151
|
Stem Cells for Cutaneous Wound Healing. BIOMED RESEARCH INTERNATIONAL 2015; 2015:285869. [PMID: 26137471 PMCID: PMC4468276 DOI: 10.1155/2015/285869] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 03/20/2015] [Indexed: 01/08/2023]
Abstract
Optimum healing of a cutaneous wound involves a well-orchestrated cascade of biological and molecular processes involving cell migration, proliferation, extracellular matrix deposition, and remodelling. When the normal biological process fails for any reason, this healing process can stall resulting in chronic wounds. Wounds are a growing clinical burden on healthcare systems and with an aging population as well as increasing incidences of obesity and diabetes, this problem is set to increase. Cell therapies may be the solution. A range of cell based approaches have begun to cross the rift from bench to bedside and the supporting data suggests that the appropriate administration of stem cells can accelerate wound healing. This review examines the main cell types explored for cutaneous wound healing with a focus on clinical use. The literature overwhelmingly suggests that cell therapies can help to heal cutaneous wounds when used appropriately but we are at risk of clinical use outpacing the evidence. There is a need, now more than ever, for standardised methods of cell characterisation and delivery, as well as randomised clinical trials.
Collapse
|
152
|
Wanamaker CP, Fakhran S, Alhilali LM. Qualitative and quantitative analysis of MR imaging findings in patients with middle cerebral artery stroke implanted with mesenchymal stem cells. AJNR Am J Neuroradiol 2015; 36:1063-8. [PMID: 25655873 PMCID: PMC8013029 DOI: 10.3174/ajnr.a4232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/05/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND PURPOSE Mesenchymal stem cells have potential as a regenerative therapy in ischemic stroke. We sought to determine MR imaging findings after mesenchymal stem cell implantation in chronic middle cerebral artery infarcts and to compare brain volume changes in patients with mesenchymal stem cells with those in age-matched healthy controls and controls with chronic stable MCA infarcts. MATERIALS AND METHODS We retrospectively identified 5 patients receiving surgical mesenchymal stem cell implantation to an MCA infarct from January 1, 2005, to July 1, 2013, with MR imaging immediately and 1 year postimplantation. Images at both time points were evaluated for any postimplantation complications. Structural image evaluation using normalization of atrophy software was used to determine volume changes between time points and compare them with those in healthy and age- and sex-matched controls with chronic, stable MCA infarcts by using Kruskal-Wallis and Mann-Whitney U tests. RESULTS Susceptibility signal loss and enhancement at the implantation site were seen. No teratoma, tumor, or heterotopia was identified. Volumetric analysis showed a trend toward less overall volume loss after mesenchymal stem cell implantation (0.736; 95% CI, -4.15-5.62) compared with that in age- and sex-matched controls with chronic, stable MCA infarcts (-3.59; 95% CI, -12.3 to -5.21; P = .09), with a significantly greater growth-to-loss ratio in infarcted regions (1.30 and 0.78, respectively, P = .02). A trend toward correlation of growth-to-loss ratio with improvement in physical examination findings was seen (r = 0.856, P = .06). CONCLUSIONS Postoperative changes consistent with stereotactic implantation were seen, but no teratoma, tumor, or heterotopia was identified. Initial findings suggest a trend toward less volume loss after mesenchymal stem cell implantation compared with that in age- and sex-matched controls with chronic, stable MCA infarcts, with a significantly greater growth-to-loss ratio in the infarcted tissue.
Collapse
Affiliation(s)
- C P Wanamaker
- From the Department of Radiology, Division of Neuroradiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - S Fakhran
- From the Department of Radiology, Division of Neuroradiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - L M Alhilali
- From the Department of Radiology, Division of Neuroradiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
153
|
Sullivan R, Duncan K, Dailey T, Kaneko Y, Tajiri N, Borlongan CV. A possible new focus for stroke treatment - migrating stem cells. Expert Opin Biol Ther 2015; 15:949-58. [PMID: 25943632 DOI: 10.1517/14712598.2015.1043264] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Stroke is a leading cause of mortality in the US. More so, its infliction often leaves patients with lasting morbidity and deficits. Ischemic stroke comprises nearly 90% of incidents and the majority of medical treatment aims at reestablishing perfusion and preventing recurrence. AREAS COVERED Long-term options for neurorestoration are limited by the infancy of their innovative approach. Accumulating evidence suggests the therapeutic potential of stem cells in neurorestoration, however, proper stem cell migration remains a challenge in translating stem cell therapy from the laboratory to the clinic. In this paper, we propose the role that exogenous stem cell transplantation may serve in facilitating the migration of endogenous stem cells to the site of injury, an idea termed 'biobridge'. EXPERT OPINION Recent research in the field of traumatic brain injury has provided a foundational understanding that, through the use of exogenous stem cells, native tissue architecture may be manipulated by proteinases to allow better communication between the endogenous sites of neural stem cells and the regions of injury. There is still much to be learned about these mechanisms, though it is the devastating nature of stroke that necessitates continued research into the prospective therapeutic potential of this novel approach.
Collapse
Affiliation(s)
- Robert Sullivan
- University of South Florida College of Medicine, Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair , 12901 Bruce B. Downs Blvd, Tampa, FL , USA +1 813 974 3154 ; +1 813 974 3078 ;
| | | | | | | | | | | |
Collapse
|
154
|
Thompson LH, Björklund A. Reconstruction of brain circuitry by neural transplants generated from pluripotent stem cells. Neurobiol Dis 2015; 79:28-40. [PMID: 25913029 DOI: 10.1016/j.nbd.2015.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/09/2015] [Accepted: 04/15/2015] [Indexed: 12/15/2022] Open
Abstract
Pluripotent stem cells (embryonic stem cells, ESCs, and induced pluripotent stem cells, iPSCs) have the capacity to generate neural progenitors that are intrinsically patterned to undergo differentiation into specific neuronal subtypes and express in vivo properties that match the ones formed during normal embryonic development. Remarkable progress has been made in this field during recent years thanks to the development of more refined protocols for the generation of transplantable neuronal progenitors from pluripotent stem cells, and the access to new tools for tracing of neuronal connectivity and assessment of integration and function of grafted neurons. Recent studies in brains of neonatal mice or rats, as well as in rodent models of brain or spinal cord damage, have shown that ESC- or iPSC-derived neural progenitors can be made to survive and differentiate after transplantation, and that they possess a remarkable capacity to extend axons over long distances and become functionally integrated into host neural circuitry. Here, we summarize these recent developments in the perspective of earlier studies using intracerebral and intraspinal transplants of primary neurons derived from fetal brain, with special focus on the ability of human ESC- and iPSC-derived progenitors to reconstruct damaged neural circuitry in cortex, hippocampus, the nigrostriatal system and the spinal cord, and we discuss the intrinsic and extrinsic factors that determine the growth properties of the grafted neurons and their capacity to establish target-specific long-distance axonal connections in the damaged host brain.
Collapse
Affiliation(s)
- Lachlan H Thompson
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - Anders Björklund
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, S-22184 Lund, Sweden.
| |
Collapse
|
155
|
Wang Y, Reis C, Applegate R, Stier G, Martin R, Zhang JH. Ischemic conditioning-induced endogenous brain protection: Applications pre-, per- or post-stroke. Exp Neurol 2015; 272:26-40. [PMID: 25900056 DOI: 10.1016/j.expneurol.2015.04.009] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/06/2015] [Accepted: 04/11/2015] [Indexed: 11/17/2022]
Abstract
In the area of brain injury and neurodegenerative diseases, a plethora of experimental and clinical evidence strongly indicates the promise of therapeutically exploiting the endogenous adaptive system at various levels like triggers, mediators and the end-effectors to stimulate and mobilize intrinsic protective capacities against brain injuries. It is believed that ischemic pre-conditioning and post-conditioning are actually the strongest known interventions to stimulate the innate neuroprotective mechanism to prevent or reverse neurodegenerative diseases including stroke and traumatic brain injury. Recently, studies showed the effectiveness of ischemic per-conditioning in some organs. Therefore the term ischemic conditioning, including all interventions applied pre-, per- and post-ischemia, which spans therapeutic windows in 3 time periods, has recently been broadly accepted by scientific communities. In addition, it is extensively acknowledged that ischemia-mediated protection not only affects the neurons but also all the components of the neurovascular network (consisting of neurons, glial cells, vascular endothelial cells, pericytes, smooth muscle cells, and venule/veins). The concept of cerebroprotection has been widely used in place of neuroprotection. Intensive studies on the cellular signaling pathways involved in ischemic conditioning have improved the mechanistic understanding of tolerance to cerebral ischemia. This has added impetus to exploration for potential pharmacologic mimetics, which could possibly induce and maximize inherent protective capacities. However, most of these studies were performed in rodents, and the efficacy of these mimetics remains to be evaluated in human patients. Several classical signaling pathways involving apoptosis, inflammation, or oxidation have been elaborated in the past decades. Newly characterized mechanisms are emerging with the advances in biotechnology and conceptual renewal. In this review we are going to focus on those recently reported methodological and mechanistic discoveries in the realm of ischemic conditioning. Due to the varied time differences of ischemic conditioning in different animal models and clinical trials, it is important to define optimal timing to achieve the best conditioning induced neuroprotection. This brings not only an opportunity in the treatment of stroke, but challenges as well, as data is just becoming available and the procedures are not yet optimized. The purpose of this review is to shed light on exploiting these ischemic conditioning modalities to protect the cerebrovascular system against diverse injuries and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, USA; Department of Physiology, Jinan University School of Medicine, Guangzhou, China
| | - Cesar Reis
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Richard Applegate
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Gary Stier
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Robert Martin
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, USA; Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA.
| |
Collapse
|
156
|
Dulamea AO. The potential use of mesenchymal stem cells in stroke therapy--From bench to bedside. J Neurol Sci 2015; 352:1-11. [PMID: 25818674 DOI: 10.1016/j.jns.2015.03.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 12/11/2022]
Abstract
Stroke is the second main cause of morbidity and mortality worldwide. The rationale for the use of mesenchymal stem cells (MSCs) in stroke is based on the capacity of MSCs to secrete a large variety of bioactive molecules such as growth factors, cytokines and chemokines leading to reduction of inflammation, increased neurogenesis from the germinative niches of central nervous system, increased angiogenesis, effects on astrocytes, oligodendrocytes and axons. This review presents the data derived from experimental studies and the evidence available from clinical trials about the use of MSCs in stroke therapy.
Collapse
Affiliation(s)
- Adriana Octaviana Dulamea
- U.M.F. "Carol Davila", Fundeni Clinical Institute, Department of Neurology, 258 Sos. Fundeni, Sector 2, Bucharest, Romania.
| |
Collapse
|
157
|
Nucci LP, Silva HR, Giampaoli V, Mamani JB, Nucci MP, Gamarra LF. Stem cells labeled with superparamagnetic iron oxide nanoparticles in a preclinical model of cerebral ischemia: a systematic review with meta-analysis. Stem Cell Res Ther 2015; 6:27. [PMID: 25889904 PMCID: PMC4425914 DOI: 10.1186/s13287-015-0015-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/26/2014] [Accepted: 02/23/2015] [Indexed: 12/17/2022] Open
Abstract
Introduction Although there is an increase in clinical trials assessing the efficacy of cell therapy in structural and functional regeneration after stroke, there are not enough data in the literature describing the best cell type to be used, the best route, and also the best nanoparticle to analyze these stem cells in vivo. This review analyzed published data on superparamagnetic iron oxide nanoparticle (SPION)-labeled stem cells used for ischemic stroke therapy. Method We performed a systematic review and meta-analysis of data from experiments testing the efficacy of cellular treatment with SPION versus no treatment to improve behavioral or modified neural scale outcomes in animal models of stroke by the Cochrane Collaboration and indexed in EMBASE, PubMed, and Web of Science since 2000. To test the impact of study quality and design characteristics, we used random-effects meta-regression. In addition, trim and fill were used to assess publication bias. Results The search retrieved 258 articles. After application of the inclusion criteria, 24 reports published between January 2000 and October 2014 were selected. These 24 articles were analyzed for nanoparticle characteristics, stem cell types, and efficacy in animal models. Conclusion This study highlights the therapeutic role of stem cells in stroke and emphasizes nanotechnology as an important tool for monitoring stem cell migration to the affected neurological locus.
Collapse
Affiliation(s)
- Leopoldo P Nucci
- Hospital Israelita Albert Einstein, Av. Albert Einstein, 627/701, Morumbi, CEP: 05651-901, São Paulo, Brazil. .,Universidade Federal de São Paulo, Rua Sena Madureira, 1500 - Vila Clementino, 04021-001, São Paulo-SP, Brazil.
| | - Helio R Silva
- Hospital Israelita Albert Einstein, Av. Albert Einstein, 627/701, Morumbi, CEP: 05651-901, São Paulo, Brazil. .,Santa Casa Misericórdia de São Paulo, Dr. Cesario Motta Junior, 61 - Vila Buarque, 01221-020, São Paulo-SP, Brazil.
| | - Viviana Giampaoli
- Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010 - Cidade Universitária, 05508-090, São Paulo-SP, Brazil.
| | - Javier B Mamani
- Hospital Israelita Albert Einstein, Av. Albert Einstein, 627/701, Morumbi, CEP: 05651-901, São Paulo, Brazil.
| | - Mariana P Nucci
- LIM44, Universidade de São Paulo, Rua Dr Éneas de Carvalho Aguiar, 255 - Cerqueira César, 05403-000, São Paulo-SP, Brazil.
| | - Lionel F Gamarra
- Hospital Israelita Albert Einstein, Av. Albert Einstein, 627/701, Morumbi, CEP: 05651-901, São Paulo, Brazil. .,Universidade Federal de São Paulo, Rua Sena Madureira, 1500 - Vila Clementino, 04021-001, São Paulo-SP, Brazil. .,Santa Casa Misericórdia de São Paulo, Dr. Cesario Motta Junior, 61 - Vila Buarque, 01221-020, São Paulo-SP, Brazil.
| |
Collapse
|
158
|
Quittet MS, Touzani O, Sindji L, Cayon J, Fillesoye F, Toutain J, Divoux D, Marteau L, Lecocq M, Roussel S, Montero-Menei CN, Bernaudin M. Effects of mesenchymal stem cell therapy, in association with pharmacologically active microcarriers releasing VEGF, in an ischaemic stroke model in the rat. Acta Biomater 2015; 15:77-88. [PMID: 25556361 DOI: 10.1016/j.actbio.2014.12.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/28/2014] [Accepted: 12/19/2014] [Indexed: 01/01/2023]
Abstract
Few effective therapeutic interventions are available to limit brain damage and functional deficits after ischaemic stroke. Within this context, mesenchymal stem cell (MSC) therapy carries minimal risks while remaining efficacious through the secretion of trophic, protective, neurogenic and angiogenic factors. The limited survival rate of MSCs restricts their beneficial effects. The usefulness of a three-dimensional support, such as a pharmacologically active microcarrier (PAM), on the survival of MSCs during hypoxia has been shown in vitro, especially when the PAMs were loaded with vascular endothelial growth factor (VEGF). In the present study, the effect of MSCs attached to laminin-PAMs (LM-PAMs), releasing VEGF or not, was evaluated in vivo in a model of transient stroke. The parameters assessed were infarct volume, functional recovery and endogenous cellular reactions. LM-PAMs induced the expression of neuronal markers by MSCs both in vitro and in vivo. Moreover, the prolonged release of VEGF increased angiogenesis around the site of implantation of the LM-PAMs and facilitated the migration of immature neurons towards the ischaemic tissue. Nonetheless, MSCs/LM-PAMs-VEGF failed to improve sensorimotor functions. The use of LM-PAMs to convey MSCs and to deliver growth factors could be an effective strategy to repair the brain damage caused by a stroke.
Collapse
Affiliation(s)
- Marie-Sophie Quittet
- CNRS, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Université de Caen Basse-Normandie, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; CEA, DSV/I2BM, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Normandie Univ, F-14032 Caen cedex, France.
| | - Omar Touzani
- CNRS, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Université de Caen Basse-Normandie, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; CEA, DSV/I2BM, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Normandie Univ, F-14032 Caen cedex, France
| | - Laurence Sindji
- INSERM U1066, MINT "Bio-inspired Micro and Nanomedicine", F-49933 Angers, France; LUNAM Université, F-49933 Angers, France
| | - Jérôme Cayon
- LUNAM Université, F-49933 Angers, France; Plateforme PACeM (Plateforme d'Analyse Cellulaire et Moléculaire), SFR ICAT4208, F-49933 Angers, France
| | - Fabien Fillesoye
- CNRS, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Université de Caen Basse-Normandie, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; CEA, DSV/I2BM, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Normandie Univ, F-14032 Caen cedex, France
| | - Jérôme Toutain
- CNRS, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Université de Caen Basse-Normandie, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; CEA, DSV/I2BM, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Normandie Univ, F-14032 Caen cedex, France
| | - Didier Divoux
- CNRS, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Université de Caen Basse-Normandie, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; CEA, DSV/I2BM, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Normandie Univ, F-14032 Caen cedex, France
| | - Léna Marteau
- CNRS, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Université de Caen Basse-Normandie, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; CEA, DSV/I2BM, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Normandie Univ, F-14032 Caen cedex, France
| | - Myriam Lecocq
- CNRS, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Université de Caen Basse-Normandie, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; CEA, DSV/I2BM, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Normandie Univ, F-14032 Caen cedex, France
| | - Simon Roussel
- CNRS, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Université de Caen Basse-Normandie, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; CEA, DSV/I2BM, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Normandie Univ, F-14032 Caen cedex, France
| | - Claudia N Montero-Menei
- INSERM U1066, MINT "Bio-inspired Micro and Nanomedicine", F-49933 Angers, France; LUNAM Université, F-49933 Angers, France
| | - Myriam Bernaudin
- CNRS, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Université de Caen Basse-Normandie, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; CEA, DSV/I2BM, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Normandie Univ, F-14032 Caen cedex, France
| |
Collapse
|
159
|
Lahiani A, Zahavi E, Netzer N, Ofir R, Pinzur L, Raveh S, Arien-Zakay H, Yavin E, Lazarovici P. Human PLacental eXpanded (PLX) mesenchymal-like adherent stromal cells confer neuroprotection to nerve growth factor (NGF)-differentiated PC12 cells exposed to ischemia by secretion of IL-6 and VEGF. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:422-30. [DOI: 10.1016/j.bbamcr.2014.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/03/2014] [Accepted: 11/10/2014] [Indexed: 12/21/2022]
|
160
|
Gutiérrez-Fernández M, Rodríguez-Frutos B, Ramos-Cejudo J, Otero-Ortega L, Fuentes B, Vallejo-Cremades MT, Sanz-Cuesta BE, Díez-Tejedor E. Comparison between xenogeneic and allogeneic adipose mesenchymal stem cells in the treatment of acute cerebral infarct: proof of concept in rats. J Transl Med 2015; 13:46. [PMID: 25637958 PMCID: PMC4322805 DOI: 10.1186/s12967-015-0406-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/16/2015] [Indexed: 02/06/2023] Open
Abstract
Background Rat adipose tissue-derived-mesenchymal stem cells (rAD-MSCs) have proven to be safe in experimental animal models of stroke. However, in order to use human AD-MSCs (hAD-MSCs) as a treatment for stroke patients, a proof of concept is needed. We analyzed whether the xenogeneic hAD-MSCs were as safe and effective as allogeneic rAD-MSCs in permanent Middle Cerebral Artery Occlusion (pMCAO) in rats. Methods Sprague–Dawley rats were randomly divided into three groups, which were intravenously injected with xenogeneic hAD-MSCs (2 × 106), allogeneic rAD-MSCs (2 × 106) or saline (control) at 30 min after pMCAO. Behavior, cell implantation, lesion size and cell death were evaluated. Brain markers such as GFAP (glial fibrillary acid protein), VEGF (vascular endothelial growth factor) and SYP (synaptophysin) and tumor formation were analyzed. Results Compared to controls, recovery was significantly better at 24 h and continued to be so at 14 d after IV administration of either hAD-MSCs or rAD-MSCs. No reduction in lesion size or migration/implantation of cells in the damaged brain were observed in the treatment groups. Nevertheless, cell death was significantly reduced with respect to the control group in both treatment groups. VEGF and SYP levels were significantly higher, while those of GFAP were lower in the treated groups. At three months, there was no tumor formation. Conclusions hAD-MSCs and rAD-MSCs were safe and without side effects or tumor formation. Both treatment groups showed equal efficacy in terms of functional recovery and decreased ischemic brain damage (cell death and glial scarring) and resulted in higher angiogenesis and synaptogenesis marker levels.
Collapse
Affiliation(s)
- María Gutiérrez-Fernández
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Berta Rodríguez-Frutos
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Jaime Ramos-Cejudo
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Laura Otero-Ortega
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Blanca Fuentes
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - María Teresa Vallejo-Cremades
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Borja Enrique Sanz-Cuesta
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Exuperio Díez-Tejedor
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain.
| |
Collapse
|
161
|
Zhu J, Liu Q, Jiang Y, Wu L, Xu G, Liu X. Enhanced angiogenesis promoted by human umbilical mesenchymal stem cell transplantation in stroked mouse is Notch1 signaling associated. Neuroscience 2015; 290:288-99. [PMID: 25637797 DOI: 10.1016/j.neuroscience.2015.01.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/18/2014] [Accepted: 01/08/2015] [Indexed: 12/16/2022]
Abstract
Cellular therapy has provided hope for restoring neurological function post stroke through promoting endogenous neurogenesis, angiogenesis and synaptogenesis. The current study was based on the observation that transplantation of human umbilical cord mesenchymal stem cells (hUCMSCs) promoted the neurological function improvement in stroked mice and meanwhile enhanced angiogenesis in the stroked hemisphere. Grafted hUCMSCs secreted human vascular endothelial growth factor A (VEGF-A). Notch1 signaling was activated after stroke and also in the grafted hUCMSCs. To address the potential mechanism that might mediate such pro-angiogenic effect, we established a hUCMSC-neuron co-culture system. Neurons were subjected to oxygen glucose deprivation (OGD) injury before co-culturing to mimic the in vivo cell transplantation. Consistent with the in vivo data, co-culture medium claimed from hUCMSC-OGD neuron co-culture system significantly promoted the capillary-like tube formation of brain-derived endothelial cells. Moreover, coincident with our in vivo data, Notch 1 signaling activation was detected in hUCMSCs after co-cultured with OGD neurons as demonstrated by the up-regulation of key Notch1 signaling components Notch1 and Notch1 intercellular domain (NICD). In addition, OGD-neuron co-culture also increased the VEGF-A production by hUCMSCs. To verify whether Notch1 activation was involved in the pro-angiogenic effect, γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) was added into the co-culture medium before co-culture. It turned out that DAPT significantly prevented the Notch1 activation in hUCMSCs after co-culture with OGD neurons. More importantly, the pro-angiogenic effect of hUCMSCs was remarkably abolished by DAPT addition as demonstrated by inhibited capillary-like tube formation and less VEGF-A production. Regarding how Notch1 signaling was linked with VEGF-A secretion, we provided some clue that Notch1 effector Hes1 mRNA expression was significantly up-regulated by OGD-neuron co-culturing and down-regulated after additional treatment of DAPT. In summary, our data provided evidence that the VEGF-A secretion from hUCMSCs after being triggered by OGD neurons is Notch1 signaling associated. This might be a possible mechanism that contributes to the angiogenic effect of hUCMSC transplantation in stroked brain.
Collapse
Affiliation(s)
- J Zhu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu, China.
| | - Q Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu, China.
| | - Y Jiang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu, China.
| | - L Wu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu, China.
| | - G Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu, China.
| | - X Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu, China.
| |
Collapse
|
162
|
Chung TN, Kim JH, Choi BY, Chung SP, Kwon SW, Suh SW. Adipose-derived mesenchymal stem cells reduce neuronal death after transient global cerebral ischemia through prevention of blood-brain barrier disruption and endothelial damage. Stem Cells Transl Med 2014; 4:178-85. [PMID: 25548390 DOI: 10.5966/sctm.2014-0103] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Global cerebral ischemia (GCI) is the leading cause of a poor prognosis even after successful resuscitation from cardiac arrest. Therapeutic induction of hypothermia (TH) is the only proven therapy-and current standard care-for GCI after cardiac arrest; however, its application has been significantly limited owing to technical difficulties. Mesenchymal stem cells (MSCs) are known to suppress neuronal death after cerebral ischemia. The prevention of blood-brain barrier (BBB) disruption has not been suggested as a mechanism of MSC treatment but has for TH. We evaluated the therapeutic effect of MSC administration on BBB disruption and neutrophil infiltration after GCI. To evaluate the therapeutic effects of MSC treatment, rats were subjected to 7 minutes of transient GCI and treated with MSCs immediately after reperfusion. Hippocampal neuronal death was evaluated at 7 days after ischemia using Fluoro-Jade B (FJB). BBB disruption, endothelial damage, and neutrophil infiltration were evaluated at 7 days after ischemia by immunostaining for IgG leakage, Rat endothelial antigen-1, and myeloperoxidase (MPO). Rats treated with MSCs showed a significantly reduced FJB+ neuron count compared with the control group. They also showed reduced IgG leakage, endothelial damage, and MPO+ cell counts. The present study demonstrated that administration of MSCs after transient GCI provides a dramatic protective effect against hippocampal neuronal death. We hypothesized that the neuroprotective effects of MSC treatment might be associated with the prevention of BBB disruption and endothelial damage and a decrease in neutrophil infiltration.
Collapse
Affiliation(s)
- Tae Nyoung Chung
- Departments of Emergency Medicine and Surgery, CHA University School of Medicine, Gyeonggi-Do, Republic of Korea; Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Physiology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Jin Hee Kim
- Departments of Emergency Medicine and Surgery, CHA University School of Medicine, Gyeonggi-Do, Republic of Korea; Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Physiology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Bo Young Choi
- Departments of Emergency Medicine and Surgery, CHA University School of Medicine, Gyeonggi-Do, Republic of Korea; Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Physiology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Sung Phil Chung
- Departments of Emergency Medicine and Surgery, CHA University School of Medicine, Gyeonggi-Do, Republic of Korea; Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Physiology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Sung Won Kwon
- Departments of Emergency Medicine and Surgery, CHA University School of Medicine, Gyeonggi-Do, Republic of Korea; Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Physiology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Sang Won Suh
- Departments of Emergency Medicine and Surgery, CHA University School of Medicine, Gyeonggi-Do, Republic of Korea; Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Physiology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
163
|
Liu ZJ, Chen C, Li FW, Shen JM, Yang YY, Leak RK, Ji XM, Du HS, Hu XM. Splenic responses in ischemic stroke: new insights into stroke pathology. CNS Neurosci Ther 2014; 21:320-6. [PMID: 25475834 DOI: 10.1111/cns.12361] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 10/24/2014] [Accepted: 10/26/2014] [Indexed: 12/17/2022] Open
Abstract
In the past decade, the significant contribution of the spleen to ischemic brain damage has gained considerable attention in stroke research. As the largest natural reservoir of immune cells, the spleen establishes critical connections with the ischemic brain during the progression of stroke and mobilizes its cells to the site of injury. Multiple "alarm" signals released from the injured brain are essential for the initiation of brain-spleen communication. Spleen-derived cells, including neutrophils, lymphocytes, and monocytes/macrophages, are known to contribute significantly to ischemic brain damage. Understanding the dynamic splenic responses to stroke will not only provide insights into the evolvement of ischemic brain injury but will also identify potential targets for stroke treatment. Here, we review recent studies on the functions of the spleen in ischemic stroke. We have included a discussion of several therapeutic strategies that target splenic responses and reduce acute ischemic brain damage in preclinical studies. Future investigations on the effects of the spleen on long-term stroke recovery are highly warranted.
Collapse
Affiliation(s)
- Zong-Jian Liu
- China-America Institute of Neuroscience, Luhe Teaching Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Ikegame Y, Yamashita K, Nakashima S, Nomura Y, Yonezawa S, Asano Y, Shinoda J, Hara H, Iwama T. Fate of graft cells: what should be clarified for development of mesenchymal stem cell therapy for ischemic stroke? Front Cell Neurosci 2014; 8:322. [PMID: 25374506 PMCID: PMC4204523 DOI: 10.3389/fncel.2014.00322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/24/2014] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are believed to be promising for cell administration therapy after ischemic stroke. Because of their advantageous characteristics, such as ability of differentiation into neurovascular lineages, avoidance of immunological problems, and abundance of graft cells in mesodermal tissues, studies regarding MSC therapy have increased recently. However, several controversies are yet to be resolved before a worldwide consensus regarding a standard protocol is obtained. In particular, the neuroprotective effects, the rate of cell migration to the lesion, and differentiation direction differ depending on preclinical observations. Analyses of these differences and application of recent developments in stem cell biology or engineering in imaging modality may contribute to identification of criteria for optimal stem cell therapy in which reliable protocols, which control cell quality and include safe administration procedures, are defined for each recovery phase after cerebral ischemia. In this mini review, we examine controversies regarding the fate of grafts and the prospects for advanced therapy that could be obtained through recent developments in stem cell research as direct conversion to neural cells.
Collapse
Affiliation(s)
- Yuka Ikegame
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan ; Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine Gifu, Japan ; Department of Cell Signaling, Gifu University Graduate School of Medicine Gifu, Japan
| | - Kentaro Yamashita
- Department of Neurosurgery, Gifu University Graduate School of Medicine Gifu, Japan ; Department of Neurosurgery, Murakami Memorial Hospital, Asahi University Gifu, Japan
| | - Shigeru Nakashima
- Department of Cell Signaling, Gifu University Graduate School of Medicine Gifu, Japan
| | - Yuichi Nomura
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan
| | - Shingo Yonezawa
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan
| | - Yoshitaka Asano
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan ; Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine Gifu, Japan
| | - Jun Shinoda
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan ; Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine Gifu, Japan
| | - Hideaki Hara
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University Gifu, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine Gifu, Japan
| |
Collapse
|
165
|
Hermann DM, Peruzzotti-Jametti L, Schlechter J, Bernstock JD, Doeppner TR, Pluchino S. Neural precursor cells in the ischemic brain - integration, cellular crosstalk, and consequences for stroke recovery. Front Cell Neurosci 2014; 8:291. [PMID: 25278840 PMCID: PMC4165213 DOI: 10.3389/fncel.2014.00291] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 09/01/2014] [Indexed: 12/12/2022] Open
Abstract
After an ischemic stroke, neural precursor cells (NPCs) proliferate within major germinal niches of the brain. Endogenous NPCs subsequently migrate toward the ischemic lesion where they promote tissue remodeling and neural repair. Unfortunately, this restorative process is generally insufficient and thus unable to support a full recovery of lost neurological functions. Supported by solid experimental and preclinical data, the transplantation of exogenous NPCs has emerged as a potential tool for stroke treatment. Transplanted NPCs are thought to act mainly via trophic and immune modulatory effects, thereby complementing the restorative responses initially executed by the endogenous NPC population. Recent studies have attempted to elucidate how the therapeutic properties of transplanted NPCs vary depending on the route of transplantation. Systemic NPC delivery leads to potent immune modulatory actions, which prevent secondary neuronal degeneration, reduces glial scar formation, diminishes oxidative stress and stabilizes blood–brain barrier integrity. On the contrary, local stem cell delivery allows for the accumulation of large numbers of transplanted NPCs in the brain, thus achieving high levels of locally available tissue trophic factors, which may better induce a strong endogenous NPC proliferative response. Herein we describe the diverse capabilities of exogenous (systemically vs. locally transplanted) NPCs in enhancing the endogenous neurogenic response after stroke, and how the route of transplantation may affect migration, survival, bystander effects and integration of the cellular graft. It is the authors’ claim that understanding these aspects will be of pivotal importance in discerning how transplanted NPCs exert their therapeutic effects in stroke.
Collapse
Affiliation(s)
- Dirk M Hermann
- Chair of Vascular Neurology, Dementia and Cognitive Health of the Elderly, Department of Neurology, University Hospital Essen Essen, Germany
| | - Luca Peruzzotti-Jametti
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, NIHR Biomedical Research Centre, and Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge Cambridge, UK
| | - Jana Schlechter
- Chair of Vascular Neurology, Dementia and Cognitive Health of the Elderly, Department of Neurology, University Hospital Essen Essen, Germany
| | - Joshua D Bernstock
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, NIHR Biomedical Research Centre, and Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge Cambridge, UK
| | - Thorsten R Doeppner
- Chair of Vascular Neurology, Dementia and Cognitive Health of the Elderly, Department of Neurology, University Hospital Essen Essen, Germany
| | - Stefano Pluchino
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, NIHR Biomedical Research Centre, and Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge Cambridge, UK
| |
Collapse
|