151
|
McAdam SAM, Brodribb TJ, Ross JJ. Shoot-derived abscisic acid promotes root growth. PLANT, CELL & ENVIRONMENT 2016; 39:652-9. [PMID: 26514625 DOI: 10.1111/pce.12669] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/19/2015] [Accepted: 10/26/2015] [Indexed: 05/18/2023]
Abstract
The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture.
Collapse
Affiliation(s)
- Scott A M McAdam
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - John J Ross
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
152
|
Shabala S, White RG, Djordjevic MA, Ruan YL, Mathesius U. Root-to-shoot signalling: integration of diverse molecules, pathways and functions. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:87-104. [PMID: 32480444 DOI: 10.1071/fp15252] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/06/2015] [Indexed: 05/23/2023]
Abstract
Plant adaptive potential is critically dependent upon efficient communication and co-ordination of resource allocation and signalling between above- and below-ground plant parts. Plant roots act as gatekeepers that sense and encode information about soil physical, chemical and biological factors, converting them into a sophisticated network of signals propagated both within the root itself, and also between the root and shoot, to optimise plant performance for a specific set of conditions. In return, plant roots receive and decode reciprocal information coming from the shoot. The communication modes are highly diverse and include a broad range of physical (electric and hydraulic signals, propagating Ca2+ and ROS waves), chemical (assimilates, hormones, peptides and nutrients), and molecular (proteins and RNA) signals. Further, different signalling systems operate at very different timescales. It remains unclear whether some of these signalling systems operate in a priming mode(s), whereas others deliver more specific information about the nature of the signal, or whether they carry the same 'weight'. This review summarises the current knowledge of the above signalling mechanisms, and reveals their hierarchy, and highlights the importance of integration of these signalling components, to enable optimal plant functioning in a dynamic environment.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | | | - Michael A Djordjevic
- Plant Science Division, Research School of Biology, Building 134, Linnaeus Way, The Australian National University, Canberra, ACT 2601, Australia
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Ulrike Mathesius
- Plant Science Division, Research School of Biology, Building 134, Linnaeus Way, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
153
|
Huber AE, Bauerle TL. Long-distance plant signaling pathways in response to multiple stressors: the gap in knowledge. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2063-79. [PMID: 26944636 DOI: 10.1093/jxb/erw099] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plants require the capacity for quick and precise recognition of external stimuli within their environment for survival. Upon exposure to biotic (herbivores and pathogens) or abiotic stressors (environmental conditions), plants can activate hydraulic, chemical, or electrical long-distance signals to initiate systemic stress responses. A plant's stress reactions can be highly precise and orchestrated in response to different stressors or stress combinations. To date, an array of information is available on plant responses to single stressors. However, information on simultaneously occurring stresses that represent either multiple, within, or across abiotic and biotic stress types is nascent. Likewise, the crosstalk between hydraulic, chemical, and electrical signaling pathways and the importance of each individual signaling type requires further investigation in order to be fully understood. The overlapping presence and speed of the signals upon plant exposure to various stressors makes it challenging to identify the signal initiating plant systemic stress/defense responses. Furthermore, it is thought that systemic plant responses are not transmitted by a single pathway, but rather by a combination of signals enabling the transmission of information on the prevailing stressor(s) and its intensity. In this review, we summarize the mode of action of hydraulic, chemical, and electrical long-distance signals, discuss their importance in information transmission to biotic and abiotic stressors, and suggest future research directions.
Collapse
Affiliation(s)
- Annika E Huber
- Cornell University, School of Integrative Plant Science, Ithaca, NY 14850, USA
| | - Taryn L Bauerle
- Cornell University, School of Integrative Plant Science, Ithaca, NY 14850, USA
| |
Collapse
|
154
|
Xu Y, Burgess P, Zhang X, Huang B. Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stolonifera. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1979-92. [PMID: 26889010 PMCID: PMC4783374 DOI: 10.1093/jxb/erw019] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Drought stress limits root growth and inhibits cytokinin (CK) production. Increases in CK production through overexpression of isopentenyltransferase (ipt) alleviate drought damages to promote root growth. The objective of this study was to investigate whether CK-regulated root growth was involved in the alteration of reactive oxygen species (ROS) production and ROS scavenging capacity under drought stress. Wild-type (WT) creeping bentgrass (Agrostis stolonifera L. 'Penncross') and a transgenic line (S41) overexpressing ipt ligated to a senescence-activated promoter (SAG12) were exposed to drought stress for 21 d in growth chambers. SAG12-ipt transgenic S41 developed a more extensive root system under drought stress compared to the WT. Root physiological analysis (electrolyte leakage and lipid peroxidation) showed that S41 roots exhibited less cellular damage compared to the WT under drought stress. Roots of SAG12-ipt transgenic S41 had significantly higher endogenous CK content than the WT roots under drought stress. ROS (hydrogen peroxide and superoxide) content was significantly lower and content of total and free ascorbate was significantly higher in S41 roots compared to the WT roots under drought stress. Enzymatic assays and transcript abundance analysis showed that superoxide dismutase, catalase, peroxidase, and dehydroascorbate reductase were significantly higher in S41 roots compared to the WT roots under drought stress. S41 roots also maintained significantly higher alternative respiration rates compared to the WT under drought stress. The improved root growth of transgenic creeping bentgrass may be facilitated by CK-enhanced ROS scavenging through antioxidant accumulation and activation of antioxidant enzymes, as well as higher alternative respiration rates when soil water is limited.
Collapse
Affiliation(s)
- Yi Xu
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Patrick Burgess
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Xunzhong Zhang
- Department of Crop and Soil Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
155
|
Sorrentino G, Haworth M, Wahbi S, Mahmood T, Zuomin S, Centritto M. Abscisic Acid Induces Rapid Reductions in Mesophyll Conductance to Carbon Dioxide. PLoS One 2016; 11:e0148554. [PMID: 26862904 PMCID: PMC4749297 DOI: 10.1371/journal.pone.0148554] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/20/2016] [Indexed: 12/30/2022] Open
Abstract
The rate of photosynthesis (A) of plants exposed to water deficit is a function of stomatal (gs) and mesophyll (gm) conductance determining the availability of CO2 at the site of carboxylation within the chloroplast. Mesophyll conductance often represents the greatest impediment to photosynthetic uptake of CO2, and a crucial determinant of the photosynthetic effects of drought. Abscisic acid (ABA) plays a fundamental role in signalling and co-ordination of plant responses to drought; however, the effect of ABA on gm is not well-defined. Rose, cherry, olive and poplar were exposed to exogenous ABA and their leaf gas exchange parameters recorded over a four hour period. Application with ABA induced reductions in values of A, gs and gm in all four species. Reduced gm occurred within one hour of ABA treatment in three of the four analysed species; indicating that the effect of ABA on gm occurs on a shorter timescale than previously considered. These declines in gm values associated with ABA were not the result of physical changes in leaf properties due to altered turgor affecting movement of CO2, or caused by a reduction in the sub-stomatal concentration of CO2 (Ci). Increased [ABA] likely induces biochemical changes in the properties of the interface between the sub-stomatal air-space and mesophyll layer through the actions of cooporins to regulate the transport of CO2. The results of this study provide further evidence that gm is highly responsive to fluctuations in the external environment, and stress signals such as ABA induce co-ordinated modifications of both gs and gm in the regulation of photosynthesis.
Collapse
Affiliation(s)
- Giuseppe Sorrentino
- Institute for Mediterranean Agriculture and Forest Systems, National Research Council, Via Patacca 85, 80056 Ercolano (NA), Italy
| | - Matthew Haworth
- Tree and Timber Institute, National Research Council (CNR - IVALSA), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - Said Wahbi
- Laboratoire de Biotechnologie et Physiologie Végétale, Faculté des Sciences Semlalia, Université Cadi Ayyad, Boulevard My Abdellah BP 2390, Marrakech, Morocco
| | - Tariq Mahmood
- Department of Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University, Murree Road, Rawalpindi, Pakistan
| | - Shi Zuomin
- Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Lab on Forest Ecology and Environmental Sciences, State Forestry Administration, Beijing, 10091, China
| | - Mauro Centritto
- Tree and Timber Institute, National Research Council (CNR - IVALSA), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
156
|
Fracasso A, Trindade L, Amaducci S. Drought tolerance strategies highlighted by two Sorghum bicolor races in a dry-down experiment. JOURNAL OF PLANT PHYSIOLOGY 2016; 190:1-14. [PMID: 26624226 DOI: 10.1016/j.jplph.2015.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 05/20/2023]
Abstract
Drought stress is the major environmental stress that affects more and more frequently plant growth and productivity due to the current climate change scenario. Unravelling the physiological mechanism underlying the response of plants to water stress and discover traits related to drought tolerance provide new and powerful tools for the selection in breeding programmes. Four genotypes of Sorghum bicolor (L.) Moench were screened in a dry-down experiment using different approaches to discover physiological and molecular indicators of drought tolerance. Different strategies were identified in response to drought among the four genotypes and the two Sorghum race allowing to state the tolerance of durra race compared to the caudatum one and, within the durra race, the drought tolerance of the genotype IS22330. It retained high biomass production and high tolerance index, it had a low threshold of fraction of transpirable soil water and high capacity to recover leaf apparatus after drought stress. Furthermore in this study, the expression levels of four genes highlighted that they could be used as proxy for drought tolerance. Dehdrine (DHN) could be used for screening drought tolerance both in durra and in caudatum races. NADP-Malic Enzyme, Carbonic Anhydrase (CA) and Plasma membrane Intrinsic Protein (PIP2-5), being up-regulated by drought stress only in durra race, have a more limited, though nonetheless useful application. In the tolerant durra genotype IS22330 in particular, the regulation of stomatal openings was strongly related to NADP-Malic Enzyme expression.
Collapse
Affiliation(s)
- Alessandra Fracasso
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy.
| | - Luisa Trindade
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, 6708 PD Wageningen, The Netherlands.
| | - Stefano Amaducci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy.
| |
Collapse
|
157
|
Zhu M, Jeon BW, Geng S, Yu Y, Balmant K, Chen S, Assmann SM. Preparation of Epidermal Peels and Guard Cell Protoplasts for Cellular, Electrophysiological, and -Omics Assays of Guard Cell Function. Methods Mol Biol 2016; 1363:89-121. [PMID: 26577784 DOI: 10.1007/978-1-4939-3115-6_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Bioassays are commonly used to study stomatal phenotypes. There are multiple options in the choice of plant materials and species used for observation of stomatal and guard cell responses in vivo. Here, detailed procedures for bioassays of stomatal responses to abscisic acid (ABA) in Arabidopsis thaliana are described, including ABA promotion of stomatal closure, ABA inhibition of stomatal opening, and ABA promotion of reaction oxygen species (ROS) production in guard cells. We also include an example of a stomatal bioassay for the guard cell CO2 response using guard cell-enriched epidermal peels from Brassica napus. Highly pure preparations of guard cell protoplasts can be produced, which are also suitable for studies on guard cell signaling, as well as for studies on guard cell ion transport. Small-scale and large-scale guard cell protoplast preparations are commonly used for electrophysiological and -omics studies, respectively. We provide a procedure for small-scale guard cell protoplasting from A. thaliana. Additionally, a general protocol for large-scale preparation of guard cell protoplasts, with specifications for three different species, A. thaliana, B. napus, and Vicia faba is also provided.
Collapse
Affiliation(s)
- Mengmeng Zhu
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| | - Byeong Wook Jeon
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| | - Sisi Geng
- Plant Molecular and Cellular Biology Program, Department of Biology, Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, FL, 32610, USA
| | - Yunqing Yu
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| | - Kelly Balmant
- Plant Molecular and Cellular Biology Program, Department of Biology, Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, FL, 32610, USA
| | - Sixue Chen
- Plant Molecular and Cellular Biology Program, Department of Biology, Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, FL, 32610, USA
| | - Sarah M Assmann
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA, 16802, USA.
| |
Collapse
|
158
|
Ding L, Li Y, Wang Y, Gao L, Wang M, Chaumont F, Shen Q, Guo S. Root ABA Accumulation Enhances Rice Seedling Drought Tolerance under Ammonium Supply: Interaction with Aquaporins. FRONTIERS IN PLANT SCIENCE 2016; 7:1206. [PMID: 27559341 PMCID: PMC4979525 DOI: 10.3389/fpls.2016.01206] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/29/2016] [Indexed: 05/06/2023]
Abstract
In previous studies, we demonstrated that ammonium nutrition enhances the drought tolerance of rice seedlings compared to nitrate nutrition and contributes to a higher root water uptake ability. It remains unclear why rice seedlings maintain a higher water uptake ability when supplied with ammonium under drought stress. Here, we focused on the effects of nitrogen form and drought stress on root abscisic acid (ABA) concentration and aquaporin expression using hydroponics experiments and stimulating drought stress with 10% PEG6000. Drought stress decreased the leaf photosynthetic rate and stomatal conductivity and increased the leaf temperature of plants supplied with either ammonium or nitrate, but especially under nitrate supply. After 4 h of PEG treatment, the root protoplast water permeability and the expression of root PIP and TIP genes decreased in plants supplied with ammonium or nitrate. After 24 h of PEG treatment, the root hydraulic conductivity, the protoplast water permeability, and the expression of some aquaporin genes increased in plants supplied with ammonium compared to those under non-PEG treatment. Root ABA accumulation was induced by 24 h of PEG treatment, especially in plants supplied with ammonium. The addition of exogenous ABA decreased the expression of PIP and TIP genes under non-PEG treatment but increased the expression of some of them under PEG treatment. We concluded that drought stress induced a down-regulation of aquaporin expression, which appeared earlier than did root ABA accumulation. With continued drought stress, aquaporin expression and activity increased due to root ABA accumulation in plants supplied with ammonium.
Collapse
Affiliation(s)
- Lei Ding
- Jiangsu Key Lab for Organic Waste Utilization, Nanjing Agricultural UniversityNanjing, China
- Institut des Sciences de la Vie, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Yingrui Li
- Jiangsu Key Lab for Organic Waste Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Ying Wang
- Jiangsu Key Lab for Organic Waste Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Limin Gao
- Jiangsu Key Lab for Organic Waste Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Min Wang
- Jiangsu Key Lab for Organic Waste Utilization, Nanjing Agricultural UniversityNanjing, China
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Qirong Shen
- Jiangsu Key Lab for Organic Waste Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Shiwei Guo
- Jiangsu Key Lab for Organic Waste Utilization, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Shiwei Guo,
| |
Collapse
|
159
|
Hossain MM, Lam HM, Zhang J. Responses in gas exchange and water status between drought-tolerant and -susceptible soybean genotypes with ABA application. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.cj.2015.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
160
|
Dupont P, Eaton CJ, Wargent JJ, Fechtner S, Solomon P, Schmid J, Day RC, Scott B, Cox MP. Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. THE NEW PHYTOLOGIST 2015; 208:1227-40. [PMID: 26305687 PMCID: PMC5049663 DOI: 10.1111/nph.13614] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/18/2015] [Indexed: 05/21/2023]
Abstract
Beneficial associations between plants and microbes play an important role in both natural and agricultural ecosystems. For example, associations between fungi of the genus Epichloë, and cool-season grasses are known for their ability to increase resistance to insect pests, fungal pathogens and drought. However, little is known about the molecular changes induced by endophyte infection. To study the impact of endophyte infection, we compared the expression profiles, based on RNA sequencing, of perennial ryegrass infected with Epichloë festucae with noninfected plants. We show that infection causes dramatic changes in the expression of over one third of host genes. This is in stark contrast to mycorrhizal associations, where substantially fewer changes in host gene expression are observed, and is more similar to pathogenic interactions. We reveal that endophyte infection triggers reprogramming of host metabolism, favouring secondary metabolism at a cost to primary metabolism. Infection also induces changes in host development, particularly trichome formation and cell wall biogenesis. Importantly, this work sheds light on the mechanisms underlying enhanced resistance to drought and super-infection by fungal pathogens provided by fungal endophyte infection. Finally, our study reveals that not all beneficial plant-microbe associations behave the same in terms of their effects on the host.
Collapse
Affiliation(s)
- Pierre‐Yves Dupont
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- The Bio‐Protection Research CentreMassey UniversityPalmerston North4442New Zealand
| | - Carla J. Eaton
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- The Bio‐Protection Research CentreMassey UniversityPalmerston North4442New Zealand
| | - Jason J. Wargent
- Institute of Agriculture and EnvironmentMassey UniversityPalmerston North4442New Zealand
| | - Susanne Fechtner
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
| | - Peter Solomon
- Research School of BiologyCollege of Medicine, Biology and EnvironmentAustralian National UniversityCanberraACT0200Australia
| | - Jan Schmid
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
| | - Robert C. Day
- School of Medical SciencesUniversity of OtagoDunedin9054New Zealand
| | - Barry Scott
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- The Bio‐Protection Research CentreMassey UniversityPalmerston North4442New Zealand
| | - Murray P. Cox
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- The Bio‐Protection Research CentreMassey UniversityPalmerston North4442New Zealand
| |
Collapse
|
161
|
|
162
|
|
163
|
Boote KJ, Sau F, Hoogenboom G, Jones JW. Experience with Water Balance, Evapotranspiration, and Predictions of Water Stress Effects in the CROPGRO Model. RESPONSE OF CROPS TO LIMITED WATER 2015. [DOI: 10.2134/advagricsystmodel1.c3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- K. J. Boote
- Agronomy Department; University of Florida; Gainesville
| | - Federico Sau
- Departamento de Biologia Vegetal; Universidad Politecnica de Madrid; Spain
| | - Gerrit Hoogenboom
- Dep. of Biological and Agricultural Engineering; University of Georgia; Griffin
| | - James W. Jones
- Agricultural and Biological Engineering Dep.; University of Florida; Gainesville
| |
Collapse
|
164
|
Partitioning between primary and secondary metabolism of carbon allocated to roots in four maize genotypes under water deficit and its effects on productivity. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.cj.2015.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
165
|
Tombesi S, Nardini A, Frioni T, Soccolini M, Zadra C, Farinelli D, Poni S, Palliotti A. Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Sci Rep 2015; 5:12449. [PMID: 26207993 PMCID: PMC4513549 DOI: 10.1038/srep12449] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/30/2015] [Indexed: 11/17/2022] Open
Abstract
Water saving under drought stress is assured by stomatal closure driven by active (ABA-mediated) and/or passive (hydraulic-mediated) mechanisms. There is currently no comprehensive model nor any general consensus about the actual contribution and relative importance of each of the above factors in modulating stomatal closure in planta. In the present study, we assessed the contribution of passive (hydraulic) vs active (ABA mediated) mechanisms of stomatal closure in V. vinifera plants facing drought stress. Leaf gas exchange decreased progressively to zero during drought, and embolism-induced loss of hydraulic conductance in petioles peaked to ~50% in correspondence with strong daily limitation of stomatal conductance. Foliar ABA significantly increased only after complete stomatal closure had already occurred. Rewatering plants after complete stomatal closure and after foliar ABA reached maximum values did not induced stomatal re-opening, despite embolism recovery and water potential rise. Our data suggest that in grapevine stomatal conductance is primarily regulated by passive hydraulic mechanisms. Foliar ABA apparently limits leaf gas exchange over long-term, also preventing recovery of stomatal aperture upon rewatering, suggesting the occurrence of a mechanism of long-term down-regulation of transpiration to favor embolism repair and preserve water under conditions of fluctuating water availability and repeated drought events.
Collapse
Affiliation(s)
- Sergio Tombesi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo 20 giugno 74, 06121 Perugia, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, University of Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Tommaso Frioni
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo 20 giugno 74, 06121 Perugia, Italy
| | - Marta Soccolini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo 20 giugno 74, 06121 Perugia, Italy
| | - Claudia Zadra
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Borgo 20 giugno 74, 06121 Perugia, Italy
| | - Daniela Farinelli
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo 20 giugno 74, 06121 Perugia, Italy
| | - Stefano Poni
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29100 Piacenza, Italy
| | - Alberto Palliotti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo 20 giugno 74, 06121 Perugia, Italy
| |
Collapse
|
166
|
Obidiegwu JE, Bryan GJ, Jones HG, Prashar A. Coping with drought: stress and adaptive responses in potato and perspectives for improvement. FRONTIERS IN PLANT SCIENCE 2015; 6:542. [PMID: 26257752 PMCID: PMC4510777 DOI: 10.3389/fpls.2015.00542] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/03/2015] [Indexed: 05/20/2023]
Abstract
Potato (Solanum tuberosum L.) is often considered as a drought sensitive crop and its sustainable production is threatened due to frequent drought episodes. There has been much research aiming to understand the physiological, biochemical, and genetic basis of drought tolerance in potato as a basis for improving production under drought conditions. The complex phenotypic response of potato plants to drought is conditioned by the interactive effects of the plant's genotypic potential, developmental stage, and environment. Effective crop improvement for drought tolerance will require the pyramiding of many disparate characters, with different combinations being appropriate for different growing environments. An understanding of the interaction between below ground water uptake by the roots and above ground water loss from the shoot system is essential. The development of high throughput precision phenotyping platforms is providing an exciting new tool for precision screening, which, with the incorporation of innovative screening strategies, can aid the selection and pyramiding of drought-related genes appropriate for specific environments. Outcomes from genomics, proteomics, metabolomics, and bioengineering advances will undoubtedly compliment conventional breeding strategies and presents an alternative route toward development of drought tolerant potatoes. This review presents an overview of past research activity, highlighting recent advances with examples from other crops and suggesting future research directions.
Collapse
Affiliation(s)
| | - Glenn J. Bryan
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Hamlyn G. Jones
- Plant Science Division, School of Life Sciences, University of DundeeDundee, UK
- School of Plant Biology, University of Western AustraliaCrawley, WA, Australia
| | - Ankush Prashar
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| |
Collapse
|
167
|
Daryanto S, Wang L, Jacinthe PA. Global Synthesis of Drought Effects on Food Legume Production. PLoS One 2015; 10:e0127401. [PMID: 26061704 PMCID: PMC4464651 DOI: 10.1371/journal.pone.0127401] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/15/2015] [Indexed: 11/18/2022] Open
Abstract
Food legume crops play important roles in conservation farming systems and contribute to food security in the developing world. However, in many regions of the world, their production has been adversely affected by drought. Although water scarcity is a severe abiotic constraint of legume crops productivity, it remains unclear how the effects of drought co-vary with legume species, soil texture, agroclimatic region, and drought timing. To address these uncertainties, we collected literature data between 1980 and 2014 that reported monoculture legume yield responses to drought under field conditions, and analyzed this data set using meta-analysis techniques. Our results showed that the amount of water reduction was positively related with yield reduction, but the extent of the impact varied with legume species and the phenological state during which drought occurred. Overall, lentil (Lens culinaris), groundnut (Arachis hypogaea), and pigeon pea (Cajanus cajan) were found to experience lower drought-induced yield reduction compared to legumes such as cowpea (Vigna unguiculata) and green gram (Vigna radiate). Yield reduction was generally greater when legumes experienced drought during their reproductive stage compared to during their vegetative stage. Legumes grown in soil with medium texture also exhibited greater yield reduction compared to those planted on soil of either coarse or fine texture. In contrast, regions and their associated climatic factors did not significantly affect legume yield reduction. In the face of changing climate, our study provides useful information for agricultural planning and research directions for development of drought-resistant legume species to improve adaptation and resilience of agricultural systems in the drought-prone regions of the world.
Collapse
Affiliation(s)
- Stefani Daryanto
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, United States of America
| | - Lixin Wang
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, United States of America
| | - Pierre-André Jacinthe
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, United States of America
| |
Collapse
|
168
|
Zhang Y, Tao Y, Zhang H, Wang L, Sun G, Sun X, Erinle KO, Feng C, Song Q, Li M. Effect of di-n-butyl phthalate on root physiology and rhizosphere microbial community of cucumber seedlings. JOURNAL OF HAZARDOUS MATERIALS 2015; 289:9-17. [PMID: 25702635 DOI: 10.1016/j.jhazmat.2015.01.071] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/24/2015] [Accepted: 01/28/2015] [Indexed: 05/20/2023]
Abstract
The authors investigated the effects of di-n-butyl phthalate (DBP) on root physiology and rhizosphere microbial communities of cucumber seedlings (sativus L. cv Jinyan No. 4). Root protein content and root activity were observed to decrease. From the ultrastructural micrographs, visible impact on the mitochondria, endoplasmic reticulum and vacuole were detected. Moreover, the number of starch grains increased, and some were adhered to other cell components which might be the most direct evidence of DBP causing cellular damage. Results of PCR-DGGE (denaturing gradient gel electrophoresis) indicated that DBP significantly changed the abundance, structure and composition of rhizosphere bacteria when the concentration was higher than 50 mg L(-1). The relative abundances of Firmicutes increased while that of Bacteroidetes decreased. Bacillus was detected as the dominant bacteria in DBP contaminated cucumber rhizospheric soil. The amount of Actinobacteridae and Pseudomonas decreased until it disappeared in the rhizosphere soil when exposed to DBP concentrations higher than 50 mg L(-1).
Collapse
Affiliation(s)
- Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China.
| | - Yue Tao
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Hui Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Lei Wang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Guoqiang Sun
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Xin Sun
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Kehinde O Erinle
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Chengcheng Feng
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Qiuxia Song
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Mo Li
- School of Geography, University of Nottingham, Nottinghamshire NG72RD, UK
| |
Collapse
|
169
|
Wang Z, Xu Y, Chen T, Zhang H, Yang J, Zhang J. Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling. PLANTA 2015; 241:1091-107. [PMID: 25589060 DOI: 10.1007/s00425-015-2245-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/08/2015] [Indexed: 05/08/2023]
Abstract
Abscisic acid mediates the effect of post-anthesis soil drying on grain filling through regulating the activities of key enzymes and expressions of genes involved in sucrose-to-starch conversion in rice spikelets. This study investigated if abscisic acid (ABA) would mediate the effect of post-anthesis soil drying on grain filling through regulating the key enzymes in sucrose-to-starch conversion in rice (Oryza sativa L.) spikelets. Two rice cultivars were field-grown. Three treatments, well-watered (WW), moderate soil drying (MD), and severe soil drying (SD), were imposed from 6 days after full heading until maturity. When compared with those under the WW, grain filling rate, grain weight, and sink activity, in terms of the activities and gene expression levels of sucrose synthase, ADP glucose pyrophosphorylase, starch synthase, and starch branching enzyme, in inferior spikelets were substantially increased under the MD, whereas they were markedly decreased in both superior and inferior spikelets under the SD. The two cultivars showed the same tendencies. Both MD and SD increased ABA content and expression levels of its biosynthesis genes in spikelets, with more increase under the SD than the MD. ABA content was significantly correlated with grain filling rate and sink activities under both WW and MD, while the correlations were not significant under the SD. Application of a low concentration ABA to WW plants imitated the results under the MD, and applying with a high concentration ABA showed the effect of the SD. The results suggest that ABA plays a vital role in grain filling through regulating sink activity and functions in a dose-dependent manner. An elevated ABA level under the MD enhances, whereas a too high level of ABA under the SD decreases, sink activity.
Collapse
Affiliation(s)
- Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | | | | | | | | | | |
Collapse
|
170
|
Estrada-Melo AC, Chao, Reid MS, Jiang CZ. Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in petunia. HORTICULTURE RESEARCH 2015; 2:15013. [PMID: 26504568 PMCID: PMC4595983 DOI: 10.1038/hortres.2015.13] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/23/2015] [Accepted: 02/26/2015] [Indexed: 08/15/2023]
Abstract
The response of plants to drought stress includes reduced transpiration as stomates close in response to increased abscisic acid (ABA) concentrations. Constitutive overexpression of 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA biosynthesis, increases drought resistance, but causes negative pleiotropic effects on plant growth and development. We overexpressed the tomato NCED (LeNCED1) in petunia plants under the control of a stress-inducible promoter, rd29A. Under water stress, the transgenic plants had increased transcripts of NCED mRNA, elevated leaf ABA concentrations, increased concentrations of proline, and a significant increase in drought resistance. The transgenic plants also displayed the expected decreases in stomatal conductance, transpiration, and photosynthesis. After 14 days without water, the control plants were dead, but the transgenic plants, though wilted, recovered fully when re-watered. Well-watered transgenic plants grew like non-transformed control plants and there was no effect of the transgene on seed dormancy.
Collapse
Affiliation(s)
| | - Chao
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Michael S Reid
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA, USA
| |
Collapse
|
171
|
Dodd I, Griffiths H, Sharp R, Traynor M, Zhang J. Journal of Experimental Botany. Preface. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2123-2125. [PMID: 26090540 PMCID: PMC4407656 DOI: 10.1093/jxb/erv153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
172
|
Du T, Kang S, Zhang J, Davies WJ. Deficit irrigation and sustainable water-resource strategies in agriculture for China's food security. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2253-69. [PMID: 25873664 PMCID: PMC4868834 DOI: 10.1093/jxb/erv034] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources.
Collapse
Affiliation(s)
- Taisheng Du
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, PR China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, PR China
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, PR China
| | - William J Davies
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| |
Collapse
|
173
|
He Y, Wu J, Lv B, Li J, Gao Z, Xu W, Baluška F, Shi W, Shaw PC, Zhang J. Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2271-81. [PMID: 25873671 PMCID: PMC4986726 DOI: 10.1093/jxb/erv149] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 05/19/2023]
Abstract
Plant 14-3-3 proteins are phosphoserine-binding proteins that regulate a wide array of targets via direct protein-protein interactions. In this study, the role of a 14-3-3 protein, GRF9, in plant response to water stress was investigated. Arabidopsis wild-type, GRF9-deficient mutant (grf9), and GRF9-overexpressing (OE) plants were treated with polyethylene glycol (PEG) to induce mild water stress. OE plant showed better whole-plant growth and root growth than the wild type under normal or water stress conditions while the grf9 mutant showed worse growth. In OE plants, GRF9 favours the allocation of shoot carbon to roots. In addition, GRF9 enhanced proton extrusion, mainly in the root elongation zone and root hair zone, and maintained root growth under mild water stress. Grafting among the wild type, OE, and grf9 plants showed that when OE plants were used as the scion and GRF9 was overexpressed in the shoot, it enhanced sucrose transport into the root, and when OE plants were used as rootstock and GRF9 was overexpressed in the root, it caused more release of protons into the root surface under water stress. Taken together, the results suggest that under PEG-induced water stress, GRF9 is involved in allocating more carbon from the shoot to the root and enhancing proton secretion in the root growing zone, and this process is important for root response to mild water stress.
Collapse
Affiliation(s)
- Yuchi He
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, China
| | - Jingjing Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Bing Lv
- Yangzhou University, Yangzhou 225009, China
| | - Jia Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China Yangzhou University, Yangzhou 225009, China
| | - Zhiping Gao
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong College of Life Sciences, Nanjing Normal University, Wenyuan Road, Nanjing, China
| | - Weifeng Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong
| | - František Baluška
- Institute of Cellular and Molecular Botany, Universtiy of Bonn, Germany
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Pang Chui Shaw
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
174
|
Tardieu F, Simonneau T, Parent B. Modelling the coordination of the controls of stomatal aperture, transpiration, leaf growth, and abscisic acid: update and extension of the Tardieu-Davies model. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2227-37. [PMID: 25770586 PMCID: PMC4986722 DOI: 10.1093/jxb/erv039] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 05/19/2023]
Abstract
Stomatal aperture, transpiration, leaf growth, hydraulic conductance, and concentration of abscisic acid in the xylem sap ([ABA]xyl) vary rapidly with time of day. They follow deterministic relations with environmental conditions and interact in such a way that a change in any one of them affects all the others. Hence, approaches based on measurements of one variable at a given time or on paired correlations are prone to a confusion of effects, in particular for studying their genetic variability. A dynamic model allows the simulation of environmental effects on the variables, and of multiple feedbacks between them at varying time resolutions. This paper reviews the control of water movement through the plant, stomatal aperture and growth, and translates them into equations in a model. It includes recent progress in understanding the intrinsic and environmental controls of tissue hydraulic conductance as a function of transpiration rate, circadian rhythms, and [ABA]xyl. Measured leaf water potential is considered as the water potential of a capacitance representing mature tissues, which reacts more slowly to environmental cues than xylem water potential and expansive growth. Combined with equations for water and ABA fluxes, it results in a dynamic model able to simulate variables with genotype-specific parameters. It allows adaptive roles for hydraulic processes to be proposed, in particular the circadian oscillation of root hydraulic conductance. The script of the model, in the R language, is included together with appropriate documentation and examples.
Collapse
Affiliation(s)
- François Tardieu
- INRA, UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Place Viala, F-34060 Montpellier, France
| | - Thierry Simonneau
- INRA, UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Place Viala, F-34060 Montpellier, France
| | - Boris Parent
- INRA, UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Place Viala, F-34060 Montpellier, France
| |
Collapse
|
175
|
Dodd IC, Puértolas J, Huber K, Pérez-Pérez JG, Wright HR, Blackwell MSA. The importance of soil drying and re-wetting in crop phytohormonal and nutritional responses to deficit irrigation. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2239-52. [PMID: 25628330 PMCID: PMC4986717 DOI: 10.1093/jxb/eru532] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/05/2014] [Accepted: 12/10/2014] [Indexed: 05/11/2023]
Abstract
Soil drying and re-wetting (DRW) occurs at varying frequencies and intensities during crop production, and is deliberately used in water-saving irrigation techniques that aim to enhance crop water use efficiency. Soil drying not only limits root water uptake which can (but not always) perturb shoot water status, but also alters root synthesis of phytohormones and their transport to shoots to regulate leaf growth and gas exchange. Re-wetting the soil rapidly restores leaf water potential and leaf growth (minutes to hours), but gas exchange recovers more slowly (hours to days), probably mediated by sustained changes in root to shoot phytohormonal signalling. Partial rootzone drying (PRD) deliberately irrigates only part of the rootzone, while the remainder is allowed to dry. Alternating these wet and dry zones (thus re-wetting dry soil) substantially improves crop yields compared with maintaining fixed wet and dry zones or conventional deficit irrigation, and modifies phytohormonal (especially abscisic acid) signalling. Alternate wetting and drying (AWD) of rice can also improve yield compared with paddy culture, and is correlated with altered phytohormonal (including cytokinin) signalling. Both PRD and AWD can improve crop nutrition, and re-wetting dry soil provokes both physical and biological changes which affect soil nutrient availability. Whether this alters crop nutrient uptake depends on competition between plant and microbes for nutrients, with the rate of re-wetting determining microbial dynamics. Nevertheless, studies that examine the effects of soil DRW on both crop nutritional and phytohormonal responses are relatively rare; thus, determining the cause(s) of enhanced crop yields under AWD and PRD remains challenging.
Collapse
Affiliation(s)
- Ian C Dodd
- Centre for Sustainable Agriculture, Lancaster Environment Centre, Lancaster University, Lancaster LA1 1YQ, UK
| | - Jaime Puértolas
- Centre for Sustainable Agriculture, Lancaster Environment Centre, Lancaster University, Lancaster LA1 1YQ, UK
| | - Katrin Huber
- Institute of Bio- and Geosciences: Agrosphere (IBG 3), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | | | - Hannah R Wright
- Centre for Sustainable Agriculture, Lancaster Environment Centre, Lancaster University, Lancaster LA1 1YQ, UK
| | | |
Collapse
|
176
|
Belimov AA, Dodd IC, Safronova VI, Malkov NV, Davies WJ, Tikhonovich IA. The cadmium-tolerant pea (Pisum sativum L.) mutant SGECdt is more sensitive to mercury: assessing plant water relations. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2359-69. [PMID: 25694548 PMCID: PMC4986718 DOI: 10.1093/jxb/eru536] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 05/08/2023]
Abstract
Heavy metals have multiple effects on plant growth and physiology, including perturbation of plant water status. These effects were assessed by exposing the unique Cd-tolerant and Cd-accumulating pea (Pisum sativum L.) mutant SGECd(t) and its wild-type (WT) line SGE to either cadmium (1, 4 μM CdCl2) or mercury (0.5, 1, 2 μM HgCl2) in hydroponic culture for 12 days. When exposed to Cd, SGECd(t) accumulated more Cd in roots, xylem sap, and shoot, and had considerably more biomass than WT plants. WT plants lost circa 0.2 MPa turgor when grown in 4 μM CdCl2, despite massive decreases in whole-plant transpiration rate and stomatal conductance. In contrast, root Hg accumulation was similar in both genotypes, but WT plants accumulated more Hg in leaves and had a higher stomatal conductance, and root and shoot biomass compared with SGECd(t). Shoot excision resulted in greater root-pressure induced xylem exudation of SGECd(t) in the absence of Cd or Hg and following Cd exposure, whereas the opposite response or no genotypic differences occurred following Hg exposure. Exposing plants that had not been treated with metal to 50 μM CdCl2 for 1h increased root xylem exudation of WT, whereas 50 μM HgCl2 inhibited and eliminated genotypic differences in root xylem exudation, suggesting differences between WT and SGECd(t) plants in aquaporin function. Thus, root water transport might be involved in mechanisms of increased tolerance and accumulation of Cd in the SGECd(t) mutant. However, the lack of cross-tolerance to Cd and Hg stress in the mutant indicates metal-specific mechanisms related to plant adaptation.
Collapse
Affiliation(s)
- Andrey A Belimov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 St-Petersburg, Russian-Federation
| | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, UK
| | - Vera I Safronova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 St-Petersburg, Russian-Federation
| | - Nikita V Malkov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 St-Petersburg, Russian-Federation
| | - William J Davies
- Lancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, UK
| | - Igor A Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 St-Petersburg, Russian-Federation
| |
Collapse
|
177
|
Climate Contributions to Vegetation Variations in Central Asian Drylands: Pre- and Post-USSR Collapse. REMOTE SENSING 2015. [DOI: 10.3390/rs70302449] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
178
|
Cai S, Jiang G, Ye N, Chu Z, Xu X, Zhang J, Zhu G. A key ABA catabolic gene, OsABA8ox3, is involved in drought stress resistance in rice. PLoS One 2015; 10:e0116646. [PMID: 25647508 PMCID: PMC4315402 DOI: 10.1371/journal.pone.0116646] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/11/2014] [Indexed: 01/24/2023] Open
Abstract
Expressions of ABA biosynthesis genes and catabolism genes are generally co-regulated in plant development and responses to environmental stress. Up-regulation of OsNCED3 gene, a key gene in ABA biosynthesis, has been suggested as a way to enhance plant drought resistance but little is known for the role of ABA catabolic genes during drought stress. In this study, we found that OsABA8ox3 was the most highly expressed gene of the OsABA8ox family in rice leaves. Expression of OsABA8ox3 was promptly induced by rehydration after PEG-mimic dehydration, a tendency opposite to the changes of ABA level. We therefore constructed rice OsABA8ox3 silencing (RNA interference, RNAi) and overexpression plants. There were no obvious phenotype differences between the transgenic seedlings and wild type under normal condition. However, OsABA8ox3 RNAi lines showed significant improvement in drought stress tolerance while the overexpression seedlings were hypersensitive to drought stress when compared with wild type in terms of plant survival rates after 10 days of unwatering. Enzyme activity analysis indicated that OsABA8ox3 RNAi plants had higher superoxide dismutase (SOD) and catalase (CAT) activities and less malondialdehyde (MDA) content than those of wild type when the plants were exposed to dehydration treatment, indicating a better anti-oxidative stress capability and less membrane damage. DNA microarray and real-time PCR analysis under dehydration treatment revealed that expressions of a group of stress/drought-related genes, i.e. LEA genes, were enhanced with higher transcript levels in OsABA8ox3 RNAi transgenic seedlings. We therefore conclude that that OsABA8ox3 gene plays an important role in controlling ABA level and drought stress resistance in rice.
Collapse
Affiliation(s)
- Shanlan Cai
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Guobin Jiang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Nenghui Ye
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Zhizhan Chu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xuezhong Xu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jianhua Zhang
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Guohui Zhu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China
| |
Collapse
|
179
|
Mutava RN, Prince SJK, Syed NH, Song L, Valliyodan B, Chen W, Nguyen HT. Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 86:109-120. [PMID: 25438143 DOI: 10.1016/j.plaphy.2014.11.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/14/2014] [Indexed: 05/20/2023]
Abstract
Many sources of drought and flooding tolerance have been identified in soybean, however underlying molecular and physiological mechanisms are poorly understood. Therefore, it is important to illuminate different plant responses to these abiotic stresses and understand the mechanisms that confer tolerance. Towards this goal we used four contrasting soybean (Glycine max) genotypes (PI 567690--drought tolerant, Pana--drought susceptible, PI 408105A--flooding tolerant, S99-2281--flooding susceptible) grown under greenhouse conditions and compared genotypic responses to drought and flooding at the physiological, biochemical, and cellular level. We also quantified these variations and tried to infer their role in drought and flooding tolerance in soybean. Our results revealed that different mechanisms contribute to reduction in net photosynthesis under drought and flooding stress. Under drought stress, ABA and stomatal conductance are responsible for reduced photosynthetic rate; while under flooding stress, accumulation of starch granules played a major role. Drought tolerant genotypes PI 567690 and PI 408105A had higher plastoglobule numbers than the susceptible Pana and S99-2281. Drought stress increased the number and size of plastoglobules in most of the genotypes pointing to a possible role in stress tolerance. Interestingly, there were seven fibrillin proteins localized within the plastoglobules that were up-regulated in the drought and flooding tolerant genotypes PI 567690 and PI 408105A, respectively, but down-regulated in the drought susceptible genotype Pana. These results suggest a potential role of Fibrillin proteins, FBN1a, 1b and 7a in soybean response to drought and flooding stress.
Collapse
Affiliation(s)
- Raymond N Mutava
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Silvas Jebakumar K Prince
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Naeem Hasan Syed
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, United Kingdom
| | - Li Song
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Babu Valliyodan
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Wei Chen
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Henry T Nguyen
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
180
|
Warren JM, Hanson PJ, Iversen CM, Kumar J, Walker AP, Wullschleger SD. Root structural and functional dynamics in terrestrial biosphere models--evaluation and recommendations. THE NEW PHYTOLOGIST 2015; 205:59-78. [PMID: 25263989 DOI: 10.1111/nph.13034] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/07/2014] [Indexed: 05/29/2023]
Abstract
There is wide breadth of root function within ecosystems that should be considered when modeling the terrestrial biosphere. Root structure and function are closely associated with control of plant water and nutrient uptake from the soil, plant carbon (C) assimilation, partitioning and release to the soils, and control of biogeochemical cycles through interactions within the rhizosphere. Root function is extremely dynamic and dependent on internal plant signals, root traits and morphology, and the physical, chemical and biotic soil environment. While plant roots have significant structural and functional plasticity to changing environmental conditions, their dynamics are noticeably absent from the land component of process-based Earth system models used to simulate global biogeochemical cycling. Their dynamic representation in large-scale models should improve model veracity. Here, we describe current root inclusion in models across scales, ranging from mechanistic processes of single roots to parameterized root processes operating at the landscape scale. With this foundation we discuss how existing and future root functional knowledge, new data compilation efforts, and novel modeling platforms can be leveraged to enhance root functionality in large-scale terrestrial biosphere models by improving parameterization within models, and introducing new components such as dynamic root distribution and root functional traits linked to resource extraction.
Collapse
Affiliation(s)
- Jeffrey M Warren
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN, 37831-6301, USA
| | | | | | | | | | | |
Collapse
|
181
|
Fahad S, Nie L, Chen Y, Wu C, Xiong D, Saud S, Hongyan L, Cui K, Huang J. Crop Plant Hormones and Environmental Stress. SUSTAINABLE AGRICULTURE REVIEWS 2015. [DOI: 10.1007/978-3-319-09132-7_10] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
182
|
Hossain MM, Liu X, Qi X, Lam HM, Zhang J. Differences between soybean genotypes in physiological response to sequential soil drying and rewetting. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.cj.2014.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
183
|
Ding H, Zhang ZM, Qin FF, Dai LX, Li CJ, Ci DW, Song WW. Isolation and characterization of drought-responsive genes from peanut roots by suppression subtractive hybridization. ELECTRON J BIOTECHN 2014. [DOI: 10.1016/j.ejbt.2014.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
184
|
Tombesi S, Nardini A, Farinelli D, Palliotti A. Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis vinifera. PHYSIOLOGIA PLANTARUM 2014; 152:453-64. [PMID: 24597791 DOI: 10.1111/ppl.12180] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 02/03/2014] [Accepted: 02/03/2014] [Indexed: 05/21/2023]
Abstract
Current understanding of physiological mechanisms governing stomatal behavior under water stress conditions is still incomplete and controversial. It has been proposed that coordination of stomatal kinetics with xylem vulnerability to cavitation [vulnerability curve (VC)] leads to different levels of isohydry/anisohydry in different plant species/cultivars. In this study, this hypothesis is tested in Vitis vinifera cultivars displaying contrasting stomatal behavior under drought stress. The cv Montepulciano (MP, near-isohydric) and Sangiovese (SG, anisohydric) were compared in terms of stomatal response to leaf and stem water potential, as possibly correlated to different petiole hydraulic conductivity (k(petiole)) and VC, as well as to leaf water relations parameters. MP leaves showed almost complete stomatal closure at higher leaf and stem water potentials than SG leaves. Moreover, MP petioles had higher maximum k(petiole) and were more vulnerable to cavitation than SG. Water potential at the turgor loss point was higher in MP than in SG. In SG, the percentage reduction of stomatal conductance (PLg(s)) under water stress was almost linearly correlated with corresponding percentage loss of k(petiole) (PLC), while in MP PLg(s) was less influenced by PLC. Our results suggest that V. vinifera near-isohydric and anisohydric genotypes differ in terms of xylem vulnerability to cavitation as well as in terms of k(petiole) and that the coordination of these traits leads to their different stomatal responses under water stress conditions.
Collapse
Affiliation(s)
- Sergio Tombesi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, 06121, Italy
| | | | | | | |
Collapse
|
185
|
Harfouche A, Meilan R, Altman A. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. TREE PHYSIOLOGY 2014; 34:1181-98. [PMID: 24695726 DOI: 10.1093/treephys/tpu012] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Abiotic stresses, such as drought, salinity and cold, are the major environmental stresses that adversely affect tree growth and, thus, forest productivity, and play a major role in determining the geographic distribution of tree species. Tree responses and tolerance to abiotic stress are complex biological processes that are best analyzed at a systems level using genetic, genomic, metabolomic and phenomic approaches. This will expedite the dissection of stress-sensing and signaling networks to further support efficient genetic improvement programs. Enormous genetic diversity for stress tolerance exists within some forest-tree species, and due to advances in sequencing technologies the molecular genetic basis for this diversity has been rapidly unfolding in recent years. In addition, the use of emerging phenotyping technologies extends the suite of traits that can be measured and will provide us with a better understanding of stress tolerance. The elucidation of abiotic stress-tolerance mechanisms will allow for effective pyramiding of multiple tolerances in a single tree through genetic engineering. Here we review recent progress in the dissection of the molecular basis of abiotic stress tolerance in forest trees, with special emphasis on Populus, Pinus, Picea, Eucalyptus and Quercus spp. We also outline practices that will enable the deployment of trees engineered for abiotic stress tolerance to land owners. Finally, recommendations for future work are discussed.
Collapse
Affiliation(s)
- Antoine Harfouche
- Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S. Camillo de Lellis, Viterbo 01100, Italy
| | - Richard Meilan
- Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, IN 47907-2061, USA
| | - Arie Altman
- Faculty of Agricultural, Food and Environmental Quality Sciences, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| |
Collapse
|
186
|
Morandi B, Losciale P, Manfrini L, Zibordi M, Anconelli S, Galli F, Pierpaoli E, Corelli Grappadelli L. Increasing water stress negatively affects pear fruit growth by reducing first its xylem and then its phloem inflow. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1500-1509. [PMID: 25105235 DOI: 10.1016/j.jplph.2014.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 06/03/2023]
Abstract
Drought stress negatively affects many physiological parameters and determines lower yields and fruit size. This paper investigates on the effects of prolonged water restriction on leaf gas exchanges, water relations and fruit growth on a 24-h time-scale in order to understand how different physiological processes interact to each other to face increasing drought stress and affect pear productive performances during the season. The diurnal patterns of tree water relations, leaf gas exchanges, fruit growth, fruit vascular and transpiration flows were monitored at about 50, 95 and 145 days after full bloom (DAFB) on pear trees of the cv. Abbé Fétel, subjected to two irrigation regimes, corresponding to a water restitution of 100% and 25% of the estimated Etc, respectively. Drought stress progressively increased during the season due to lower soil tensions and higher daily vapour pressure deficits (VPDs). Stem water potential was the first parameter to be negatively affected by stress and determined the simultaneous reduction of fruit xylem flow, which at 95 DAFB was reflected by a decrease in fruit daily growth. Leaf photosynthesis was reduced only from 95 DAFB on, but was not immediately reflected by a decrease in fruit phloem flow, which instead was reduced only at 145 DAFB. This work shows how water stress negatively affects pear fruit growth by reducing first its xylem and then its phloem inflow. This determines a progressive increase in the phloem relative contribution to growth, which lead to the typical higher dry matter percentages of stressed fruit.
Collapse
Affiliation(s)
- Brunella Morandi
- Department of Agricultural Sciences, University of Bologna, V.le Fanin 44, 40127 Bologna, Italy.
| | - Pasquale Losciale
- CRA-Consiglio per la Ricerca e la sperimentazione in Agricoltura [Research Unit for Cropping Systems in Dry Environments], Bari, Italy
| | - Luigi Manfrini
- Department of Agricultural Sciences, University of Bologna, V.le Fanin 44, 40127 Bologna, Italy
| | - Marco Zibordi
- Department of Agricultural Sciences, University of Bologna, V.le Fanin 44, 40127 Bologna, Italy
| | | | | | - Emanuele Pierpaoli
- Department of Agricultural Sciences, University of Bologna, V.le Fanin 44, 40127 Bologna, Italy
| | | |
Collapse
|
187
|
Osone Y, Kawarasaki S, Ishida A, Kikuchi S, Shimizu A, Yazaki K, Aikawa SI, Yamaguchi M, Izuta T, Matsumoto GI. Responses of gas-exchange rates and water relations to annual fluctuations of weather in three species of urban street trees. TREE PHYSIOLOGY 2014; 34:1056-1068. [PMID: 25391689 DOI: 10.1093/treephys/tpu086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The frequency of extreme weather has been rising in recent years. A 3-year study of street trees was undertaken in Tokyo to determine whether: (i) street trees suffer from severe water stress in unusually hot summer; (ii) species respond differently to such climatic fluctuations; and (iii) street trees are also affected by nitrogen (N) deficiency, photoinhibition and aerosol pollution. During the study period (2010-12), midsummers of 2010 and 2012 were unusually hot (2.4-2.8 °C higher maximum temperature than the long-term mean) and dry (6-56% precipitation of the mean). In all species, street trees exhibited substantially decreased photosynthetic rate in the extremely hot summer in 2012 compared with the average summer in 2011. However, because of a more conservative stomatal regulation (stomatal closure at higher leaf water potential) in the hot summer, apparent symptoms of hydraulic failure were not observed in street trees even in 2012. Compared with Prunus × yedoensis and Zelkova serrata, Ginkgo biloba, a gymnosperm, was high in stomatal conductance and midday leaf water potential even under street conditions in the unusually hot summer, suggesting that the species had higher drought resistance than the other species and was less susceptible to urban street conditions. This lower susceptibility might be ascribed to the combination of higher soil-to-leaf hydraulic conductance and more conservative water use. Aside from meteorological conditions, N deficiency affected street trees significantly, whereas photoinhibition and aerosol pollution had little effect. The internal CO2 and δ(13)C suggested that both water and N limited the net photosynthetic rate of street trees simultaneously, but water was more limiting. From these results, we concluded that the potential risk of hydraulic failure caused by climatic extremes could be low in urban street trees in temperate regions. However, the size of the safety margin might be different between species.
Collapse
Affiliation(s)
- Yoko Osone
- School of Social Information Studies, Otsuma Women's University, 2-7-1 Karakida, Tama, Tokyo 206-8540, Japan Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji, Tokyo 192-0397, Japan
| | - Satoko Kawarasaki
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji, Tokyo 192-0397, Japan
| | - Atsushi Ishida
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga 520-2113, Japan
| | - Satoshi Kikuchi
- Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba 305-8687, Japan
| | - Akari Shimizu
- School of Social Information Studies, Otsuma Women's University, 2-7-1 Karakida, Tama, Tokyo 206-8540, Japan
| | - Kenichi Yazaki
- Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba 305-8687, Japan
| | - Shin-Ichi Aikawa
- Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba 305-8687, Japan Japan Forest Technology Association, Chiyoda, Tokyo 102-0085, Japan
| | - Masahiro Yamaguchi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan
| | - Takeshi Izuta
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Genki I Matsumoto
- School of Social Information Studies, Otsuma Women's University, 2-7-1 Karakida, Tama, Tokyo 206-8540, Japan
| |
Collapse
|
188
|
Cabot C, Sibole JV, Barceló J, Poschenrieder C. Lessons from crop plants struggling with salinity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 226:2-13. [PMID: 25113445 DOI: 10.1016/j.plantsci.2014.04.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/28/2014] [Accepted: 04/21/2014] [Indexed: 05/25/2023]
Abstract
Salinity is a persistent problem, causing important losses in irrigated agriculture. According to global climate change prediction models, salinity is expected to expand in the near future. Although intensive studies have been conducted on the mechanisms by which plants cope with saline conditions, the multi-component nature of salt stress tolerance has rendered most plant breeding efforts to improve the plant's response to salinity unsuccessful. This occurs despite the extensive genetic diversity shown by higher plants for salt tolerance and the similar mechanisms found in salt-sensitive and salt-tolerant genotypes in response to the presence of excess of salts in the growth media. On the other hand, there is an urge to increase crop yield to the maximum to cope with the growing world population demands for food and fuel. Here, we examine some major elements and signaling mechanisms involved in the plant's response to salinity following the pathway of salt-footprints from the soil environment to leaf. Some of the possible contrasting determinants for a better-balanced resource allocation between salt tolerance and plant growth and yield are considered.
Collapse
Affiliation(s)
- Catalina Cabot
- Departament de Biologia, Universitat de les Illes Balears, 07122 Palma, Illes Balears, Spain.
| | - John V Sibole
- Departament de Biologia, Universitat de les Illes Balears, 07122 Palma, Illes Balears, Spain
| | - Juan Barceló
- Lab. Fisiologia Vegetal, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | | |
Collapse
|
189
|
Salomon MV, Bottini R, de Souza Filho GA, Cohen AC, Moreno D, Gil M, Piccoli P. Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine. PHYSIOLOGIA PLANTARUM 2014; 151:359-74. [PMID: 24118032 DOI: 10.1111/ppl.12117] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/01/2013] [Indexed: 05/20/2023]
Abstract
Eleven bacterial strains were isolated at different soil depths from roots and rhizosphere of grapevines from a commercial vineyard. By 16S rRNA gene sequencing 10 different genera and 8 possible at species level were identified. From them, Bacillus licheniformis Rt4M10 and Pseudomonas fluorescens Rt6M10 were selected according to their characteristics as plant growth promoting rhizobacteria (PGPR). Both produced abscisic acid (ABA), indole-3-acetic acid (IAA) and the gibberellins A1 and A3 in chemically-defined medium. They also colonized roots of in vitro grown Vitis vinifera cv. Malbec plants. As result of bacterization ABA levels in 45 days-old in vitro plants were increased 76-fold by B. licheniformis and 40-fold by P. fluorescens as compared to controls. Both bacteria diminished plant water loss rate in correlation with increments of ABA. Twenty and 30 days post bacterization the plants incremented terpenes. The monoterpenes α-pinene, terpinolene, 4-carene, limonene, eucalyptol and lilac aldehyde A, and the sesquiterpenes α-bergamotene, α-farnesene, nerolidol and farnesol were assessed by gas chromatography-electron impact mass spectrometry analysis. α-Pinene and nerolidol were the most abundant (µg per g of tissue in plants bacterized with P. fluorescens). Only α-pinene, eucalyptol and farnesol were identified at low concentration in non-bacterized plants treated with ABA, while no terpenes were detected in controls. The results obtained along with others from literature suggest that B. licheniformis and P. fluorescens act as stress alleviators by inducing ABA synthesis so diminishing water losses. These bacteria also elicit synthesis of compounds of plant defense via an ABA independent mechanism.
Collapse
Affiliation(s)
- María Victoria Salomon
- Laboratorio de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo, Chacras de Coria, Argentina
| | | | | | | | | | | | | |
Collapse
|
190
|
Tattini M, Velikova V, Vickers C, Brunetti C, Di Ferdinando M, Trivellini A, Fineschi S, Agati G, Ferrini F, Loreto F. Isoprene production in transgenic tobacco alters isoprenoid, non-structural carbohydrate and phenylpropanoid metabolism, and protects photosynthesis from drought stress. PLANT, CELL & ENVIRONMENT 2014; 37:1950-64. [PMID: 24738622 DOI: 10.1111/pce.12350] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 03/30/2014] [Accepted: 03/31/2014] [Indexed: 05/03/2023]
Abstract
Isoprene strengthens thylakoid membranes and scavenges stress-induced oxidative species. The idea that isoprene production might also influence isoprenoid and phenylpropanoid pathways under stress conditions was tested. We used transgenic tobacco to compare physiological and biochemical traits of isoprene-emitting (IE) and non-emitting (NE) plants exposed to severe drought and subsequent re-watering. Photosynthesis was less affected by drought in IE than in NE plants, and higher rates were also observed in IE than in NE plants recovering from drought. Isoprene emission was stimulated by mild drought. Under severe drought, isoprene emission declined, and levels of non-volatile isoprenoids, specifically de-epoxidated xanthophylls and abscisic acid (ABA), were higher in IE than in NE plants. Soluble sugars and phenylpropanoids were also higher in IE plants. After re-watering, IE plants maintained higher levels of metabolites, but isoprene emission was again higher than in unstressed plants. We suggest that isoprene production in transgenic tobacco triggered different responses, depending upon drought severity. Under drought, the observed trade-off between isoprene and non-volatile isoprenoids suggests that in IE plants isoprene acts as a short-term protectant, whereas non-volatile isoprenoids protect against severe, long-term damage. After drought, it is suggested that the capacity to emit isoprene might up-regulate production of non-volatile isoprenoids and phenylpropanoids, which may further protect IE leaves.
Collapse
Affiliation(s)
- Massimiliano Tattini
- Institute for Plant Protection, Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), I-50019, Sesto Fiorentino (Florence), Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Synthesized attributes of water use by regional vegetation: a key to cognition of "water pump" viewpoint. ScientificWorldJournal 2014; 2014:954849. [PMID: 25302337 PMCID: PMC4181508 DOI: 10.1155/2014/954849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/06/2014] [Indexed: 11/22/2022] Open
Abstract
Recently, the frequent seasonal drought in Southwest China has brought considerable concerns and continuous heated arguments on the “water pump” viewpoint (i.e., the water demand from Hevea spp. and Eucalyptus spp. can be treated as a water pump) once again. However, such viewpoint just focused on water consumption from vegetation transpiration and its ecoenvironment impacts, which had not considered other attributes of vegetation, namely, water saving and drought resistance, and hydrological regulation (water conservation) into consideration. Thus, in this paper, the synthesized attributes of regional vegetation water use had been mainly discussed. The results showed that the study on such aspects as the characters of water consumption from vegetation transpiration, the potential of water saving and drought resistance, and the effects of hydrological regulation in Southwest China lagged far behind, let alone the report on synthesized attributes of water utilization with the organic combination of the three aspects above or the paralleled analysis. Accordingly, in this paper, the study on the synthesized attributes of water use by regional vegetation in Southwest China was suggested, and the objectives of such a special study were clarified, targeting the following aspects: (i) characters of water consumption from transpiration of regional typical artificial vegetation; (ii) potential of water saving and drought resistance of regional typical artificial vegetation; (iii) effects of hydrological regulation of regional typical artificial vegetation; (iv) synthesized attributes of water use by regional typical artificial vegetation. It is expected to provide a new idea for the scientific assessment on the regional vegetation ecoenvironment effects and theoretical guidance for the regional vegetation reconstruction and ecological restoration.
Collapse
|
192
|
Perez-Martin A, Michelazzo C, Torres-Ruiz JM, Flexas J, Fernández JE, Sebastiani L, Diaz-Espejo A. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3143-56. [PMID: 24799563 PMCID: PMC4071832 DOI: 10.1093/jxb/eru160] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The hypothesis that aquaporins and carbonic anhydrase (CA) are involved in the regulation of stomatal (g s) and mesophyll (g m) conductance to CO2 was tested in a short-term water-stress and recovery experiment in 5-year-old olive plants (Olea europaea) growing outdoors. The evolution of leaf gas exchange, chlorophyll fluorescence, and plant water status, and a quantitative analysis of photosynthesis limitations, were followed during water stress and recovery. These variables were correlated with gene expression of the aquaporins OePIP1.1 and OePIP2.1, and stromal CA. At mild stress and at the beginning of the recovery period, stomatal limitations prevailed, while the decline in g m accounted for up to 60% of photosynthesis limitations under severe water stress. However, g m was restored to control values shortly after rewatering, facilitating the recovery of the photosynthetic rate. CA was downregulated during water stress and upregulated after recovery. The use of structural equation modelling allowed us to conclude that both OePIP1.1 and OePIP2.1 expression could explain most of the variations observed for g s and g m. CA expression also had a small but significant effect on g m in olive under water-stress conditions.
Collapse
Affiliation(s)
- Alfonso Perez-Martin
- Group of Irrigation and Crop Ecophysiology, Instituto de Recursos Naturales y Agrobiología, IRNAS-CSIC, Apartado 1052, 41080, Sevilla, Spain
| | - Chiara Michelazzo
- Biolabs, ISV, Scuola Superiore Sant'Anna, Piazza M. della Libertà 33, 56127 Pisa, Italy
| | - Jose M Torres-Ruiz
- Group of Irrigation and Crop Ecophysiology, Instituto de Recursos Naturales y Agrobiología, IRNAS-CSIC, Apartado 1052, 41080, Sevilla, Spain
| | - Jaume Flexas
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears; Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - José E Fernández
- Group of Irrigation and Crop Ecophysiology, Instituto de Recursos Naturales y Agrobiología, IRNAS-CSIC, Apartado 1052, 41080, Sevilla, Spain
| | - Luca Sebastiani
- Biolabs, ISV, Scuola Superiore Sant'Anna, Piazza M. della Libertà 33, 56127 Pisa, Italy
| | - Antonio Diaz-Espejo
- Group of Irrigation and Crop Ecophysiology, Instituto de Recursos Naturales y Agrobiología, IRNAS-CSIC, Apartado 1052, 41080, Sevilla, Spain
| |
Collapse
|
193
|
Mattoo AK. Translational research in agricultural biology-enhancing crop resistivity against environmental stress alongside nutritional quality. Front Chem 2014; 2:30. [PMID: 24926479 PMCID: PMC4046571 DOI: 10.3389/fchem.2014.00030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/05/2014] [Indexed: 01/24/2023] Open
Affiliation(s)
- Autar K. Mattoo
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, The Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research ServiceBeltsville, MD, USA
| |
Collapse
|
194
|
Jones HG. The use of indirect or proxy markers in plant physiology. PLANT, CELL & ENVIRONMENT 2014; 37:1270-1272. [PMID: 24386877 DOI: 10.1111/pce.12264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 06/03/2023]
Affiliation(s)
- Hamlyn G Jones
- Division of Plant Science, College of Life Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland; School of Plant Biology, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
195
|
Zörb C, Senbayram M, Peiter E. Potassium in agriculture--status and perspectives. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:656-69. [PMID: 24140002 DOI: 10.1016/j.jplph.2013.08.008] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 05/02/2023]
Abstract
In this review we summarize factors determining the plant availability of soil potassium (K), the role of K in crop yield formation and product quality, and the dependence of crop stress resistance on K nutrition. Average soil reserves of K are generally large, but most of it is not plant-available. Therefore, crops need to be supplied with soluble K fertilizers, the demand of which is expected to increase significantly, particularly in developing regions of the world. Recent investigations have shown that organic exudates of some bacteria and plant roots play a key role in releasing otherwise unavailable K from K-bearing minerals. Thus, breeding for genotypes that have improved mechanisms to gain access to this fixed K will contribute toward more sustainable agriculture, particularly in cropping systems that do not have access to fertilizer K. In K-deficient crops, the supply of sink organs with photosynthates is impaired, and sugars accumulate in source leaves. This not only affects yield formation, but also quality parameters, for example in wheat, potato and grape. As K has beneficial effects on human health, its concentration in the harvest product is a quality parameter in itself. Owing to its fundamental roles in turgor generation, primary metabolism, and long-distance transport, K plays a prominent role in crop resistance to drought, salinity, high light, or cold as well as resistance to pests and pathogens. Despite the abundance of vital roles of K in crop production, an improvement of K uptake and use efficiency has not been a major focus of conventional or transgenic breeding in the past. In addition, current soil analysis methods for K are insufficient for some common soils, posing the risk of imbalanced fertilization. A stronger prioritization of these areas of research is needed to counter declines in soil fertility and to improve food security.
Collapse
Affiliation(s)
- Christian Zörb
- Universität Leipzig, Institute of Biology, Botany, Johannisallee 23, 04103 Leipzig, Germany.
| | - Mehmet Senbayram
- Institute of Applied Plant Nutrition, University of Goettingen, Carl-Sprengel-Weg 1, D-37075 Göttingen, Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, 06099 Halle (Saale), Germany; Interdisciplinary Centre of Crop Research (IZN), Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
196
|
Caldeira CF, Bosio M, Parent B, Jeanguenin L, Chaumont F, Tardieu F. A hydraulic model is compatible with rapid changes in leaf elongation under fluctuating evaporative demand and soil water status. PLANT PHYSIOLOGY 2014; 164:1718-30. [PMID: 24420931 PMCID: PMC3982736 DOI: 10.1104/pp.113.228379] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/22/2013] [Indexed: 05/03/2023]
Abstract
Plants are constantly facing rapid changes in evaporative demand and soil water content, which affect their water status and growth. In apparent contradiction to a hydraulic hypothesis, leaf elongation rate (LER) declined in the morning and recovered upon soil rehydration considerably quicker than transpiration rate and leaf water potential (typical half-times of 30 min versus 1-2 h). The morning decline of LER began at very low light and transpiration and closely followed the stomatal opening of leaves receiving direct light, which represent a small fraction of leaf area. A simulation model in maize (Zea mays) suggests that these findings are still compatible with a hydraulic hypothesis. The small water flux linked to stomatal aperture would be sufficient to decrease water potentials of the xylem and growing tissues, thereby causing a rapid decline of simulated LER, while the simulated water potential of mature tissues declines more slowly due to a high hydraulic capacitance. The model also captured growth patterns in the evening or upon soil rehydration. Changes in plant hydraulic conductance partly counteracted those of transpiration. Root hydraulic conductivity increased continuously in the morning, consistent with the transcript abundance of Zea maize Plasma Membrane Intrinsic Protein aquaporins. Transgenic lines underproducing abscisic acid, with lower hydraulic conductivity and higher stomatal conductance, had a LER declining more rapidly than wild-type plants. Whole-genome transcriptome and phosphoproteome analyses suggested that the hydraulic processes proposed here might be associated with other rapidly occurring mechanisms. Overall, the mechanisms and model presented here may be an essential component of drought tolerance in naturally fluctuating evaporative demand and soil moisture.
Collapse
Affiliation(s)
- Cecilio F. Caldeira
- INRA, Unité Mixte de Recherche 759 Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, F–34060 Montpellier, France (C.F.C., B.P., F.T.)
- Biogemma, 63028 Clermont-Ferrand cedex 2, France (M.B.); and
- Institut des Sciences de la Vie, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (L.J., F.C.)
| | - Mickael Bosio
- INRA, Unité Mixte de Recherche 759 Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, F–34060 Montpellier, France (C.F.C., B.P., F.T.)
- Biogemma, 63028 Clermont-Ferrand cedex 2, France (M.B.); and
- Institut des Sciences de la Vie, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (L.J., F.C.)
| | - Boris Parent
- INRA, Unité Mixte de Recherche 759 Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, F–34060 Montpellier, France (C.F.C., B.P., F.T.)
- Biogemma, 63028 Clermont-Ferrand cedex 2, France (M.B.); and
- Institut des Sciences de la Vie, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (L.J., F.C.)
| | - Linda Jeanguenin
- INRA, Unité Mixte de Recherche 759 Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, F–34060 Montpellier, France (C.F.C., B.P., F.T.)
- Biogemma, 63028 Clermont-Ferrand cedex 2, France (M.B.); and
- Institut des Sciences de la Vie, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (L.J., F.C.)
| | - François Chaumont
- INRA, Unité Mixte de Recherche 759 Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, F–34060 Montpellier, France (C.F.C., B.P., F.T.)
- Biogemma, 63028 Clermont-Ferrand cedex 2, France (M.B.); and
- Institut des Sciences de la Vie, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (L.J., F.C.)
| | | |
Collapse
|
197
|
Ul Haq T, Akhtar J, Steele KA, Munns R, Gorham J. Reliability of ion accumulation and growth components for selecting salt tolerant lines in large populations of rice. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:379-390. [PMID: 32480998 DOI: 10.1071/fp13158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/21/2013] [Indexed: 06/11/2023]
Abstract
Ion accumulation and growth under salt stress was studied in two experiments in a rice mapping population derived from parents CO39 and Moroberekan with 4-fold differences in shoot Na+ accumulation. The 120 recombinant inbred lines (RILs) had differences up to 100-fold in Na+. Measurement of 'salt tolerance' (biomass production of the RILs in 100mM NaCl relative to controls) after 42 days showed a 2-fold variation in 'salt tolerance' between parents, with five RILs being more tolerant than the more tolerant parent CO39. The reliability of various traits for selecting salt tolerance in large populations was explored by measuring Na+, K+ and K+/Na+ ratios in leaf blades and sheaths after 7 or 21 days of exposure to 100mM NaCl, and their correlation with various growth components and with leaf injury. The highest correlations were found for Na+ in the leaf blade on day 21 with injury at day 42 in both experiments (r=0.7). Earlier measurements of Na+ or of injury had lower correlations. The most sensitive growth components were tiller number plant-1 and shoot water content (g water g-1 dry weight), and these were correlated significantly with Na+ and, to a lesser extent, with K+/Na+. These studies showed that exposure for at least 42 days may be needed to clearly demonstrate the beneficial effect of the trait for Na+ exclusion on growth under salinity.
Collapse
Affiliation(s)
- Tanveer Ul Haq
- College of Agriculture, PO Box 79, Dera Ghazi Khan 32200, Pakistan
| | - Javaid Akhtar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Katherine A Steele
- College of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, Wales LL57 2UW, UK
| | - Rana Munns
- School of Plant Biology, University of Western Australia, Crawley, WA 6009, Australia
| | - John Gorham
- College of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, Wales LL57 2UW, UK
| |
Collapse
|
198
|
Horta LP, Braga MR, Lemos-Filho JP, Modolo LV. Organ-coordinated response of early post-germination mahogany seedlings to drought. TREE PHYSIOLOGY 2014; 34:355-366. [PMID: 24690672 DOI: 10.1093/treephys/tpu017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Water deficit tolerance during post-germination stages is critical for seedling recruitment. In this work, we studied the effect of water deficit on morphological and biochemical responses in different organs of newly germinated mahogany (Swietenia macrophylla King) seedlings, a woody species that occurs in the Amazon rainforest. The root : shoot ratio increased under water deficit. The leaf number and water potential were not altered, although reductions in leaf area and stomatal conductance were observed. Osmotic potential became more negative in leaves of seedlings under severe stress. Water deficit increased fructose, glucose, sucrose and myo-inositol levels in leaves. Stems accumulated fructose, glucose and l-proline. Nitric oxide (NO) levels increased in the vascular cylinder of roots under severe stress while superoxide anion levels decreased due to augmented superoxide dismutase activity in this organ. Water deficit induced glutathione reductase activity in both roots and stems. Upon moderate or severe stress, catalase activity decreased in leaves and remained unaffected in the other seedling organs, allowing for an increase of hydrogen peroxide (H2O2) levels in leaves. Overall, the increase of signaling molecules in distinct organs-NO in roots, l-proline in stems and H2O2 and myo-inositol in leaves-contributed to the response of mahogany seedlings to water deficit by triggering biochemical processes that resulted in the attenuation of oxidative stress and the establishment of osmotic adjustment. Therefore, this body of evidence reveals that the development of newly germinated mahogany seedlings may occur in both natural habitats and crop fields even when water availability is greatly limited.
Collapse
Affiliation(s)
- Lívia P Horta
- Grupo de Estudos em Bioquímica de Plantas (GEBioPlan), Departamento de Botânica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | | | | | | |
Collapse
|
199
|
León J, Castillo MC, Coego A, Lozano-Juste J, Mir R. Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:907-21. [PMID: 24371253 DOI: 10.1093/jxb/ert454] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The extensive support for abscisic acid (ABA) involvement in the complex regulatory networks controlling stress responses and development in plants contrasts with the relatively recent role assigned to nitric oxide (NO). Because treatment with exogenous ABA leads to enhanced production of NO, it has been widely considered that NO participates downstream of ABA in controlling processes such as stomata movement, seed dormancy, and germination. However, data on leaf senescence and responses to stress suggest that the functional interaction between ABA and NO is more complex than previously thought, including not only cooperation but also antagonism. The functional relationship is probably determined by several factors including the time- and place-dependent pattern of accumulation of both molecules, the threshold levels, and the regulatory factors important for perception. These factors will determine the actions exerted by each regulator. Here, several examples of well-documented functional interactions between NO and ABA are analysed in light of the most recent reported data on seed dormancy and germination, stomata movements, leaf senescence, and responses to abiotic and biotic stresses.
Collapse
Affiliation(s)
- José León
- Plant Development and Hormone Action, Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Spain
| | | | | | | | | |
Collapse
|
200
|
Siemianowski O, Barabasz A, Kendziorek M, Ruszczyńska A, Bulska E, Williams LE, Antosiewicz DM. HMA4 expression in tobacco reduces Cd accumulation due to the induction of the apoplastic barrier. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1125-39. [PMID: 24420575 PMCID: PMC3935570 DOI: 10.1093/jxb/ert471] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ectopic expression in tobacco (Nicotiana tabacum v. Xanthi) of the export protein AtHMA4 (responsible in Arabidopsis for the control of Zn/Cd root to shoot translocation) resulted in decreased Cd uptake/accumulation in roots and shoots. This study contributes to understanding the mechanisms underlying this Cd-dependent phenotype to help predict the consequences of transgene expression for potential phytoremediation/biofortification-based strategies. Microarray analysis was performed to identify metal homeostasis genes that were differentially expressed in roots of Cd-exposed AtHMA4-expressing tobacco relative to the wild type. It was established that down-regulation of genes known to mediate Cd uptake was not responsible for reduced Cd uptake/accumulation in AtHMA4 transformants. The transcript levels of NtIRT1 and NtZIP1 were higher in transgenic plants, indicating an induction of the Fe and Zn deficiency status due to AtHMA4 expression. Interestingly, upon exposure to Cd, genes involved in cell wall lignification (NtHCT, NtOMET, and NtPrx11a) were up-regulated in transformants. Microscopic analysis of roots demonstrated that expression of AtHMA4 caused an induction of cell wall lignification in the external cell layers that was accompanied by enhanced H2O2 accumulation. Further study showed that the concentration of other elements (B, Co, Cu, Ni, Mo, and Zn) was reduced in AtHMA4 transformants in the presence of Cd. In conclusion, due to ectopic expression of 35S::AtHMA4, the physical apoplastic barrier within the external cell layer developed, which is likely to be responsible for the reduction of Cd uptake/accumulation.
Collapse
Affiliation(s)
- Oskar Siemianowski
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Miecznikowa str. 1, 02-096 Warszawa, Poland
| | - Anna Barabasz
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Miecznikowa str. 1, 02-096 Warszawa, Poland
| | - Maria Kendziorek
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Miecznikowa str. 1, 02-096 Warszawa, Poland
| | - Anna Ruszczyńska
- University of Warsaw, Faculty of Chemistry, Pasteura str. 1, 02-093 Warszawa, Poland
| | - Ewa Bulska
- University of Warsaw, Faculty of Chemistry, Pasteura str. 1, 02-093 Warszawa, Poland
| | | | - Danuta Maria Antosiewicz
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Miecznikowa str. 1, 02-096 Warszawa, Poland
| |
Collapse
|