151
|
Regulation of growth of human bladder cancer by miR-192. Tumour Biol 2015; 36:3791-7. [PMID: 25566965 DOI: 10.1007/s13277-014-3020-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 12/23/2014] [Indexed: 01/30/2023] Open
Abstract
The regulation of microRNA-192 (miR-192) is impaired in many cancers. Here, we investigated the role of miR-192 in the proliferation, cell cycle progression, and apoptosis of bladder cancer cells. Human bladder cancer cells were transfected with human miR-192 precursor or non-specific control miRNA. The effect of miR-192 on cell proliferation was assessed by a MTT assay. The effects of miR-192 on cell cycle regulation and apoptosis were evaluated by flow cytometry. Western blot was used to analyze the protein levels of cyclin D1, p21, p27, Bcl-2, Bax, and Mcl-1. We found that overexpression of miR-192 significantly decreased the proliferation of bladder cancer cells by 22 and 54 % at 48 and 72 h, respectively. MiR-192-overexpressing cells exhibited a significant increase in G0/G1 phase and a significant decrease in S phase compared to the control miRNA-transfected cells. Moreover, overexpression of miR-192 significantly induced apoptotic death in bladder cancer cells, increased the levels of p21, p27, and Bax, and decreased the levels of cyclin D1, Bcl-2, and Mcl-1. Taken together, these data suggest that miR-192 may be a suppressor for bladder cancer cells by cell cycle regulation.
Collapse
|
152
|
Zhang J, Lu L, Xiong Y, Qin W, Zhang Y, Qian Y, Jiang H, Liu W. MLK3 promotes melanoma proliferation and invasion and is a target of microRNA-125b. Clin Exp Dermatol 2015; 39:376-84. [PMID: 24635082 DOI: 10.1111/ced.12286] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2013] [Indexed: 01/30/2023]
Abstract
BACKGROUND Metastatic melanoma is a disease with high mortality and limited therapeutic options. MicroRNAs (miRNAs) can be used to classify melanoma stage. METHODS Expression of the miRNA miR-125b and serine/threonine kinase mixed lineage kinase (MLK)3 was assessed in primary malignant melanoma tissues and several melanoma cell lines by quantitative reverse transcription PCR. The effect of MLK3 and miR-125b on cell proliferation was evaluated by MTS assay, and cell invasion was evaluated by Transwell invasion assays. Targeting of MLK3 by miR-125b was evaluated using luciferase reporter assay and western blotting. RESULTS We found significantly increased levels of MLK3 in metastatic primary malignant melanomas and melanoma cell lines, with levels being especially high in metastatic lines. To investigate the functional significance of MLK3, we used knockdown MLK3, which was found to suppress cell growth and invasion. Using bioinformatics, we identified MLK3 as one potential target of miR-125b. miRNA transfection and luciferase assay confirmed that MLK3 was regulated by miR-125b at both the transcriptional and translational levels. Cell proliferation and cell invasion was inhibited by overexpression of miR-125b. CONCLUSIONS MLK3 is upregulated in metastatic melanoma, and regulates cell proliferation and invasion in melanoma cells. MLK3 is a direct target of miR-125b.
Collapse
Affiliation(s)
- J Zhang
- Department of Plastic Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Xu XD, Wu XH, Fan YR, Tan B, Quan Z, Luo CL. Exosome-derived microRNA-29c induces apoptosis of BIU-87 cells by down regulating BCL-2 and MCL-1. Asian Pac J Cancer Prev 2015; 15:3471-6. [PMID: 24870742 DOI: 10.7314/apjcp.2014.15.8.3471] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aberrant expression of the microRNA-29 family is associated with tumorigenesis and cancer progression. As transport carriers, tumor-derived exosomes are released into the extracellular space and regulate multiple functions of target cells. Thus, we assessed the possibility that exosomes could transport microRNA- 29c as a carrier and correlations between microRNA-29c and apoptosis of bladder cancer cells. MATERIALS AND METHODS A total of 28 cancer and adjacent tissues were examined by immunohistochemistry to detect BCL-2 and MCL-1 expression. Disease was Ta-T1 in 12 patients, T2-T4 in 16, grade 1 in 8, 2 in 8 and 3 in 12. The expression of microRNA-29c in cancer tissues was detected by quantitative reverse transcriptase PCR (QRT- PCR). An adenovirus containing microRNA-29c was used to infect the BIU-87 human bladder cancer cell line. MicroRNA-29c in exosomes was measured by QRT-PCR. After BIU-87 cells were induced by exosomes-derived microRNA-29c, QRT-PCR was used to detect the level of microRNA-29c. Apoptosis was examined by flow cytometry and BCL-2 and MCL-1 mRNA expressions were assessed by reverse transcription-polymerase chain reaction. Western blotting was used to determine the protein expression of BCL-2 and MCL-1. RESULTS The expressions of BCL-2 and MCL-1 protein were remarkably increased in bladder carcinoma (p<0.05), but was found mainly in the basal and suprabasal layers in adjacent tissues. The expression of microRNA-29c in cancer tissues was negatively correlated with the BCL-2 and MCL-1. The expression level of microRNA-29c in exosomes and BIU-87 cells from the experiment group was higher than that in control groups (p<0.05). Exosome-derived microRNA-29c induced apoptosis (p<0.01). Although only BCL-2 was reduced at the mRNA level, both BCL-2 and MCL-1 were reduced at the protein level. CONCLUSIONS Human bladder cancer cells infected by microRNA- 29c adenovirus can transport microRNA-29c via exosomes. Moreover, exosome-derived microRNA29c induces apoptosis in bladder cancer cells by down-regulating BCL-2 and MCL-1.
Collapse
Affiliation(s)
- Xiang-Dong Xu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China E-mail :
| | | | | | | | | | | |
Collapse
|
154
|
Abstract
Molecular biomarkers are used routinely in the clinical management of several tumours such as prostate, colon, ovarian and pancreatic cancer but management decisions in bladder cancer remain dependent on clinical and pathological criteria, which are limited in their ability to predict outcomes. Molecular markers are urgently needed in detection, surveillance and prognostication of bladder cancer as well as to predict treatment response to intravesical and systemic therapies. Advances in cancer genomics and platforms for biomarker profiling have led to a plethora of biomarkers, which must now be rigorously validated in the clinical setting. Pre-clinical and clinical studies exploring the role of emerging targeted therapies to risk stratify and reduce cancer progression are also needed.
Collapse
|
155
|
Døssing KBV, Binderup T, Kaczkowski B, Jacobsen A, Rossing M, Winther O, Federspiel B, Knigge U, Kjær A, Friis-Hansen L. Down-Regulation of miR-129-5p and the let-7 Family in Neuroendocrine Tumors and Metastases Leads to Up-Regulation of Their Targets Egr1, G3bp1, Hmga2 and Bach1. Genes (Basel) 2014; 6:1-21. [PMID: 25546138 PMCID: PMC4377830 DOI: 10.3390/genes6010001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/09/2014] [Indexed: 01/12/2023] Open
Abstract
Expression of miRNAs in Neuroendocrine Neoplasms (NEN) is poorly characterized. We therefore wanted to examine the miRNA expression in Neuroendocrine Tumors (NETs), and identify their targets and importance in NET carcinogenesis. miRNA expression in six NEN primary tumors, six NEN metastases and four normal intestinal tissues was characterized using miRNA arrays, and validated by in-situ hybridization and qPCR. Among the down-regulated miRNAs miR-129-5p and the let-7f/let-7 family, were selected for further characterization. Transfection of miR-129-5p inhibited growth of a pulmonary and an intestinal carcinoid cell line. Analysis of mRNA expression changes identified EGR1 and G3BP1 as miR-129-5p targets. They were validated by luciferase assay and western blotting, and found robustly expressed in NETs by immunohistochemistry. Knockdown of EGR1 and G3BP1 mimicked the growth inhibition induced by miR-129-5p. let-7 overexpression inhibited growth of carcinoid cell lines, and let-7 inhibition increased protein content of the transcription factor BACH1 and its targets MMP1 and HMGA2, all known to promote bone metastases. Immunohistochemistry analysis revealed that let-7 targets are highly expressed in NETs and metastases. We found down-regulation of miR-129-5p and the let-7 family, and identified new neuroendocrine specific targets for these miRNAs, which contributes to the growth and metastatic potential of these tumors.
Collapse
Affiliation(s)
- Kristina B V Døssing
- Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Tina Binderup
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Bogumil Kaczkowski
- The Bioinformatics Center, Department of Biology and Biotech and Research Innovation Centre, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark.
| | - Anders Jacobsen
- The Bioinformatics Center, Department of Biology and Biotech and Research Innovation Centre, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark.
| | - Maria Rossing
- Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Ole Winther
- DTU Informatics, Technical University of Denmark, Anker Engelunds Vej 1, 2800 Kongens Lyngby, Denmark.
| | - Birgitte Federspiel
- Department of Pathology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Ulrich Knigge
- Cluster for Molecular Imaging, Faculty of Health Sciences, Blegdamsvej 3B, 2100 Copenhagen, Denmark.
| | - Andreas Kjær
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Lennart Friis-Hansen
- Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| |
Collapse
|
156
|
Kinouchi M, Uchida D, Kuribayashi N, Tamatani T, Nagai H, Miyamoto Y. Involvement of miR-518c-5p to growth and metastasis in oral cancer. PLoS One 2014; 9:e115936. [PMID: 25536052 PMCID: PMC4275267 DOI: 10.1371/journal.pone.0115936] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/02/2014] [Indexed: 12/22/2022] Open
Abstract
We have previously demonstrated that a stromal cell-derived factor-1 (SDF-1; CXCL12)/CXCR4 system is involved in the establishment of metastasis in oral cancer. Recently, small non coding RNAs, microRNAs (miRNAs) have been shown to be involved in the metastatic process of several types of cancers. However, the miRNAs that contribute to metastases induced by the SDF-1/CXCR4 system in oral cancer are largely unknown. In this study, we examined the metastasis-related miRNAs induced by the SDF-1/CXCR4 system using B88-SDF-1 oral cancer cells, which exhibit functional CXCR4 and distant metastatic potential in vivo. Through miRNA microarray analysis, we identified the upregulation of miR-518c-5p in B88-SDF-1 cells, and confirmed the induction by real-time PCR analysis. Although an LNA-based miR-518c-5p inhibitor did not affect cell growth of B88-SDF-1 cells, it did significantly inhibit the migration of the cells. Next, we transfected a miR-518c expression vector into parental B88 cells and CAL27 oral cancer cells and isolated stable transfectants, B88-518c and CAL27-518c cells, respectively. The anchorage-dependent and -independent growth of miR-518c transfectants was significantly enhanced compared with the growth of mock cells. Moreover, we detected the enhanced migration of these cells. The LNA-based miR-518c-5p inhibitor significantly impaired the enhanced cell growth and migration of miR-518c transfectants, indicating that these phenomena were mainly dependent on the expression of miR-518c-5p. Next, we examined the function of miR-518c-5p in vivo. miR-518c transfectants or mock transfectants were inoculated into the masseter muscle or the blood vessels of nude mice. Tumor volume, lymph nodes metastasis, and lung metastasis were significantly increased in the mice inoculated with the miR-518c transfectants. These results indicated that miR-518c-5p regulates the growth and metastasis of oral cancer as a downstream target of the SDF-1/CXCR4 system.
Collapse
Affiliation(s)
- Makoto Kinouchi
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, Graduate School of Tokushima University, Tokushima, Japan
| | - Daisuke Uchida
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, Graduate School of Tokushima University, Tokushima, Japan
- * E-mail:
| | - Nobuyuki Kuribayashi
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, Graduate School of Tokushima University, Tokushima, Japan
| | - Tetsuya Tamatani
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, Graduate School of Tokushima University, Tokushima, Japan
| | - Hirokazu Nagai
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, Graduate School of Tokushima University, Tokushima, Japan
| | - Youji Miyamoto
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, Graduate School of Tokushima University, Tokushima, Japan
| |
Collapse
|
157
|
Eissa S, Habib H, Ali E, Kotb Y. Evaluation of urinary miRNA-96 as a potential biomarker for bladder cancer diagnosis. Med Oncol 2014; 32:413. [PMID: 25511320 DOI: 10.1007/s12032-014-0413-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 01/15/2023]
Abstract
For bladder cancer, a new diagnostic marker is needed to avoid painful cystoscopy. The aim of this study was to explore the efficacy of urinary miRNA-96 as molecular marker in bladder cancer diagnosis and its relation to bilharziasis. Urine cytology, serologic assessment of schistosomiasis and estimation of miRNA-96 by real-time PCR were carried out for 94 bladder cancer patients, 30 benign bladder lesions and 60 healthy individuals. Expression of miRNA-96 showed a significant difference among the three tested groups and also between benign and malignant bilharzial cases. Urinary miRNA-96 is a good noninvasive diagnostic biomarker for bladder cancer.
Collapse
Affiliation(s)
- Sanaa Eissa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt,
| | | | | | | |
Collapse
|
158
|
Talukdar S, Emdad L, Das SK, Sarkar D, Fisher PB. Noninvasive approaches for detecting and monitoring bladder cancer. Expert Rev Anticancer Ther 2014; 15:283-94. [PMID: 25494295 DOI: 10.1586/14737140.2015.989838] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bladder cancer is the second most common cancer of the urinary tract. Despite existing multiapproach treatment strategies, including radical cystectomy, bladder-sparing therapy with transurethral resection, chemotherapy and radiotherapy, patients with deeply invasive bladder cancers display poor prognosis, with a survival rate of only 30-50%. This can be avoided through proper surveillance and monitoring. Several genetic factors contribute to the progression of bladder cancer, and these molecules serve as cancer biomarkers. Blood, plasma, serum and urine are commonly analyzed for the presence of biomarkers, which can be both nuclear as well as mitochondrial in nature. This review discusses the efficacy of such biomarkers as well as highlights some potential prognostic markers in the field of noninvasive bladder cancer detection.
Collapse
Affiliation(s)
- Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
159
|
Lv L, Li Y, Deng H, Zhang C, Pu Y, Qian L, Xiao J, Zhao W, Liu Q, Zhang D, Wang Y, Zhang H, He Y, Zhu J. MiR-193a-3p promotes the multi-chemoresistance of bladder cancer by targeting the HOXC9 gene. Cancer Lett 2014; 357:105-113. [PMID: 25444900 DOI: 10.1016/j.canlet.2014.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 01/15/2023]
Abstract
Chemoresistance prevents the curative cancer chemotherapy and presents a formidable challenge for both cancer researchers and clinicians. We have previously shown that miR-193a-3p promotes the multi-chemoresistance of bladder cancer cells via repressing its three target genes: SRSF2, PLAU and HIC2. Here, we showed that as a new direct target, the homeobox C9 (HOXC9) gene also executes the promoting effect of miR-193a-3p on the bladder cancer chemoresistance from a systematic study of multi-chemosensitive (5637) and resistant (H-bc) bladder cancer cell lines in both cell culture and tumor-xenograft/nude mice system. Paralleled with the changes in the drug-triggered cell death, the activities of both DNA damage response and oxidative stress pathways were drastically altered by a forced reversal of miR-193a-3p or HOXC9 levels in bladder cancer cells. In addition to a new mechanistic insight, our results provide a set of the essential genes in the miR-193a-3p/HOXC9/DNA damage response/oxidative stress pathway axis as the diagnostic targets for the guided anti-bladder cancer chemotherapy.
Collapse
Affiliation(s)
- Lei Lv
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, Anhui 230031, China
| | - Yang Li
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, Anhui 230031, China
| | - Hui Deng
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, Anhui 230031, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Youguang Pu
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, Anhui 230031, China
| | - Liting Qian
- Department of Radiotherapy, Anhui Cancer Hospital, Hefei, Anhui 230031, China
| | - Jun Xiao
- Department of Urology, Anhui Provincial Hospital, Hefei, Anhui, China
| | - Weidong Zhao
- Department of Gynecologic Cancer, Anhui Cancer Hospital, Hefei, Anhui 230031, China
| | - Qi Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Daming Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yingwei Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Hongyu Zhang
- Cancer Epigenetics Program, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University, Shanghai 200032, China
| | - Yinghua He
- Cancer Epigenetics Program, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University, Shanghai 200032, China
| | - Jingde Zhu
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, Anhui 230031, China; Cancer Epigenetics Program, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University, Shanghai 200032, China.
| |
Collapse
|
160
|
Ostenfeld MS, Jeppesen DK, Laurberg JR, Boysen AT, Bramsen JB, Primdal-Bengtson B, Hendrix A, Lamy P, Dagnaes-Hansen F, Rasmussen MH, Bui KH, Fristrup N, Christensen EI, Nordentoft I, Morth JP, Jensen JB, Pedersen JS, Beck M, Theodorescu D, Borre M, Howard KA, Dyrskjøt L, Ørntoft TF. Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties. Cancer Res 2014; 74:5758-71. [PMID: 25261234 DOI: 10.1158/0008-5472.can-13-3512] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exosomes are small secreted vesicles that can transfer their content to recipient cells. In cancer, exosome secretion has been implicated in tumor growth and metastatic spread. In this study, we explored the possibility that exosomal pathways might discard tumor-suppressor miRNA that restricts metastatic progression. Secreted miRNA characterized from isogenic bladder carcinoma cell lines with differing metastatic potential were uncoupled from binding to target transcripts or the AGO2-miRISC complex. In metastatic cells, we observed a relative increase in secretion of miRNA with tumor-suppressor functions, including miR23b, miR224, and miR921. Ectopic expression of miR23b inhibited invasion, anoikis, angiogenesis, and pulmonary metastasis. Silencing of the exocytotic RAB family members RAB27A or RAB27B halted miR23b and miR921 secretion and reduced cellular invasion. Clinically, elevated levels of RAB27B expression were linked to poor prognosis in two independent cohorts of patients with bladder cancer. Moreover, highly exocytosed miRNA from metastatic cells, such as miR23b, were reduced in lymph node metastases compared with patient-matched primary tumors and were correlated with increments in miRNA-targeted RNA. Taken together, our results suggested that exosome-mediated secretion of tumor-suppressor miRNA is selected during tumor progression as a mechanism to coordinate activation of a metastatic cascade.
Collapse
Affiliation(s)
| | - Dennis K Jeppesen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Skejby, Denmark
| | - Jens R Laurberg
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Skejby, Denmark
| | - Anders T Boysen
- The interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| | - Jesper B Bramsen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Skejby, Denmark
| | | | - An Hendrix
- Laboratory of Experimental Cancer Research, Ghent University Hospital, Belgium
| | - Philippe Lamy
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Skejby, Denmark
| | | | - Mads H Rasmussen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Skejby, Denmark
| | | | - Niels Fristrup
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Skejby, Denmark
| | | | - Iver Nordentoft
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Skejby, Denmark
| | - Jens P Morth
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Norway
| | | | - Jakob S Pedersen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Skejby, Denmark
| | | | | | - Michael Borre
- Department of Urology, Aarhus University Hospital, Denmark
| | - Kenneth A Howard
- The interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| | - Lars Dyrskjøt
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Skejby, Denmark
| | - Torben Falck Ørntoft
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Skejby, Denmark.
| |
Collapse
|
161
|
Canturk KM, Ozdemir M, Can C, Öner S, Emre R, Aslan H, Cilingir O, Ciftci E, Celayir FM, Aldemir O, Özen M, Artan S. Investigation of key miRNAs and target genes in bladder cancer using miRNA profiling and bioinformatic tools. Mol Biol Rep 2014; 41:8127-35. [PMID: 25189652 DOI: 10.1007/s11033-014-3713-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 08/28/2014] [Indexed: 12/19/2022]
Abstract
Despite the association of several miRNAs with bladder cancer, little is known about the miRNAs' regulatory networks. In this study, we aimed to construct potential networks of bladder-cancer-related miRNAs and their known target genes using miRNA expression profiling and bioinformatics tools and to investigate potential key molecules that might play roles in bladder cancer regulatory networks. Global miRNA expression profiles were obtained using microarray followed by RT-qPCR validation using two randomly selected miRNAs. Known targets of deregulated miRNAs were utilized using DIANA-TarBase database v6.0. The incorporation of deregulated miRNAs and target genes into KEGG pathways were utilized using DIANA-mirPath software. To construct potential miRNA regulatory networks, the overlapping parts of three selected KEGG pathways were visualized by Cytoscape software. We finally gained 19 deregulated miRNAs, including 5 ups- and 14 down regulated in 27 bladder-cancer tissue samples and 8 normal urothelial tissue samples. The enrichment results of deregulated miRNAs and known target genes showed that most pathways were related to cancer or cell signaling pathways. We determined the hub CDK6, BCL2, E2F3, PTEN, MYC, RB, and ERBB3 target genes and hub hsa-let-7c, hsa-miR-195-5p, hsa-miR-141-3p, hsa-miR-26a-5p, hsa-miR-23b-3p, and hsa-miR-125b-5p miRNAs of the constructed networks. These findings provide new insights into the bladder cancer regulatory networks and give us a hypothesis that hsa-let-7c, hsa-miR-195-5p, and hsa-miR-125b-5p, along with CDK4 and CDK6 genes might exist in the same bladder cancer pathway. Particularly, hub miRNAs and genes might be potential biomarkers for bladder cancer clinics.
Collapse
Affiliation(s)
- Kemal Murat Canturk
- Ministry of Justice, Department of Biology, Council of Forensic Medicine, Istanbul, Turkey,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
|
163
|
Sempere LF. Tissue slide-based microRNA characterization of tumors: how detailed could diagnosis become for cancer medicine? Expert Rev Mol Diagn 2014; 14:853-69. [PMID: 25090088 PMCID: PMC4364265 DOI: 10.1586/14737159.2014.944507] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
miRNAs are short, non-coding, regulatory RNAs that exert cell type-dependent, context-dependent, transcriptome-wide gene expression control under physiological and pathological conditions. Tissue slide-based assays provide qualitative (tumor compartment) and semi-quantitative (expression levels) information about altered miRNA expression at single-cell resolution in clinical tumor specimens. Reviewed here are key technological advances in the last 5 years that have led to implementation of fully automated, robust and reproducible tissue slide-based assays for in situ miRNA detection on US FDA-approved instruments; recent tissue slide-based discovery studies that suggest potential clinical applications of specific miRNAs in cancer medicine are highlighted; and the challenges in bringing tissue slide-based miRNA assays into the clinic are discussed, including clinical validation, biomarker performance, biomarker space and integration with other biomarkers.
Collapse
Affiliation(s)
- Lorenzo F Sempere
- Laboratory of microRNA Diagnostics and Therapeutics, Van Andel Research Institute, 333 Bostwick Ave, N.E, Grand Rapids, MI 49503, USA
| |
Collapse
|
164
|
Peter S, Borkowska E, Drayton RM, Rakhit CP, Noon A, Chen W, Catto JW. Identification of differentially expressed long noncoding RNAs in bladder cancer. Clin Cancer Res 2014; 20:5311-21. [PMID: 25165097 DOI: 10.1158/1078-0432.ccr-14-0706] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE Loss of epigenetic gene regulation through altered long noncoding RNA (lncRNA) expression seems important in human cancer. LncRNAs have diagnostic and therapeutic potential, and offer insights into the biology disease, but little is known of their expression in urothelial cancer. Here, we identify differentially expressed lncRNAs with potential regulatory functions in urothelial cancer. EXPERIMENTAL DESIGN The expression of 17,112 lncRNAs and 22,074 mRNAs was determined using microarrays in 83 normal and malignant urothelial (discovery) samples and selected RNAs with qPCR in 138 samples for validation. Significantly differentially expressed RNAs were identified and stratified according to tumor phenotype. siRNA knockdown, functional assays, and whole-genome transcriptomic profiling were used to identify potential roles of selected lncRNAs. RESULTS We observed upregulation of many lncRNAs in urothelial cancer that was distinct to corresponding, more balanced changes for mRNAs. In general, lncRNA expression reflected disease phenotype. We identified 32 lncRNAs with potential roles in disease progression. Focusing upon a promising candidate, we implicate upregulation of AB074278 in apoptosis avoidance and the maintenance of a proproliferative state in cancer through a potential interaction with EMP1, a tumor suppressor and a negative regulator of cell proliferation. CONCLUSIONS We report differential expression profiles for numerous lncRNA in urothelial cancer. We identify phenotype-specific expression and a potential mechanistic target to explain this observation. Further studies are required to validate lncRNAs as prognostic biomarkers in this disease.
Collapse
Affiliation(s)
- Stefan Peter
- Academic Urology Unit and Unit of Molecular Oncology, University of Sheffield, Sheffield, United Kingdom
| | - Edyta Borkowska
- Academic Urology Unit and Unit of Molecular Oncology, University of Sheffield, Sheffield, United Kingdom
| | - Ross M Drayton
- Academic Urology Unit and Unit of Molecular Oncology, University of Sheffield, Sheffield, United Kingdom
| | - Callum P Rakhit
- Academic Urology Unit and Unit of Molecular Oncology, University of Sheffield, Sheffield, United Kingdom
| | - Aidan Noon
- Academic Urology Unit and Unit of Molecular Oncology, University of Sheffield, Sheffield, United Kingdom. Department of Urology, University of Toronto, Toronto, Canada
| | - Wei Chen
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - James Wf Catto
- Academic Urology Unit and Unit of Molecular Oncology, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
165
|
Tay Y, Tan SM, Karreth FA, Lieberman J, Pandolfi PP. Characterization of dual PTEN and p53-targeting microRNAs identifies microRNA-638/Dnm2 as a two-hit oncogenic locus. Cell Rep 2014; 8:714-22. [PMID: 25088422 DOI: 10.1016/j.celrep.2014.06.064] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/30/2014] [Accepted: 06/30/2014] [Indexed: 01/02/2023] Open
Abstract
Tumor suppressor genes (TSGs) are often concomitantly lost or mutated in human cancers and have been shown to act synergistically to promote tumorigenesis. In addition to genomic alterations, posttranscriptional regulation by microRNAs (miRNAs) represents another mechanism by which TSG expression is dysregulated in cancers. Although miRNAs that target critical TSGs such as PTEN or p53 have been identified, little is known about miRNAs that concomitantly regulate both these key TSGs. In this study, we characterize microRNA 518c(∗) (miR-518c(∗)) and miR-638 as dual PTEN- and p53-targeting miRNAs that are upregulated in multiple human cancers. We focus on miR-638 and show that it associates independently with these two tumor suppressor transcripts as well as BRCA1, a known miR-638 target. We find that miR-638 overexpression promotes tumorigenesis and demonstrate cooperativity between miR-638 and its host gene Dnm2, suggesting that the Dnm2 locus encodes two distinct oncogenic components that play important roles in tumorigenesis.
Collapse
Affiliation(s)
- Yvonne Tay
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Shen Mynn Tan
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Florian A Karreth
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Judy Lieberman
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
166
|
Chen MF, Zeng F, Qi L, Zu XB, Wang J, Liu LF, Li Y. Transforming growth factor‑β1 induces epithelial‑mesenchymal transition and increased expression of matrix metalloproteinase‑16 via miR‑200b downregulation in bladder cancer cells. Mol Med Rep 2014; 10:1549-54. [PMID: 25017509 DOI: 10.3892/mmr.2014.2366] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 05/23/2014] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor‑β1 (TGF‑β1) is involved in the migration and metastases of bladder cancer. The present study was designed to investigate whether TGF‑β1 is able to induce epithelial‑mesenchymal transition (EMT) and the upregulation of matrix metalloproteinase‑16 (MMP‑16), and to identify an association between EMT and MMP‑16 in bladder cancer. Following TGF‑β1 treatment, samples of HTB9 and T24 bladder cancer cells were collected at various time points. Western blotting and quantitative polymerase chain reaction (qPCR) confirmed that TGF‑β1 induced EMT in HTB9 and T24 cells at the protein and mRNA levels. The expression levels of the miR‑200 family were determined by qPCR, which indicated that TGF‑β1 treatment significantly reduced the expression of miR‑200b. Bioinformatic analysis indicated that MMP‑16 may be the target of miR‑200b. Reporter luciferase assay confirmed that MMP‑16 is a direct downstream functional target of miR‑200b. A Matrigel migration assay demonstrated that miR‑200b overexpression inhibited the migration of bladder cancer cells. In summary, the current study demonstrated that exogenous TGF‑β1 leads to the induction of EMT and the downregulation of miR‑200b in bladder cancer cells. To the best of our knowledge, this is the first evidence that MMP‑16 is a direct target of miR‑200b.
Collapse
Affiliation(s)
- Min Feng Chen
- Department of Urology, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Feng Zeng
- Department of Urology, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lin Qi
- Department of Urology, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiong Bing Zu
- Department of Urology, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jun Wang
- Department of Urology, First Teaching Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Long Fei Liu
- Department of Urology, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuan Li
- Department of Urology, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
167
|
Chen YP, Jin X, Kong M, Li YM. Pattern of microRNA expression associated with different stages of alcoholic liver disease in rat models. Mol Med Rep 2014; 10:1195-204. [PMID: 25017766 PMCID: PMC4121398 DOI: 10.3892/mmr.2014.2368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 04/04/2014] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence has suggested that aberrant expression of micro (mi)RNAs contributes to the development of alcoholic liver injury (ALD). However, miRNA profiles distinguishing different stages of ALD have not yet been reported. The present study was designed to investigate the unique miRNA expression patterns at different stages of ALD in a rat model and analyze the gene functions and pathways of dysregulated miRNA-targeted genes. Using microarray and stem-loop quantitative polymerase chain reaction analyses, 16 miRNAs were identified as upregulated and 13 were identified as downregulated in an alcoholic steatohepatitis (ASH) group compared with the control group, while five miRNAs were identified to be upregulated and eight were identified to be downregulated in the alcoholic fatty liver (AFL) group as compared with the control group. Following further confirmation by Significance Analysis of Microarray and prediction by Prediction Analysis of Microarray, 8 and 12 types of miRNA were screened as molecular signatures in distinguishing AFL and ASH, respectively, from normal rat liver. In addition, several miRNA-target pairs were predicted by computer-aided algorithms (Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses using the Database for Annotation, Visualization and Integrated Discovery platform) and these genes may be involved in cancer signaling pathways, the Wnt signaling pathway and other signaling pathways. These results may provide novel miRNA targets for diagnosis and therapeutic intervention at different stages of ALD.
Collapse
Affiliation(s)
- Yi-Peng Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Mei Kong
- Department of Pathology, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - You-Ming Li
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
168
|
Zhu Z, Xu T, Wang L, Wang X, Zhong S, Xu C, Shen Z. MicroRNA-145 directly targets the insulin-like growth factor receptor I in human bladder cancer cells. FEBS Lett 2014; 588:3180-5. [PMID: 24999188 DOI: 10.1016/j.febslet.2014.06.059] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
Abstract
The insulin-like growth factor receptor I (IGF-IR) is a proto-oncogene with potent mitogenic and antiapoptotic activities. It has been reported that expression of IGF-IR is up-regulated in bladder cancer. Here, we assessed whether microRNA-145 (miR-145) regulates IGF-IR expression in bladder cancer. In our study, miR-145 was shown to directly target IGF-IR 3'-untranslated region (UTR) in human bladder cancer cells. Small interfering RNA (siRNA)- and miR-145-mediated IGF-IR knockdown experiments revealed that miR-145 promotes cell apoptosis, and suppresses cell proliferation and migration through suppression of IGF-IR expression. Taken together, our data suggest that miR-145 may inhibit bladder cancer initiation by affecting IGF-IR signaling.
Collapse
Affiliation(s)
- Zhaowei Zhu
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tianyuan Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li Wang
- Department of Embryology and Histology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xianjin Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shan Zhong
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chen Xu
- Department of Embryology and Histology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhoujun Shen
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
169
|
Feng Y, Kang Y, He Y, Liu J, Liang B, Yang P, Yu Z. microRNA-99a acts as a tumor suppressor and is down-regulated in bladder cancer. BMC Urol 2014; 14:50. [PMID: 24957100 PMCID: PMC4083872 DOI: 10.1186/1471-2490-14-50] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 06/18/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Increasing evidences have documented that microRNAs (miRNAs) act as oncogenes or tumor suppressors in a variety types of cancer. The discovery of tumor associated miRNAs in serum of patients gives rise to extensive investigation of circulating miRNAs in many human cancers which support the use of plasma/serum miRNAs as noninvasive means of cancer detection. However, the aberrant expression of miRNAs and the circulating miRNAs in bladder cancer are less reported. METHODS We used Taqman probe stem-loop real-time PCR to accurately measure the levels of miR-99a in bladder cancer cell lines, 100 pairs of bladder cancer tissues, the adjacent non-neoplastic tissues and plasma collected from bladder cancer patients or control patients. miR-99a mimics were re-introduced into bladder cancer cells to investigate its role on regulating cell proliferation which was measured by CCK-8 assay and cell cycle analysis. RESULTS miR-99a was significantly down-regulated in bladder cancer tissues, and even the lower expression of miR-99a was correlative with the more aggressive phenotypes of bladder cancer. Meanwhile, enforced expression of miR-99a can inhibit the cell proliferation of bladder cancer cells. Furthermore, investigation of the expression of miR-99a in plasma of bladder cancer patients showed that miR-99a was also decreased in plasma of bladder cancer patients. The results strongly supported miR-99a as the potential diagnostic marker of bladder cancer. CONCLUSIONS Our data indicated that miR-99a might act as a tumor suppressor in bladder cancer and was significantly down-regulated in development of bladder cancer.
Collapse
Affiliation(s)
| | - Yongming Kang
- Department of Urology, Suining Central Hospital, 127 Deshengxi Road, Suining, Chuanshan District 629000, P,R, China.
| | | | | | | | | | | |
Collapse
|
170
|
Down-regulation of miR-29c in human bladder cancer and the inhibition of proliferation in T24 cell via PI3K-AKT pathway. Med Oncol 2014; 31:65. [PMID: 24952510 DOI: 10.1007/s12032-014-0065-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
The purpose of this study was to explore new tumor suppressor microRNA in bladder cancer and to conduct functional analysis of its suppressive role. To investigate the expression of miR-29c, qRT-PCR was used in 30 pairs of bladder cancer tissues and normal tissues (adjacent bladder tissue samples). The expression of miR-29c was down regulated in bladder cancer tissues compared with normal tissues. Also, the low-level expression of miR-29c was associated with tumor stage (P = 0.002), and ectopic over-expression of miR-29c in T24 cells can significantly inhibit cell proliferation, decrease motility, suppress the G1/S cell cycle transition and induce apoptosis. Furthermore, it could cause a decrease in AKT and GSK-3β phosphorylation. While LY294002 reduced the protein level of pAKT, the over-expression of miR-29c can further decrease its level in T24 cells pretreated with LY294002. Our study also indicated that the proliferation inhibition of T24 may take place via AKT-GSK3β pathway. Thus, miR-29c could be an active player in disease state of bladder cancer and it may be a promising tumor suppressor in bladder cancer.
Collapse
|
171
|
Kou B, Gao Y, Du C, Shi Q, Xu S, Wang CQ, Wang X, He D, Guo P. miR-145 inhibits invasion of bladder cancer cells by targeting PAK1. Urol Oncol 2014; 32:846-54. [PMID: 24954107 DOI: 10.1016/j.urolonc.2014.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 01/02/2014] [Accepted: 01/02/2014] [Indexed: 11/26/2022]
Abstract
OBJECTIVES MicroRNAs play important roles in cancer. In many cancers, miR-145 acts as a tumor suppressor, and it is down-regulated in bladder cancer. In the present study, we explored the modulation of oncogenic gene PAK1 by miR-145 in bladder cancer. MATERIAL AND METHODS Expression of miR-145 was detected in bladder cancer tissues and cell lines by quantitative real-time polymerase chain reaction. Through the bioinformatics approach, PAK1 has been predicted to be a direct target of miR-145 and was confirmed by the PAK1 messenger RNA 3'-untranslated region luciferase activity assay. To investigate whether miR-145 regulates PAK1 expression, it was overexpressed in J82 and T24 bladder cancer cells. In 10 paired bladder normal and tumor tissues, we determined the relationship between miR-145 and PAK1 through quantitative real-time polymerase chain reaction and western blot. By using transwell invasion assay and western blotting analysis, we investigated the effects of miR-145 and PAK1 on bladder cancer cell invasion and expression of invasion marker genes. RESULTS The level of miR-145 decreases and PAK1 protein expression up-regulates in bladder cancer tissue, as compared with the paired normal bladder tissue. Moreover, miR-145 directly targets PAK1 in bladder cancer cells. The level of miR-145 negatively correlates with PAK1 protein expression in bladder cancer. In addition, PAK1 promotes invasion and enhances the expression and activity of MMP-9, whereas miR-145 inhibits bladder cancer cell invasion and expressions of PAK1 and MMP-9. CONCLUSIONS Our results indicate that miR-145 inhibits bladder cancer cell invasion, at least partly through targeting PAK1. Restoration or replacement of miR-145 could be an efficient approach to inhibit PAK1 and bladder cancer development in the tumor therapy.
Collapse
Affiliation(s)
- Bo Kou
- Department of Urology, The First Hospital of Xi׳an Jiaotong University, Xi׳an, Shaanxi, P.R. China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi׳an, Shaanxi, P.R. China
| | - Yang Gao
- Department of Urology, The First Hospital of Xi׳an Jiaotong University, Xi׳an, Shaanxi, P.R. China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi׳an, Shaanxi, P.R. China
| | - Chong Du
- Department of Urology, The First Hospital of Xi׳an Jiaotong University, Xi׳an, Shaanxi, P.R. China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi׳an, Shaanxi, P.R. China
| | - Qi Shi
- Department of Urology, The First Hospital of Xi׳an Jiaotong University, Xi׳an, Shaanxi, P.R. China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi׳an, Shaanxi, P.R. China
| | - Shan Xu
- Department of Urology, The First Hospital of Xi׳an Jiaotong University, Xi׳an, Shaanxi, P.R. China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi׳an, Shaanxi, P.R. China
| | - Chen-Qing Wang
- Department of Urology, The First Hospital of Xi׳an Jiaotong University, Xi׳an, Shaanxi, P.R. China
| | - Xinyang Wang
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi׳an, Shaanxi, P.R. China
| | - Dalin He
- Department of Urology, The First Hospital of Xi׳an Jiaotong University, Xi׳an, Shaanxi, P.R. China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi׳an, Shaanxi, P.R. China
| | - Peng Guo
- Department of Urology, The First Hospital of Xi׳an Jiaotong University, Xi׳an, Shaanxi, P.R. China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi׳an, Shaanxi, P.R. China.
| |
Collapse
|
172
|
Tsai TF, Lin YC, Chen HE, Chou KY, Lin JF, Hwang TIS. Involvement of the insulin-like growth factor I receptor and its downstream antiapoptotic signaling pathway is revealed by dysregulated microRNAs in bladder carcinoma. UROLOGICAL SCIENCE 2014. [DOI: 10.1016/j.urols.2014.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
173
|
Abstract
Aim: Specific miRNA profiles have been identified for several samples from patients with bladder cancer. The results are not always congruent and partly contradictory. A comparison of published data was performed to select potential markers. Materials & methods: A literature search in PubMed identified 79 articles published prior to June 2013. Reports regarding the detection of miRNAs in urine and blood have rarely been published; to date, nine respectively three articles are available. Results: The comparison of published data proved the utility of miRNAs as diagnostic and prognostic indicators of bladder cancer. In urine samples from bladder cancer patients, seven miRNAs were concordantly expressed with tumor tissues. Conclusion: Standardization is strictly required in pre-analytics and methods of miRNA measurements.
Collapse
Affiliation(s)
- Angelika Tölle
- Department of Urology, Charité – Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Nadine Ratert
- Department of Urology, Charité – Universitätsmedizin Berlin, 10117 Berlin, Germany
- Berlin Institute for Urologic Research, 10117 Berlin, Germany
| | - Klaus Jung
- Department of Urology, Charité – Universitätsmedizin Berlin, 10117 Berlin, Germany
- Berlin Institute for Urologic Research, 10117 Berlin, Germany
| |
Collapse
|
174
|
Chen X, Ruan A, Wang X, Han W, Wang R, Lou N, Ruan H, Qiu B, Yang H, Zhang X. miR-129-3p, as a diagnostic and prognostic biomarker for renal cell carcinoma, attenuates cell migration and invasion via downregulating multiple metastasis-related genes. J Cancer Res Clin Oncol 2014; 140:1295-304. [PMID: 24802708 DOI: 10.1007/s00432-014-1690-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 04/19/2014] [Indexed: 12/23/2022]
Abstract
PURPOSE Downregulation of miRNA expression has been identified as a novel feature of renal cell carcinoma (RCC). Recently, miR-129-2 is well known to be frequently reduced by DNA methylation and has anti-tumor effects in various tumors but so far not in RCC. The aim of this study was to investigate the clinical significance and the role of it in RCC. METHODS The expression levels of miR-129-3p and miR-129-5p, two mature products of miR-129-2, were determined by real-time quantitative reverse transcription PCR in 69 cases of paired different kidney tumors and normal tissues and clear cell RCC (ccRCC) cell lines. The roles of them in RCC cells were assessed by functional analyses. Protein expression was detected by Western blot. RESULTS miR-129-3p, but not miR-129-5p, was widely attenuated in human ccRCC, and chromophobe RCC. miR-129-3p could yield 73.5 % accuracy in discriminating ccRCCs from normal tissues. The relative miR-129-3p expression significantly differed between malignant and benign kidney tumors. Importantly, low miR-129-3p levels were associated with short disease-free and overall survival. Ectopic expression of miR-129-3p robustly impaired RCC cell migratory and invasive properties, but had no impact on cell viability and cell cycle distribution. Finally, miR-129-3p decreased multiple metastasis-related genes in RCC cells, including SOX4, phosphorylation of focal adhesion kinase and MMP-2/9 expression. CONCLUSIONS miR-129-3p may act as a promising diagnostic biomarker for discriminating ccRCC from benign tumors and normal tissues and an independent prognostic biomarker in ccRCC. miR-129-3p may exert its anti-metastatic function through modulating multiple targets.
Collapse
Affiliation(s)
- Xuanyu Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Genini S, Guziewicz KE, Beltran WA, Aguirre GD. Altered miRNA expression in canine retinas during normal development and in models of retinal degeneration. BMC Genomics 2014; 15:172. [PMID: 24581223 PMCID: PMC4029133 DOI: 10.1186/1471-2164-15-172] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/17/2014] [Indexed: 02/06/2023] Open
Abstract
Background Although more than 246 loci/genes are associated with inherited retinal diseases, the mechanistic events that link genetic mutations to photoreceptor cell death are poorly understood. miRNAs play a relevant role during retinal development and disease. Thus, as a first step in characterizing miRNA involvement during disease expression and progression, we examined miRNAs expression changes in normal retinal development and in four canine models of retinal degenerative disease. Results The initial microarray analysis showed that 50 miRNAs were differentially expressed (DE) early (3 vs. 7 wks) in normal retina development, while only 2 were DE between 7 and 16 wks, when the dog retina is fully mature. miRNA expression profiles were similar between dogs affected with xlpra2, an early-onset retinal disease caused by a microdeletion in RPGRORF15, and normal dogs early in development (3 wks) and at the peak of photoreceptor death (7 wks), when only 2 miRNAs were DE. However, the expression varied much more markedly during the chronic cell death stage at 16 wks (118 up-/55 down-regulated miRNAs). Functional analyses indicated that these DE miRNAs are associated with an increased inflammatory response, as well as cell death/survival. qRT-PCR of selected apoptosis-related miRNAs (“apoptomirs”) confirmed the microarray results in xlpra2, and extended the analysis to the early-onset retinal diseases rcd1 (PDE6B-mutation) and erd (STK38L-mutation), as well as the slowly progressing prcd (PRCD-mutation). The results showed up-regulation of anti-apoptotic (miR-9, -19a, -20, -21, -29b, -146a, -155, -221) and down-regulation of pro-apoptotic (miR-122, -129) apoptomirs in the early-onset diseases and, with few exceptions, also in the prcd-mutants. Conclusions Our results suggest that apoptomirs might be expressed by diseased retinas in an attempt to counteract the degenerative process. The pattern of expression in diseased retinas mirrored the morphology and cell death kinetics previously described for these diseases. This study suggests that common miRNA regulatory mechanisms may be involved in retinal degeneration processes and provides attractive opportunities for the development of novel miRNA-based therapies to delay the progression of the degenerative process. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-172) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sem Genini
- Department of Clinical Studies-Philadelphia, Section of Ophthalmology, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, 19104 Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
176
|
Vislovukh A, Vargas TR, Polesskaya A, Groisman I. Role of 3’-untranslated region translational control in cancer development, diagnostics and treatment. World J Biol Chem 2014; 5:40-57. [PMID: 24600513 PMCID: PMC3942541 DOI: 10.4331/wjbc.v5.i1.40] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/22/2013] [Accepted: 12/19/2013] [Indexed: 02/05/2023] Open
Abstract
The messenger RNA 3’-untranslated region (3’UTR) plays an important role in regulation of gene expression on the posttranscriptional level. The 3’UTR controls gene expression via orchestrated interaction between the structural components of mRNAs (cis-element) and the specific trans-acting factors (RNA binding proteins and non-coding RNAs). The crosstalk of these factors is based on the binding sequences and/or direct protein-protein interaction, or just functional interaction. Much new evidence that has accumulated supports the idea that several RNA binding factors can bind to common mRNA targets: to the non-overlapping binding sites or to common sites in a competitive fashion. Various factors capable of binding to the same RNA can cooperate or be antagonistic in their actions. The outcome of the collective function of all factors bound to the same mRNA 3’UTR depends on many circumstances, such as their expression levels, affinity to the binding sites, and localization in the cell, which can be controlled by various physiological conditions. Moreover, the functional and/or physical interactions of the factors binding to 3’UTR can change the character of their actions. These interactions vary during the cell cycle and in response to changing physiological conditions. Abnormal functioning of the factors can lead to disease. In this review we will discuss how alterations of these factors or their interaction can affect cancer development and promote or enhance the malignant phenotype of cancer cells. Understanding these alterations and their impact on 3’UTR-directed posttranscriptional gene regulation will uncover promising new targets for therapeutic intervention and diagnostics. We will also discuss emerging new tools in cancer diagnostics and therapy based on 3’UTR binding factors and approaches to improve them.
Collapse
|
177
|
Shi M, Cui J, Xie K. Signaling of miRNAs-FOXM1 in cancer and potential targeted therapy. Curr Drug Targets 2014; 14:1192-202. [PMID: 23834153 DOI: 10.2174/13894501113149990192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 12/21/2022]
Abstract
The transcription factor Forkhead box protein M1 (FOXM1) is overexpressed in the majority of cancer patients. This overexpression is implicated to play a role in the pathogenesis, progression, and metastasis of cancer. This important role of FOXM1 demonstrates its significance to cancer therapy. MicroRNAs (miRNAs) are small noncoding, endogenous, single-stranded RNAs that are pivotal posttranscriptional gene expression regulators. MiRNAs aberrantly expressed in cancer cells have important roles in tumorigenesis and progression. Currently, miRNAs are being studied as diagnostic and prognostic biomarkers and therapeutic tools for cancer. The rapid discovery of many target miRNAs and their relevant pathways has contributed to the development of miRNA-based therapeutics for cancer. In this review, we summarize the latest and most significant findings on FOXM1 and miRNA involvement in cancer development and describe the role/roles of miRNA/FOXM1 signaling pathways in cancer initiation and progression. Targeting FOXM1 via regulation of miRNA expression may have a role in cancer treatment, although the miRNA delivery method remains the key challenge to the establishment of this novel therapy.
Collapse
Affiliation(s)
- Min Shi
- Department of Surgery, Shanghai Jiaotong University Affiliated Ruijin Hospital, Shanghai, People’s Republic of China
| | | | | |
Collapse
|
178
|
Xiao J, Zhong H, Zhou Y, Yu F, Gao Y, Luo Y, Tang Z, Guo Z, Guo E, Gan X, Zhang M, Zhang Y. Identification and characterization of microRNAs in ovary and testis of Nile tilapia (Oreochromis niloticus) by using solexa sequencing technology. PLoS One 2014; 9:e86821. [PMID: 24466258 PMCID: PMC3900680 DOI: 10.1371/journal.pone.0086821] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/14/2013] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding small RNAs which play important roles in the regulation of gene expression by cleaving or inhibiting the translation of target gene transcripts. Thereinto, some specific miRNAs show regulatory activities in gonad development via translational control. In order to further understand the role of miRNA-mediated posttranscriptional regulation in Nile tilapia (Oreochromis niloticus) ovary and testis, two small RNA libraries of Nile tilapia were sequenced by Solexa small RNA deep sequencing methods. A total of 9,731,431 and 8,880,497 raw reads, representing 5,407,800 and 4,396,281 unique sequences were obtained from the sexually mature ovaries and testes, respectively. After comparing the small RNA sequences with the Rfam database, 1,432,210 reads in ovaries and 984,146 reads in testes were matched to the genome sequence of Nile tilapia. Bioinformatic analysis identified 764 mature miRNA, 209 miRNA-5p and 202 miRNA-3p were found in the two libraries, of which 525 known miRNAs are both expressed in the ovary and testis of Nile tilapia. Comparison of expression profiles of the testis, miR-727, miR-129 and miR-29 families were highly expressed in tilapia ovary. Additionally, miR-132, miR-212, miR-33a and miR-135b families, showed significant higher expression in testis compared with that in ovary. Furthermore, the expression patterns of the miRNAs were analyzed in different developmental stages of gonad. The result showed different expression patterns were observed during development of testis and ovary. In addition, the identification and characterization of differentially expressed miRNAs in the ovaries and testis of Nile tilapia provides important information on the role of miRNA in the regulation of the ovarian and testicular development and function. This data will be helpful to facilitate studies on the regulation of miRNAs during teleosts reproduction.
Collapse
Affiliation(s)
- Jun Xiao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Science, Nanning, Guangxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China
- State Key Laboratory of Genetic Resources and Evolution and Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Huan Zhong
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Science, Nanning, Guangxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China
| | - Yi Zhou
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Science, Nanning, Guangxi, China
| | - Fan Yu
- Key Laboratory for Genetic Breeding of Aquatic Animals, Aquaculture Biology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Yun Gao
- State Key Laboratory of Genetic Resources and Evolution and Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Science, Nanning, Guangxi, China
| | - Zhanyang Tang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Science, Nanning, Guangxi, China
| | - Zhongbao Guo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Science, Nanning, Guangxi, China
| | - Enyan Guo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Science, Nanning, Guangxi, China
| | - Xi Gan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Science, Nanning, Guangxi, China
- * E-mail: (XG); (MZ)
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China
- * E-mail: (XG); (MZ)
| | - Yaping Zhang
- State Key Laboratory of Genetic Resources and Evolution and Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Kunming, Yunnan, China
| |
Collapse
|
179
|
Perez A, Loizaga A, Arceo R, Lacasa I, Rabade A, Zorroza K, Mosen-Ansorena D, Gonzalez E, Aransay AM, Falcon-Perez JM, Unda-Urzaiz M, Royo F. A Pilot Study on the Potential of RNA-Associated to Urinary Vesicles as a Suitable Non-Invasive Source for Diagnostic Purposes in Bladder Cancer. Cancers (Basel) 2014; 6:179-92. [PMID: 24458310 PMCID: PMC3980604 DOI: 10.3390/cancers6010179] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/20/2013] [Accepted: 01/13/2014] [Indexed: 12/26/2022] Open
Abstract
Bladder cancer is one of the most common cancers and, together with prostate carcinoma, accounts for the majority of the malignancies of the genitourinary tract. Since prognosis ameliorates with early detection, it will be beneficial to have a repertoire of diagnostic markers that could complement the current diagnosis protocols. Recently, cell-secreted extracellular vesicles have received great interest as a source of low invasive disease biomarkers because they are found in many body fluids, including urine. The current work describes a pilot study to generate an array-based catalogue of mRNA associated to urinary vesicles, and also a comparison with samples obtained from bladder cancer patients. After an analysis of presence/absence of transcripts in bladder cancer EVs, a list of genes was selected for further validation using PCR technique. We found four genes differentially expressed in cancer samples. LASS2 and GALNT1 were present in cancer patients, while ARHGEF39 and FOXO3 were found only in non-cancer urinary vesicles. Previous studies have pointed to the involvement of those genes in tumour progression and metastasis.
Collapse
Affiliation(s)
- Amparo Perez
- Urology Service, Basurto University Hospital, Bilbao 48013, Bizkaia, Spain; E-Mails: (A.P.); (A.L.); (R.A.); (I.L.); (A.R.); (M.U.-U.)
| | - Ana Loizaga
- Urology Service, Basurto University Hospital, Bilbao 48013, Bizkaia, Spain; E-Mails: (A.P.); (A.L.); (R.A.); (I.L.); (A.R.); (M.U.-U.)
| | - Raquel Arceo
- Urology Service, Basurto University Hospital, Bilbao 48013, Bizkaia, Spain; E-Mails: (A.P.); (A.L.); (R.A.); (I.L.); (A.R.); (M.U.-U.)
| | - Isabel Lacasa
- Urology Service, Basurto University Hospital, Bilbao 48013, Bizkaia, Spain; E-Mails: (A.P.); (A.L.); (R.A.); (I.L.); (A.R.); (M.U.-U.)
| | - Ainara Rabade
- Urology Service, Basurto University Hospital, Bilbao 48013, Bizkaia, Spain; E-Mails: (A.P.); (A.L.); (R.A.); (I.L.); (A.R.); (M.U.-U.)
| | - Kerman Zorroza
- Basque Foundation for Health Innovation and Research (BIOEF), DNA Laboratory, Basurto Hospital, Bilbao 48013, Bizkaia, Spain; E-Mail:
| | - David Mosen-Ansorena
- Genome Analysis Platform, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio 48160, Bizkaia, Spain; E-Mails: (D.M.-A); (A.M.A.)
| | - Esperanza Gonzalez
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio 48160, Bizkaia, Spain; E-Mails: (E.G.); (J.M.F.-P.)
| | - Ana M. Aransay
- Genome Analysis Platform, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio 48160, Bizkaia, Spain; E-Mails: (D.M.-A); (A.M.A.)
| | - Juan M. Falcon-Perez
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio 48160, Bizkaia, Spain; E-Mails: (E.G.); (J.M.F.-P.)
- IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Bizkaia, Spain; E-Mail:
| | - Miguel Unda-Urzaiz
- Urology Service, Basurto University Hospital, Bilbao 48013, Bizkaia, Spain; E-Mails: (A.P.); (A.L.); (R.A.); (I.L.); (A.R.); (M.U.-U.)
| | - Felix Royo
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio 48160, Bizkaia, Spain; E-Mails: (E.G.); (J.M.F.-P.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-944-061-325; Fax: +34-944-061-301
| |
Collapse
|
180
|
Segersten U, Spector Y, Goren Y, Tabak S, Malmström PU. The role of microRNA profiling in prognosticating progression in Ta and T1 urinary bladder cancer. Urol Oncol 2014; 32:613-8. [PMID: 24439061 DOI: 10.1016/j.urolonc.2013.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/15/2013] [Accepted: 11/05/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To analyze microRNA profile in Ta and T1 urinary bladder cancers in combination and separately and to relate this to the risk of later developing higher-stage disease. MATERIALS AND METHODS Formalin-fixed, paraffin-embedded samples of 44 Ta and 42 T1 bladder cancers representing cases with and without stage progression during follow-up were collected and microRNA expression levels were measured by microarray analysis. RESULTS In a comparison between the progressors and controls, in the Ta/T1 group, miR-10a-5p and miR-31-5p were differentially expressed. miR-10a-5p was also correlated to time to progression (P = 0.00012). In the subgroup analysis, 3 microRNAs, miR-10a-5p, miR-31-5p, and miR-130a-3p, were differentially expressed among Ta tumors and had a fold change of more than 1.5 (P<0.038). The comparison concerning microRNA expression between the progressors and controls in category T1 cancers revealed no significant differences. CONCLUSIONS Profiling revealed that certain microRNAs predicted the risk of developing higher-stage disease among patients with Ta cancers. Lower miR-10a-5p expression in Ta progressing tumors indicates that this microRNA could be important for later malignant potential among this group of patients.
Collapse
Affiliation(s)
- Ulrika Segersten
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | | | | | | | - Per-Uno Malmström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
181
|
Oliveira AI, Jerónimo C, Henrique R. Moving forward in bladder cancer detection and diagnosis: the role of epigenetic biomarkers. Expert Rev Mol Diagn 2014; 12:871-8. [DOI: 10.1586/erm.12.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
182
|
Interferon-β induced microRNA-129-5p down-regulates HPV-18 E6 and E7 viral gene expression by targeting SP1 in cervical cancer cells. PLoS One 2013; 8:e81366. [PMID: 24358111 PMCID: PMC3864787 DOI: 10.1371/journal.pone.0081366] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/11/2013] [Indexed: 02/02/2023] Open
Abstract
Infection by human papillomavirus (HPV) can cause cervical intraepithelial neoplasia (CIN) and cancer. Down-regulation of E6 and E7 expression may be responsible for the positive clinical outcomes observed with IFN treatment, but the molecular basis has not been well determined. As miRNAs play an important role in HPV induced cervical carcinogenesis, we hypothesize that IFN-β can regulate the expressions of specific miRNAs in cervical cancer cells, and that these miRNAs can mediate E6 and E7 expression, thus modulate their oncogenic potential. In this study, we found that miR-129-5p to be a candidate IFN-β inducible miRNA. MiR-129-5p levels gradually decrease with the development of cervical intraepithelial lesions. Manipulation of miR-129-5p expression in Hela cells modulates HPV-18 E6 and E7 viral gene expression. Exogenous miR-129-5p inhibits cell proliferation in Hela cells, promotes apoptosis and blocks cell cycle progression in Hela cells. SP1 is a direct target of miR-129-5p in Hela cells. This study is the first report of a cellular miRNA with anti-HPV activity and provides new insights into regulatory mechanisms between the HPV and the IFN system in host cells at the miRNA level.
Collapse
|
183
|
Expression of miRNAs and ZEB1 and ZEB2 correlates with histopathological grade in papillary urothelial tumors of the urinary bladder. Virchows Arch 2013; 464:213-20. [PMID: 24306957 DOI: 10.1007/s00428-013-1518-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/28/2013] [Accepted: 11/18/2013] [Indexed: 02/01/2023]
Abstract
Histopathological grading of papillary urothelial tumors (PUTs) of the urinary bladder is subjective and poorly reproducible. We investigated the relationship between the expression of frequently deregulated microRNAs (miRNAs) as well as their target genes (ZEB1/ZEB2) and bladder cancer histopathological grade in an attempt to find a miRNA that might allow more reliable grading of PUTs. We measured the expression levels of four miRNAs (miR-145, miR-205, miR-125b, and miR-200c) in 120 formalin-fixed, paraffin-embedded bladder tumor tissue samples using real-time PCR assays. ZEB1 and ZEB2 expression was assessed in the same bladder tissues by immunohistochemistry. MiR-205 distinguished low-grade papillary urothelial carcinoma (LG) from high-grade papillary urothelial carcinoma (HG), and miR-145 distinguished HG from infiltrating carcinoma (CA) with an area under the receiver operator characteristic curve (AUC) of 0.992 and 0.997, respectively (sensitivity/specificity of 95.8/96.7 % and 100/91.7 %, respectively; p < 0.05). The expression level of miR-125b was significantly lower in LG than in PUNLMP, with an AUC value of 0.870 (93.3 % sensitivity and 84.2 % specificity; p < 0.05). ZEB1 immunoreactivity was more frequently detected in HG than in LG (57 % vs 13 %, p < 0.01) and in HG than in CA (57 % vs 17 %, p < 0.01). ZEB2 immunoreactivity was more frequent in CA than in HG (83 % vs 54 %, p < 0.05). ZEB1/ZEB2 and miRNAs expression seems to reliably distinguish between different grades of PUTs of the urinary bladder. They might well serve as useful complementary diagnostic biomarkers for grading of papillary urothelial tumors.
Collapse
|
184
|
Cheng Q, Yi B, Wang A, Jiang X. Exploring and exploiting the fundamental role of microRNAs in tumor pathogenesis. Onco Targets Ther 2013; 6:1675-84. [PMID: 24273410 PMCID: PMC3836659 DOI: 10.2147/ott.s52730] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
miRNAs (miRs) are short RNA molecules that are involved in the posttranscriptional regulation of mRNA. The roles of miRs in tumor pathogenesis have only recently become a focus of research. It is becoming increasingly clear that miRs are important regulators of apoptosis, proliferation, invasion, and metastasis in cancer cells during cancer genesis and progression, furthering our understanding of cancer. In the present review, we summarize and evaluate the recent advances in our understanding of the characteristics of miRs as well as their regulated functions in cancer stem cells (CSCs), the epithelial-mesenchymal transition (EMT), and the tumor microenvironment (TM), describing their roles in tumor pathogenesis and their possible use as new therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Qingbao Cheng
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | |
Collapse
|
185
|
Zabolotneva AA, Zhavoronkov AA, Shegay PV, Gaifullin NM, Alekseev BY, Roumiantsev SA, Garazha AV, Kovalchuk O, Aravin A, Buzdin AA. A systematic experimental evaluation of microRNA markers of human bladder cancer. Front Genet 2013; 4:247. [PMID: 24298280 PMCID: PMC3828615 DOI: 10.3389/fgene.2013.00247] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/28/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are a class of small RNAs that regulate gene expression. They are aberrantly expressed in many human cancers and are potential therapeutic targets and molecular biomarkers. METHODS In this study, we for the first time validated the reported data on the entire set of published differential miRNAs (102 in total) through a series of transcriptome-wide experiments. We have conducted genome-wide miRNA profiling in 17 urothelial carcinoma bladder tissues and in nine normal urothelial mucosa samples using three methods: (1) An Illumina HT-12 microarray hybridization (MA) analysis (2) a suppression-subtractive hybridization (SSH) assay followed by deep sequencing (DS) and (3) DS alone. RESULTS We show that DS data correlate with previously published information in 87% of cases, whereas MA and SSH data have far smaller correlations with the published information (6 and 9% of cases, respectively). qRT-PCR tests confirmed reliability of the DS data. CONCLUSIONS Based on our data, MA and SSH data appear to be inadequate for studying differential miRNA expression in the bladder. IMPACT We report the first comprehensive validated database of miRNA markers of human bladder cancer.
Collapse
Affiliation(s)
- Anastasia A Zabolotneva
- Group for Genomic Analysis of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Moscow, Russia ; Laboratory of Bioinformatics, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology Moscow, Russia ; First Oncology Research and Advisory Center Moscow, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Xu X, Li S, Lin Y, Chen H, Hu Z, Mao Y, Xu X, Wu J, Zhu Y, Zheng X, Luo J, Xie L. MicroRNA-124-3p inhibits cell migration and invasion in bladder cancer cells by targeting ROCK1. J Transl Med 2013; 11:276. [PMID: 24180482 PMCID: PMC4228407 DOI: 10.1186/1479-5876-11-276] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/30/2013] [Indexed: 12/17/2022] Open
Abstract
Background Increasing evidence has suggested that dysregulation of certain microRNAs (miRNAs) may contribute to human disease including carcinogenesis and tumor metastasis in human. miR-124-3p is down-regulated in various cancers, and modulates proliferation and aggressiveness of cancer cells. However, the roles of miR-124-3p in human bladder cancer are elusive. Thus, this study was conducted to investigate the biological functions and its molecular mechanisms of miR-124-3p in human bladder cancer cell lines, discussing whether it has a potential to be a therapeutic biomarker of bladder cancer. Methods Three human bladder cancer cell lines and samples from ten patients with bladder cancer were analyzed for the expression of miR-124-3p by quantitative RT--PCR. Exogenetic overexpression of miR-124-3p was established by transfecting mimics into T24, UM-UC-3 and J82 cells, after that cell proliferation and cell cycle were assessed by MTT assay, flow cytometry and Colony-forming assay. Cell motility and invasion ability were evaluated by wound healing assay and transwell assay. Tissue microarray, and immunohistochemistry with antibodies against ROCK1, MMP2 and MMP9 was performed using the peroxidase and DAB methods. The target gene of miR-124-3p was determined by luciferase assays, quantitative RT--PCR and western blot. The regulation of epithelial-to-mesenchymal transition by miR-124-3p was analyzed by western blot. Results miR-124-3p is frequently down-regulated in bladder cancer both in three bladder cancer cell lines, T24, UM-UC-3, J82 and clinical samples. Overexpression of miR-124-3p induced G1-phase arrest in T24, UM-UC-3 and J82 cell lines and suppressed cell growth in colony-forming assay. miR-124-3p significantly repressed the capability of migration and invasion of bladder cancer cells. In addition, ROCK1 was identified as a new target of miR-124-3p. ROCK1, MMP2, MMP9 were up-regulated in bladder cancer tissues. Furthermore, we demonstrated miR-124-3p could inhibit bladder cancer cell epithelial mesenchymal transfer, and regulated the expression of c-Met, MMP2, MMP9. Conclusions miR-124-3p can repress the migration and invasion of bladder cancer cells via regulating ROCK1. Our data indicate that miR-124-3p could be a tumor suppressor and may have a potential to be a diagnostics or predictive biomarker in bladder cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Liping Xie
- Department of Urology, the First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
187
|
Li M, Tian L, Wang L, Yao H, Zhang J, Lu J, Sun Y, Gao X, Xiao H, Liu M. Down-regulation of miR-129-5p inhibits growth and induces apoptosis in laryngeal squamous cell carcinoma by targeting APC. PLoS One 2013; 8:e77829. [PMID: 24194897 PMCID: PMC3806837 DOI: 10.1371/journal.pone.0077829] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/11/2013] [Indexed: 01/05/2023] Open
Abstract
miRNAs regulate gene expression and are key mediators of tumourigenesis. miR-129 has diverse effects in tumours, but its role in laryngeal squamous cell carcinoma (LSCC) remains unknown. This article focuses on the role of miR-129-5p in LSCC. We show miR-129-5p is upregulated in primary LSCC tumours and correlated with advanced disease. Down-regulating miR-129-5p suppressed cell proliferation and migration, and caused cell cycle arrest in Hep-2 cell lines. Downregulation of miR-129-5p alone is sufficient to induce apoptosis both in vivo and in vitro. Moreover, the growth of LSCC xenograft exposed to miR-129-5p antisense oligonucleotides (ASO) in BALB/c mice was markedly inhibited. In addition, we found that miR-129-5p targeted adenomatous polyposis coli (APC) to release inhibition of Wnt signalling causing cell growth and tumourigenesis. Our results suggest miR-129-5p functions as an oncogene in LSCC by repressing APC and is a potential therapeutic target for LSCC.
Collapse
Affiliation(s)
- MingHua Li
- Services of Head and Neck Surgery, department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - LinLi Tian
- Services of Laryngology, department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Wang
- Services of Head and Neck Surgery, department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - HongChao Yao
- Services of Head and Neck Surgery, department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - JiaRui Zhang
- Services of Laryngology, department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - JianGuang Lu
- Services of Laryngology, department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - YaNan Sun
- Services of Head and Neck Surgery, department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Hui Xiao
- Services of Laryngology, department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- * E-mail: (ML); (HX)
| | - Ming Liu
- Services of Head and Neck Surgery, department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- * E-mail: (ML); (HX)
| |
Collapse
|
188
|
Gheinani AH, Burkhard FC, Monastyrskaya K. Deciphering microRNA code in pain and inflammation: lessons from bladder pain syndrome. Cell Mol Life Sci 2013; 70:3773-89. [PMID: 23463234 PMCID: PMC11113193 DOI: 10.1007/s00018-013-1275-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/22/2013] [Accepted: 01/28/2013] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs), a novel class of molecules regulating gene expression, have been hailed as modulators of many biological processes and disease states. Recent studies demonstrated an important role of miRNAs in the processes of inflammation and cancer, however, there are little data implicating miRNAs in peripheral pain. Bladder pain syndrome/interstitial cystitis (BPS/IC) is a clinical syndrome of pelvic pain and urinary urgency/frequency in the absence of a specific cause. BPS is a chronic inflammatory condition that might share some of the pathogenetic mechanisms with its common co-morbidities inflammatory bowel disease (IBD), asthma and autoimmune diseases. Using miRNA profiling in BPS and the information about validated miRNA targets, we delineated the signaling pathways activated in this and other inflammatory pain disorders. This review projects the miRNA profiling and functional data originating from the research in bladder cancer and immune-mediated diseases on the BPS-specific miRNAs with the aim to gain new insight into the pathogenesis of this enigmatic disorder, and highlighting the common regulatory mechanisms of pain and inflammation.
Collapse
Affiliation(s)
- Ali Hashemi Gheinani
- Department of Clinical Research, Urology Research Laboratory, University of Bern, Murtenstrasse 35, 3010 Bern, Switzerland
| | | | - Katia Monastyrskaya
- Department of Clinical Research, Urology Research Laboratory, University of Bern, Murtenstrasse 35, 3010 Bern, Switzerland
| |
Collapse
|
189
|
Bladder cancer detection and monitoring: assessment of urine- and blood-based marker tests. Mol Diagn Ther 2013; 17:71-84. [PMID: 23479428 PMCID: PMC3627848 DOI: 10.1007/s40291-013-0023-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bladder cancer is one of the most prevalent cancers worldwide, but the treatment and management of this disease can be very successful if the disease is detected early. The development of molecular assays that could diagnose bladder cancer accurately, and at an early stage, would be a significant advance. Ideally, such molecular assays would be applicable to non-invasively obtained body fluids, and be designed not only for diagnosis but also for monitoring disease recurrence and response to treatment. In this article, we assess the performance of current diagnostic assays for bladder cancer and discuss some of the emerging biomarkers that could be developed to augment current bladder cancer detection strategies.
Collapse
|
190
|
MicroRNA-145 targets the metalloprotease ADAM17 and is suppressed in renal cell carcinoma patients. Neoplasia 2013; 15:218-30. [PMID: 23441135 DOI: 10.1593/neo.121222] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 12/21/2022] Open
Abstract
A disintegrin and metalloproteinase 17 (ADAM17) is a metalloprotease that is overexpressed in many cancer types, including renal cancers. However, the regulatory mechanisms of ADAM17 in cancer development and progression are poorly understood. In the present work, we provide evidence using overexpression and inhibition of microRNA 145 (miR-145) that miR-145 negatively regulates ADAM17 expression. Furthermore, we show that ADAM17 negatively regulates miR-145 through tumor necrosis factor-α, resulting in a reciprocal negative feedback loop. In this study, the expression of ADAM17 and miR-145 correlated negatively in renal cancer tumor tissues and cell lines, suggesting an important regulatory mechanism. Additionally, we showed that the regulation of ADAM17 is partly involved in the effects of miR-145 on proliferation and migration, whereas no involvement in chemosensitivity was observed. Importantly, in the healthy kidney, miR-145 was detected in different cell types including tubular cells, which are considered the origin of renal cancer. In renal cancer cell lines, miR-145 expression was strongly suppressed by methylation. In summary, miR-145 is downregulated in renal cancer patients, which leads to the up-regulation of ADAM17 in renal cancer. Importantly, miR-145 and ADAM17 are regulated in a reciprocal negative feedback loop.
Collapse
|
191
|
Growth inhibitory effects of three miR-129 family members on gastric cancer. Gene 2013; 532:87-93. [PMID: 24055727 DOI: 10.1016/j.gene.2013.09.048] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/24/2013] [Accepted: 09/04/2013] [Indexed: 01/11/2023]
Abstract
Reduced expression of microRNA-129 (miR-129) has been reported in several types of tumor cell lines as well as in primary tumor tissues. However, little is known about how miR-129 affects cell proliferation in gastric cancer. Here, we show that all miR-129 family members, miR-129-1-3p, miR-129-2-3p, and miR-129-5p, are down-regulated in gastric cancer cell lines compared with normal gastric epithelial cells. Furthermore, using the real-time cell analyzer assay to observe the growth effects of miR-129 on gastric cancer cells, we found that all three mature products of miR-129 showed tumor suppressor activities. To elucidate the molecular mechanisms underlying down-regulation of miR-129 in gastric cancer, we analyzed the effects of miR-129 mimics on the cell cycle. We found that increased miR-129 levels in gastric cancer cells resulted in significant G0/G1 phase arrest. Interestingly, we showed that cyclin dependent kinase 6 (CDK6), a cell cycle-associated protein involved in G1-S transition, was a target of miR-129. We also found that expression of the sex determining region Y-box 4 (SOX4) was inversely associated with that of miR-129-2-3p and miR-129-5p but not of miR-129-1-3p. Together, our data indicate that all miR-129 family members, not only miR-129-5p, as previously thought, play an important role in regulating cell proliferation in gastric cancer.
Collapse
|
192
|
Zhao C, Xu Y, Zhang Y, Tan W, Xue J, Yang Z, Zhang Y, Lu Y, Hu X. Downregulation of miR-145 contributes to lung adenocarcinoma cell growth to form brain metastases. Oncol Rep 2013; 30:2027-34. [PMID: 24026105 PMCID: PMC3820619 DOI: 10.3892/or.2013.2728] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/22/2013] [Indexed: 02/07/2023] Open
Abstract
The development of metastases involves the dissociation of cells from the primary tumor, penetrating the basement membrane, invasion and exiting from the vasculature to seed, and finally colonizing in distant tissues. The formation of brain metastasis (BM) in lung adenocarcinoma remains poorly understood. We examined the differential microRNA (miRNA) expression profiles of 5 primary and 3 brain metastatic lung adenocarcinoma samples by Agilent miRNA Microarrays. Five upregulated miRNAs (miRs-9*, -1471, 718, 3656, 720) and 3 downregulated miRNAs (miRs-214, -145 and -23a) were detected. The 4 most significantly deregulated miRNAs (miR-145, miR-214, miR-9* and miR-1471) were validated in the additional 43 samples (35 primary and 8 brain metastatic lung adenocarcinoma samples) using TaqMan quantitative PCR. By functional assay, we found that the expression of miR-145 can regulate the ability of proliferation of A549 and SPC-A1 cells in vitro, but is not related to lymph node metastasis, migration and invasion. These results suggest that miR-145 may have a cell type-specific function and play important roles in the process of BM from lung adenocarcinoma.
Collapse
Affiliation(s)
- Chunyang Zhao
- Biorepository, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Milenkovic D, Jude B, Morand C. miRNA as molecular target of polyphenols underlying their biological effects. Free Radic Biol Med 2013; 64:40-51. [PMID: 23751562 DOI: 10.1016/j.freeradbiomed.2013.05.046] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 02/06/2023]
Abstract
Polyphenols are the most abundant antioxidants in the human diet and are widespread constituents of fruits and beverages, such as tea, coffee, and wine. Epidemiological, clinical, and animal studies support a role of polyphenols in the prevention of various chronic diseases. For a long time, their direct antioxidant effect has been reported as the mechanism responsible for the observed health properties. However, recent findings revealed that polyphenols could interact with cellular signaling cascades regulating the activity of transcription factors and consequently affecting the expression of genes. Together with this classical regulatory pathway, polyphenols have been shown to affect the expression of microRNAs (miRNA). miRNAs are small, noncoding RNAs implicated in the regulation of gene expression that control both physiological and pathological processes such as development and cancer. Furthermore, expression of miRNAs can be affected by different external stimuli including nutrients such as vitamins, lipids, and phytochemicals. In this paper, we review studies assessing modulation of miRNAs expression by dietary polyphenols that could constitute a new pathway by which these compounds may exert their health effects. Over 100 miRNAs, involved in the control of different cellular processes such as inflammation or apoptosis, were identified as modulated by polyphenols. Most of the studies were performed in vitro using different cell lines, particularly cancer cell lines, and few studies were performed in animals. From all these data, miRNAs appear as interesting mediators in regulating polyphenols' biological effects; however, further studies are needed to validate miRNA targets and particularly in physiologically relevant conditions taking into account the bioavailability of dietary polyphenols.
Collapse
Affiliation(s)
- Dragan Milenkovic
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France.
| | | | | |
Collapse
|
194
|
Xu Y, Luo S, Liu Y, Li J, Lu Y, Jia Z, Zhao Q, Ma X, Yang M, Zhao Y, Chen P, Guo Y. Integrated gene network analysis and text mining revealing PIK3R1 regulated by miR-127 in human bladder cancer. Eur J Med Res 2013; 18:29. [PMID: 24004856 PMCID: PMC3766679 DOI: 10.1186/2047-783x-18-29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 07/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cancer is the result of a complex multistep process that involves the accumulation of sequential alterations of several genes, including those encoding microRNAs (miRNAs) that have critical roles in the regulation of gene expression.In this study, we aimed to predict potential mechanisms of bladder cancer related miRNAs and target genes by bioinformatics analyses. METHODS Here we used the method of text mining to identify nine miRNAs in bladder cancer and adopted protein-protein interaction analysis to identify interaction sites between these miRNAs and related-target genes. RESULTS There are two relationship types between bladder cancer and its related miRNAs: causal and unspecified. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment test showed that there were three pathways related to four miRNA targeted genes. The remaining five miRNAs annotated to disease are not enriched in the KEGG pathways. Of these, PIK3R1 is the overlapping gene among 38 genes in the cancer and bladder cancer pathways. CONCLUSIONS These findings provide new insights into the role of miRNAs in the pathway of cancer and give us a hypothesis that miR-127 might play a similar role in regulation and control of PIK3R1.
Collapse
Affiliation(s)
- Yahong Xu
- Department of Urology, the 452nd Hospital of People's Liberation Army, Chengdu 610021, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Hara K, Fujita H, Johnson TA, Yamauchi T, Yasuda K, Horikoshi M, Peng C, Hu C, Ma RCW, Imamura M, Iwata M, Tsunoda T, Morizono T, Shojima N, So WY, Leung TF, Kwan P, Zhang R, Wang J, Yu W, Maegawa H, Hirose H, Kaku K, Ito C, Watada H, Tanaka Y, Tobe K, Kashiwagi A, Kawamori R, Jia W, Chan JCN, Teo YY, Shyong TE, Kamatani N, Kubo M, Maeda S, Kadowaki T. Genome-wide association study identifies three novel loci for type 2 diabetes. Hum Mol Genet 2013; 23:239-46. [DOI: 10.1093/hmg/ddt399] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Kazuo Hara
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan,
- Department of Integrated Molecular Science on Metabolic Diseases, 22nd Century Medical and Research Center, the University of Tokyo, Tokyo 113-8655, Japan,
| | - Hayato Fujita
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan,
| | | | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan,
- Sportology Center, Graduate School of Medicine and
| | - Kazuki Yasuda
- Department of Metabolic Disorder, Diabetes Research Center, National Center for Global Health and Medicine, Research Institute, Tokyo 162-8655, Japan,
| | - Momoko Horikoshi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan,
| | - Chen Peng
- Saw Swee Hock School of Public Health, National University of Singapore, MD3, 16 Medical Drive, Singapore 117597, Singapore, Singapore,
| | - Cheng Hu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, 600 Yishan Road, Shanghai 200233, China,
| | - Ronald C. W. Ma
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China,
- Li Ka Shing Institute of Health Sciences,
- Hong Kong Institute of Diabetes and Obesity and
| | - Minako Imamura
- Laboratory for Endocrinology, Metabolism, and Kidney Diseases and
| | - Minoru Iwata
- First Department of Internal Medicine, University of Toyama, Toyama 930-0194, Japan,
| | | | | | - Nobuhiro Shojima
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan,
| | - Wing Yee So
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China,
- Li Ka Shing Institute of Health Sciences,
- Hong Kong Institute of Diabetes and Obesity and
| | - Ting Fan Leung
- Department of Paediatrics, Chinese University of Hong Kong, Hong Kong, China,
| | - Patrick Kwan
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China,
| | - Rong Zhang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, 600 Yishan Road, Shanghai 200233, China,
| | - Jie Wang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, 600 Yishan Road, Shanghai 200233, China,
| | - Weihui Yu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, 600 Yishan Road, Shanghai 200233, China,
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan,
| | - Hiroshi Hirose
- Health Center, Keio University School of Medicine, Tokyo 160-8582, Japan,
| | - Kohei Kaku
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan,
| | - Chikako Ito
- Medical Court Life Care Clinic, Hiroshima 730-0012, Japan,
| | - Hirotaka Watada
- Department of Medicine, Metabolism and Endocrinology, School of Medicine, Juntendo University, Tokyo 113-8421, Japan,
| | - Yasushi Tanaka
- Department of Internal Medicine, Division of Metabolism and Endocrinology, St. Marianna University School of Medicine, Kawasaki, Kanagawa 216-8511, Japan,
| | - Kazuyuki Tobe
- First Department of Internal Medicine, University of Toyama, Toyama 930-0194, Japan,
| | - Atsunori Kashiwagi
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan,
| | - Ryuzo Kawamori
- Department of Medicine, Metabolism and Endocrinology, School of Medicine, Juntendo University, Tokyo 113-8421, Japan,
| | - Weiping Jia
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, 600 Yishan Road, Shanghai 200233, China,
| | - Juliana C. N. Chan
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China,
- Li Ka Shing Institute of Health Sciences,
- Hong Kong Institute of Diabetes and Obesity and
| | - Yik Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore, MD3, 16 Medical Drive, Singapore 117597, Singapore, Singapore,
- Life Sciences Institute,
- NUS Graduate School for Integrative Science and Engineering,
- Department of Statistics and Applied Probability and
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore,
| | - Tai E. Shyong
- Saw Swee Hock School of Public Health, National University of Singapore, MD3, 16 Medical Drive, Singapore 117597, Singapore, Singapore,
- Department of Medicine, National University of Singapore, Singapore, Singapore,
- Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | | | - Michiaki Kubo
- Research Group for Genotyping, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan,
| | - Shiro Maeda
- Laboratory for Endocrinology, Metabolism, and Kidney Diseases and
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan,
| | | |
Collapse
|
196
|
Ratert N, Meyer HA, Jung M, Lioudmer P, Mollenkopf HJ, Wagner I, Miller K, Kilic E, Erbersdobler A, Weikert S, Jung K. miRNA profiling identifies candidate mirnas for bladder cancer diagnosis and clinical outcome. J Mol Diagn 2013; 15:695-705. [PMID: 23945108 DOI: 10.1016/j.jmoldx.2013.05.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 01/26/2023] Open
Abstract
Bladder cancer is a common cancer in the Western world. The current prognosticators such as tumor grade, stage, size, and multifocality do not accurately reflect the clinical outcome. It is of clinical interest to identify biomarkers that could improve diagnostic and/or prognostic predictions. The objectives of this study were to identify deregulated miRNAs in bladder cancer samples and evaluate their potential as diagnostic and prognostic biomarkers. We screened 723 miRNAs by microarray and selected a subset of 15 distinctively deregulated miRNAs for further validation by real-time quantitative RT-(q)PCR. Seven miRNAs (miR-20a, miR-106b, miR-130b, miR-141, miR-200a, miR-200a*, and miR-205) were found to be up-regulated and eight miRNAs (miR-100, miR-125b, miR-130a, miR-139-5p, miR-145*, miR-199a-3p, miR-214, and miR-222) were found to be down-regulated in malignant bladder tissue samples compared to healthy tissue. Four miRNAs that have already been described in the literature (miR-141, miR-199a-3p, miR-205, and miR-214) were significantly differentially expressed between nonmuscle-invasive and muscle-invasive bladder cancer. Furthermore, real-time RT-qPCR of all miRNAs provided high overall correct classification (>75%) of bladder cancer diagnosis. Two miRNAs (miR-141 and miR-205) were associated with overall survival time. The verification of tumor-specific miRNA expression profile, together with the observed association of miR-141 and miR-205 expression with overall survival, underline the potential of miRNAs to function as diagnostic and/or prognostic markers of bladder cancer.
Collapse
Affiliation(s)
- Nadine Ratert
- Department of Urology, University Hospital Charité, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Besaratinia A, Cockburn M, Tommasi S. Alterations of DNA methylome in human bladder cancer. Epigenetics 2013; 8:1013-22. [PMID: 23975266 DOI: 10.4161/epi.25927] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bladder cancer is the fourth most common cancer in men in the United States, and its recurrence rate is highest among all malignancies. The unmet need for improved strategies for early detection, treatment, and monitoring of the progression of this disease continues to translate into high mortality and morbidity. The quest for advanced diagnostic, therapeutic, and prognostic approaches for bladder cancer is a high priority, which can be achieved by understanding the molecular mechanisms of the initiation and progression of this malignancy. Aberrant DNA methylation in single or multiple cancer-related genes/loci has been found in human bladder tumors and cancer cell lines, and urine sediments, and correlated with many clinicopathological features of this disease, including tumor relapse, muscle-invasiveness, and survival. The present review summarizes the published research on aberrant DNA methylation in connection with human bladder cancer. Representative studies are highlighted to set forth the current state of knowledge, gaps in the knowledgebase, and future directions in this prime epigenetic field of research. Identifying the potentially reversible and 'drugable' aberrant DNA methylation events that initiate and promote bladder cancer development can highlight biological markers for early diagnosis, effective therapy and accurate prognosis of this malignancy.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Preventive Medicine; Keck School of Medicine of USC; University of Southern California; Los Angeles, CA USA
| | - Myles Cockburn
- Department of Preventive Medicine; Keck School of Medicine of USC; University of Southern California; Los Angeles, CA USA
| | - Stella Tommasi
- Department of Preventive Medicine; Keck School of Medicine of USC; University of Southern California; Los Angeles, CA USA
| |
Collapse
|
198
|
The evolving understanding of microRNA in bladder cancer. Urol Oncol 2013; 32:41.e31-40. [PMID: 23911686 DOI: 10.1016/j.urolonc.2013.04.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/18/2013] [Accepted: 04/29/2013] [Indexed: 01/05/2023]
Abstract
PURPOSE Micro ribonucleic acid (miR) expression is altered in urologic malignancies, including bladder cancer (BC). Individual miRs have been shown to modulate multiple signaling pathways that contribute to BC. We reviewed the primary literature on the role of miRs in BC; we provide a general introduction to the processing, regulation, and function of miRs as tumor suppressors and oncogenes and critically evaluate the literature on the implications of altered miR expression in BC. MATERIALS AND METHODS We searched the English language literature for original and review articles in PubMed from 1993 to March 2013, using the terms "microRNA" and "bladder cancer," "transitional cell carcinoma," or "urothelial carcinoma." This search yielded 133 unique articles with more than 85% of them published within the last 3 years. RESULTS To date, the majority of miR studies in BC use profiling to describe dynamic changes in miR expression across stage and grade. Generalized down-regulation of miRs, including those that target the fibroblast growth factor 3 pathway, such as miR-145, miR-101, miR-100, and miR-99a, has been observed in low-grade, non-muscle invasive BC. In contrast, generalized increased expression of miRs is observed in high-grade, muscle-invasive BC compared with adjacent normal bladder urothelium, including miRs predicted to target p53, such as miR-21 and miR-373. Furthermore, p53 suppresses transcriptional factors that promote mesenchymal differentiation, ZEB-1 and ZEB-2, through regulation of the miR200 family. CONCLUSIONS Aberrations in miR expression identified between non-muscle invasive BC and muscle-invasive BC provide insight into the molecular alterations known to distinguish the two parallel pathways of bladder carcinogenesis. The heterogeneity of tumor specimens and research methods limits the reproducibility of changes in miR expression profiles between studies and underscores the importance of in vivo validation in a field that utilizes in silico miR target-prediction models.
Collapse
|
199
|
Jafarnejad SM, Ardekani GS, Ghaffari M, Li G. Pleiotropic function of SRY-related HMG box transcription factor 4 in regulation of tumorigenesis. Cell Mol Life Sci 2013; 70:2677-96. [PMID: 23080209 PMCID: PMC11113534 DOI: 10.1007/s00018-012-1187-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 09/10/2012] [Accepted: 10/02/2012] [Indexed: 02/06/2023]
Abstract
In addition to their critical roles in embryonic development, cell fate decision, and differentiation, members of Sox (Sry-related high-mobility group box) family of transcription factors including Sox4 have been implicated in various cancers. Multiple studies have revealed an increased expression along with specific oncogenic function of Sox4 in tumors, while others observed a reduced expression of Sox4 in different types of malignancies and suppression of tumor initiation or progression by this protein. More interestingly, the prognostic value of Sox4 is debated due to obvious differences between various reports as well as inconsistencies within specific studies. This review summarizes our current understanding of Sox4 expression pattern and its transcription-dependent, as well as transcription-independent, functions in tumor initiation or progression and its correlation with patient survival. We also discuss the existing discrepancies between different reports and their possible explanations.
Collapse
Affiliation(s)
- Seyed Mehdi Jafarnejad
- Department of Dermatology and Skin Science, Jack Bell Research Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| | - Gholamreza Safaee Ardekani
- Department of Dermatology and Skin Science, Jack Bell Research Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| | - Mazyar Ghaffari
- The Vancouver Prostate Centre, Vancouver General Hospital, University of British Columbia, Vancouver, BC Canada
| | - Gang Li
- Department of Dermatology and Skin Science, Jack Bell Research Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| |
Collapse
|
200
|
Tölle A, Jung M, Rabenhorst S, Kilic E, Jung K, Weikert S. Identification of microRNAs in blood and urine as tumour markers for the detection of urinary bladder cancer. Oncol Rep 2013; 30:1949-56. [PMID: 23877086 DOI: 10.3892/or.2013.2621] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/14/2013] [Indexed: 01/16/2023] Open
Abstract
Since differential expression of microRNAs (miRNAs) has been found to be highly associated with several types of cancer, the goal of the present study was to identify an miRNA fingerprint as a non‑invasive diagnostic tool to detect urinary bladder cancer using the easily accessible samples of whole blood and urine. Blood and urine samples from 4 controls and from patients suffering from superficial and invasive bladder cancer were analyzed using miRNA microarray consisting of 754 human miRNAs from the Sanger database v14. Using RT‑qPCR technique, 6 of the differentially expressed miRNAs were validated in the controls (20 blood, 19 urine samples) and patients with superficial (18 blood, 16 urine samples) or invasive (20 blood and urine samples each) tumours. Three blood miRNAs (miR‑26b‑5p, miR‑144‑5p, miR‑374‑5p) were found to be significantly upregulated in invasive bladder tumour patients (P<0.05) when compared to the control group. The expression of 2 miRNAs (miR‑618, miR‑1255b‑5p) in the urine of patients with invasive tumours was significantly (P<0.05) increased in comparison to the control group. Blood miR‑26b‑5p detected the presence of invasive bladder tumours with 94% specificity and 65% sensitivity. The urine miR‑1255b‑5p reached 68% specificity and 85% sensitivity in the diagnosis of invasive tumours. This pilot study represents the first characterization of an miRNA profile for urinary bladder tumours in whole blood samples. In addition, it was shown that invasive bladder tumours could be identified by differentially expressed urine miRNAs. Further studies are needed to test the clinical usefulness for bladder cancer detection and surveillance.
Collapse
Affiliation(s)
- Angelika Tölle
- Department of Urology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|