Zheng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rubina Tuladhar
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heping Shi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qiaoling Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lorraine Morlock
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huiyu Yao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lily Jun-Shen Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pascal Maire
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR, 8104, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - James Kim
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Noelle Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jian Xu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chuo Chen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lawrence Lum
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
157
|
Affiliation(s)
- Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia.
| |
Collapse
|
158
|
Wang Q, Sun Y, Li T, Liu L, Zhao Y, Li L, Zhang L, Meng Y. Function of BRD4 in the pathogenesis of high glucose‑induced cardiac hypertrophy. Mol Med Rep 2018; 19:499-507. [PMID: 30483785 PMCID: PMC6297744 DOI: 10.3892/mmr.2018.9681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
Diabetic cardiomyopathy is one of the major complications of diabetes, and due to the increasing number of patients with diabetes it is a growing concern. Diabetes-induced cardiomyopathy has a complex pathogenesis and histone deacetylase-mediated epigenetic processes are of prominent importance. The olfactory bromodomain-containing protein 4 (BRD4) is a protein that recognizes and binds acetylated lysine. It has been reported that the high expression of BRD4 is involved in the process of cardiac hypertrophy. The aim of the present study was to investigate the function of BRD4 in the process of high glucose (HG)-induced cardiac hypertrophy, and to clarify whether epigenetic regulation involving BRD4 is an important mechanism. It was revealed that BRD4 expression levels were increased in H9C2 cells following 48 h of HG stimulation. This result was also observed in a diabetic rat model. Furthermore, HG stimulation resulted in the upregulation of the myocardial hypertrophy marker, atrial natriuretic peptide, the cytoskeletal protein α-actin and fibrosis-associated genes including transforming growth factor-β, SMAD family member 3, connective tissue growth factor and collagen, type 1, α1. However, administration of the specific BRD4 inhibitor JQ1 (250 nM) for 48 h reversed this phenomenon. Furthermore, protein kinase B (AKT) phosphorylation was activated by HG stimulation and suppressed by JQ1. In conclusion, BRD4 serves an important role in the pathogenesis of HG-induced cardiomyocyte hypertrophy through the AKT pathway.
Collapse
Affiliation(s)
- Qian Wang
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuxin Sun
- Department of Otorhinolaryngology, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Tianshu Li
- Department of Functional Science Experiment Center, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lianqin Liu
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yunxia Zhao
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Liyuan Li
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ling Zhang
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan Meng
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
159
|
Linder S, van der Poel HG, Bergman AM, Zwart W, Prekovic S. Enzalutamide therapy for advanced prostate cancer: efficacy, resistance and beyond. Endocr Relat Cancer 2018; 26:R31-R52. [PMID: 30382692 PMCID: PMC6215909 DOI: 10.1530/erc-18-0289] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2018] [Indexed: 12/20/2022]
Abstract
The androgen receptor drives the growth of metastatic castration-resistant prostate cancer. This has led to the development of multiple novel drugs targeting this hormone-regulated transcription factor, such as enzalutamide – a potent androgen receptor antagonist. Despite the plethora of possible treatment options, the absolute survival benefit of each treatment separately is limited to a few months. Therefore, current research efforts are directed to determine the optimal sequence of therapies, discover novel drugs effective in metastatic castration-resistant prostate cancer and define patient subpopulations that ultimately benefit from these treatments. Molecular studies provide evidence on which pathways mediate treatment resistance and may lead to improved treatment for metastatic castration-resistant prostate cancer. This review provides, firstly a concise overview of the clinical development, use and effectiveness of enzalutamide in the treatment of advanced prostate cancer, secondly it describes translational research addressing enzalutamide response vs resistance and lastly highlights novel potential treatment strategies in the enzalutamide-resistant setting.
Collapse
Affiliation(s)
- Simon Linder
- Division of OncogenomicsOncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Henk G van der Poel
- Division of UrologyThe Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andries M Bergman
- Division of Medical OncologyThe Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of OncogenomicsThe Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of OncogenomicsOncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Laboratory of Chemical Biology and Institute for Complex Molecular SystemsDepartment of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Stefan Prekovic
- Division of OncogenomicsOncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Correspondence should be addressed to S Prekovic:
| |
Collapse
|
160
|
Valproic acid as an adjunctive therapeutic agent for the treatment of breast cancer. Eur J Pharmacol 2018; 835:61-74. [DOI: 10.1016/j.ejphar.2018.07.057] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023]
|
161
|
Klymenko Y, Nephew KP. Epigenetic Crosstalk between the Tumor Microenvironment and Ovarian Cancer Cells: A Therapeutic Road Less Traveled. Cancers (Basel) 2018; 10:E295. [PMID: 30200265 PMCID: PMC6162502 DOI: 10.3390/cancers10090295] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022] Open
Abstract
Metastatic dissemination of epithelial ovarian cancer (EOC) predominantly occurs through direct cell shedding from the primary tumor into the intra-abdominal cavity that is filled with malignant ascitic effusions. Facilitated by the fluid flow, cells distribute throughout the cavity, broadly seed and invade through peritoneal lining, and resume secondary tumor growth in abdominal and pelvic organs. At all steps of this unique metastatic process, cancer cells exist within a multidimensional tumor microenvironment consisting of intraperitoneally residing cancer-reprogramed fibroblasts, adipose, immune, mesenchymal stem, mesothelial, and vascular cells that exert miscellaneous bioactive molecules into malignant ascites and contribute to EOC progression and metastasis via distinct molecular mechanisms and epigenetic dysregulation. This review outlines basic epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA regulators, and summarizes current knowledge on reciprocal interactions between each participant of the EOC cellular milieu and tumor cells in the context of aberrant epigenetic crosstalk. Promising research directions and potential therapeutic strategies that may encompass epigenetic tailoring as a component of complex EOC treatment are discussed.
Collapse
Affiliation(s)
- Yuliya Klymenko
- Cell, Molecular and Cancer Biology Program, Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA.
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.
| | - Kenneth P Nephew
- Cell, Molecular and Cancer Biology Program, Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA.
- Department of Cellular and Integrative Physiology and Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
162
|
Abstract
Chromatin is a mighty consumer of cellular energy generated by metabolism. Metabolic status is efficiently coordinated with transcription and translation, which also feed back to regulate metabolism. Conversely, suppression of energy utilization by chromatin processes may serve to preserve energy resources for cell survival. Most of the reactions involved in chromatin modification require metabolites as their cofactors or coenzymes. Therefore, the metabolic status of the cell can influence the spectra of posttranslational histone modifications and the structure, density and location of nucleosomes, impacting epigenetic processes. Thus, transcription, translation, and DNA/RNA biogenesis adapt to cellular metabolism. In addition to dysfunctions of metabolic enzymes, imbalances between metabolism and chromatin activities trigger metabolic disease and life span alteration. Here, we review the synthesis of the metabolites and the relationships between metabolism and chromatin function. Furthermore, we discuss how the chromatin response feeds back to metabolic regulation in biological processes.
Collapse
Affiliation(s)
- Tamaki Suganuma
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;,
| | - Jerry L. Workman
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;,
| |
Collapse
|
163
|
Xu F, Jin T, Zhu Y, Dai C. Immune checkpoint therapy in liver cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:110. [PMID: 29843754 PMCID: PMC5975687 DOI: 10.1186/s13046-018-0777-4] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/28/2018] [Indexed: 02/06/2023]
Abstract
Immune checkpoints include stimulatory and inhibitory checkpoint molecules. In recent years, inhibitory checkpoints, including cytotoxic T lymphocyte–associated antigen 4 (CTLA-4), programmed cell death protein-1 (PD-1), and programmed cell death ligand 1 (PD-L1), have been identified to suppress anti-tumor immune responses in solid tumors. Novel drugs targeting immune checkpoints have succeeded in cancer treatment. Specific PD-1 blockades were approved for treatment of melanoma in 2014 and for treatment of non-small-cell lung cancer in 2015 in the United States, European Union, and Japan. Preclinical and clinical studies show immune checkpoint therapy provides survival benefit for greater numbers of patients with liver cancer, including hepatocellular carcinoma and cholangiocarcinoma, two main primary liver cancers. The combination of anti-PD-1/PD-L1 with anti-CTLA-4 antibodies is being evaluated in phase 1, 2 or 3 trials, and the results suggest that an anti-PD-1 antibody combined with locoregional therapy or other molecular targeted agents is an effective treatment strategy for HCC. In addition, studies on activating co-stimulatory receptors to enhance anti-tumor immune responses have increased our understanding regarding this immunotherapy in liver cancer. Epigenetic modulations of checkpoints for improving the tumor microenvironment also expand our knowledge of potential therapeutic targets in improving the tumor microenvironment and restoring immune recognition and immunogenicity. In this review, we summarize current knowledge and recent developments in immune checkpoint-based therapies for the treatment of hepatocellular carcinoma and cholangiocarcinoma and attempt to clarify the mechanisms underlying its effects.
Collapse
Affiliation(s)
- Feng Xu
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital affiliated to China Medical University, Shenyang, 110004, Liaoning, China.,Department of Surgery, University of Colorado Anschutz Medical Campus, RC1-North Building, P18-8116, Aurora, CO, 80045, USA
| | - Tianqiang Jin
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital affiliated to China Medical University, Shenyang, 110004, Liaoning, China
| | - Yuwen Zhu
- Department of Surgery, University of Colorado Anschutz Medical Campus, RC1-North Building, P18-8116, Aurora, CO, 80045, USA.
| | - Chaoliu Dai
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital affiliated to China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
164
|
Prakash A, Garcia-Moreno JF, Brown JAL, Bourke E. Clinically Applicable Inhibitors Impacting Genome Stability. Molecules 2018; 23:E1166. [PMID: 29757235 PMCID: PMC6100577 DOI: 10.3390/molecules23051166] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022] Open
Abstract
Advances in technology have facilitated the molecular profiling (genomic and transcriptomic) of tumours, and has led to improved stratification of patients and the individualisation of treatment regimes. To fully realize the potential of truly personalised treatment options, we need targeted therapies that precisely disrupt the compensatory pathways identified by profiling which allow tumours to survive or gain resistance to treatments. Here, we discuss recent advances in novel therapies that impact the genome (chromosomes and chromatin), pathways targeted and the stage of the pathways targeted. The current state of research will be discussed, with a focus on compounds that have advanced into trials (clinical and pre-clinical). We will discuss inhibitors of specific DNA damage responses and other genome stability pathways, including those in development, which are likely to synergistically combine with current therapeutic options. Tumour profiling data, combined with the knowledge of new treatments that affect the regulation of essential tumour signalling pathways, is revealing fundamental insights into cancer progression and resistance mechanisms. This is the forefront of the next evolution of advanced oncology medicine that will ultimately lead to improved survival and may, one day, result in many cancers becoming chronic conditions, rather than fatal diseases.
Collapse
Affiliation(s)
- Anu Prakash
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Juan F Garcia-Moreno
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - James A L Brown
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Emer Bourke
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| |
Collapse
|
165
|
Moonlighting with WDR5: A Cellular Multitasker. J Clin Med 2018; 7:jcm7020021. [PMID: 29385767 PMCID: PMC5852437 DOI: 10.3390/jcm7020021] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 11/17/2022] Open
Abstract
WDR5 is a highly conserved WD40 repeat-containing protein that is essential for proper regulation of multiple cellular processes. WDR5 is best characterized as a core scaffolding component of histone methyltransferase complexes, but emerging evidence demonstrates that it does much more, ranging from expanded functions in the nucleus through to controlling the integrity of cell division. The purpose of this review is to describe the current molecular understandings of WDR5, discuss how it participates in diverse cellular processes, and highlight drug discovery efforts around WDR5 that may form the basis of new anti-cancer therapies.
Collapse
|
166
|
Insel PA, Amara SG, Blaschke TF, Meyer UA. Introduction to the Theme "New Approaches for Studying Drug and Toxicant Action: Applications to Drug Discovery and Development". Annu Rev Pharmacol Toxicol 2017; 58:33-36. [PMID: 29058990 DOI: 10.1146/annurev-pharmtox-092617-121952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The theme "New Approaches for Studying Drug and Toxicant Action: Applications to Drug Discovery and Development" links 13 articles in this volume of the Annual Review of Pharmacology and Toxicology (ARPT). The engaging prefatory articles by Arthur Cho and Robert Lefkowitz set the stage for this theme and for the reviews that insightfully describe new approaches that advance research and discovery in pharmacology and toxicology. Examples include the progress being made in developing Organs-on-Chips/microphysiological systems and human induced pluripotent stem cell-derived cells to aid in understanding cell and tissue pharmacokinetics, action, and toxicity; the recognition of the importance of circadian rhythm, the microbiome, and epigenetics in drug and toxicant responses; and the application of results from new types of patient-derived information to create personalized/precision medicine, including therapeutics for pain, which may perhaps provide help in dealing with the opioid epidemic in the United States. Such new information energizes discovery efforts in pharmacology and toxicology that seek to improve the efficacy and safety of drugs in patients and to minimize the consequences of exposure to toxins.
Collapse
Affiliation(s)
- Paul A Insel
- Department of Pharmacology and Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Susan G Amara
- National Institute of Mental Health, Bethesda, Maryland 20892, USA
| | - Terrence F Blaschke
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Urs A Meyer
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|