151
|
Siwakul P, Sirinnaphakorn L, Suwanprateep J, Hayakawa T, Pugdee K. Cellular responses of histatin-derived peptides immobilized titanium surface using a tresyl chloride-activated method. Dent Mater J 2021; 40:934-941. [PMID: 33814533 DOI: 10.4012/dmj.2020-307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Effects of histatin-derived peptides immobilization by tresyl chloride-activation technique for MC3T3-E1 cellular responses on titanium (Ti) were evaluated. MC3T3-E1 were cultured on sandblasted and acid-etched Ti disks immobilized with histatin-derived peptides, including histatin-1, JH8194, and mixed histatin-1 with JH8194. Surface topography and cellular morphology were examined using a scanning electron microscope. Elemental composition and conformational peptides on Ti surface were examined using energy dispersive X-ray and fourier transform infrared spectroscopy, respectively. Cellular adhesion, proliferation, osteogenesis-related genes, and alkaline phosphatase activity were evaluated. The results showed that peptides were successfully immobilized on Ti surface. Cell attachments on histatin-1 and mixed peptides coated groups are higher than control. Histatin-1 achieved the significantly highest cellular proliferation. Histatin-derived peptides improved the osteogenesis related-gene expression and alkaline phosphatase activity (p<0.05). This study suggested that histatin-1 immobilization by tresyl chloride-activation technique enhanced cellular responses and might be able to promote cellular activities around the dental implants.
Collapse
Affiliation(s)
| | | | - Jintamai Suwanprateep
- Biomedical Engineering Research Unit, National Metal and Materials Technology Center, Ministry of Science and Technology
| | - Tohru Hayakawa
- Department of Dental Engineering, Tsurumi University School of Dental Medicine
| | | |
Collapse
|
152
|
Nagata K, Fuchigami K, Kitami R, Okuhama Y, Wakamori K, Sumitomo H, Kim H, Okubo M, Kawana H. Comparison of the performances of low-crystalline carbonate apatite and Bio-Oss in sinus augmentation using three-dimensional image analysis. Int J Implant Dent 2021; 7:24. [PMID: 33754242 PMCID: PMC7985233 DOI: 10.1186/s40729-021-00303-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In locations where the alveolar bone height is low, such as at the maxillary molars, implant placement can be difficult, or even impossible, without procedures aimed at generating new bone, such as sinus lifts. Various types of bone graft materials are used after a sinus lift. In our study, a three-dimensional image analysis using a volume analyzer was performed to measure and compare the volume of demineralized bovine bone mineral (Bio-Oss®) and carbonate apatite (Cytrans®) after a sinus lift, as well as the amount of bone graft material resorption. Patient data were collected from cone-beam computed tomography images taken before, immediately following, and 6 months after the sinus lift. Using these images, both the volume and amount of resorption of each bone graft material were measured using a three-dimensional image analysis system. RESULTS The amount of bone resorption in the Bio-Oss®-treated group was 25.2%, whereas that of the Cytrans®-treated group was 14.2%. A significant difference was found between the two groups (P < 0.001). CONCLUSIONS Our findings indicate that the volume of bone resorption was smaller in the Cytrans®-treated group than in the Bio-Oss®-treated group, suggesting that Cytrans® is more promising for successful implant treatments requiring a sinus lift.
Collapse
Affiliation(s)
- Koudai Nagata
- Department of Oral and Maxillofacial Implantology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, 238-8580, Japan
| | - Kei Fuchigami
- Department of Oral and Maxillofacial Implantology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, 238-8580, Japan
| | - Ryoji Kitami
- Department of Oral and Maxillofacial Implantology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, 238-8580, Japan
| | - Yurie Okuhama
- Department of Oral and Maxillofacial Implantology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, 238-8580, Japan
| | - Kana Wakamori
- Department of Oral and Maxillofacial Implantology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, 238-8580, Japan
| | - Hirokazu Sumitomo
- Department of Oral and Maxillofacial Implantology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, 238-8580, Japan
| | - Hyunjin Kim
- Department of Oral and Maxillofacial Implantology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, 238-8580, Japan
| | - Manabu Okubo
- Department of Oral and Maxillofacial Implantology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, 238-8580, Japan
| | - Hiromasa Kawana
- Department of Oral and Maxillofacial Implantology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, 238-8580, Japan.
| |
Collapse
|
153
|
Choi JY, Cho J, Oh SH, Kim SH, Chung KR, Nelson G. Effect of Different Surface Designs on the Rotational Resistance and Stability of Orthodontic Miniscrews: A Three-Dimensional Finite Element Study. SENSORS 2021; 21:s21061964. [PMID: 33799632 PMCID: PMC8001794 DOI: 10.3390/s21061964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/03/2023]
Abstract
High orthodontic forces and various directions of applied forces can be associated with loosening of the screw anchorage in the bone. Screw designs have been modified to increase the stability of the miniscrews. This research evaluates the influence of three-designs on the stability of orthodontic miniscrews. A conventionally cylinder-type miniscrew design (Bio-Action screw, Jin-Biomed co., Bucheon, Korea) was set as a control, and three conditions were studied based on modifications of this control design. Condition-1 has narrowed threads in the upper part of the screw; Condition-2 has a notch at the middle part; and Condition-3 has the combination of Condition-1 and Condition-2. The moment required to unwind the miniscrew to five degrees is tested, and the moment generated at the cortical bone and the trabecular bone were calculated with finite element analysis. Compared to the control, all three conditions showed a higher moment required to unwind the miniscrew and a higher moment generated at the cortical bone. At the trabecular bone, condition-2 and -3 showed higher moment than the control, and condition-1 showed similar moment to the control. Condition-3 required a higher overall moment to unwind the miniscrew. These findings validate the design modifications used to increase the rotational resistance.
Collapse
Affiliation(s)
- Jin-Young Choi
- Department of Orthodontics, Graduate School of Dentistry, Kyung Hee University, Seoul 02447, Korea; (J.-Y.C.); (K.-R.C.)
| | - Jaehee Cho
- Department of Orthodontics, Graduate School of Medicine, Korea University, Seoul 02841, Korea;
| | - Song Hee Oh
- Department of Oral and Maxillofacial Radiology, Graduate School of Dentistry, Kyung Hee University, Seoul 02447, Korea;
| | - Seong-Hun Kim
- Department of Orthodontics, Graduate School of Dentistry, Kyung Hee University, Seoul 02447, Korea; (J.-Y.C.); (K.-R.C.)
- Correspondence:
| | - Kyu-Rhim Chung
- Department of Orthodontics, Graduate School of Dentistry, Kyung Hee University, Seoul 02447, Korea; (J.-Y.C.); (K.-R.C.)
| | - Gerald Nelson
- Division of Orthodontics, Department of Orofacial Science, University of California, San Francisco, CA 94143, USA;
| |
Collapse
|
154
|
Han J, Zhang F, Van Meerbeek B, Vleugels J, Braem A, Castagne S. Laser surface texturing of zirconia-based ceramics for dental applications: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112034. [PMID: 33812647 DOI: 10.1016/j.msec.2021.112034] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Laser surface texturing is widely explored for modifying the surface topography of various materials and thereby tuning their optical, tribological, biological, and other surface properties. In dentistry, improved osseointegration has been observed with laser textured titanium dental implants in clinical trials. Due to several limitations of titanium materials, dental implants made of zirconia-based ceramics are now considered as one of the best alternatives. Laser surface texturing of zirconia dental implants is therefore attracting increasing attention. However, due to the brittle nature of zirconia, as well as the metastable tetragonal ZrO2 phase, laser texturing in the case of zirconia is more challenging than in the case of titanium. Understanding these challenges requires different fields of expertise, including laser engineering, materials science, and dentistry. Even though much progress was made within each field of expertise, a comprehensive analysis of all the related factors is still missing. This review paper provides thus an overview of the common challenges and current status on the use of lasers for surface texturing of zirconia-based ceramics for dental applications, including texturing of zirconia implants for improving osseointegration, texturing of zirconia abutments for reducing peri-implant inflammation, and texturing of zirconia restorations for improving restoration retention by bonding.
Collapse
Affiliation(s)
- Jide Han
- KU Leuven, Department of Mechanical Engineering and Flanders Make@KU Leuven-MaPS, Celestijnenlaan 300, 3001 Leuven, Belgium
| | - Fei Zhang
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, 3001 Leuven, Belgium; KU Leuven, Department of Oral Health Sciences, BIOMAT, Kapucijnenvoer 7 Block A, 3000 Leuven, Belgium
| | - Bart Van Meerbeek
- KU Leuven, Department of Oral Health Sciences, BIOMAT, Kapucijnenvoer 7 Block A, 3000 Leuven, Belgium
| | - Jozef Vleugels
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, 3001 Leuven, Belgium
| | - Annabel Braem
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, 3001 Leuven, Belgium
| | - Sylvie Castagne
- KU Leuven, Department of Mechanical Engineering and Flanders Make@KU Leuven-MaPS, Celestijnenlaan 300, 3001 Leuven, Belgium.
| |
Collapse
|
155
|
Additive Manufacturing of Titanium-Based Implants with Metal-Based Antimicrobial Agents. METALS 2021. [DOI: 10.3390/met11030453] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Due to increasing bacterial resistance to antibiotics, surface coatings of medical devices with antimicrobial agents have come to the fore. These surface coatings on medical devices were basically thin coatings that delaminated from the medical devices due to the fluid environment and the biomechanical activities associated with in-service implants. The conventional methods of manufacturing have been used to alloy metal-based antimicrobial (MBA) agents such as Cu with Ti6Al4V to enhance its antibacterial properties but failed to produce intricate shapes. Additive manufacturing technology, such as laser powder bed fusion (LPBF), could be used to produce the Ti6Al4V–xCu alloy with intricate shapes to enhance osseointegration, but have not been successful for texturing the surfaces of the Ti6Al4V–xCu samples at the nanoscale.
Collapse
|
156
|
Wehner C, Laky M, Shokoohi-Tabrizi HA, Behm C, Moritz A, Rausch-Fan X, Andrukhov O. Effects of Er:YAG laser irradiation of different titanium surfaces on osteoblast response. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:22. [PMID: 33675441 PMCID: PMC7936964 DOI: 10.1007/s10856-021-06493-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The aim of this in vitro study was to evaluate the effects of erbium-doped yttrium aluminum garnet (Er:YAG) laser irradiation on titanium surface topography and the proliferation and differentiation of osteoblasts using standard clinical treatment settings. Er:YAG laser irradiation at two levels ((1): 160 mJ, pulse at 20 Hz; (2): 80 mJ, pulse at 20 Hz) was applied to moderately rough and smooth titanium disks before MG-63 osteoblast-like cells were cultured on these surfaces. Titanium surface and cell morphology were observed by scanning electron microscopy. Cell proliferation/viability was measured by CCK-8 test. Gene expression of alkaline phosphatase (ALP), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor kappa-B ligand (RANKL), and collagen type 1 was measured by qPCR, and OPG and OC protein production was determined by enzyme-linked immunosorbent assay. Treatment with Er:YAG laser at 160 mJ/20 Hz markedly caused heat-induced fusion of titanium and cell condensation on moderately rough surfaces, but not in smooth surfaces. MG-63 proliferation/viability decreased after 5 days in moderately rough surfaces. The expression of ALP, OC, OPG, and collagen type 1 was unaffected by laser treatment at 160 mJ/20. Laser irradiation at 80 mJ/20 Hz enhanced RANKL gene expression after 5 days in moderately rough surfaces. Study results suggest that Er:YAG laser irradiation at clinically relevant setting has no essential effect on osteogenic gene and protein expression of osteoblasts. However, surface structure, cell attachment, and proliferation are influenced by both treatment protocols, which implies that caution should be taken in the clinical treatment of peri-implant diseases when Er:YAG laser is used.
Collapse
Affiliation(s)
- Christian Wehner
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Markus Laky
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Hassan Ali Shokoohi-Tabrizi
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christian Behm
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Andreas Moritz
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Oleh Andrukhov
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
157
|
Zhang Q, Yue X. Marginal Bone Loss around Machined Smooth Neck Implants Compared to Rough Threaded Neck Implants: A Systematic Review and Meta-Analysis. J Prosthodont 2021; 30:401-411. [PMID: 33462909 DOI: 10.1111/jopr.13333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The purpose of this meta-analysis was to assess the effect of rough threaded neck implants on marginal bone loss, compared to machined smooth neck implants. MATERIALS AND METHODS Literature searches were performed in the Cochrane Central Register of Controlled Trials (The Cochrane Library) (up to March 04, 2020), MEDLINE (PubMed) (1966 to March 04, 2020), and EMBASE (1980 to March 04, 2020), and reference lists of relevant manuscripts and relevant systematic reviews. Grey literature was sought using Grey Literature Net-Work Service (www.opengrey.eu) and The Grey Literature Report (www.greylit.org). Randomized controlled trials and controlled clinical trials that compared the effects of machined smooth neck implants versus rough threaded neck implants on marginal bone loss were included. Two review authors selected studies, assessed trial quality, and extracted data from included studies independently. The meta-analysis was carried out with Review Manager v5.3 software that compared marginal bone loss between rough threaded neck implants and machined smooth neck implants. RESULTS This review included 8 manuscripts (2 randomized controlled trials and 6 controlled clinical trials) from 6 clinical studies. The marginal bone loss around the rough threaded neck implants was significantly less than that around machined smooth neck ones (MD: -0.43 mm, 95% CI: -0.65 to -0.22 mm; p < 0.0001). In the subgroup with different platform connections, less marginal bone loss was observed around the rough threaded neck implants with platform switching (MD: -0.67 mm, 95% CI: -0.87 to -0.48 mm; p < 0.00001) or with regular platform (MD: -0.28 mm, 95% CI: -0.39 to -0.18 mm; p < 0.00001). The statistical analysis of the subgroups with functional loading for 3 or 6 months (MD: -0.39 mm; 95% CI: -0.61 to -0.18 mm; p = 0.0003) and 1 year or longer (MD: -0.43 mm, 95% CI: -0.65 to -0.22 mm; p < 0.0001) suggested that the rough threaded neck implants helped to reduce marginal bone loss. CONCLUSIONS The results of this review suggested that rough threaded neck implants may be helpful in maintaining the amount of marginal bone around implants. Larger sample size, longer follow-up periods and well-conducted randomized controlled trials are necessary to further prove the validity of the findings.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinxin Yue
- Department of Dental Implantology, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
158
|
Inchingolo AD, Inchingolo AM, Bordea IR, Xhajanka E, Romeo DM, Romeo M, Zappone CMF, Malcangi G, Scarano A, Lorusso F, Isacco CG, Marinelli G, Contaldo M, Ballini A, Inchingolo F, Dipalma G. The Effectiveness of Osseodensification Drilling Protocol for Implant Site Osteotomy: A Systematic Review of the Literature and Meta-Analysis. MATERIALS 2021; 14:ma14051147. [PMID: 33671038 PMCID: PMC7957527 DOI: 10.3390/ma14051147] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
Many different osteotomy procedures has been proposed in the literature for dental implant site preparation. The osseodensification is a drilling technique that has been proposed to improve the local bone quality and implant stability in poor density alveolar ridges. This technique determines an expansion of the implant site by increasing the density of the adjacent bone. The aim of the present investigation was to evaluate the effectiveness of the osseodensification technique for implant site preparation through a literature review and meta-analysis. The database electronic research was performed on PubMed (Medline) database for the screening of the scientific papers. A total of 16 articles have been identified suitable for the review and qualitative analysis—11 clinical studies (eight on animals, three on human subjects), four literature reviews, and one case report. The meta-analysis was performed to compare the bone-to-implant contact % (BIC), bone area fraction occupied % (BAFO), and insertion torque of clockwise and counter-clockwise osseodensification procedure in animal studies. The included articles reported a significant increase in the insertion torque of the implants positioned through the osseodensification protocol compared to the conventional drilling technique. Advantages of this new technique are important above all when the patient has a strong missing and/or low quantity of bone tissue. The data collected until the drafting of this paper detect an improvement when the osseodensification has been adopted if compared to the conventional technique. A significant difference in BIC and insertion torque between the clockwise and counter-clockwise osseodensification procedure was reported, with no difference in BAFO measurements between the two approaches. The effectiveness of the present study demonstrated that the osseodensification drilling protocol is a useful technique to obtain increased implant insertion torque and bone to implant contact (BIC) in vivo. Further randomized clinical studies are required to confirm these pieces of evidence in human studies.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (D.M.R.); (M.R.); (C.M.F.Z.); (G.M.); (C.G.I.); (G.M.); (F.I.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (D.M.R.); (M.R.); (C.M.F.Z.); (G.M.); (C.G.I.); (G.M.); (F.I.); (G.D.)
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence: (I.R.B.); (F.L.); Tel.:+4-07-4491-9319 (I.R.B.); +39-087-1455-4100 (F.L.)
| | - Edit Xhajanka
- Department of Dental Prosthesis, University of Tirana, Nr 183 Tirana, Albania;
| | - Donato Mario Romeo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (D.M.R.); (M.R.); (C.M.F.Z.); (G.M.); (C.G.I.); (G.M.); (F.I.); (G.D.)
- Freelancer Studio Dentistico Drs. Romeo, 75025 Policoro, Italy
| | - Mario Romeo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (D.M.R.); (M.R.); (C.M.F.Z.); (G.M.); (C.G.I.); (G.M.); (F.I.); (G.D.)
- Freelancer Studio Dentistico Drs. Romeo, 75025 Policoro, Italy
| | - Carlo Maria Felice Zappone
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (D.M.R.); (M.R.); (C.M.F.Z.); (G.M.); (C.G.I.); (G.M.); (F.I.); (G.D.)
- Freelancer Studio Dentistico Drs. Romeo, 75025 Policoro, Italy
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (D.M.R.); (M.R.); (C.M.F.Z.); (G.M.); (C.G.I.); (G.M.); (F.I.); (G.D.)
| | - Antonio Scarano
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Felice Lorusso
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy;
- Correspondence: (I.R.B.); (F.L.); Tel.:+4-07-4491-9319 (I.R.B.); +39-087-1455-4100 (F.L.)
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (D.M.R.); (M.R.); (C.M.F.Z.); (G.M.); (C.G.I.); (G.M.); (F.I.); (G.D.)
- Human Stem Cells Research Center HSC of Ho Chi Minh, Ho Chi Minh 70000, Vietnam
- Embryology and Regenerative Medicine and Immunology, Pham Chau Trinh University of Medicine Hoi An, Hoi An 70000, Vietnam
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (D.M.R.); (M.R.); (C.M.F.Z.); (G.M.); (C.G.I.); (G.M.); (F.I.); (G.D.)
| | - Maria Contaldo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy;
| | - Andrea Ballini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Campus Universitario “Ernesto Quagliariello” University of Bari “Aldo Moro”, 70125 Bari, Italy;
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (D.M.R.); (M.R.); (C.M.F.Z.); (G.M.); (C.G.I.); (G.M.); (F.I.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (D.M.R.); (M.R.); (C.M.F.Z.); (G.M.); (C.G.I.); (G.M.); (F.I.); (G.D.)
| |
Collapse
|
159
|
Aoyagi A, Hata M, Matsukawa R, Imanishi Y, Takebe J. Physicochemical properties of anodized-hydrothermally treated titanium with a nanotopographic surface structure promote osteogenic differentiation in dental pulp stem cells. J Prosthodont Res 2021; 65:474-481. [PMID: 33612663 DOI: 10.2186/jpr.jpr_d_20_00114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE Implants made of anodized-hydrothermally treated commercially pure titanium with a nanotopographic surface structure (SA-treated c.p.Ti) may advantageously promote contact osteogenesis during the early stages of healing. We hypothesized that utilizing SA-treated c.p.Ti with dental pulp stem cells (DPSCs) might improve osteoconduction during the process of osseointegration. This in vitro study investigated the effect of initial adhesion of DPSCs to SA-treated c.p.Ti compared with conventional c.p.Ti and anodic oxide (AO) c.p.Ti. METHODS DPSCs were obtained from the mandibular incisors of Sprague-Dawley rats and cultured without osteogenic induction medium on c.p.Ti, AO c.p.Ti, and SA-treated c.p.Ti disks for up to 14 days. The morphology, proliferation, and differentiation of DPSCs were assessed by scanning electron microscopy, an MTT assay, and Alizarin Red S staining, respectively. A real-time quantitative polymerase chain reaction was used to quantify the mRNA expression of osteocalcin, osteopontin, and bone sialoprotein. RESULTS On all disks, the DPSCs appeared flattened with the formation of extensions over time. The filopodium-like extensions were closely bound to the SA-treated c.p.Ti surface. The proliferation of DPSCs was not significantly different among the c.p.Ti treatments. However, DPSCs on SA-treated c.p.Ti showed the greatest mRNA levels of osteopontin, osteocalcin, and bone sialoprotein, as well as increased Alizarin Red S staining. CONCLUSIONS The results of the present in vitro study demonstrate that the surface properties of SA-treated c.p.Ti disks enhance osteogenic differentiation of DPSCs and may facilitate mineralized matrix formation on SA-treated c.p.Ti implant surfaces, which can enhance early bone regeneration.
Collapse
Affiliation(s)
- Atsushi Aoyagi
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya
| | - Masaki Hata
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya
| | - Ryohei Matsukawa
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya
| | - Yuka Imanishi
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya
| | - Jun Takebe
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya
| |
Collapse
|
160
|
Wang L, Gao Z, Su Y, Liu Q, Ge Y, Shan Z. Osseointegration of a novel dental implant in canine. Sci Rep 2021; 11:4317. [PMID: 33619303 PMCID: PMC7900171 DOI: 10.1038/s41598-021-83700-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/05/2021] [Indexed: 01/20/2023] Open
Abstract
This study aimed to compare and verify the osseointegration performance of a novel implant (NI) in vivo, which could provide a useful scientific basis for the further development of NIs. Thirty-two NIs treated with hydrofluoric acid and anodization and sixteen control implants (CIs) were placed in the mandibles of 8 beagles. Micro-CT showed that the trabecular number (Tb.N) significantly increased and trabecular separation (Tb.Sp) significantly decreased in the NIs at 2 weeks. Significant differences were found in the trabecular thickness, Tb.N, Tb.Sp, bone surface/bone volume ratio, and bone volume/total volume ratio between the two groups from the 2nd–4th weeks. However, there were no significant differences between the two groups in the bone volume density at 2, 4, 8, or 12 weeks or bone-implant contact at 2 or 4 weeks, but the BIC in the CIs was higher than that in the NIs at the 8th and 12th weeks. Meanwhile, the histological staining showed a similar osseointegration process between the two groups over time. Overall, the NIs could be used as new potential implants after further improvement.
Collapse
Affiliation(s)
- Lingxiao Wang
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Tian Tan Xi Li No. 4, Beijing, 100050, People's Republic of China
| | - Zhenhua Gao
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Tian Tan Xi Li No. 4, Beijing, 100050, People's Republic of China
| | - Yucheng Su
- Department of Stomatology, Chinese Academy of Medical Science & Peking Union Medical College Hospital, No. 41 Damucang Hutong, Xicheng District, Beijing, 100032, People's Republic of China.,Beijing Citident Stomatology Hospital, Beijing, 100032, People's Republic of China
| | - Qian Liu
- Beijing Citident Stomatology Hospital, Beijing, 100032, People's Republic of China
| | - Yi Ge
- Department of Stomatology, Chinese Academy of Medical Science & Peking Union Medical College Hospital, No. 41 Damucang Hutong, Xicheng District, Beijing, 100032, People's Republic of China.
| | - Zhaochen Shan
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Tian Tan Xi Li No. 4, Beijing, 100050, People's Republic of China.
| |
Collapse
|
161
|
Meijndert CM, Raghoebar GM, Vissink A, Meijer HJA. Alveolar ridge preservation in defect sockets in the maxillary aesthetic zone followed by single-tooth bone level tapered implants with immediate provisionalization: a 1-year prospective case series. Int J Implant Dent 2021; 7:18. [PMID: 33604747 PMCID: PMC7892651 DOI: 10.1186/s40729-021-00292-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/25/2021] [Indexed: 11/15/2022] Open
Abstract
Background Clinical studies of single-tooth replacement in compromised bone using bone level tapered implants in the aesthetic zone are scarce. Aim To assess clinically, radiographically and aesthetically over 1 year the performance of a bone level tapered implant in the maxillary aesthetic zone in sites after alveolar ridge preservation. Material and methods Thirty patients (16 male, 14 female) with a failing tooth and large bone defect after removal received alveolar ridge preservation. After 3 months, implants were placed with immediate provisionalization. Definitive restorations were placed after 3 months. The treatment was evaluated 1 year following the definitive restoration. Results All the patients attended the 1-year follow-up. One implant was lost (96.7% implant survival rate). The mean implant stability quotient value was 68.9 ± 8.74 at implant placement. The mean marginal bone level change was minor (− 0.07 ± 0.12 mm). The mean mid-buccal mucosa changed with + 0.01 ± 0.45 mm. The median Pink Esthetic Score and White Esthetic Score after 1 year were 6 [4; 7] and 8 [7; 9], respectively. The patients’ mean overall satisfaction (0–100 VAS scale) was 86.6 ± 10.3. Conclusion Bone level tapered implants with immediate provisionalization perform well after alveolar ridge preservation in the maxillary aesthetic zone, according to implant stability, clinical, radiographic, aesthetic and patient-centred outcomes. Trial registration NTR, NL8755. Registered on 1 January 2016
Collapse
Affiliation(s)
- Caroliene M Meijndert
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, PO Box 30.001, NL-9700, RB, Groningen, The Netherlands.
| | - Gerry M Raghoebar
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, PO Box 30.001, NL-9700, RB, Groningen, The Netherlands
| | - Arjan Vissink
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, PO Box 30.001, NL-9700, RB, Groningen, The Netherlands
| | - Henny J A Meijer
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, PO Box 30.001, NL-9700, RB, Groningen, The Netherlands.,Department of Implant Dentistry, Dental School, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
162
|
Abaricia JO, Shah AH, Ruzga MN, Olivares-Navarrete R. Surface characteristics on commercial dental implants differentially activate macrophages in vitro and in vivo. Clin Oral Implants Res 2021; 32:487-497. [PMID: 33502059 DOI: 10.1111/clr.13717] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/16/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Biomaterial implantation provokes an inflammatory response that controls integrative fate. M2 macrophages regulate the response to implants by resolving the inflammatory phase and recruiting progenitor cells to aid healing. We have previously shown that modified titanium (Ti) disks directly induce M2 macrophage polarization. The aim of this study was to examine macrophage response to commercially available Ti or Ti alloy implants with comparable roughness and varying hydrophilicity. MATERIAL AND METHODS Eleven commercially available Ti (A-F) or Ti alloy (G-K) dental implants were examined in this study. Surface topography, chemistry, and hydrophilicity were characterized for each implant. To compare the immune response in vitro, human monocyte-derived macrophages were seeded on implants and secreted pro- and anti-inflammatory proteins measured. To evaluate the inflammatory response in vivo, mice were subcutaneously instrumented with clinical implants, and implant adherent macrophage populations were characterized by flow cytometry. RESULTS Macrophages on hydrophobic Implant C produced the highest level of pro-inflammatory proteins in vitro. In contrast, hydrophilic Implant E produced the second-highest pro-inflammatory response. Implants F and K, both hydrophilics, produced the highest anti-inflammatory protein secretions. Likewise, pro-inflammatory CD80hi macrophages predominated in vivo on implants C and E, and M2 CD206 + macrophages predominated on implants F and K. CONCLUSIONS These findings show that hydrophilicity alone is insufficient to predict the anti-inflammatory effect on macrophage polarization and that other properties-surface composition or topography-determine immune modulation. This in vivo model may be a useful screening method to compare the immunomodulatory response to clinical implants of disparate geometry or size.
Collapse
Affiliation(s)
- Jefferson O Abaricia
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Arth H Shah
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Marissa N Ruzga
- Department of Biomedical Engineering, College of Engineering, Ohio State University, Columbus, OH, USA
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
163
|
A Radiographic and Clinical Comparison of Immediate vs. Early Loading (4 Weeks) of Implants with a New Thermo-Chemically Treated Surface: A Randomized Clinical Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031223. [PMID: 33572988 PMCID: PMC7908367 DOI: 10.3390/ijerph18031223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 01/26/2021] [Indexed: 01/18/2023]
Abstract
Background: Implant dentistry has evolved over time, resulting in better treatment outcomes for both patients and clinicians. The aim of this trial was to test whether the immediate loading of implants with a platform-switching design influences the marginal bone level, compared to four-week loading, after one year of follow-up. Moreover, a comparison of clinical data regarding implant survival, implant stability, and patient-reported outcome measures (PROMs) was conducted. Methods: Klockner® VEGA® implants with a ContacTi® surface were placed in partially edentulous patients in the posterior areas. Group A received an immediately loaded prosthesis (one week) and Group B received an early-loaded prosthesis (four weeks). All abutments were placed at the time of surgery. Radiographic and clinical data were recorded. Results: Twenty-one patients were treated (35 implants). No implants were lost during the study. The final marginal bone level did not show differences between groups. The bone loss at 12 months at the implant level was 0.00 mm for both groups (median). The final implant quotient stability (ISQ) values did not differ between groups (median 73 and 70.25), nor did the other clinical parameters or PROMs. Conclusions: The results suggest that neither of the loading protocols with the implants used influenced the marginal bone level—not the osseointegration rate, clinical conditions, or PROMs.
Collapse
|
164
|
Martins BR, Pinto TS, da Costa Fernandes CJ, Bezerra F, Zambuzzi WF. PI3K/AKT signaling drives titanium-induced angiogenic stimulus. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:18. [PMID: 33506378 PMCID: PMC7840643 DOI: 10.1007/s10856-020-06473-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 12/10/2020] [Indexed: 05/15/2023]
Abstract
Although osseointegration and clinical success of titanium (Ti)-implanted materials depend on neovascularization in the reactional peri-implant tissue, very little has been achieved considering the Ti-molecules release on the behavior of endothelial cells. To address this issue, we challenged endothelial cells (HUVECs) with Ti-enriched medium obtained from two types of commercial titanium surfaces [presenting or not dual-acid etching (DAE)] up to 72 h to allow molecular machinery analysis. Our data show that the Ti-enriched medium provokes significant stimulus of angiogenesis-related machinery in endothelial cells by upexpressing VEGFR1, VEGFR2, VEGF, eNOS, and iNOS genes, while the PI3K/Akt signaling pathway was also significantly enhanced. As PI3K/AKT signaling was related to angiogenesis in response to vascular endothelial growth factor (VEGF), we addressed the importance of PI3K/Akt upon Ti-enriched medium responses by concomitantly treating the cells with wortmannin, a well-known PI3K inhibitor. Wortmannin suppressed the angiogenic factors, because VEGF, VEGFR1, and eNOS genes were downregulated in those cells, highlighting the importance of PI3K/AKT signaling on driving angiogenic phenotype and angiogenesis performance within the peri-implant tissue reaction. In conjunction, these data reinforce that titanium-implantable devices modify the metabolism of surrounding cells, such as endothelial cells, probably coupling osteogenesis and angiogenesis processes in peri-implant tissue and then contributing to successfully osseointegration of biomedical titanium-based devices.
Collapse
Affiliation(s)
- Bruna Rodrigues Martins
- Institute of Biosciences of Botucatu, Department of Chemical and Biological Sciences, UNESP - São Paulo State University, Botucatu, São Paulo, Brazil
| | - Thais Silva Pinto
- Institute of Biosciences of Botucatu, Department of Chemical and Biological Sciences, UNESP - São Paulo State University, Botucatu, São Paulo, Brazil
| | - Célio Junior da Costa Fernandes
- Institute of Biosciences of Botucatu, Department of Chemical and Biological Sciences, UNESP - São Paulo State University, Botucatu, São Paulo, Brazil
| | - Fábio Bezerra
- Institute of Biosciences of Botucatu, Department of Chemical and Biological Sciences, UNESP - São Paulo State University, Botucatu, São Paulo, Brazil
| | - Willian Fernando Zambuzzi
- Institute of Biosciences of Botucatu, Department of Chemical and Biological Sciences, UNESP - São Paulo State University, Botucatu, São Paulo, Brazil.
| |
Collapse
|
165
|
Ye J, Huang B, Gong P. Nerve growth factor-chondroitin sulfate/hydroxyapatite-coating composite implant induces early osseointegration and nerve regeneration of peri-implant tissues in Beagle dogs. J Orthop Surg Res 2021; 16:51. [PMID: 33436038 PMCID: PMC7805124 DOI: 10.1186/s13018-020-02177-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/25/2020] [Indexed: 02/08/2023] Open
Abstract
Background Osseointegration is the premise of the chewing function of dental implant. Nerve growth factor (NGF), as a neurotrophic factor, can induce bone healing. However, the influence of NGF-chondroitin sulfate (CS)/hydroxyapatite (HA)-coating composite implant on the osseointegration and innervations is still not entirely clear. Materials and methods NGF-CS/HA-coating composite implants were prepared using the modified biomimetic method. The characteristics of NGF-CS/HA-coating implants were determined using a scanning electron microscope. After NGF-CS/HA-coating implants were placed in the mandible of Beagle dogs, the early osseointegration and innervation in peri-implant tissues were assessed through X-ray, Micro-CT, maximal pull-out force, double fluorescence staining, toluidine blue staining, DiI neural tracer, immunohistochemistry, and RT-qPCR assays. Results NGF-CS/HA-coating composite implants were made successfully, which presented porous mesh structures with the main components (Ti and HA). Besides, we revealed that implantation of NGF-CS/HA-coating implants significantly changed the morphology of bone tissues and elevated maximum output, MAR, BIC, and nerve fiber in the mandible of Beagle dogs. Moreover, we proved that the implantation of NGF-CS/HA-coating implants also markedly upregulated the levels of NGF, osteogenesis differentiation, and neurogenic differentiation-related genes in the mandible of Beagle dogs. Conclusion Implantation of NGF-CS/HA-coating composite implants has significant induction effects on the early osseointegration and nerve regeneration of peri-implant tissues in the mandible of Beagle dogs. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-020-02177-5.
Collapse
Affiliation(s)
- Jun Ye
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, People's Republic of China
| | - Bo Huang
- State Key Laboratory of Oral Diseases, General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, Department of Oral Implant, West China School of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
166
|
Sahrmann P, Winkler S, Gubler A, Attin T. Assessment of implant surface and instrument insert changes due to instrumentation with different tips for ultrasonic-driven debridement. BMC Oral Health 2021; 21:25. [PMID: 33413296 PMCID: PMC7791805 DOI: 10.1186/s12903-020-01384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/23/2020] [Indexed: 12/04/2022] Open
Abstract
Background To assess the changes of implant surfaces of different roughness after instrumentation with ultrasonic-driven scaler tips of different materials. Methods Experiments were performed on two moderately rough surfaces (I—Inicell® and II—SLA®), one surface without pre-treatment (III) and one smooth machined surface (IV). Scaler tips made of steel (A), PEEK (B), titanium (C), carbon (D) and resin (E) were used for instrumentation with a standardized pressure of 100 g for ten seconds and under continuous automatic motion. Each combination of scaler tip and implant surface was performed three times on 8 titanium discs. After instrumentation roughness was assessed by profilometry, morphological changes were assessed by scanning electron microscopy, and element distribution on the utmost surface by energy dispersive X-ray spectroscopy. Results The surface roughness of discs I and II were significantly reduced by instrumentation with all tips except E. For disc III and IV roughness was enhanced by tip A and C and, only for IV, by tip D. Instrumentation with tips B, D and E left extensive residuals on surface I, II and III. The element analysis of these deposits proved consistent with the elemental composition of the respective tip materials. Conclusion All ultrasonic instruments led to microscopic alterations of all types of implants surfaces assessed in the present study. The least change of implant surfaces might result from resin or carbon tips on machined surfaces.
Collapse
Affiliation(s)
- Philipp Sahrmann
- Clinic of Conservative and Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland.
| | - Sophie Winkler
- Clinic of Conservative and Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Andrea Gubler
- Clinic of Conservative and Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| |
Collapse
|
167
|
Azizi A, Zamparini F, Spinelli A, Pirani C, Gandolfi MG, Prati C. Maryland-bridge application as a suitable technique to preserve marginal bone level of not-submerged supracrestal implants. ACTA ACUST UNITED AC 2021; 69:335-342. [PMID: 33393275 DOI: 10.23736/s0026-4970.20.04309-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND One to 6 months after implant placement is a critical time/period responsible for crestal bone loss that may affect implant osseointegration. The study aims to explore the effectiveness of provisional adhesive Maryland-bridge (AMB) applied to prevent marginal bone level (MBL) around implants placed in edentulous crestal bone in posterior area during osseointegration period. METHODS Healthy, non-smoker patients (N.=18) were included in the study. Titanium implants were placed nonsubmerged (i.e. tissue-level) with cover screws at gingival level in edentulous crestal bone with flapless technique. Nine patients randomly received an AMB, while 9 patients did not receive any AMB. Each AMB remained in place for 3 months and removed before impression. After 3 months abutments were applied, and provisional resin crowns cemented and definitive metal-ceramic crowns were cemented after 2-3 months. Periapical Rx were taken using paralleling technique before and after implant insertion, at 1, 3 months (pre-loading time) and after 6 months (post-loading time). MBL was evaluated in double-blind on scanned periapical radiographs and assessed at mesial and distal side of implants (M-MBL and D-MBL). Area of bone loss on mesial and distal side of implants (Area-M and Area-D) and Cervical Enamel Junction migration of mesial and distal adjacent teeth were also measured (CEJ-M and CEJ-D). Linear regression models were fitted to evaluate the existence of any significant difference. RESULTS Two drop-out was observed in AMB group. A total of 16 patients completed the study. After 6 months, all implants were safe and free from complications. AMB group showed the most stable MBL at 1-6 months, statistically different from non-AMB and resulted in a reduced crestal bone loss from baseline compared to Non AMB group. Area-M and Area-D were not statistically different between the groups. CEJ-M and CEJ-D were stable in both groups. CONCLUSIONS The use of Adhesive Maryland Bridge to protect non-submerged post-extractive implants is a safe procedure that prevents bone loss around implants and preserve the 3D architecture of crestal bone ridge.
Collapse
Affiliation(s)
- Arash Azizi
- Endodontic Clinical Section, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fausto Zamparini
- Endodontic Clinical Section, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Andrea Spinelli
- Endodontic Clinical Section, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Pirani
- Endodontic Clinical Section, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria G Gandolfi
- Laboratory of Biomaterials and Oral Pathology, Department of Biomedical and Neuromotor Sciences, School of Dentistry, University of Bologna, Bologna, Italy
| | - Carlo Prati
- Endodontic Clinical Section, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy -
| |
Collapse
|
168
|
Surface modification techniques of titanium and titanium alloys for biomedical dental applications: A review. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.matpr.2020.06.163] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
169
|
Immunological Aspects of Dental Implant Rejection. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7279509. [PMID: 33376734 PMCID: PMC7744195 DOI: 10.1155/2020/7279509] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Nowadays, dental implants are a prominent therapeutic approach among dentists for replacing missing teeth. Failure in dental implants is a severe challenge recently. The factors which lead to dental implant failure are known. These factors can be categorized into different groups. In this article, we discussed the immunological aspects of implant failure as one of these groups. Cytokines and immune cells have extensive and various functions in peri-implantitis. The equilibrium between pro and anti-inflammatory cytokines and cells, which involve in this orchestra, has a crucial role in implant prognosis. In conclusion, immune cells, especially macrophages and dendritic cells, almost increased in the patients with implant failure. Also, proinflammatory cytokines were proposed as diagnostic factors according to their higher levels in dental implant rejection.
Collapse
|
170
|
Vandamme K, Thevissen K, Mesquita MF, Coropciuc RG, Agbaje J, Thevissen P, da Silva WJ, Vleugels J, De Cremer K, Gerits E, Martens JA, Michiels J, Cammue BPA, Braem A. Implant functionalization with mesoporous silica: A promising antibacterial strategy, but does such an implant osseointegrate? Clin Exp Dent Res 2020; 7:502-511. [PMID: 33382539 PMCID: PMC8404489 DOI: 10.1002/cre2.389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/20/2020] [Accepted: 12/15/2020] [Indexed: 01/13/2023] Open
Abstract
Objectives New strategies for implant surface functionalization in the prevention of peri‐implantitis while not compromising osseointegration are currently explored. The aim of this in vivo study was to assess the osseointegration of a titanium‐silica composite implant, previously shown to enable controlled release of therapeutic concentrations of chlorhexidine, in the Göttingen mini‐pig oral model. Material and Methods Three implant groups were designed: macroporous titanium implants (Ti‐Porous); macroporous titanium implants infiltrated with mesoporous silica (Ti‐Porous + SiO2); and conventional titanium implants (Ti‐control). Mandibular last premolar and first molar teeth were extracted bilaterally and implants were installed. After 1 month healing, the bone in contact with the implant and the bone regeneration in the peri‐implant gap was evaluated histomorphometrically. Results Bone‐to‐implant contact and peri‐implant bone volume for Ti‐Porous versus Ti‐Porous + SiO2 implants did not differ significantly, but were significantly higher in the Ti‐Control group compared with Ti‐Porous + SiO2 implants. Functionalization of titanium implants via infiltration of a SiO2 phase into the titanium macropores does not seem to inhibit implant osseointegration. Yet, the importance of the implant macro‐design, in particular the screw thread design in a marginal gap implant surgery set‐up, was emphasized by the outstanding results of the Ti‐Control implant. Conclusions Next‐generation implants made of macroporous Ti infiltrated with mesoporous SiO2 do not seem to compromise the osseointegration process. Such implant functionalization may be promising for the prevention and treatment of peri‐implantitis given the evidenced potential of mesoporous SiO2 for controlled drug release.
Collapse
Affiliation(s)
- Katleen Vandamme
- Department of Oral Health Sciences & Restorative Dentistry, Biomaterials-BIOMAT, KU Leuven & University Hospitals Leuven, Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Marcelo F Mesquita
- Department of Oral Health Sciences & Restorative Dentistry, Biomaterials-BIOMAT, KU Leuven & University Hospitals Leuven, Leuven, Belgium.,Department of Prosthodontics and Periodontology, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Ruxandra-Gabriella Coropciuc
- Oral and Maxillo-facial Surgery, Imaging & Pathology (OMFS-IMPATH), Department of Oral Health Sciences & Department of Imaging and Pathology, KU Leuven & University Hospitals Leuven, Leuven, Belgium
| | - Jimoh Agbaje
- Oral and Maxillo-facial Surgery, Imaging & Pathology (OMFS-IMPATH), Department of Oral Health Sciences & Department of Imaging and Pathology, KU Leuven & University Hospitals Leuven, Leuven, Belgium
| | - Patrick Thevissen
- Forensic Odontology, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Wander José da Silva
- Department of Oral Health Sciences & Restorative Dentistry, Biomaterials-BIOMAT, KU Leuven & University Hospitals Leuven, Leuven, Belgium.,Department of Prosthodontics and Periodontology, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Jozef Vleugels
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Kaat De Cremer
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,Centre of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Ghent, Belgium
| | - Evelien Gerits
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Johan A Martens
- Centre of Surface Chemistry and Catalysis, KU Leuven, Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,Centre of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Ghent, Belgium
| | - Annabel Braem
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
171
|
Ahmed A, Al-Rasheed A, Badwelan M, Alghamdi HS. Peri-Implant bone response around porous-surface dental implants: A preclinical meta-analysis. Saudi Dent J 2020; 33:239-247. [PMID: 34194186 PMCID: PMC8236543 DOI: 10.1016/j.sdentj.2020.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/09/2022] Open
Abstract
Introduction This meta-analysis of relevant animal studies was conducted to assess whether the use of porous-surface implants improves osseointegration compared to the use of non-porous-surface implants. Material and methods An electronic search of PubMed (MEDLINE) resulted in the selection of ten animal studies (out of 865 publications) for characterization and quality assessment. Risk of bias assessment indicated poor reporting for the majority of studies. The results for bone-implant contact (BIC%) and peri-implant bone formation (BF%) were extracted from the eligible studies and used for the meta-analysis. Data for porous-surface implants were compared to those for non-porous-surface implants, which were considered as the controls. Results The random-effects meta-analysis showed that the use of porous-surface implants did not significantly increase overall BIC% (mean difference or MD: 3.63%; 95% confidence interval or 95% CI: −1.66 to 8.91; p = 0.18), whereas it significantly increased overall BF% (MD: 5.43%; CI: 2.20 to 8.67; p = 0.001), as compared to the controls. Conclusion Porous-surface implants promote osseointegration with increase in BF%. However, their use shows no significant effect on BIC%. Further preclinical and clinical investigations are required to find conclusive evidence on the effect of porous-surface implants.
Collapse
Affiliation(s)
- Abeer Ahmed
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Al-Rasheed
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Badwelan
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Aden University, Aden, Yemen
| | - Hamdan S Alghamdi
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
172
|
Souza ACRD, Tedesco BAN, Lourenção PLTDA, Terra SA, Araújo CDRPD, Spadella CT, Ortolan EVP. Ultrastructural analysis of bone formation around dental implants in nondiabetic rats, severe diabetics not controlled and controlled with insulin. Acta Cir Bras 2020; 35:e351101. [PMID: 33331451 PMCID: PMC7748075 DOI: 10.1590/acb351101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/11/2020] [Indexed: 01/31/2023] Open
Abstract
Purpose: To evaluate bone formation through ultrastructural analysis around titanium implants in severe alloxanic uncontrolled diabetic rats, and controlled with insulin, in comparison with nondiabetic rats. Methods: Thirty-six male Wistar rats, weighing between 200 and 300 g, divided into three experimental groups: normal control group (G1), a diabetic group without treatment (G2), and a diabetic group treated with insulin (G3). The animals received titanium implants in the right femur, and osseointegration was evaluated at 7, 14, and 21 days after surgery, through ultrastructural analysis using scanning electron microscopy. Results: The ultrastructural analysis showed a dense bone structure in the G1, few empty spaces and a small number of proteoglycans; G2 presented bone matrix with a loose aspect, irregular arrangement, thin trabeculae, empty spaces and a large number of proteoglycans; G3 obtained similar results to G1, however with a higher number of proteoglycans. Conclusion: Severe diabetes caused ultrastructural changes in bone formation, and insulin therapy allowed an improvement in osseointegration, but it was not possible to reach the results obtained in the control group.
Collapse
|
173
|
Wehner C, Behm C, Husejnagic S, Moritz A, Rausch-Fan X, Andrukhov O. Effect of Multi-Phosphonate Coating of Titanium Surfaces on Osteogenic Potential. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5777. [PMID: 33348895 PMCID: PMC7766650 DOI: 10.3390/ma13245777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/27/2022]
Abstract
The aim of this study was to evaluate the impact of a novel multi-phosphonate (MP) coating strategy of dental implant surfaces on the expression of osteogenesis-related factors in vitro. MG-63 human osteoblast-like cells, bone marrow mesenchymal stem cells (BM-MSCs), and human periodontal ligament stem cells (hPDLSCs) were cultured separately on titanium disks with and without MP coating. Cell attachment was visualized by focal adhesion and actin cytoskeleton staining. The proliferation and gene expression of the markers related to osteogenesis and bone turnover were measured after 48 and 120 h of cell culture. Actin cytoskeleton assembly and focal adhesion were similar between test surfaces within each cell type but differed from those on tissue culture plastic (TCP). The proliferation of MG-63 cells and PDLSCs was comparable on all surfaces, while BM-MSCs showed an increase on tissue culture plastic (TCP) versus titanium. The gene expression of osteoprotegerin and receptor activator of nuclear factor-kappa B ligand was higher in MG-63 cells grown on MP-coated surfaces. At the same time, osteocalcin was decreased compared to the other surfaces. Collagen type I gene expression after 120 h was significantly lower in hPDLSCs cultivated on MP-coated surfaces. Within the limitations of this study, MP coating on titanium surfaces might have a slight beneficial effect on bone turnover in vitro.
Collapse
Affiliation(s)
- Christian Wehner
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (C.W.); (S.H.); (A.M.); (X.R.-F.)
| | - Christian Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Selma Husejnagic
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (C.W.); (S.H.); (A.M.); (X.R.-F.)
| | - Andreas Moritz
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (C.W.); (S.H.); (A.M.); (X.R.-F.)
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (C.W.); (S.H.); (A.M.); (X.R.-F.)
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
174
|
Ro HS, Park HJ, Seo YK. Fluorine-incorporated TiO 2 nanotopography enhances adhesion and differentiation through ERK/CREB pathway. J Biomed Mater Res A 2020; 109:1406-1417. [PMID: 33253478 PMCID: PMC8247403 DOI: 10.1002/jbm.a.37132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/25/2022]
Abstract
This study compared the topography of different titanium surface structures (TiO2 nanotube and grain) with similar elemental compositions (TiO2 and fluorine [F]) on the Ti surface. High magnification indicated that the surfaces of the control and etching groups were similar to each other in a flat, smooth form. The group anodized for 1 h was observed with TiO2 nanotubes organized very neatly and regularly. In the group anodized for 30 min after etching, uneven wave and nanopore structures were observed. In addition, MTT assay showed that the F of the surface did not adversely affect cell viability, and the initial cell adhesion was increased in the 2.8% F‐incorporated TiO2 nanograin. At the edge of adherent cells, filopodia were observed in spreading form on the surfaces of the anodizing and two‐step processing groups, and they were observed in a branch shape in the control and etching groups. Moreover, cell adhesion molecule and osteogenesis marker expression was increased at the F‐incorporated TiO2 nanostructure. In addition, it was found that the expression of p‐extracellular signal‐regulated kinase (ERK) and p‐cAMP response element‐binding protein (CREB) increased in the TiO2 nanograin with the nanopore surface compared to the micro rough and nanotube surfaces relative to the osteogenic‐related gene expression patterns. As a result, this study confirmed that the topographic structure of the surface is more affected by osteogenic differentiation than the pore size and that differentiation by specific surface composition components is by CREB. Thus, the synergy effect of osteogenic differentiation was confirmed by the simultaneous activation of CREB/ERK.
Collapse
Affiliation(s)
- Hyang-Seon Ro
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, South Korea
| | - Hee-Jung Park
- Department of Medical Biotechnology (BK21 Plus team), Dongguk University, Gyeonggi-do, South Korea
| | - Young-Kwon Seo
- Department of Medical Biotechnology (BK21 Plus team), Dongguk University, Gyeonggi-do, South Korea
| |
Collapse
|
175
|
Kissa J, El Kholti W, Chemlali S, Kawtari H, Laalou Y, Albandar JM. Prevalence and risk indicators of peri-implant diseases in a group of Moroccan patients. J Periodontol 2020; 92:1096-1106. [PMID: 33306841 DOI: 10.1002/jper.20-0549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND To report the prevalence of peri-implant diseases in a North African patient population, and to assess the concurrent associations of patient- and implant-level characteristics with probing depth and bone loss around dental implants METHODS: A total of 642 implants in 145 subjects were followed up for a mean 6.4 years. At the last follow-up visit the subjects were examined clinically and radiographically to assess the status of peri-implant tissues and teeth. Data analysis used the generalized linear mixed models RESULTS: The prevalence of peri-implant mucositis and peri-implantitis were 82.1% and 41.4% at the subject level, and 68.4% and 22.7% at the implant level, respectively. Inadequate plaque control, peri-implant inflammation, history of previous implant failures, and pain/discomfort at the implant site were significantly associated with both outcomes (increased probing depth and bone loss). Diabetes mellitus, inadequate implant restoration, single restorations (versus multi-unit), cement-retained restorations, and presence of occlusal wear facets on teeth were significantly associated with one of the two outcomes. Implants placed in the lower anterior jaw region had the most favorable outcome. Smoking, history of periodontitis, and type of implant surface did not show significant associations with higher frequency of peri-implant diseases in the multivariable analysis. CONCLUSIONS Peri-implant diseases are prevalent in this North African patient population. Multiple subject- and implant-level variables were associated with peri-implant diseases. Risk assessment of these effects should consist of a concurrent inclusion of these factors in multivariable analyses that also adjust for the complex variance structure of the oral environment.
Collapse
Affiliation(s)
- Jamila Kissa
- Department of Periodontology, University of Hassan II of Casablanca, Casablanca, Morocco
| | - Wafa El Kholti
- Department of Periodontology, University of Hassan II of Casablanca, Casablanca, Morocco
| | - Sihame Chemlali
- Department of Periodontology, University of Hassan II of Casablanca, Casablanca, Morocco
| | | | | | - Jasim M Albandar
- Department of Periodontology and Oral Implantology, School of Dentistry, Temple University, Philadelphia, PA, USA
| |
Collapse
|
176
|
Comparative Analysis of Peri-Implant Bone Loss in Extra-Short, Short, and Conventional Implants. A 3-Year Retrospective Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249278. [PMID: 33322472 PMCID: PMC7764541 DOI: 10.3390/ijerph17249278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 02/02/2023]
Abstract
Objective: To evaluate the influence of implant length on marginal bone loss, comparing implants of 4 mm, 6 mm, and >8 mm, supporting two splinted crowns after 36-month functional loading. Materials and Methods: this retrospective clinical trial evaluated the peri-implant behavior of splinted crowns (two per case) on pairs of implants of the same length placed in the posterior maxilla (molar area). Implants were divided into three groups according to length (Group 1: extra-short 4 mm; Group 2: short 6 mm; Group 3: conventional length >8 mm). Marginal bone loss was analyzed using standardized periapical radiographs at the time of loading and 36 months later. Results: 24 patients (19 women and 5 men) were divided into three groups, eight rehabilitations per group, in the position of the maxillary first and second molars. The 48 Straumann® Standard Plus (Regular Neck (RN)/Wide Neck (WN)) implants were examined after 36 months of functional loading. Statistical analysis found no significant differences in bone loss between the three groups (p = 0.421). No implant suffered biological complications or implant loss. Long implants were associated with less radiographic bone loss. Conclusions: extra-short (4 mm); short (6 mm); and conventional length (>8 mm) implants in the posterior maxilla present similar peri-implant bone loss and 100% survival rates in rehabilitation, by means of two splinted crowns after 36 months of functional loading. Implants placed in posterior positions present better bone loss results than implants placed in anterior positions, regardless of the interproximal area where bone loss is measured. Conventional length (>8 mm) implants show better behavior in terms of distal bone loss than short (6 mm) and extra-short (4 mm) implants.
Collapse
|
177
|
Alnufaiy BM, Lambarte RNA, Al-Hamdan KS. The Osteogenetic Potential of Chitosan Coated Implant: An In Vitro Study. J Stem Cells Regen Med 2020; 16:44-49. [PMID: 33414580 DOI: 10.46582/jsrm.1602008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022]
Abstract
Objective: Chitosan is a promising polymer that has been used for coating dental implants. However, research concerning coatings with implant surfaces other than commercially pure titanium is limited. Therefore, this study aims to clarify the chitosan material's effect with two degrees of deacetylation (DDA) as coatings for laser surface microtopographic implants. Methods: Sixty-three Laser-Lok (LL) implant discs were divided into three groups (21 in each group), and two groups were coated with either 80 or 95 DDA chitosan. The groups were categorized as LL 95, LL 80, or LL control. Then, hMSC-TERT 20 cells were used to evaluate the cell morphology, viability, and osteogenic capacity of the chitosan material 7 and 14 days after culture. Two-way ANOVA followed by one-way analysis of variance (ANOVA) and Tukey's post hoc test were used. Results: All samples were biocompatible and allowed cell attachment. However, cell spreading and attachment were noticeably increased in the LL 95 group. There was a significant increase in the expression of osteogenic markers in chitosan-coated samples compared to the control group. The 95 DDA-coated group exhibited higher ALP, Runx2, osteocalcin, and osteonectin expression compared to the 80 DDA and control groups on days 7 and 14. Conclusion: A high DDA of chitosan promotes biomineralization and osteoblast formation. Therefore, this combination of laser surface and chitosan can enhance future dental implant healing processes and osseointegration.
Collapse
Affiliation(s)
- Banna M Alnufaiy
- BDS, Resident; Department of Periodontics and Community Dentistry College of Dentistry, King Saud University, Riyadh, KSA
| | - Rhodanne Nicole A Lambarte
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Khalid S Al-Hamdan
- Khalid Al-Hamdan , BDS, MS, Diplomate; American Board of Periodontology, Associate professor, Department of Periodontics and Community Dentistry; College of Dentistry at King Saud University
| |
Collapse
|
178
|
Feng Y, Jiang Z, Zhang Y, Miao X, Yu Q, Xie Z, Yang G. Stem-cell-derived ECM sheet-implant complexes for enhancing osseointegration. Biomater Sci 2020; 8:6647-6656. [PMID: 33074268 DOI: 10.1039/d0bm00980f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Numerous treatment methods have been developed to modify the surface of dental implants to improve cell migration and proliferation, removal torque, and osseointegration. Recent studies have constructed cell sheet-implant complexes with enhanced osteogenic capabilities. However, these complexes have some limitations, such as requirements for complex preparation processes, cell vitality maintenance, strict preservation conditions, and the induction of immunogenicity. Extracellular matrix (ECM) sheets without cells may be a more desirable material. To date, the effect of ECM sheets on implant osseointegration has not been reported. In this study, we fabricated ECM sheet-implant complexes through the combination of rat bone marrow mesenchymal stem cell (BMSC)-derived ECM sheets with sandblasted, large-grit, acid-etched (SLA) implants. These complexes were characterized by light microscopy, scanning electron microscopy (SEM), and immunofluorescence (IF) assays. The adhesion, proliferation, and osteogenic differentiation of BMSCs cultured on ECM sheets were detected in vitro. Then, the ECM sheet-implant complexes were transplanted into the metaphysis of the tibias of rats to evaluate the implant osseointegration in vivo. The results showed that ECM sheets were successfully constructed and showed significantly improved adhesion and proliferation. BMSCs cultured on ECM sheets upregulated the expression levels of the osteogenic-related genes alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP2), and runt-related transcription factor 2 (Runx2) compared to controls. In vivo, ECM sheet-implant complexes demonstrated superior new bone formation. Our findings proved that the BMSC-derived ECM sheets promoted osseointegration in vitro and in vivo. The current study indicated that the ECM sheet could be an ideal tissue engineering material, and ECM sheet-implant complexes could provide a strategy with low immunogenicity and easy storage and transportation. This research provides a novel strategy for the development of implant surface modification approaches.
Collapse
Affiliation(s)
- Yuting Feng
- Department of Implantology, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, No. 395, Yan'an Road, Xia-Cheng Region, Hangzhou, Zhejiang 310006, China.
| | | | | | | | | | | | | |
Collapse
|
179
|
Ghezzi B, Lagonegro P, Attolini G, Rotonda PM, Cornelissen C, Ponraj JS, Parisi L, Passeri G, Rossi F, Macaluso GM. Hydrogen plasma treatment confers enhanced bioactivity to silicon carbide-based nanowires promoting osteoblast adhesion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111772. [PMID: 33579438 DOI: 10.1016/j.msec.2020.111772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/30/2020] [Accepted: 11/26/2020] [Indexed: 12/25/2022]
Abstract
Nanomaterials play a pivotal role in modern regenerative medicine and tissue engineering, due to their peculiar physical, optical and biological properties once they are used in the nanometric size. Many evidences are showing the importance of biomaterial micro- and nano-topography on cellular adhesion, proliferation and differentiation, and hence, tissue regeneration. It is well known that nanowires (NWs) can mimic many different tissues as a result of their shape and their surface characteristics, and that surface hydrophilicity affects early protein adsorption and cellular adhesion. Therefore a material able to induce bone regeneration might be obtained by combining optimal surface topography and hydrophilicity. Based on these evidence, we designed silicon carbide (SiC) and core/shell silicon carbide/silicon dioxide (SiC/SiOx) nanowires with modified wettability in order to analyze cell behavior, using an in-vitro osteoblastic model. First, we synthetized SiC NWs and SiC/SiOx NWs through a chemical-vapour-deposition (CVD) process, and then we used hydrogen plasma to modify their hydrophilicity. Subsequently we evaluated the four types of NWs in terms of their morphology and contact angle, and we studied their behavior in the presence of MC3T3-E1 murine osteoblasts. Cell metabolic activity, viability, morphology and focal adhesions formation were considered. Morphological data showed different dimensions between SiC and SiC/SiOx NWs. SiC NWs before the hydrogen plasma treatment showed a very low contact angle, that was absent after the treatment. Osteoblastic cells appeared healthy on all of the samples. Interestingly, both hydrophilic SiC NWs and SiC/SiOx NWs generated a favorable distribution of focal adhesions around the cell body confirmed also by scanning electron microscopy images. Moreover, osteoblasts grown on hydrogen plasma treated SiC/SiOx NWs showed an increased metabolic activity testified by a significantly higher cell number. In conclusion, we are here demonstrating that hydrogen plasma treatment of SiC and SiC/SiOx NWs induce a better osteoblastic cellular adhesion by increasing NWs wettability. We are therefore suggesting that hydrogen plasma treatment of SiC/SiOx can offer a suitable method to develop scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Benedetta Ghezzi
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126 Parma, Italy; Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, via Gramsci 14, 43126 Parma, Italy
| | - Paola Lagonegro
- SCITEC-CNR, Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Via Corti, 12, 20133 Milano, Italy.
| | - Giovanni Attolini
- IMEM-CNR Institute, Parco Area delle Scienze 37A, 43124 Parma, Italy
| | | | | | - Joice Sophia Ponraj
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga. Portugal
| | - Ludovica Parisi
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126 Parma, Italy; Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, via Gramsci 14, 43126 Parma, Italy; Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010, Bern, Switzerland
| | - Giovanni Passeri
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, via Gramsci 14, 43126 Parma, Italy
| | - Francesca Rossi
- IMEM-CNR Institute, Parco Area delle Scienze 37A, 43124 Parma, Italy
| | - Guido Maria Macaluso
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126 Parma, Italy; Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, via Gramsci 14, 43126 Parma, Italy; IMEM-CNR Institute, Parco Area delle Scienze 37A, 43124 Parma, Italy
| |
Collapse
|
180
|
Dos Santos Trento G, Hassumi JS, Buzo Frigério P, Farnezi Bassi AP, Okamoto R, Gabrielli MAC, Pereira-Filho VA. Gene expression, immunohistochemical and microarchitectural evaluation of bone formation around two implant surfaces placed in bone defects filled or not with bone substitute material. Int J Implant Dent 2020; 6:80. [PMID: 33258065 PMCID: PMC7704835 DOI: 10.1186/s40729-020-00279-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/06/2020] [Indexed: 11/19/2022] Open
Abstract
Objective The aim of this study is to evaluate through gene expression, immunohistochemical and microtomographic (micro-CT) analysis the response of peri-implant bone tissue around titanium implants with different surface treatments, placed in bone defects filled or not with bone substitute materials. In addition, to investigate the hypothesis that porous-hydrophilic surface induces a faster bone formation. Materials and methods Twenty-six animals were divided into two groups according to implant surface treatment. In each tibia, a bone defect was created followed by the placement of one implant. On the left tibia, the defect was filled with blood clot (BC), and on the right tibia, the defect was filled with biphasic hydroxyapatite/β-tricalcium-phosphate (HA/TCP) generating four subgroups: BC-N: bone defect filled with blood clot and porous surface titanium implant installed; BC-A: bone defect filled with blood clot and porous-hydrophilic surface titanium implant installed; HA/TCP-N: bone defect filled with bone substitute material and porous surface titanium implant installed; and HA/TCP-A: bone defect filled with bone substitute material and porous-hydrophilic surface titanium implant installed. The animals were submitted to euthanasia at 15, 30, and 60 days after implant installation. The expression of two genes was evaluated: RUNX2 and BSP. Immunohistochemical analyses were performed for detection of RUNX2, OPN, OCN, OPG, and RANKL antibodies and bone matrix proteins. Finally, four parameters were chosen for micro-CT analysis: trabecular number, separation and thickness, and connectivity density. Results Descriptive analysis showed similar findings among the experimental groups. Moreover, porous-hydrophilic surfaces presented a higher expression of RUNX2, which is probably an indicative of better osteogenesis; although the data from this study may be considered an insufficient support for a concrete statement. Conclusion Porous hydrophilic surface can improve and accelerate protein expression and bone formation.
Collapse
Affiliation(s)
- Guilherme Dos Santos Trento
- Department of Diagnosis and Surgery, School of Dentistry, Sao Paulo State University (Unesp), 1680th Humaitá Street, Araraquara, SP, 14801-903, Brazil.
| | - Jaqueline Suemi Hassumi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Paula Buzo Frigério
- Department of Oral and Maxillofacial Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Ana Paula Farnezi Bassi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Roberta Okamoto
- Department of Oral and Maxillofacial Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Marisa Aparecida Cabrini Gabrielli
- Department of Diagnosis and Surgery, School of Dentistry, Sao Paulo State University (Unesp), 1680th Humaitá Street, Araraquara, SP, 14801-903, Brazil
| | - Valfrido Antonio Pereira-Filho
- Department of Diagnosis and Surgery, School of Dentistry, Sao Paulo State University (Unesp), 1680th Humaitá Street, Araraquara, SP, 14801-903, Brazil
| |
Collapse
|
181
|
Development of a Surface-Functionalized Titanium Implant for Promoting Osseointegration: Surface Characteristics, Hemocompatibility, and In Vivo Evaluation. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study aimed to evaluate the impact of surface-modified biomedical titanium (Ti) dental implant on osseointegration. The surfaces were modified using an innovative dip-coating technique (IDCT; sandblasted, large-grit, and acid-etched, then followed by coating with the modified pluronic F127 biodegradable polymer). The surface morphology and hemocompatibility evaluations were investigated by field-emission scanning electron microscopy, while the contact analysis was observed by goniometer. The IDCT-modified Ti implant was also implanted in patients with missing teeth by single-stage surgical procedure then observed immediately and again four months after placement by cone-beam computerized tomography (CBCT) imaging. It was found that the IDCT-modified Ti implant was rougher than the dental implant without surface modification. Contact angle analysis showed the IDCT-modified Ti implant was lower than the dental implant without surface modification. The hemocompatibility evaluations showed greater red blood cell aggregation and fibrin filament formation on the IDCT-modified Ti implant. The radiographic and CBCT image displayed new bone formation at four months after the IDCT-modified Ti implant placement. Therefore, this study suggests that the IDCT-modified Ti dental implant has great potential to accelerate osseointegration.
Collapse
|
182
|
Tallarico M, Baldini N, Gatti F, Martinolli M, Xhanari E, Meloni SM, Gabriele C, Immacolata LA. Role of New Hydrophilic Surfaces on Early Success Rate and Implant Stability: 1-Year Post-loading Results of a Multicenter, Split-Mouth, Randomized Controlled Trial. Eur J Dent 2020; 15:1-7. [PMID: 33242915 PMCID: PMC7902108 DOI: 10.1055/s-0040-1713952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To compare early implant failure and implant stability of one-stage Hiossen ET III implants with its new hydrophilic (NH) surface, compared with Hiossen ET III implants with the sandblasted and acid-etched (SA) surface at 1-year follow-up. MATERIALS AND METHODS This study was designed as a split-mouth, multicenter randomized controlled trial aimed to compare SA surface implants (SA group) and NH surface, (NH group). Outcomes were implant and prosthetic survival rates, complications, the insertion torque at implant placement, and implant stability quotient (ISQ) values. RESULTS Twenty-nine patients (mean age 59.9 ± 11.3 years) were treated and followed up to 1 year after loading. No patient dropped out. Fifty-eight implants (29 SA group and 29 NH group) were placed. No implants or prostheses failed and no complications were experienced during follow-up. The mean insertion torque was 40.5 ± 3.23 (38.17-41.83) Ncm in the SA group and 40.48 ± 3.49 (38.02-41.98) Ncm in the NH group (p = 0.981). There was a statistically significant difference at the second week (T2) with higher values in the NH group (p = 0.041). Similar results were found in the maxilla (p = 0.045), but not in the mandible (p = 0.362). A positive correlation was found between initial insertion torque and ISQ with higher value in the NH group (0.73 vs. 0.66). CONCLUSIONS NH implants are a viable alternative to SA surface, as they seem to avoid the ISQ drop during the bone remodeling phase.
Collapse
Affiliation(s)
| | - Nicola Baldini
- Department of Periodontics and Implantology, University of Siena, Siena, Italy
| | - Fulvio Gatti
- Department of Biomedical, Surgical and Dental Sciences, Unit of Oral Surgery, San Carlo and San Paolo Hospital, University of Milan, Milan, Italy
| | | | - Erta Xhanari
- School of Dentistry, University of Sassari, Sassari, Italy
| | - Silvio Mario Meloni
- Medical Surgical and Experimental Science Department, University of Sassari, Sassari, Italy
| | - Cervino Gabriele
- Department of BIOMORF, School of Dentistry, University of Messina, Messina, Italy
| | | |
Collapse
|
183
|
Dinu C, Berce C, Todea M, Vulpoi A, Leordean D, Bran S, Mitre I, Lazar MA, Crisan B, Crisan L, Rotaru H, Onisor F, Vacaras S, Barbur I, Baciut G, Baciut M, Armencea G. Bone quality around implants: a comparative study of coating with hydroxyapatite and SIO 2-TIO 2 of TI 6AL 7NB implants. PARTICULATE SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1080/02726351.2019.1636916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- C. Dinu
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - C. Berce
- Laboratory Animal Facility – Centre for Experimental Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - M. Todea
- Faculty of Physics, Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca, Romania
| | - A. Vulpoi
- Faculty of Physics, Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca, Romania
| | - D. Leordean
- Department of Manufacturing Engineering, Technical University, Cluj-Napoca, Romania
| | - S. Bran
- Department of Implantology and Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - I. Mitre
- Department of Implantology and Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - M. A. Lazar
- Department of Implantology and Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - B. Crisan
- Department of Implantology and Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - L. Crisan
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - H. Rotaru
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - F. Onisor
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - S. Vacaras
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - I. Barbur
- Department of Implantology and Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - G. Baciut
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - M. Baciut
- Department of Implantology and Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - G. Armencea
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
184
|
Porous Tantalum VS. Titanium Implants: Enhanced Mineralized Matrix Formation after Stem Cells Proliferation and Differentiation. J Clin Med 2020; 9:jcm9113657. [PMID: 33203015 PMCID: PMC7697356 DOI: 10.3390/jcm9113657] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 02/05/2023] Open
Abstract
Titanium dental implants are used routinely, with surgical procedure, to replace missing teeth. Even though they lead to satisfactory results, novel developments with implant materials can still improve implant treatment outcomes. The aim of this study was to investigate the efficiency of porous tantalum (Ta) dental implants for osseointegration, in comparison to classical titanium (Ti). Mesenchymal stem cells from the dental pulp (DPSC) were incubated on Ta, smooth titanium (STi), and rough titanium (RTi) to assess their adhesion, proliferation, osteodifferentiation, and mineralized matrix production. Cell proliferation was measured at 4 h, 24 h, 48 h with MTT test. Early osteogenic differentiation was followed after 4, 8, 12 days by alkaline phosphatase (ALP) quantification. Cells organization and matrix microstructure were studied with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Collagen production and matrix mineralization were evaluated by immunostaining and histological staining. MTT test showed significantly higher proliferation of DPSC on Ta at 24 h and 48 h. However, APL quantification after 8 and 12 days was significantly lower for Ta, revealing a delayed differentiation, where cells were proliferating the more. After 3 weeks, collagen immunostaining showed an efficient production of collagen on all samples. However, Red Alizarin staining clearly revealed a higher calcification on Ta. The overall results tend to demonstrate that DPSC differentiation is delayed on Ta surface, due to a longer proliferation period until cells cover the 3D porous Ta structure. However, after 3 weeks, a more abundant mineralized matrix is produced on and inside Ta implants. Cell populations on porous Ta proliferate greater and faster, leading to the production of more calcium phosphate deposits than cells on roughened and smooth titanium surfaces, revealing a potential enhanced capacity for osseointegration.
Collapse
|
185
|
Huang L, Li Q. Notoginsenoside R1 promotes differentiation of human alveolar osteoblasts in inflammatory microenvironment through inhibiting NF‑κB pathway and activating Wnt/β‑catenin pathway. Mol Med Rep 2020; 22:4754-4762. [PMID: 33174026 PMCID: PMC7646889 DOI: 10.3892/mmr.2020.11537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Alveolar bone is vital for dental implantation and periodontal treatment. Notoginsenoside R1 (NTR1) may promote the differentiation of human alveolar osteoblasts (HAOBs), but the underlying molecular mechanisms remain unclear. The present study investigated the pro-differentiation function of NTR1 on HAOBs in order to find new methods of dental treatment. HAOBs were surgically obtained from dental patients and the cells were isolated, cultured and identified under an inverted phase contrast microscope. The cells were treated with different concentrations of NTR1 alone or further stimulated by TNF-α. An alkaline phosphate (ALP) activity assay and alizarin red staining were performed to detect ALP activity and mineralization of the cells, respectively. Cell viability was assayed using an MTT assay. The expressions of osteogenic-related factors and the factors associated with the NF-κB and Wnt/β-catenin pathways were examined by reverse transcription-quantitative PCR or western blot analysis. Successfully passaged HAOBs presented blue granules and red calcium deposits after staining. The viability of HAOBs was unchanged following treatment with NTR1 at ≤20 µmol/l and/or TNF-α, but slightly reduced by 40 µmol/l NTR1. TNF-α-induced decreases of calcium nodules and ALP activity were decreased by NTR1 in HAOBs. TNF-α also regulated the expressions of runt-related transcription factor 2, osteopontin (OPN), osteocalcin (OCN), p50, phosphorylated p65, AXIN2, Dickkopf-related protein 1 and β-catenin, while the regulatory effect was reversed by NTR1. NTR1 promoted the differentiation of HAOBs in the TNF-α-induced inflammatory microenvironment through inhibiting the NF-κB pathway and activating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Lei Huang
- Department of Oral and Maxillofacial Surgery, Jingmen Number 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Qiong Li
- Department of Oral and Maxillofacial Surgery, Jingmen Number 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
186
|
Imagawa N, Inoue K, Matsumoto K, Ochi A, Omori M, Yamamoto K, Nakajima Y, Kato-Kogoe N, Nakano H, Matsushita T, Yamaguchi S, Thi Minh Le P, Maruyama S, Ueno T. Mechanical, Histological, and Scanning Electron Microscopy Study of the Effect of Mixed-Acid and Heat Treatment on Additive-Manufactured Titanium Plates on Bonding to the Bone Surface. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5104. [PMID: 33198250 PMCID: PMC7696444 DOI: 10.3390/ma13225104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022]
Abstract
The additive manufacturing (AM) technique has attracted attention as one of the fully customizable medical material technologies. In addition, the development of new surface treatments has been investigated to improve the osteogenic ability of the AM titanium (Ti) plate. The purpose of this study was to evaluate the osteogenic activity of the AM Ti with mixed-acid and heat (MAH) treatment. Fully customized AM Ti plates were created with a curvature suitable for rat calvarial bone, and they were examined in a group implanted with the MAH-treated Ti in comparison with the untreated (UN) group. The AM Ti plates were fixed to the surface of rat calvarial bone, followed by extraction of the calvarial bone 1, 4, 8, and 12 weeks after implantation. The bonding between the bone and Ti was evaluated mechanically. In addition, AM Ti plates removed from the bone were examined histologically by electron microscopy and Villanueva-Goldner stain. The mechanical evaluation showed significantly stronger bone-bonding in the MAH group than in the UN group. In addition, active bone formation was seen histologically in the MAH group. Therefore, these findings indicate that MAH resulted in rapid and strong bonding between cortical bone and Ti.
Collapse
Affiliation(s)
- Naoko Imagawa
- Division of Medicine for Function and Morphology of Sensor Organs, Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (N.I.); (K.M.); (A.O.); (M.O.); (K.Y.); (Y.N.); (N.K.-K.); (H.N.); (T.U.)
| | - Kazuya Inoue
- Division of Medicine for Function and Morphology of Sensor Organs, Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (N.I.); (K.M.); (A.O.); (M.O.); (K.Y.); (Y.N.); (N.K.-K.); (H.N.); (T.U.)
| | - Keisuke Matsumoto
- Division of Medicine for Function and Morphology of Sensor Organs, Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (N.I.); (K.M.); (A.O.); (M.O.); (K.Y.); (Y.N.); (N.K.-K.); (H.N.); (T.U.)
| | - Ayako Ochi
- Division of Medicine for Function and Morphology of Sensor Organs, Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (N.I.); (K.M.); (A.O.); (M.O.); (K.Y.); (Y.N.); (N.K.-K.); (H.N.); (T.U.)
| | - Michi Omori
- Division of Medicine for Function and Morphology of Sensor Organs, Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (N.I.); (K.M.); (A.O.); (M.O.); (K.Y.); (Y.N.); (N.K.-K.); (H.N.); (T.U.)
| | - Kayoko Yamamoto
- Division of Medicine for Function and Morphology of Sensor Organs, Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (N.I.); (K.M.); (A.O.); (M.O.); (K.Y.); (Y.N.); (N.K.-K.); (H.N.); (T.U.)
| | - Yoichiro Nakajima
- Division of Medicine for Function and Morphology of Sensor Organs, Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (N.I.); (K.M.); (A.O.); (M.O.); (K.Y.); (Y.N.); (N.K.-K.); (H.N.); (T.U.)
| | - Nahoko Kato-Kogoe
- Division of Medicine for Function and Morphology of Sensor Organs, Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (N.I.); (K.M.); (A.O.); (M.O.); (K.Y.); (Y.N.); (N.K.-K.); (H.N.); (T.U.)
| | - Hiroyuki Nakano
- Division of Medicine for Function and Morphology of Sensor Organs, Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (N.I.); (K.M.); (A.O.); (M.O.); (K.Y.); (Y.N.); (N.K.-K.); (H.N.); (T.U.)
| | - Tomiharu Matsushita
- Department of Biomedical Science, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan; (T.M.); (S.Y.); (P.T.M.L.)
| | - Seiji Yamaguchi
- Department of Biomedical Science, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan; (T.M.); (S.Y.); (P.T.M.L.)
| | - Phuc Thi Minh Le
- Department of Biomedical Science, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan; (T.M.); (S.Y.); (P.T.M.L.)
| | - Shinpei Maruyama
- Osaka Yakin Kogyo Co., Ltd., 4-4-28, Zuiko, Yodogawa-ku, Osaka 533-0005, Japan;
| | - Takaaki Ueno
- Division of Medicine for Function and Morphology of Sensor Organs, Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (N.I.); (K.M.); (A.O.); (M.O.); (K.Y.); (Y.N.); (N.K.-K.); (H.N.); (T.U.)
| |
Collapse
|
187
|
Schaeske J, Fadeeva E, Schlie-Wolter S, Deiwick A, Chichkov BN, Ingendoh-Tsakmakidis A, Stiesch M, Winkel A. Cell Type-Specific Adhesion and Migration on Laser-Structured Opaque Surfaces. Int J Mol Sci 2020; 21:ijms21228442. [PMID: 33182746 PMCID: PMC7696563 DOI: 10.3390/ijms21228442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
Cytocompatibility is essential for implant approval. However, initial in vitro screenings mainly include the quantity of adherent immortalized cells and cytotoxicity. Other vital parameters, such as cell migration and an in-depth understanding of the interaction between native tissue cells and implant surfaces, are rarely considered. We investigated different laser-fabricated spike structures using primary and immortalized cell lines of fibroblasts and osteoblasts and included quantification of the cell area, aspect ratio, and focal adhesions. Furthermore, we examined the three-dimensional cell interactions with spike topographies and developed a tailored migration assay for long-term monitoring on opaque materials. While fibroblasts and osteoblasts on small spikes retained their normal morphology, cells on medium and large spikes sank into the structures, affecting the composition of the cytoskeleton and thereby changing cell shape. Up to 14 days, migration appeared stronger on small spikes, probably as a consequence of adequate focal adhesion formation and an intact cytoskeleton, whereas human primary cells revealed differences in comparison to immortalized cell lines. The use of primary cells, analysis of the cell-implant structure interaction as well as cell migration might strengthen the evaluation of cytocompatibility and thereby improve the validity regarding the putative in vivo performance of implant material.
Collapse
Affiliation(s)
- Jörn Schaeske
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (J.S.); (A.I.-T.); (M.S.)
| | - Elena Fadeeva
- Institute of Quantum Optics, Leibniz University of Hannover, Welfengarten 1, 30167 Hannover, Germany; (E.F.); (S.S.-W.); (A.D.); (B.N.C.)
| | - Sabrina Schlie-Wolter
- Institute of Quantum Optics, Leibniz University of Hannover, Welfengarten 1, 30167 Hannover, Germany; (E.F.); (S.S.-W.); (A.D.); (B.N.C.)
| | - Andrea Deiwick
- Institute of Quantum Optics, Leibniz University of Hannover, Welfengarten 1, 30167 Hannover, Germany; (E.F.); (S.S.-W.); (A.D.); (B.N.C.)
| | - Boris N. Chichkov
- Institute of Quantum Optics, Leibniz University of Hannover, Welfengarten 1, 30167 Hannover, Germany; (E.F.); (S.S.-W.); (A.D.); (B.N.C.)
| | - Alexandra Ingendoh-Tsakmakidis
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (J.S.); (A.I.-T.); (M.S.)
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (J.S.); (A.I.-T.); (M.S.)
| | - Andreas Winkel
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (J.S.); (A.I.-T.); (M.S.)
- Correspondence:
| |
Collapse
|
188
|
Albano CS, Gomes AM, da Silva Feltran G, da Costa Fernandes CJ, Trino LD, Zambuzzi WF, Lisboa-Filho PN. Bisphosphonate-based surface biofunctionalization improves titanium biocompatibility. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:109. [PMID: 33159588 DOI: 10.1007/s10856-020-06437-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Novel-biofunctionalized surfaces are required to improve the performance of endosseous implants, which are mainly related to the resistance against biocorrosion, as well as for the consideration of osteoinductive phenomena. Among different strategies, the use of bisphosphonate molecules as linkers between titanium dioxide (TiO2) surfaces and proteins is a distinctive approach, one in which bisphosphonate could play a role in the osseointegration. Thus, to address this issue, we proposed a novel biofunctionalization of TiO2 surfaces using sodium alendronate (ALN) as a linker and bovine serum albumin as the protein. Physicochemical analysis of the functionalized surfaces was performed using contact angle analyses and surface roughness measurements, which indicated an efficient functionalization. The biocompatibility of the functionalized surfaces was analyzed through the adhesion behavior of the pre-osteoblasts onto the samples. Overall, our data showed a significant improvement concerning the cell adhesion by modulating the adhesion cell-related set of genes. The obtained results show that for modified surfaces there is an increase of up to 100 times in the percentage of cells adhered when compared to the control, besides the extracellular matrix remodeling seemed to be an essential prerequisite for the early stages of cell adhesion on to the biomaterials, which was assayed by evaluating the matrix metalloproteinase activities as well as the gene activations. In the expressions of the Bsp and Bglap2 genes, for the group containing ALN (TiO2 + ALN), it was observed an increase in expression (approximately sixfold change) when compared to the control. Altogether, our data clearly showed that the bisphosphonate-biofunctionalized surface enhanced the biocompatibility of titanium and claims to further progress preclinical in vivo experimentation.
Collapse
Affiliation(s)
- Carolina Simão Albano
- Department of Chemistry and Biochemistry, Institute of Biosciences of Botucatu, UNESP-São Paulo State University, Botucatu, Brazil
- Department of Physics, UNESP-São Paulo State University, School of Sciences, Bauru, Brazil
| | - Anderson Moreira Gomes
- Department of Chemistry and Biochemistry, Institute of Biosciences of Botucatu, UNESP-São Paulo State University, Botucatu, Brazil
| | - Geórgia da Silva Feltran
- Department of Chemistry and Biochemistry, Institute of Biosciences of Botucatu, UNESP-São Paulo State University, Botucatu, Brazil
| | - Célio Junior da Costa Fernandes
- Department of Chemistry and Biochemistry, Institute of Biosciences of Botucatu, UNESP-São Paulo State University, Botucatu, Brazil
| | - Luciana Daniele Trino
- Department of Physics, UNESP-São Paulo State University, School of Sciences, Bauru, Brazil
| | - Willian Fernando Zambuzzi
- Department of Chemistry and Biochemistry, Institute of Biosciences of Botucatu, UNESP-São Paulo State University, Botucatu, Brazil
- Electron Microscopy Center, Institute of Biosciences of Botucatu, UNESP-São Paulo State University, Botucatu, Brazil
| | | |
Collapse
|
189
|
Lan Y, Jin Q, Xie H, Yan C, Ye Y, Zhao X, Chen Z, Xie Z. Exosomes Enhance Adhesion and Osteogenic Differentiation of Initial Bone Marrow Stem Cells on Titanium Surfaces. Front Cell Dev Biol 2020; 8:583234. [PMID: 33224950 PMCID: PMC7674173 DOI: 10.3389/fcell.2020.583234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
Successful osseointegration involves the biological behavior of bone marrow stem cells (BMSCs) on an implant surface; however, the role of BMSC-derived extracellular vesicles (EVs)/exosomes in osseointegration is little known. This study aimed to: (i) explore the interaction force between exosomes (Exo) and cells on a titanium surface; (ii) discuss whether the morphology and biological behavior of BMSCs are affected by exosomes; and (iii) preliminarily investigate the mechanism by which exosomes regulate cells on Ti surface. Exosomes secreted by rat BMSCs were collected by ultracentrifugation and analyzed using transmission electron microscopy and nanoparticle tracking analysis. Confocal fluorescence microscopy, scanning electron microscopy, Cell Counting Kit-8 (CCK-8), quantitative real-time polymerase chain reaction techniques, and alkaline phosphatase bioactivity, Alizarin Red staining, and quantification were used to investigate the exosomes that adhere to the Ti plates under different treatments as well as the morphological change, adhesion, spread, and differentiation of BMSCs. We found that exosomes were efficiently internalized and could regulate cell morphology and promoted the adhesion, spreading, and osteogenic differentiation of BMSCs. These were achieved partly by activating the RhoA/ROCK signaling pathway. Our discovery presents a new insight into the positive regulatory effect of exosomes on the biological behaviors of BMSCs on Ti surface and provides a novel route to modify the surface of a Ti implant.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhuo Chen
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijian Xie
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
190
|
Krishnadath DC, Ruan W, Yang H, Liu J, Zhou X. Influence of low modulus Co-Zr alloys surface modification on protein adsorption and MC3T3-E1, NIH3T3 and RAW264.7 cell behaviour. J Biomater Appl 2020; 35:1061-1070. [PMID: 33135572 DOI: 10.1177/0885328220969558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three types of Co-xZr (x = 5, 7.5, and 10 wt.%) were treated with hydroxyapatite (HA) and used as an object to investigate the effect of HA coating on the surface and biocompatibility of Co-xZr alloys. And the protein adsorption and the subsequent biological behaviour of osteoblast, fibroblast and macrophages were also investigated. The surface microstructure and wettability were assessed by scanning electron microscopy (SEM) and static angle profilometer. To evaluate the biocompatibility of Co-xZr and Co-xZr-HA, we quantified plasma proteins adsorption by bicinchoninic acid assay (BCA), cytotoxicity and cell proliferation by cell counting kit-8 (CCK-8) and scanning electron microscopy (SEM). The results indicated that Co-xZr-HA alloy surfaces were more hydrophilic and had higher affinity to plasma proteins. Higher protein concentrations were found adsorbed onto Co-7.5Zr-HA and Co-10Zr-HA alloys. Cytotoxicity analysis indicated that HA coating improved the biocompatibility of Co-xZr alloys. Furthermore, the comparable results of co-incubation of Co-xZr-HA alloys with cells reveal cellular attachments to HA surfaces. HA was successfully formed on Co-xZr alloys and modified the surface structure and biocompatibility of the alloys. Co-10Zr-HA and Co-7.5Zr-HA had the most favourable properties and cytocompatibility, and therefore can be potentially used for dental implants.
Collapse
Affiliation(s)
- Dewi Chrystal Krishnadath
- Department of Prosthodontics, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Wei Ruan
- Department of Anesthesiology, Anesthesia Research Institute, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Hailin Yang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, PR China
| | - Jue Liu
- Hunan Province Key Laboratory of Engineering Rheology, Central South University of Forestry and Technology, Changsha, PR China
| | - Xiongwen Zhou
- Department of Prosthodontics, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, PR China
| |
Collapse
|
191
|
Gomes C, Mesnard M, Ramos A. In vitro study of proximal cancellous bone loss effect in the dental implant stability. Comput Methods Biomech Biomed Engin 2020. [DOI: 10.1080/10255842.2020.1812847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Cátia Gomes
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, Portugal
| | - M. Mesnard
- Institut de Mécanique et d’Ingénierie, University of Bordeaux, Bordeaux, France
| | - A. Ramos
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
192
|
Kyrylenko S, Warchoł F, Oleshko O, Husak Y, Kazek-Kęsik A, Korniienko V, Deineka V, Sowa M, Maciej A, Michalska J, Jakóbik-Kolon A, Matuła I, Basiaga M, Hulubnycha V, Stolarczyk A, Pisarek M, Mishchenko O, Pogorielov M, Simka W. Effects of the sources of calcium and phosphorus on the structural and functional properties of ceramic coatings on titanium dental implants produced by plasma electrolytic oxidation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111607. [PMID: 33321651 DOI: 10.1016/j.msec.2020.111607] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
Plasma Electrolytic Oxidation (PEO) is as a promising technique to modify metal surfaces by application of oxide ceramic coatings with appropriate physical, chemical and biological characteristics. Therefore, objective of this research was to find the simplest settings, yet able to produce relevant bioactive implant surfaces layers on Ti implants by means of PEO. We show that an electrolyte containing potassium dihydrogen phosphate as a source of P and either calcium hydroxide or calcium formate as a source of Ca in combination with a chelating agent, ethylenediamine tetraacetic acid (EDTA), is suitable for PEO to deliver coatings with desired properties. We determined surface morphology, roughness, wettability, chemical and phase composition of titanium after the PEO process. To investigate biocompatibility and bacterial properties of the PEO oxide coatings we used microbial and cell culture tests. The electrolyte based on Ca(OH)2 and EDTA promotes active crystallization of apatites after PEO processing of the Ti implants. The PEO layers can increase electrochemical corrosion resistance. The PEO can be potentially used for development of bioactive surfaces with increased support of eukaryotic cells while inhibiting attachment and growth of bacteria without use of antibacterial agents.
Collapse
Affiliation(s)
| | - Fiona Warchoł
- Silesian University of Technology, Faculty of Chemistry, 44-100 Gliwice, Poland
| | | | - Yevheniia Husak
- Sumy State University, Medical Institute, 40018 Sumy, Ukraine
| | - Alicja Kazek-Kęsik
- Silesian University of Technology, Faculty of Chemistry, 44-100 Gliwice, Poland
| | | | | | - Maciej Sowa
- Silesian University of Technology, Faculty of Chemistry, 44-100 Gliwice, Poland
| | - Artur Maciej
- Silesian University of Technology, Faculty of Chemistry, 44-100 Gliwice, Poland
| | - Joanna Michalska
- Silesian University of Technology, Faculty of Chemistry, 44-100 Gliwice, Poland
| | - Agata Jakóbik-Kolon
- Silesian University of Technology, Faculty of Chemistry, 44-100 Gliwice, Poland
| | - Izabela Matuła
- University of Silesia, Institute of Materials Engineering, 41-500 Chorzów, Poland
| | - Marcin Basiaga
- Silesian University of Technology, Faculty of Biomedical Engineering, 41-800 Zabrze, Poland
| | | | | | - Marcin Pisarek
- Institute of Physical Chemistry PAS, 01-224 Warsaw, Poland
| | | | - Maksym Pogorielov
- Sumy State University, Medical Institute, 40018 Sumy, Ukraine; Nano Prime, 39-200 Dębica, Poland
| | - Wojciech Simka
- Silesian University of Technology, Faculty of Chemistry, 44-100 Gliwice, Poland; Nano Prime, 39-200 Dębica, Poland.
| |
Collapse
|
193
|
Sodnom-Ish B, Eo MY, Nguyen TTH, Kim MJ, Kim SM. Clinical feasibility and benefits of a tapered, sand-blasted, and acid-etched surfaced tissue-level dental implant. Int J Implant Dent 2020; 6:39. [PMID: 32761304 PMCID: PMC7406589 DOI: 10.1186/s40729-020-00234-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/02/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It has been 50 years since Brånemark first introduced the concept of osseointegration. Since then, numerous ongoing research, developments, and optimization of implant properties have been conducted. Despite the high survival and success rates of dental implants, failures still occur in a small number of patients that are being rehabilitated by implants. The purpose of this study was to evaluate the survival and success rate of the Stella® implants that incorporate sand-blasted and acid-etched (S&E) surface treatment and tapered body design to confirm their clinical feasibility and benefits after placement. METHODS We reviewed 61 partially and fully edentulous patients who underwent a tapered, S&E surfaced tissue-level implant placement between May 2013 and February 2016 in the Department of Oral and Maxillofacial Surgery in the Seoul National University Dental Hospital. Patient characteristics and treatment results were collected, and records of dental implants were analyzed clinically and radiologically. RESULTS A total of 105 implant fixtures were placed in these patients. The mean age at the time of the surgery was 63.7 years with a range of 31 to 88 years. In total, 4.0-mm and 4.5-mm diameter implants were the most frequently used dental implants (40%, 49%) in this study. Implants 8.5 mm in length were predominantly used (60%). Seventy dental implants were placed in the mandible (70%), and only one dental implant was placed in the maxillary anterior region. At the end of the 5-year observation period, the success rate of the Stella® implants was 98.1%. Among the 105 implants placed, 2 were considered to be failures. Summarizing the clinical and radiographic results, the remaining 103 implants were considered successfully integrated. CONCLUSION The overall success rate was 98.1%. The tapered, S&E surfaced tissue-level implant system exhibited great performance in a variety of clinical situations including failed implant sites that enabled predictable and successful treatment outcomes. The effectives of a tapered design of tissue level, not a parallel design, are shown in this clinical report.
Collapse
Affiliation(s)
- Buyanbileg Sodnom-Ish
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Mi Young Eo
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Truc Thi Hoang Nguyen
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Myung-Joo Kim
- Department of Prosthodontics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Soung Min Kim
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
194
|
Oleshko O, Liubchak I, Husak Y, Korniienko V, Yusupova A, Oleshko T, Banasiuk R, Szkodo M, Matros-Taranets I, Kazek-Kęsik A, Simka W, Pogorielov M. In Vitro Biological Characterization of Silver-Doped Anodic Oxide Coating on Titanium. MATERIALS 2020; 13:ma13194359. [PMID: 33008012 PMCID: PMC7578992 DOI: 10.3390/ma13194359] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/13/2022]
Abstract
Despite the high biocompatibility and clinical effectiveness of Ti-based implants, surface functionalization (with complex osteointegrative/antibacterial strategies) is still required. To enhance the dental implant surface and to provide additional osteoinductive and antibacterial properties, plasma electrolytic oxidation of a pure Ti was performed using a nitrilotriacetic acid (NTA)-based Ag nanoparticles (AgNP)-loaded calcium–phosphate solution. Chemical and structural properties of the surface-modified titanium were assessed using scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) and contact angle measurement. A bacterial adhesion test and cell culture biocompatibility with collagen production were performed to evaluate biological effectiveness of the Ti after the plasma electrolytic process. The NTA-based calcium–phosphate solution with Ag nanoparticles (AgNPs) can provide formation of a thick, porous plasma electrolytic oxidation (PEO) layer enriched in silver oxide. Voltage elevation leads to increased porosity and a hydrophilic nature of the newly formed ceramic coating. The silver-enriched PEO layer exhibits an effective antibacterial effect with high biocompatibility and increased collagen production that could be an effective complex strategy for dental and orthopedic implant development.
Collapse
Affiliation(s)
- Oleksandr Oleshko
- Biomedical Research Centre, Sumy State University, 40018 Sumy, Ukraine; (O.O.); (I.L.); (Y.H.); (V.K.); (A.Y.); (T.O.)
| | - Iryna Liubchak
- Biomedical Research Centre, Sumy State University, 40018 Sumy, Ukraine; (O.O.); (I.L.); (Y.H.); (V.K.); (A.Y.); (T.O.)
| | - Yevheniia Husak
- Biomedical Research Centre, Sumy State University, 40018 Sumy, Ukraine; (O.O.); (I.L.); (Y.H.); (V.K.); (A.Y.); (T.O.)
| | - Viktoriia Korniienko
- Biomedical Research Centre, Sumy State University, 40018 Sumy, Ukraine; (O.O.); (I.L.); (Y.H.); (V.K.); (A.Y.); (T.O.)
| | - Aziza Yusupova
- Biomedical Research Centre, Sumy State University, 40018 Sumy, Ukraine; (O.O.); (I.L.); (Y.H.); (V.K.); (A.Y.); (T.O.)
| | - Tetiana Oleshko
- Biomedical Research Centre, Sumy State University, 40018 Sumy, Ukraine; (O.O.); (I.L.); (Y.H.); (V.K.); (A.Y.); (T.O.)
| | - Rafal Banasiuk
- NanoWave, 02-676 Warsaw, Poland;
- Institute of Biotechnology and Molecular Medicine, 80-172 Gdańsk, Poland
| | - Marek Szkodo
- Mechanical Faculty, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| | - Igor Matros-Taranets
- Dnipro Medical Institute of Traditional and Nontraditional Medicine, 49005 Dnipro, Ukraine;
| | - Alicja Kazek-Kęsik
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Correspondence: (A.K.-K.); (W.S.); (M.P.); Tel.: +48-32-237-2605 (W.S.)
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- NanoPrime, 39-200 Dębica, Poland
- Correspondence: (A.K.-K.); (W.S.); (M.P.); Tel.: +48-32-237-2605 (W.S.)
| | - Maksym Pogorielov
- Biomedical Research Centre, Sumy State University, 40018 Sumy, Ukraine; (O.O.); (I.L.); (Y.H.); (V.K.); (A.Y.); (T.O.)
- NanoPrime, 39-200 Dębica, Poland
- Correspondence: (A.K.-K.); (W.S.); (M.P.); Tel.: +48-32-237-2605 (W.S.)
| |
Collapse
|
195
|
A Comprehensive Review on the Corrosion Pathways of Titanium Dental Implants and Their Biological Adverse Effects. METALS 2020. [DOI: 10.3390/met10091272] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The main aim of this work was to perform a comprehensive review of findings reported by previous studies on the corrosion of titanium dental implants and consequent clinical detrimental effects to the patients. Most studies were performed by in vitro electrochemical tests and complemented with microscopic techniques to evaluate the corrosion behavior of the protective passive oxide film layer, namely TiO2. Results revealed that bacterial accumulation, dietary, inflammation, infection, and therapeutic solutions decrease the pH of the oral environment leading to the corrosion of titanium. Some therapeutic products used as mouthwash negatively affect the corrosion behavior of the titanium oxide film and promote changes on the implant surface. In addition, toothpaste and bleaching agents, can amplify the chemical reactivity of titanium since fluor ions interacting with the titanium oxide film. Furthermore, the number of in vivo studies is limited although corrosion signs have been found in retrieved implants. Histological evaluation revealed titanium macro- and micro-scale particles on the peri-implant tissues. As a consequence, progressive damage of the dental implants and the evolution of inflammatory reactions depend on the size, chemical composition, and concentration of submicron- and nanoparticles in the surrounding tissues and internalized by the cells. In fact, the damage of the implant surfaces results in the loss of material that compromises the implant surfaces, implant-abutment connections, and the interaction with soft tissues. The corrosion can be an initial trigger point for the development of biological or mechanical failures in dental implants.
Collapse
|
196
|
Cardona MJ, Turner C, Ross C, Baird E, Black RA. An improved process for the fabrication and surface treatment of custom-made titanium cranioplasty implants informed by surface analysis. J Biomater Appl 2020; 35:602-614. [PMID: 32915666 PMCID: PMC7756070 DOI: 10.1177/0885328220957899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cranioplasty implants are routinely fabricated from commercially pure titanium plates by maxillofacial prosthetists. The differing fabrication protocols adopted by prosthetists working at different hospital sites gives rise to considerable variations in surface topography and composition of cranioplasty implants, with residues from the fabrication processes having been found to become incorporated into the surface of the implant. There is a growing recognition among maxillofacial prosthetists of the need to standardise these protocols to ensure quality and consistency of practice within the profession. In an effort to identify and eliminate the source of the inclusions associated with one such fabrication protocol, the present study examined the surfaces of samples subjected to each of the manufacturing steps involved. Surface and elemental analysis techniques identified the main constituent of the surface inclusions to be silicon from the glass beads used to texture the surface of the implant during fabrication. Subsequent analysis of samples prepared according to a revised protocol resulted in a more homogeneous titanium dioxide surface as evidenced by the reduction in area occupied by surface inclusions (from 8.51% ± 2.60% to 0.93% ± 0.62%). These findings may inform the development of improved protocols for the fabrication of titanium cranioplasty plates.
Collapse
Affiliation(s)
- Milovan Joe Cardona
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Catherine Turner
- The West of Scotland Regional Maxillofacial Laboratory, Queen Elizabeth University Hospital, Glasgow, UK
| | - Calum Ross
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Elaine Baird
- The West of Scotland Regional Maxillofacial Laboratory, Queen Elizabeth University Hospital, Glasgow, UK
| | | |
Collapse
|
197
|
Korniienko V, Oleshko O, Husak Y, Deineka V, Holubnycha V, Mishchenko O, Kazek-Kęsik A, Jakóbik-Kolon A, Pshenychnyi R, Leśniak-Ziółkowska K, Kalinkevich O, Kalinkevich A, Pisarek M, Simka W, Pogorielov M. Formation of a Bacteriostatic Surface on ZrNb Alloy via Anodization in a Solution Containing Cu Nanoparticles. MATERIALS 2020; 13:ma13183913. [PMID: 32899716 PMCID: PMC7560052 DOI: 10.3390/ma13183913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
High strength, excellent corrosion resistance, high biocompatibility, osseointegration ability, and low bacteria adhesion are critical properties of metal implants. Additionally, the implant surface plays a critical role as the cell and bacteria host, and the development of a simultaneously antibacterial and biocompatible implant is still a crucial challenge. Copper nanoparticles (CuNPs) could be a promising alternative to silver in antibacterial surface engineering due to low cell toxicity. In our study, we assessed the biocompatibility and antibacterial properties of a PEO (plasma electrolytic oxidation) coating incorporated with CuNPs (Cu nanoparticles). The structural and chemical parameters of the CuNP and PEO coating were studied with TEM/SEM (Transmission Electron Microscopy/Scanning Electron Microscopy), EDX (Energy-Dispersive X-ray Dpectroscopy), and XRD (X-ray Diffraction) methods. Cell toxicity and bacteria adhesion tests were used to prove the surface safety and antibacterial properties. We can conclude that PEO on a ZrNb alloy in Ca-P solution with CuNPs formed a stable ceramic layer incorporated with Cu nanoparticles. The new surface provided better osteoblast adhesion in all time-points compared with the nontreated metal and showed medium grade antibacterial activities. PEO at 450 V provided better antibacterial properties that are recommended for further investigation.
Collapse
Affiliation(s)
- Viktoriia Korniienko
- Medical Institute, Sumy State University, 40018 Sumy, Ukraine; (V.K.); (O.O.); (Y.H.); (V.D.); (V.H.); (R.P.)
| | - Oleksandr Oleshko
- Medical Institute, Sumy State University, 40018 Sumy, Ukraine; (V.K.); (O.O.); (Y.H.); (V.D.); (V.H.); (R.P.)
| | - Yevheniia Husak
- Medical Institute, Sumy State University, 40018 Sumy, Ukraine; (V.K.); (O.O.); (Y.H.); (V.D.); (V.H.); (R.P.)
| | - Volodymyr Deineka
- Medical Institute, Sumy State University, 40018 Sumy, Ukraine; (V.K.); (O.O.); (Y.H.); (V.D.); (V.H.); (R.P.)
| | - Viktoriia Holubnycha
- Medical Institute, Sumy State University, 40018 Sumy, Ukraine; (V.K.); (O.O.); (Y.H.); (V.D.); (V.H.); (R.P.)
| | | | - Alicja Kazek-Kęsik
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (A.K.-K.); (A.J.-K.); (K.L.-Z.)
| | - Agata Jakóbik-Kolon
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (A.K.-K.); (A.J.-K.); (K.L.-Z.)
| | - Roman Pshenychnyi
- Medical Institute, Sumy State University, 40018 Sumy, Ukraine; (V.K.); (O.O.); (Y.H.); (V.D.); (V.H.); (R.P.)
| | - Katarzyna Leśniak-Ziółkowska
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (A.K.-K.); (A.J.-K.); (K.L.-Z.)
| | | | | | - Marcin Pisarek
- Institute of Physical Chemistry PAS, 01-224 Warsaw, Poland;
| | - Wojciech Simka
- NanoPrime, 39-200 Dębica, Poland;
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (A.K.-K.); (A.J.-K.); (K.L.-Z.)
- Correspondence: (W.S.); (M.P.); Tel.: +48-32-237-2605 (W.S.)
| | - Maksym Pogorielov
- Medical Institute, Sumy State University, 40018 Sumy, Ukraine; (V.K.); (O.O.); (Y.H.); (V.D.); (V.H.); (R.P.)
- NanoPrime, 39-200 Dębica, Poland;
- Correspondence: (W.S.); (M.P.); Tel.: +48-32-237-2605 (W.S.)
| |
Collapse
|
198
|
Effect of insertion factors on dental implant insertion torque/energy-experimental results. J Mech Behav Biomed Mater 2020; 112:103995. [PMID: 32882675 DOI: 10.1016/j.jmbbm.2020.103995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
Anchorage of dental implants is quantified with a mechanical engagement to insertion, for example maximum insertion torque (MIT) and insertion energy (IE). Good anchorage of dental implants highly correlates to positive clinical outcomes. However, it is still unclear how bone density, drill protocol, surface finish and cutting flute affect anchorage. In this study, effects of the insertion factors on both MIT and IE were investigated using a full-factorial experiment at two levels: bone surrogate density (0.32 g/cm3 versus 0.48 g/cm3), drill protocol (Ø2.4/2.8 versus Ø2.8/3.2 mm), implant surface finish (machined versus anodized surface) and cutting flute (with versus without). Osteotomies were prepared on rigid polyurethane foam blocks with dimensions of 40 × 40 × 8 mm. Screw shaped dental implants with variable tapered body were consecutively inserted into and removed from the polyurethane foam blocks three times under constant axial displacement and rotational speed. Axial force and torque were recorded synchronously. Insertion energy was calculated from the area under the torque-displacement curve. In this study, we found the main insertion mechanics were thread forming for the first insertion. For the second and third insertions, the main mechanics shifted to thread tightening. Maximum insertion torque (MIT) responded differently to the four insertion factors in comparison to IE. Bone surrogate density, drill protocol and surface finish had the largest main effects for first MIT. For the first IE, drill protocol, surface finish and cutting flute were significant contributors. These results suggest that MIT and IE are influenced by different mechanics: the first MIT and the first IE were sensitive to thread tighten and forming, respectively. Together MIT and IE provide a complete assessment of dental implant anchorage.
Collapse
|
199
|
A Novel Prosthetically Driven Workflow Using Zygomatic Implants: The Restoratively Aimed Zygomatic Implant Routine. J Oral Maxillofac Surg 2020; 78:1518-1528. [DOI: 10.1016/j.joms.2020.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 01/01/2023]
|
200
|
Immediate Placement and Restoration of a New Tapered Implant System in the Aesthetic Region: A Report of Three Cases. Case Rep Dent 2020; 2020:7632692. [PMID: 32802525 PMCID: PMC7411482 DOI: 10.1155/2020/7632692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 11/24/2022] Open
Abstract
Objective To assess the clinical, radiographic, aesthetic, and patient-centred outcomes of a new implant system applied for an immediate implant placement and restoration approach in single tooth replacement of anterior maxillary teeth. Material and Method. Three cases were treated with a bone level tapered implant. All patients were treated with the same strategy involving flapless extraction and implant placement with simultaneous augmentation. Implants were provisionally restored with a screw-retained restoration at the day of surgery. Definitive restoration was fabricated after 3 months. Follow-up was one year after definitive restoration. Results At the 1-year follow-up, the implants were stable and no complications had occurred. Peri-implant bone levels had increased with a mean value of 0.24 ± 0.30 mm between definitive restoration placement and 1 year of follow-up. Clinical outcome scores showed healthy soft tissues. Mean Pink and White Esthetic scores were rated 7.0 and 7.3, respectively. Mean patient satisfaction had improved from 55.7 (pretreatment) to 90.0 (1-year follow-up) on a 0-100 VAS scale. Conclusion Immediate implant placement and restoration with the new tapered bone level implant system are accompanied by good initial clinical and radiographic results as well as high patient satisfaction.
Collapse
|